DIRAS: Efficient LLM Annotation of Document Relevance for Retrieval Augmented Generation

Jingwei Ni, Tobias Schimanski, Meihong Lin, Mrinmaya Sachan, Elliott Ash, Markus Leippold


Abstract
Retrieval Augmented Generation (RAG) is widely employed to ground responses to queries on domain-specific documents. But do RAG implementations leave out important information when answering queries that need an integrated analysis of information (e.g., Tell me good news in the stock market today.)? To address these concerns, RAG developers need to annotate information retrieval (IR) data for their domain of interest, which is challenging because (1) domain-specific queries usually need nuanced definitions of relevance beyond shallow semantic relevance; and (2) human or GPT-4 annotation is costly and cannot cover all (query, document) pairs (i.e., annotation selection bias), thus harming the effectiveness in evaluating IR recall. To address these challenges, we propose DIRAS (**D**omain-specific **I**nformation **R**etrieval **A**nnotation with **S**calability), a manual-annotation-free schema that fine-tunes open-sourced LLMs to consider nuanced relevance definition and annotate (partial) relevance labels with calibrated relevance scores. Extensive evaluation shows that DIRAS enables smaller (8B) LLMs to achieve GPT-4-level performance on annotating and ranking unseen (query, document) pairs, and is helpful for real-world RAG development.
Anthology ID:
2025.naacl-long.271
Volume:
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Month:
April
Year:
2025
Address:
Albuquerque, New Mexico
Editors:
Luis Chiruzzo, Alan Ritter, Lu Wang
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
5238–5258
Language:
URL:
https://preview.aclanthology.org/fix-sig-urls/2025.naacl-long.271/
DOI:
Bibkey:
Cite (ACL):
Jingwei Ni, Tobias Schimanski, Meihong Lin, Mrinmaya Sachan, Elliott Ash, and Markus Leippold. 2025. DIRAS: Efficient LLM Annotation of Document Relevance for Retrieval Augmented Generation. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 5238–5258, Albuquerque, New Mexico. Association for Computational Linguistics.
Cite (Informal):
DIRAS: Efficient LLM Annotation of Document Relevance for Retrieval Augmented Generation (Ni et al., NAACL 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/fix-sig-urls/2025.naacl-long.271.pdf