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Abstract

Claim verification is a long-standing and chal-
lenging task that demands not only high accu-
racy but also explainability of the verification
process. This task becomes an emerging re-
search issue in the era of large language models
(LLMs) since real-world claims are often com-
plex, featuring intricate semantic structures or
obfuscated entities. Traditional approaches typ-
ically address this by decomposing claims into
sub-claims and querying a knowledge base to
resolve hidden or ambiguous entities. However,
the absence of effective disambiguation strate-
gies for these entities can compromise the en-
tire verification process. To address these chal-
lenges, we propose Verify-in-the-Graph (VeG-
raph), a novel framework leveraging the reason-
ing and comprehension abilities of LLM agents.
VeGraph operates in three phases: (1) Graph
Representation - an input claim is decomposed
into structured triplets, forming a graph-based
representation that integrates both structured
and unstructured information; (2) Entity Dis-
ambiguation -VeGraph iteratively interacts with
the knowledge base to resolve ambiguous enti-
ties within the graph for deeper sub-claim verifi-
cation; and (3) Verification - remaining triplets
are verified to complete the fact-checking pro-
cess. Experiments using Meta-Llama-3-70B
(instruct version) show that VeGraph achieves
competitive performance compared to base-
lines on two benchmarks HoVer and FEVER-
OUS, effectively addressing claim verification
challenges. Our source code and data are avail-
able for further exploitation1.

1 Introduction

In the era of rapidly advancing large language mod-
els (LLMs), the widespread dissemination of mis-
information, combined with the increasing pres-
ence of AI-generated content, has made it signifi-
cantly harder for individuals to assess the reliability

*Corresponding author
1https://github.com/HoangHoang1408/VeGraph
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Figure 1: Conceptual analysis of previous works and
VeGraph: a) Traditional approaches use IR to retrieve
evidence and then verify sub-claims; b) Advanced ap-
proaches use IR to resolve ambiguous entities and then
verify sub-claims; c) Our approach represents claims
with graph triplets, then iteratively interacts with IR for
entity disambiguation and sub-claims verification.

of information. Consequently, claim verification,
leveraging advanced Natural Language Process-
ing (NLP) techniques to automatically determine
the veracity of claims, has emerged as a critical
research topic (Guo et al., 2022; Dmonte et al.,
2024).

Traditional approaches typically begin by de-
composing a given claim (e.g., at the sentence or
passage level) into sub-claims, often using methods
such as chain-of-thought (CoT) prompting (Wei
et al., 2022). Subsequently, each sub-claim is eval-
uated by prompting an LLM, incorporating knowl-
edge sources (e.g., information retrieval systems) to
determine the truthfulness of the overall claim (Kr-
ishna et al., 2022; Zhang and Gao, 2023), as shown
in Figure 1(a). Multi-step reasoning in LLMs is
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the process of addressing complex tasks by break-
ing them into sequential inference steps, where
each step builds on the previous one, enabling the
model to integrate intermediate results and draw
conclusions. Recently, more advanced methods
have enhanced claim verification task by incorpo-
rating multi-step reasoning to resolve ambiguous
entities before verifying sub-claims (Wang and Shu,
2023; Pan et al., 2023; Zhao et al., 2024), as illus-
trated in Figure 1(b). These improvements have
made such methods more promising for explain-
able and interpretable claim verification systems.

However, despite the advancements achieved by
multi-step reasoning mechanisms, several critical
challenges persist: i) Ambiguous Entity Interac-
tions: Ambiguities in entity relationships remain
a significant hurdle for fact verification systems
(Sedova et al., 2024). This challenge is ampli-
fied in multi-step reasoning, where entity disam-
biguation must span the entire verification process.
Unlike previous approaches that employ external
tools for resolving ambiguities in individual sub-
claims, effective resolution here requires seamless
integration throughout the reasoning pipeline; ii)
Limitations of LLM-Based Multi-Step Reasoning
Agents: Many existing approaches rely on static,
single-plan veracity prediction (Pan et al., 2023;
Wang and Shu, 2023). If a failure occurs at any
intermediate step, the entire reasoning process may
collapse, thereby underutilizing the adaptive po-
tential of LLM-based agents to recover and refine
reasoning paths dynamically.

In response to these challenges, this study intro-
duces an agent-based framework, named Verify-in-
the-Graph (VeGraph), for automatic fact verifica-
tion. Our approach, illustrated in Figure 1(c), con-
sists of three interconnected stages: an LLM agent
first constructs a graph-based representation by de-
composing the input claim into sub-claim triplets.
The agent then interacts with a knowledge base to
resolve ambiguous entities in triplets, iteratively
updating the graph state. Finally, the agent veri-
fies triplets, completing the process. Overall, the
primary contributions of this work are as follows:

(1) We propose a novel multi-step reasoning ap-
proach for claim verification using an LLM agent
framework with interactive graph representation
(VeGraph). To the best of our knowledge, this is the
first study to leverage multi-step reasoning in con-
junction with an interactive entity disambiguation
process to enhance claim verification performance.

(2) The proposed method, by integrating interac-

tive graph representations with LLM agent frame-
works, enhances explainability and interpretability
by exploiting both structured and unstructured in-
formation — the key elements for advancing multi-
step reasoning tasks.

(3) We evaluate and show the effectiveness of
our approach on two widely recognized benchmark
datasets in this research field: HoVer (Jiang et al.,
2020) and FEVEROUS (Aly et al., 2021).

2 Related Work

Claim verification is a long-standing and challeng-
ing task that seeks to determine the veracity of
a claim by retrieving relevant documents, select-
ing the most salient evidence, and making a ve-
racity prediction. In the era of large language
models (LLMs), LLM-based claim verification has
evolved to generate subclaims from input claims
using the chain-of-thought (CoT) approach, and
to retrieve evidence by augmenting the LLM with
external knowledge sources for verification (Guo
et al., 2022). ProgramFC (Pan et al., 2023) im-
proves this process by leveraging in-context learn-
ing along with the CoT method, decomposing the
original claim into program-like functions to guide
the verification steps. Similarly, FOLK (Wang and
Shu, 2023) translates the claim into First-Order-
Logic (FOL) clauses, where each predicate cor-
responds to a subclaim that requires verification.
FOLK then performs FOL-guided reasoning over a
set of knowledge-grounded question-answer pairs
to predict veracity and generate explanations, jus-
tifying its decision-making process. Furthermore,
PACAR (Zhao et al., 2024) leverages LLM Agent
concept, which incorporates self-reflection tech-
nique and global planning to enhance performance.

Despite the advancement of these methods,
which exploit LLM reasoning capabilities to inter-
act with external knowledge bases, they are limited
to a single interaction with the knowledge base for
an ambiguous entity. If the knowledge base fails to
identify the requested entity in the query, the entire
verification process may collapse. In light of these
limitations, our proposed method similarly lever-
ages LLM reasoning in conjunction with external
knowledge retrieval systems. However, we extend
this by incorporating agent-based LLM, enabling
iterative interactions with the knowledge base to
resolve ambiguous entities and execute multi-step
reasoning for more robust and in-depth claim veri-
fication.
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Figure 2: Three key components of VeGraph: (i) Graph Representation, which decomposes the complex input
claim into graph triplets; (ii) Entity Disambiguation, ambiguous entities are resolved through iterative interactions
with the knowledge base (KB); and (iii) Sub-claim Verification, which evaluates each triplet by delegating the
verification process to the sub-claim verification function. The logging module records the whole process.

3 Methodology

The main objective of this study is to predict the
veracity of a complex input claim C through auto-
mated reasoning using an interpretable LLM Agent,
incorporating both structured and unstructured in-
formation through graph representation. Figure 2
shows the architecture of our proposed framework.
Specifically, VeGraph consists of three stages: (i)
the agent represents the claim C with graph triplets,
each corresponding to a sub-claim; (ii) the agent in-
teracts with an external knowledge base to resolve
ambiguous entities; and (iii) once all ambiguities
are addressed, the agent verifies sub-claims corre-
sponding to the remaining triplets. The veracity of
the input claim is determined by the veracity of all
graph triplets, if all the graph triplets are verified
with the information in the knowledge base then the
claim C is Supported, if one of the triplets cannot
be verified then the claim C is Refuted. Dur-
ing processing through stages, the logging module
records the activities of the agent for explainability.

3.1 Graph Representation

Input claims often contain complex sentence struc-
tures that challenge LLMs to grasp their semantic
meaning. To address this, we transform each claim
into a graph representation composed of triplets,
with each triplet capturing a subclaim within the
original claim (illustrated in Figure 3). This seman-
tic graph construction is grounded in techniques
from the field of Information Extraction, utilizing a
joint approach for entity and relation extraction (Li

### Task: Construct a graph that captures entities and
relationships from a given claim, including hidden, ambiguous
or implicit entities. Only use information from the claim, do
NOT repeat similar triplets in the graph and return the graph in
the following format:
...
### Examples:
<input_claim> Radha started her career in a 1964 Kannada film.
The film was based on the life of the creator of the music form
Geetam, who was born in 1484.
<guidance_for_graph_construction>
The claim mentions "a 1964 film" without specific information,
so it will be marked as an ambiguous entity 
The claim also mentions "the creator of the music form
Geetam" without specific information so it will be marked as an
ambiguous entity 
<graph>
Radha || started career in || 

||is a||1964 Kannada film
||is based on the life of||
||createda music form||Geetam
||was born in||1484

...
### Actual claim
<input_claim> {{claim}}

Graph
Representation

Figure 3: Prompt to make LLM construct the Graph
Representation

et al., 2013; Miwa and Bansal, 2016) in an end-to-
end fashion. Entities (nodes) are defined as spans
of text that represent objects, events, or concepts
mentioned in the claim. Unlike traditional Named
Entity Recognition (NER) systems, which rely on
fixed categories, this approach accommodates a
more diverse set of entity types. For relation extrac-
tion (edges), we apply methods from Open Informa-
tion Extraction (OpenIE) (Fader et al., 2011) lever-
aging LLMs’ semantic comprehension. Instead of
restricting relations to predefined categories (e.g.,

5183



OWNERSHIP, LOCATED), this method extracts
relations expressed in natural language, capturing
detailed document-level interactions. For instance,
in a semantic graph, a relation like “is based on
the life of” (in Figure 3) accurately represents the
relationship between two entities within the claim.

Formally, in VeGraph, the graph construc-
tion process leverages in-context learning (Wei
et al., 2022) to prompt the LLM to generate graph
G = {T1, T2, ..., TN} consisting of N triplets, each
triplet Ti = (E1i, Ri, E2i) corresponds to a sub-
claim extracted from the original claim C. Here,
E1i and E2i denote the head and tail entities, re-
spectively, while Ri captures the semantic relation
between them. Complex claims often contain im-
plicit or ambiguous entities that need to be resolved
to facilitate claim verification. For example, in the
claim shown in Figure 3, the entity “a 1964 Kan-
nada film” is not explicitly named, necessitating a
disambiguation process. To address this, we catego-
rize entities into two types: explicitly stated entities
are marked as standard entity nodes, while ambigu-
ous entities are tagged as Xi to signal the need for
further clarification. This disambiguation process
of these entities, detailed in Section 3.3, ensures a
comprehensive representation of claim semantics.
With this graph-based representation, the LLM can
more effectively capture the semantic intricacies of
the claim, thereby enhancing its reasoning capabili-
ties and supporting improved performance of claim
verification. (Refer to Figure 12 in Appendix for
the detailed prompt)

3.2 Knowledge Base Interaction Functions
To facilitate interaction with the knowledge base
in the open-book setting, we implement two core
functions: Entity Identification and Claim Verifica-
tion. Both functions utilize Information Retrieval
techniques to retrieve relevant documents enabling
context-aware decision-making. During execution,
all the retrieved documents are recorded for thor-
oughness and explainability.
Entity Identification. This function acts as a
question-answering module that extracts a specific
entity. Formally, for a given question Q, a set of
top-k relevant documents D are retrieved from the
knowledge base using an information retrieval sys-
tem. The question Q and the retrieved documents
D are processed jointly by the LLM to identify the
target entity requested in the question. This allows
the system to leverage external knowledge to re-
solve ambiguities and produce informed answers.

(Refer to Figure 11 in Appendix for the prompt)
Sub-claim Verification. The Sub-claim Verifica-
tion function is designed to assess the truthfulness
of a given claim C. Upon receiving a claim as in-
put, the system retrieves a set of top-k documents
D relevant to C from the knowledge base. These
documents are then processed alongside the claim
by the LLM, which determines whether the infor-
mation supports or refutes the claim. The output
is a binary decision—either True or False—that
indicates the veracity of the sub-claim (Refer to
Figure 10 in Appendix for the detailed prompt).

3.3 Entity Disambiguation Process

Following the transformation of the claim into a
graph representation, the next step is identifying
and resolving ambiguous entities. The disambigua-
tion process is described in Algorithm 1 and illus-
trated step-by-step in Figure 4.
Triplet Grouping. To effectively address entity
ambiguities, we organize the extracted triplets from
the graph G into distinct groups based on shared
ambiguous entities. Each group consists of triplets
containing the same ambiguous entity. For instance,
in Figure 4, the triplets are grouped according to
two ambiguous entities, X1 and X2. This method
isolates each ambiguous entity along with relevant
information, facilitating a more focused resolution.
Interaction with Knowledge Base. Once the
triplets are grouped, the LLM interacts with each
group to generate clarifying questions for the am-
biguous entities. A major challenge arises when
entity-related information in the knowledge base
is often fragmented across multiple documents or
sections, leading to that if we combine all the in-
formation or aspects related to an entity to find it
from a specific partition of the knowledge base can
be difficult. To address this, we adopt an iterative
question refinement approach where the LLM uses
the triplet information to narrow down ambiguities.
Specifically, in each iteration, the LLM processes
a group g of triplets, producing the following out-
puts: i) a rationale r, which outlines the reasoning
for selecting specific triplet information to con-
struct the question; ii) a set of triplet identifiers
ids, denoting the triplets used in formulating the
question; and iii) a targeted question q, designed to
clarify the ambiguous entity. The rationale r guides
the LLM in filtering relevant triplets (ids) for con-
structing a precise question q. This dynamic and
self-controlled process enables the LLM to con-
sider various aspects of the triplet group, ensuring
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Figure 4: Illustration of the entity disambiguation process

comprehensive coverage of the information. The
question q is then processed by the function Entity
Identification to resolve the ambiguous entity.
In addition, in the case when the question q fails
to resolve the ambiguity, this question along with
its rationale are fed back into the LLM at the next
iteration to generate a refined question q′ that incor-
porates alternative triplet aspects. As the process
iterates, after each iteration, if an ambiguous entity
X in a group is clarified, the graph G is updated
accordingly by replacing X with the actual entity
founded. Other groups that have triplets related to
X benefit from this update, improving question re-
finement for those groups in subsequent iterations.
For example, in Figure 4, after the first iteration
entity X0 is identified as "Navakoti Nrayana", this
information is then used to update other triplets
(e.g. triplet with id 3). At the next iteration, this
resolved entity adds more information related to
the X1 group. The iteration continues until either:
i) all ambiguous entities are resolved; or ii) a max-
imum iteration limit k is reached. The iterative
refinement provides opportunities for the system
to interact with the knowledge base and resolve
the required ambiguous entity under a limited com-
puting budget (Refer to Figures 13 and 14 for the
prompts).
Verified Information and Outcome. When a ques-
tion resolves an entity’s ambiguity, the correspond-
ing triplets (with ids) are marked as containing

verified information. The disambiguation process
concludes when all ambiguous entities are resolved.
If an entity remains ambiguous after k iterations,
the entire claim associated with that entity is classi-
fied as "REFUTES", indicating insufficient infor-
mation for verification. Once all ambiguities are
resolved, the disambiguation process outputs an up-
dated graph with: i) Verified triplets: Triplets that
contributed to the process of resolving ambiguities;
and ii) Remaining triplets: Triplets that did not
participate in the disambiguation process.

3.4 Verification of Remaining Sub-claims

After entity disambiguation, some triplets remain
unverified, while others were not initially grouped
for the disambiguation process. These remaining
triplets require further verification. To achieve this,
we employ a large language model (LLM) to gen-
erate full-text sub-claim questions based on the un-
verified triplets. For example, consider the triplet
from Figure 4: "Purandara Dasa || was born in
|| 1484". The LLM transforms this triplet into a
full-text subclaim, such as "Purandara Dasa is the
person who was born in 1484". This subclaim is
then used in conjunction with the knowledge base
for verification, facilitated by the Subclaim Veri-
fication function. Once all remaining sub-claims
are verified, the original claim C is classified. If
all sub-claims are supported, C is categorized as
Supported; otherwise, if any sub-claim is refuted,
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C is categorized as Refuted.

Algorithm 1: Entity Disambiguation
Input :Claim C, Input graph G, Max iteration k
Output :Clarified graph G, Verified triplets

V Triplets
Initialize:

Agent Attempt Logs: logs = ∅;
Verified Triplets: V Triplets = ∅;

Function Main(C,G, k):
// Logic of the disambiguation process
for i = 1 to k do

groups = GroupTriplets(G);
foreach (ae, g) in groups do

GenQuesAndResEntity(ae, g)

if Clarified(G) then
// check if all ambiguous entities is identified
return "Successful";

return "Failed";

Function GenQuesAndResEntity(ae, g):
// Agent try to generate question q to identify the

ambiguous entity ae of the group g
r, q, ids = GenQues(C, g, log[ae]);
e = QA(q);
if e ̸= None then

V Triplets.add(ids);
UpdateState(G, ae, e);
// Update verified triplets and the state of the

graph when identified a new entity
else

logs[ae].add((r, q));
// Log the rationale and the question when

the agent failed

Function GroupTriplets(G):
// Group triplets for ambiguous entities
groups = ∅;
entities = AmbiguousEntities(G);
foreach ae in entities do

group = ∅;
foreach triplet in G do

if ae ∈ triplet then
group.add(triplet);

groups.add((ae, group));

return groups;

4 Experiments

4.1 Datasets and Evaluation Metric
Dataset. We conduct our experiments using an
open-book setting, simulating a real-world scenario
where the system has to interact with an external
knowledge base to verify claims. We evaluate the
proposed VeGraph on two widely-used benchmark
datasets for complex claim verification: HoVer and
FEVEROUS. Both datasets contain intricate claims
that require multi-hop reasoning and evidence gath-
ering from various information sources. Due to
the unavailability of public test sets, we rely on
validation sets for evaluation. The HoVer dataset

(Jiang et al., 2020) is a multi-hop fact verification
benchmark designed to validate claims using ev-
idence across multiple sources, including 2-hop,
3-hop, and 4-hop paths. It is based on the intro-
ductory sections of the October 2017 Wikipedia
dump. The multi-hop nature of HoVer challenges
the system to retrieve and aggregate information
from several interrelated documents. The FEVER-
OUS dataset (Aly et al., 2021) addresses complex
claim verification using both structured and un-
structured data. Each claim is annotated with evi-
dence derived from either sentences or table cells
within Wikipedia articles of the December 2020
dump. For consistency with prior work (Aly et al.,
2021), we evaluate FEVEROUS claims on three
key partitions: Multi-hop Reasoning, Entity Dis-
ambiguation, and Numerical Reasoning. As our
research focuses on textual fact-checking, we ex-
clusively select claims that require sentence-based
evidence, discarding those involving table cells or
other structured data. To manage computational
costs, specifically for the HoVer dataset, we sam-
ple 200 claims from each partition while ensuring
balanced label distributions.
Metrics. Following practices in the field, we use
the Macro-F1 as the primary evaluation metric.

4.2 Baselines

For the comparison, we selected recent modern
methods using LLM for multi-step reasoning ve-
racity prediction, which are related to our work,
as the baselines. Specifically, the baselines are se-
quentially described as follows:
CoT-Decomposing CoT reasoning (Wei et al.,
2022) is a popular prompting approach that in-
cludes chains of inference steps produced by LLMs.
Accordingly, for the claim verification task, the in-
put claim is directly decomposed into subclaims
using an LLM. These subclaims are then verified
sequentially by prompting the LLM with facts
grounded on external knowledge sources via the
information retrieval systems.
ProgramFC (Pan et al., 2023) is one of the first
claim verification models in the era of LLMs with
the explainable capability for multi-step reasoning
of veracity prediction. Specifically, the model de-
composes complex claims into simpler sub-tasks
and then solves the sub-tasks by using specialized
functions with program-guided reasoning.
FOLK (Wang and Shu, 2023) improve the ex-
plainable claim verification by introducing the first-
order-logic (FOL) clause as the guided claim de-
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Method IR System HoVer FEVEROUS
2hop 3hop 4hop Multi-hop Disambiguation Numerical

Backbone LLM: GPT-3.5 Turbo (175B) or Codex; Different Experimental Setups
ProgramFC* (Pan et al., 2023) BM25 70.30 63.43 57.74 - - -
FOLK* (Wang and Shu, 2023) SERP API 66.26 54.8 60.35 67.01 - 59.49

Backbone LLM: Meta-Llama-3-Instruct (70B); Same Experimental Setup
CoT-Decomposing Bi-Encoder 67.97 62.45 46.21 57.81 60.51 50.56
ProgramFC (1 run) Bi-Encoder 68.00 62.26 53.96 64.32 67.11 72.01
ProgramFC (5 runs ensembled) Bi-Encoder 71.48 65.88 53.21 65.37 71.93 77.61
FOLK Bi-Encoder 67.74 58.49 53.47 60.96 61.00 47.44
VeGraph (k = 5) Bi-Encoder 69.70 66.13 58.59 59.39 73.89 82.60
VeGraph (k = 5) BM25 69.22 63.10 56.68 53.29 72.46 82.06

Table 1: Report results of Macro-F1 score on HoVer and FEVEROUS datasets. * are taken from respective papers.
Both texts indicate the best score for the same experimental setup.

composition to make veracity predictions and gen-
erate explanations to justify step-by-step the verifi-
cation decision-making process.

4.3 Experimental Setups

Configurations: Since the original baselines have
different configurations including input data, infor-
mation retrieval systems, and underlying LLM in
their respective papers, therefore, we try to repro-
duce the baseline with the unified configuration,
following their available source codes23. To ac-
count for computational constraints, we limit the
number of iterations k in our proposed method, Ve-
Graph, to 5. For a fair comparison, we also report
the ensembled performance of ProgramFC over 5
runs, consistent with the original implementation
(Pan et al., 2023).
Backbone LLM and Prompting Strategy: In
our experiments, we employ Meta-Llama-3-70B-
Instruct4 as the underlying LLM. To construct
graph representations, we leverage in-context learn-
ing by providing the model with human-crafted ex-
amples to guide the LLM to perform the required
tasks. For other tasks, we use zero-shot prompting
leveraging existing LLM reasoning capability.
Retrieval System: Focusing on open-book set-
tings, we utilize the corresponding Wikipedia cor-
pora constructed specifically for the HOVER and
FEVEROUS as knowledge sources. To simulate
real-world systems, we implement a two-layer re-
trieval system. The first layer employs BM25
(Robertson et al., 1994) as the sparse retrieval al-
gorithm. The second layer combines a Bi-Encoder

2https://github.com/teacherpeterpan/ProgramFC
3https://github.com/wang2226/FOLK
4https://huggingface.co/meta-llama/

Meta-Llama-3-70B-Instruct

model (bge-m3) with a Reranker (bge-reranker-v2-
m3) (Chen et al., 2024), refining the search results
by filtering out irrelevant documents. When inter-
acting with the two functions described in Section
3.2, we set a constraint of a maximum of 15 re-
trieved documents or a maximum of 6000 tokens,
adhering to the model’s maximum input length.

4.4 Main Results

The overall performance of VeGraph and the base-
lines are presented in Table 1. The results are orga-
nized into two sections. The first section reports the
performance of the baseline models as documented
in their works, highlighting their diverse configu-
rations, such as variations in the number of exam-
ples used for inference, the underlying backbone
models and the retrieval systems employed. These
models employ varying configurations, including
differences in the number of examples used for
inference and the retrieval systems implemented.
The second section presents the results of our pro-
posed VeGraph model, alongside the reproduced
baselines, which are evaluated under identical con-
figurations. From these experiments, we derive
several key insights:
VeGraph can effectively verify complex claims:
VeGraph consistently outperforms most previous
models across various test cases. Notably, on the
HoVer dataset—where input claims exhibit sub-
stantial complexity—VeGraph demonstrates sig-
nificant improvements, particularly in multi-hop
reasoning tasks. Specifically, it achieves a notable
5-point gain in performance on four-hop claims,
highlighting its effectiveness in handling complex
claim verification. In contrast to the five-run en-
semble strategy employed in ProgramFC, VeGraph
utilizes an iterative interaction approach, wherein
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each iteration builds upon the previous one. This
step-by-step reasoning mechanism ensures that the
output of one iteration serves as the input for the
next, rather than merely aggregating multiple inde-
pendent predictions. Consequently, the final result
is derived from a refined, sequential reasoning pro-
cess. These findings emphasize the crucial role of
interactive disambiguation in our approach, under-
scoring VeGraph’s suitability for verifying intricate
claims that require advanced reasoning capabilities.
Enhanced entity disambiguation leads to gain-
ing in performance: Through the integration of in-
teractive graph representations and the agent-based
LLM framework, VeGraph achieves substantial per-
formance gains across multiple benchmark datasets.
For instance, in the FEVEROUS dataset, VeGraph
surpassed baselines by 2 points in the Disambigua-
tion category and 5 points in the Numerical cate-
gory. However, VeGraph showed slightly lower per-
formance in the Multi-hop category of FEVEROUS.
This performance drop compared to ProgramFC is
attributed to its use of specialized in-context exam-
ples tailored specifically to the FEVEROUS dataset
(Pan et al., 2023). In fact, unlike complex datasets
such as Hover, which require multi-hop entity dis-
ambiguation, the multi-hop subset of FEVEROUS
only necessitates combining evidence from mul-
tiple articles without extensive entity resolution
(Aly et al., 2021). In contrast, VeGraph employs a
generalized reasoning pipeline that consistently in-
tegrates entity disambiguation across tasks. While
this generalization improves adaptability, it intro-
duces a trade-off in performance (e.g., the Multi-
hop partition of FEVEROUS) where task-specific
optimization might yield better results.

4.5 Ablation Study

To evaluate the contribution of each component in
the proposed VeGraph framework, we conducted
an ablation study on the HoVer dataset. Specifi-
cally, we analyzed the impact of graph represen-
tation for disambiguating entity interactions and
the role of multi-step reasoning in decision-making
within the LLM-agent framework. We begin by
removing the interactive graph component, and
then gradually increase the maximum number of
disambiguation steps k allowed. The results are
presented in Table 2. The results demonstrate that
removing graph representation severely degrades
performance, especially on more complex claims
(e.g., 3-hop and 4-hop). This highlights the impor-
tance of graph-based reasoning in VeGraph. Addi-

Method 2hop 3hop 4hop
VeGraph - w/o Interactive Graph 64.71 56.68 43.16
VeGraph - 0 step 63.09 60.85 43.57
VeGraph - 1 step 69.09 62.34 54.83
VeGraph - 2 steps 69.70 63.82 57.33
VeGraph - 5 steps 69.70 66.13 58.59

Table 2: Ablation studies on the maximum number
of disambiguation steps and the effectiveness of graph
representation on Hover dataset.

tionally, increasing the number of reasoning steps
improves performance, indicating that multi-step
decision-making is crucial for verifying complex
claims.

4.6 Interpretability and Error Analysis
Our proposed VeGraph framework not only en-
hances the performance of claim verification sys-
tems but also offers a high degree of interpretability,
which is essential for human comprehension and
trust. Examples of these generated reasoning traces
are provided in Figure 7 of Appendix B. To evalu-
ate the quality of the reasoning processes and the
generated graphs, we conducted a human analysis
on 50 failed predictions for each partition (2-hop,
3-hop, 4-hop) of the HOVER dataset, focusing on
instances where VeGraph incorrectly predicted the
claim’s veracity. Human annotators categorized the
errors into three primary types, corresponding to
different stages of the framework: i) Graph Rep-
resentation Errors: These occur when VeGraph
fails to accurately capture the semantic structure of
the claim, resulting in flawed graph representations;
ii) Entity Resolution Errors: These arise when
the system either fails to disambiguate entities or
struggles to correctly identify the entities relevant
to the claim; iii) Subclaim Errors: These involve
incorrect predictions at the level of individual sub-
claims leading to erroneous final verdicts.

Error Types 2hop 3hop 4hop
Graph Representation 29% 15% 17%
Entity Disambiguation 37% 53% 45%
Subclaims Verification 34% 32% 38%

Table 3: Proportions of incorrectly predicted examples
across partitions on the HOVER dataset.

As shown in Table 3, the error distribution varies
across the 2-hop, 3-hop, and 4-hop partitions of the
HOVER dataset. Despite few-shot in-context learn-
ing strategies being employed, the LLM occasion-
ally encounters challenges in constructing accurate
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graph representations, particularly when process-
ing complex claims. The increasing complexity of
multi-hop claims (e.g., 3-hop and 4-hop) further
exacerbates issues in entity disambiguation, as a
larger number of ambiguous entities complicates
the retrieval of relevant documents. Even after mul-
tiple interaction cycles, entity disambiguation may
remain incomplete, affecting the overall reasoning
process. These limitations in both graph construc-
tion and entity resolution propagate through the
framework, leading to reduced accuracy in the fi-
nal verdicts, particularly in multi-hop scenarios.
Additionally, another source of error comes from
failed interactions with the knowledge base, where
unresolved triplets mislead the retrieval system,
underscoring the critical importance of retrieval
performance.

5 Conclusion

This study presents VeGraph, a novel claim ver-
ification framework using the concept of interac-
tive graph representation incorporating LLM agent
technology to identify ambiguous entities in terms
of multi-step reasoning of veracity predictions.
Specifically, the input claim first is decomposed
into a set of triplets. These triplets are then identi-
fied with ambiguous entities and verified of fact in-
teractively using the proposed agent LLM pipeline.
The experiment on two well-known benchmark
claim verification datasets indicates promising re-
sults of VeGraph for claim verification tasks, espe-
cially in the case of complex claims.

Limitations

While the proposed framework enhances perfor-
mance in disambiguating entities and verifying sub-
claims, it imposes computational overhead due to
its frequent reliance on large language models. This
increased demand for computational resources can
introduce latency, posing challenges for real-world
applications that require rapid response times.

Despite their advanced reasoning capabilities,
LLMs are prone to errors and may exhibit biases
toward certain types of content. This highlights
the need for careful deployment, especially in fact-
checking systems, where biased or incorrect out-
puts could lead to misinformation. Developing
effective mechanisms to detect, control, and mit-
igate these biases remains an open challenge for
future research.

Another limitation lies in the dataset used for

our experiments, which predominantly focuses on
explicit reasoning. Although the framework incor-
porates self-analysis and structured representation,
real-world claims often require processing implicit
information, adding complexity beyond the current
design. Addressing this gap will be a crucial di-
rection for future work, enabling the framework to
manage nuanced reasoning better and improve its
practical applicability.
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A Additional Experiments

A.1 Cost Analysis
To provide an understanding of the computational
overhead, we conducted a cost analysis on the
HoVer dataset. Table 4 summarizes the compara-
tive results of VeGraph and baseline models across
metrics, including the number of LLM calls, knowl-
edge base (KB) interactions, and total inference
time.

Metric 2-hop 3-hop 4-hop
VeGraph
LLM Calls 6.16 8.2 10.04
KB Interactions 3.87 4.63 5.6
Inference Time (s) 9.19 10.25 12.84
FOLK
LLM Calls 4.47 4.93 5.49
KB Interactions 2.47 2.93 3.49
Inference Time (s) 7.98 9.35 11.09
ProgramFC
LLM Calls 3.39 4.17 5.02
KB Interactions 2.39 3.17 4.02
Inference Time (s) 6.37 7.17 8.58

Table 4: Cost Analysis on HoVer Dataset

As illustrated in Table 4, VeGraph demonstrates
superior reasoning capabilities at a higher computa-
tional cost. The disambiguation process, essential
for resolving hidden entities and ensuring accurate
multi-hop reasoning, contributes significantly to
this overhead, primarily due to iterative KB interac-
tions. Specifically, VeGraph’s total computational
time exceeds that of ProgramFC by approximately
40–50% and FOLK by 10–15%. This increase is
strongly correlated with the number of reasoning
hops, as the frequency of both LLM calls and KB
interactions escalates with the query’s complex-
ity. While this trade-off reflects the computational
demands of VeGraph’s advanced reasoning mecha-
nisms, it also underscores the potential for future
research to mitigate these costs. Optimizing the dis-
ambiguation process and improving overall system
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efficiency are promising directions to reduce over-
head while preserving VeGraph’s robust reasoning
performance.

B Evaluation of Entity Disambiguation
Performance

To evaluate the effectiveness of our method in re-
solving ambiguous entities, we report the average
number of entity resolution requests to the knowl-
edge base (KB) on the HoVer dataset, along with
the corresponding success rates of our approach.

Method 2hop 3hop 4hop
VeGraph 1.16 (72%) 2.11 (67%) 3.08 (70%)
ProgramFC 0.57 1.24 1.6

Table 5: Number of entity resolving requests on HoVer
dataset

As shown in Table 5, approximately 30% of
the requests to the KB failed to resolve the en-
tity. This highlights the importance of the itera-
tive reasoning strategy employed in our VeGraph
framework to find the entity. Additionally, the in-
crease in the number of successfully resolved en-
tities demonstrates the enhancement of VeGraph
over ProgramFC.

C Examples

We provide illustrative examples to offer a more in-
tuitive understanding of the framework. Figures 5,
6, and 7 showcase three distinct error types as dis-
cussed in the main section, highlighting common
challenges and failure cases. In contrast, Figures
8 and 9 present correct examples, demonstrating
the reasoning traces and outputs at each stage of
the framework. These examples collectively serve
to clarify the functionality and robustness of the
proposed approach.

D Prompt Templates

For better reproducibility, we present all prompt
templates in the appendix. Below is a quick refer-
ence list outlining the prompt templates and their
usages:

• Figure 10: Verify a claim based on the infor-
mation within a set of documents.

• Figure 11: Extract an entity within a set of
documents that satisfies a question.

• Figure 12: Construct a graph representation
of the input claim.

• Figure 13: Generate a question to resolve the
ambiguous entity from the given graph triplets
and claim.

• Figure 14: Refine failed questions and gener-
ate a new question to resolve the ambiguous
entity from the given graph triplets and claim.

• Figure 15: Generate sub-claims each corre-
sponding to a graph triplet.

All prompts are zero-shot, except for the prompt in
Figure 12, which uses few-shot demonstrations to
better guide the LLM to perform the task. These
prompts were chosen because they perform effec-
tively in practice.
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Error in  Constructing the Graph

### Input Claim: Wild About Harry stars an actor born September 28, 1992, who appeared in Kill Your Darlings in 2006.

### Wrong Graph:
||stars in||Wild About Harry
||was born on||September 28, 1992
||appeared in||
||is a||Kill Your Darlings

### Correct Graph
||stars in||Wild About Harry
||was born on||September 28, 1992
||appeared in||||Kill Your Darlings

Figure 5: Incorrect Example 1

Error in Verifying the Remaining Triplets

### Input Claim: The institution, where Eddie George earned an MBA from, and Middlebury College are both private
schools.

### Graph:
||is a||private school

Eddie George||earned an MBA from||
Middlebury College||is a||private school

### Entity Disambiguation Process
- Iteration 1:
- For 
+ Grouped Triplet:

||is a||private school
Eddie George||earned an MBA from||

+ Rationale: Using the information that Eddie George earned an MBA from the hidden entity, I generated a question to find the
institution where Eddie George got his MBA.
+ Question: What institution did Eddie George earn his MBA from?
+ Resolved Entity: Northwestern Universitys Kellogg School of Management

### Verify Remaining Triplets:
Triplet: Northwestern Universitys Kellogg School of Management||is a||private school
Subclaim: Northwestern Universitys Kellogg School of Management is a private school ==> False (Wrongly verified)

### Predicted Verdict: False
### Gold Verdict: True

Figure 6: Incorrect Example 2
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Error in Identity Ambiguous Entity

### Input Claim:  The actress who made her drama movie debut in Friday Night Lights also starred in a 2014 French-
American crime-thriller directed by McG.

### Graph:
||made her drama movie debut in||Friday Night Lights
||starred in||
||is a||2014 French-American crime-thriller
||was directed by||McG

### Entity Disambiguation Process
- Iteration 1:
- For 
+ Grouped Triplet:

||made her drama movie debut in||Friday Night Lights

+ Rationale: Using the information the actress made her drama movie debut in Friday Night Lights, I generated a question to
find this actress.
+ Question: Who made her drama movie debut in Friday Night Lights?
+ Resolved Entity: Connie Britton  (Must be Amber Heard)

.....

Figure 7: Incorrect Example 3

Correct Example

### Input Claim: Little Big Girl was a Simpsons episode directed by an American animator and artist.

### Graph:
Little Big Girl||was directed by||

||is an||American animator
||is an||artist

Little Big Girl||is a||Simpsons episode

### Entity Disambiguation Process
Iteration 1:
- For 
+ Grouped Triplet:

Little Big Girl||was directed by||
||is an||American animator
||is an||artist

+ Rationale: Using the information that the hidden entity is an American animator and artist, and that it directed a Simpsons
episode, I generated a question to find the specific person who matches this description.
+ Question: Who is the American animator and artist who directed a Simpsons episode?
+ Resolved Entity: David Silverman

### Verify Remaining Triplets:
Triplet: Little Big Girl||is a||Simpsons episode
Subclaim: Little Big Girl is a Simpsons episode ==> True

### Predicted Verdict: True
### Gold Verdict: True

Figure 8: Correct Example Output 1
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Correct Example

### Input Claim: The TV show starring Pāvels Gumennikovs was written by the creator of "The Borowitz Report". This show
also starred Joseph Marcell as the butler.

### Graph:
||stars||Pāvels Gumennikovs
||was written by||
||is the creator of||The Borowitz Report
||stars||Joseph Marcell

Joseph Marcell||plays the role of||butler

### Entity Disambiguation Process
Iteration 1:
- For 
+ Group Triplet:

||stars||Pāvels Gumennikovs
||stars||Joseph Marcell

+ Rationale: Using the information that the hidden entity stars Pāvels Gumennikovs and Joseph Marcell, I generated a question
to find the TV show that features these two actors.
+ Question: What TV show stars Pāvels Gumennikovs and Joseph Marcell?
+ Resolved Entity: None

- For 
+ Group Triplet:

||is the creator of||The Borowitz Report
+ Rationale: Using the information that the hidden entity is the creator of The Borowitz Report, I generated a question to find
the creator of The Borowitz Report to resolve the hidden entity.
+ Question: Who is the creator of The Borowitz Report?
+ Resolved Entity: Andy Borowitz

Iteration 2:
- For 
+ Group Triplet:

||stars||Pāvels Gumennikovs
||was written by||Andy Borowitz
||stars||Joseph Marcell

+ Rationale: Using the information that the hidden entity was written by Andy Borowitz, who is the creator of The Borowitz
Report, I generated a question to find the TV show written by Andy Borowitz.
+ Question: What TV show was written by Andy Borowitz?
+ Resolved Entity: The Fresh Prince of Bel-Air

### Verify Remaining Triplets:
Triplet: The Fresh Prince of Bel-Air||stars||Pāvels Gumennikovs
Subclaim: The Fresh Prince of Bel-Air stars Pāvels Gumennikovs ==> False

Triplet: The Fresh Prince of Bel-Air||stars||Joseph Marcell
Subclaim: The Fresh Prince of Bel-Air stars Joseph Marcell == False

Triplet: Joseph Marcell||plays the role of||butler
Subclaim: Joseph Marcell plays the role of butler ==> True

### Predicted Verdict: False
### Gold Verdict: False

Figure 9: Correct Example Output 2
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FACT_CHECK_WITH_DOCS

### Task: Verify the following claim based on the information in the provided documents
### Guidelines:
1) Use only the content from the provided documents to verify the claim. Do NOT rely on outside information or generate
knowledge yourself. Avoid making implications.
2) To verify the claim:
- Return true if the claim is supported by the documents.
- Return false if the documents provide information that contradicts the claim.
3) Return in the following format:
{

"rationale": "A short rationale with supported or contradicted evidence to guide the verifying process.",
"veracity": "true or false"

}
4) If the claim cannot be answered due to insufficient information, return:
{"rationale": null, "veracity": null}

### Documents:
{{context}}

### Claim:
{{claim}}

Figure 10: Prompt template to find related section content from articles.

QA_WITH_DOCS

### Task: Based only on the information provided in the given documents, answer the question.
### Guidelines:
1) Use only the content from the provided documents to verify the claim. Do NOT rely on outside information or generate
knowledge yourself. Avoid making implications.
2) Return one specific entity requested in the question in the following format:
{"answer": "the one entity you identified"}
3) If the entity is not found in the documents, return
{"answer": null}

### Documents:
{{context}}

### Question:
{{question}}

Figure 11: Prompt template to find related section content from articles.

5195



FEW_SHOT_CONSTRUCT_GRAPH

### Task: Construct a graph that captures entities and relationships from a given claim. Extract triplets with entities and
relations between them, including hidden, ambiguous or implicit entities
### Guidelines:
1) Only use information from the claim, do NOT include external knowledge
2) Do NOT repeat similar triplets in the graph

### Examples:
-- Example 1 --
<input_claim> One of the hosts of the 2022 KBS Drama Awards is a Korean actor. He is well known for his role in a 2016
South Korean television soap opera and starred alongside Han Hyo-joo. Kim Eui-sung also appeared in the series.
<guidance_for_graph_construction>
The claim mentions "One of the hosts of the 2012 KBS Drama Awards" without specifying the name, so it will be marked as

. The claim mentions a 2016 South Korean television soap opera without specifying the name, so it will be marked as 
<graph>

||is a||Korean actor
||hosted||2012 KBS Drama Awards
||is well known for his role in||
||is a||2016 South Korean television soap opera
||starred||Han Hyo-joo

Kim Eui-sung||appeared in||

... Other examples ...

### Claim:
{{question}}

Figure 12: Prompt template to find related section content from articles.

GENERATE_QUESTION

### Task: You will be given a claim and a graph via triplet form. In the graph, there will be an entity that is hidden (marked as  
) that needs to be resolved via searching in an external knowledge base. Your job is to generate the search question to resolve

this entity
### Guidelines:
1) Graph will provided with triplets following the form: triplet_id||entity_1||relation||entity_2
2) You do NOT need to combine all the information of the triplets to form the question. Try one or more aspects corresponding 
to triplets at a time that is enough to form the question to identify that entity

### Return format:
{

"rationale": "a short rationale explaining how you use the information to generate the query",
"question": "generated search question to resolve the entity",
"triplet_ids": "a list containing ids of the triplets with information used to generate the query"

}

### Input
Claim: {{claim}}
Graph:
{{graph}}

Figure 13: Prompt template to find related section content from articles.
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REFINE_QUESTION

### Task: You will be given a claim and a graph via triplet form. In the graph, there will be an entity that is hidden (marked as  
) that needs to be resolved via searching in an external knowledge base.

You have already made some trials with thoughts and questions to try to get the entity but failed
Your job is to generate the search question to resolve this entity

### Guidelines:
1) Graph will provided with triplets following the form: triplet_id||entity_1||relation||entity_2
2) You MUST generate one new question to resolve the  entity in the graph
3) You do NOT need to combine all the information of the triplets to form the question. Try one or more aspects corresponding 
to triplets at a time that is enough to form the question to identify that entity

### Return format:
{

"rationale": "a short rationale explaining how you use the information to generate the query",
"question": "new search question to resolve the entity",
"triplet_ids": "a list containing ids of the triplets with information used to generate the query"

}

### Input
Claim: {{claim}}
Graph:
{{graph}}

### Failed rationales and questions:
{{failed_trials}}

Figure 14: Prompt template to find related section content from articles.

GENERATE_SUBCLAIMS

### Task: You will be given a claim and a graph represented as triplets. The graph is divided into two parts: verified and
unverified triplets. Each triplet represents a sub-claim from the original claim. For each triplet in the unverified triplets, convert
this triplet to a text claim to verify. You can use additional information from the claim to generate proper sub-claims.

### Return format:
{"sub_claims": [list of generated sub-claims to verify]}

### Claim: {{claim}}
### Verified Triplets:
{{verified_triplets}}

### Unverified Triplets:
{{unverified_triplets}}

Figure 15: Prompt template to find related section content from articles.
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