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Abstract
While recent large language models (LLMs)
demonstrate remarkable abilities in responding
to queries in diverse languages, their ability to
handle long multilingual contexts is unexplored.
As such, a systematic evaluation of the long-
context capabilities of LLMs in multilingual
settings is crucial specifically in the context
of information retrieval. To address this
gap, we introduce the MultiLingual Needle-
in-a-Haystack (MLNeedle) test, designed
to assess a model’s ability to retrieve
relevant information (the needle) from a
collection of multilingual distractor texts (the
haystack). This test serves as an extension
of the multilingual question-answering task,
encompassing both monolingual and cross-
lingual retrieval. We evaluate four state-of-the-
art LLMs on MLNeedle. Our findings reveal
that model performance can vary significantly
with language and needle position. Specifically,
we observe that model performance is the
lowest when the needle is (i) in a language
outside the English language family, and (ii)
located in the middle of the input context.
Furthermore, although some models claim a
context size of 8𝑘 tokens or greater, none
demonstrate satisfactory cross-lingual retrieval
performance as the context length increases.
Our analysis provides key insights into the
long-context behavior of LLMs in multilingual
settings to guide future evaluation protocols.
To our knowledge, this is the first study
to investigate the multilingual long-context
behavior of LLMs.

1 Introduction
In recent years, Large Language Models (LLMs)
have demonstrated remarkable capabilities across
a wide range of natural language processing tasks,
including text generation, translation, and question-
answering. A critical aspect of these models

∗This work was done independent of position at Microsoft.
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Figure 1: Monolingual long-context performance
(accuracy in radial axis) for various LLMs averaged
across different context sizes (4K, 8K, 16K, and 32K).
We observe a considerable drop in performance for all
languages except English, suggesting that multilingual
LLMs struggle to process non-English (or non-Latin)
long input contexts.

is their ability to handle long input contexts
effectively — a capability that is essential for
applications such as document summarization, long-
form content generation, and multi-turn dialogue
systems (Petroni et al., 2020; Lee et al., 2022;
Thoppilan et al., 2022). This ability directly impacts
the relevance and accuracy of LLM responses over
long inputs (Khandelwal et al., 2018; Mallen et al.,
2023a; Shaham et al., 2023a; Kandpal et al., 2023a).

A recent study (Hsieh et al., 2024a) has
shed light on the potential and limitations of
LLMs in handling extended sequences. They
evaluate various attention mechanisms and model
architectures, revealing that while some models can
technically manage long contexts, their effective
utilization of this capacity is often suboptimal.
Furthermore, Liu et al. (2023) highlighted a
major problem faced by LLMs while handling
long contexts: a marked decline in performance
when the relevant information is located in the
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middle of a long input context. The performance
curve is characteristically “U-shaped", where
models exhibit better accuracy when the relevant
information is at the beginning or end of the
context, underscoring the challenges LLMs face in
maintaining attention and relevance throughout
an entire input sequence. This phenomenon,
dubbed the lost-in-the-middle problem, suggests
that current LLMs are not yet fully equipped
to handle long contexts robustly and reliably,
particularly in tasks that require retrieval of
dispersed information (Liu et al., 2023; Ivgi et al.,
2023; Wang et al., 2024).

While these papers shed some light on the
long-context capabilities of LLMs, a significant
research gap remains: most existing benchmarks
and evaluations have focused exclusively on
monolingual English settings. This leaves a critical
question unanswered: How do LLMs perform
when the long input contexts are multilingual,
particularly when the context is in a low-resource,
non-Latin language? As shown in Figure 1,
LLMs usually perform poorly while handling non-
English long contexts. Furthermore, multilingual
and cross-lingual contexts introduce additional
complexities, such as varied syntax, grammar, and
semantic nuances, which can significantly affect
a model’s retrieval and processing capabilities.
In this paper, we address this gap by analyzing
how LLMs process and retrieve information from
long multilingual contexts. Specifically, we
introduce the MultiLingual Needle-in-a-Haystack
(MLNeedle) test, which extends the multilingual
question-answering task to assess the LLM’s ability
to locate and extract relevant information (the
needle) from a large collection of multilingual
distractor texts (the haystack). Our experiments
systematically vary the language and position of
the needle within the haystack to evaluate the
robustness of several state-of-the-art LLMs in
handling multilingual long contexts. we make
the following contributions1:

• We introduce the Multilingual Needle in
a Haystack (MLNeedle) test, a first step
towards systematically evaluating the long-
context capabilities of multilingual LLMs.
MLNeedle assesses model performance across
seven languages in both monolingual and cross-

1The source code and dataset are released publicly and
can be found at https://github.com/AmeyHengle/multilingual-
needle-in-a-haystack

lingual settings, providing a comprehensive
benchmark for future research.

• We conduct a series of controlled experiments
to examine how changes in the language and
position of the needle affect model performance.
Our findings reveal that LLM performance is
highly sensitive to both the language and position
of the needle in the haystack.

• We demonstrate the relative robustness of LLMs
to variations in the language of distractor passages,
indicating that the key challenges lie in how LLMs
process and retrieve the needle from diverse
linguistic environments.

• We perform several ablation studies to understand
the role of temperature sampling, instruction
tuning and the choice of evaluation metric on
performance.

2 MultiLingual Needle in a Haystack
In this section, we introduce our MultiLingual
Needle in a Haystack (MLNeedle) benchmark.
As our goal is to better understand how LLMs
process multilingual input contexts, we analyze
the performance of the model on a multilingual
question answering task, which requires a model to
find relevant information (the needle) from the input
context (the haystack) to answer the given question.
Specifically, we conduct experiments where we
systematically change (i) the position of the needle,
(ii) the language of the needle, and (iii) the language
of the haystack, and study the effect on performance.
If LLMs are able to use information from long
multilingual contexts, their performance should
remain relatively stable regardless of changes in
language or needle position.

2.1 Experimental Setup
In the multilingual question-answering task, the
model is provided with a question 𝑄 to answer and
𝐾 documents. Among these documents, exactly
one contains the correct answer to the question 𝑄,
while the remaining 𝐾 − 1 distractor documents
do not. We denote the document containing the
correct answer as 𝑁 (the needle) and the 𝐾 − 1
distractor documents as 𝐻 (the haystack). Figure
2 offers an overview of our evaluation setup using
a randomly sampled example from the MLNeedle
dataset (details in Section 2.2). As illustrated in
the figure, we systematically change the language
of both the needle (highlighted in green) and the
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Write a high-quality answer for the given question using only the provided 
passages (some of which might be irrelevant).

### Passages
[0] John Francis "Jack" Welch Jr. (born November 19, 1935) is an American 
business executive, author, and chemical engineer. He was chairman and 
CEO of General Electric between 1981 and 2001. During his tenure at GE, 
the company's value rose 4,000%. In 2006, Welch's net worth was 
estimated at $720 million. 

Question: John Welch Jr. was CEO of what company beginning in 1981?

Answer: 

Write a high-quality answer for the given question using only the 
provided passages (some of which might be irrelevant).

### Passages
[0] जॉन फ्रांसस "जैक" वेल् श, जूनयर (जन् म 19 नवम्बर 1935) अमेरकी व् यवसायी और 
लेखक हैं। 1981 से 2001 के बीच वह जनरल इलेिक्ट्रिक के अध्यक्ष और सीईओ (CEO) रहे. 
वेल् श की कुल अनुमानत संपत्ति 720 मलयन डॉलर है।

Question: John Welch Jr. was CEO of what company beginning in 1981?

Answer:

Write a high-quality answer for the given question using only the provided 
passages (some of which might be irrelevant).

### Passages
[0] For example, if General Electric (GE) … If General Electric's stock price 
was $19.42, its dividend yield would be 3.5% ($0.68 divided by $19.42).

[1] John Francis "Jack" … During his tenure at GE, the company's value 
rose 4,000%. In 2006, Welch's net worth was estimated at $720 million.

[2] John Connolly, EdD, President and CEO of Castle Connolly … John 
Connolly, EdD, has disclosed no relevant financial relationships in 
addition to his employment.

Question: John Welch Jr. was CEO of what company beginning in 1981?

Answer: 

Write a high-quality answer for the given question using only the 
provided passages (some of which might be irrelevant).

### Passages
[0] Wenn beispielsweise General Electric (GE) im letzten Quartal .., 
würde die Dividendenrendite 3,5% (0,68 US-Dollar dividiert durch 19,42 
US-Dollar) betragen.

[1] जॉन फ्रांसस "जैक" वेल् श, जूनयर (जन् म 19 नवम्बर 1935) … रहे. वेल् श की कुल 
अनुमानत संपत्ति 720 मलयन डॉलर है।

[2] John Connolly, EdD, Präsident und CEO von Castle Connolly, … hat 
neben seiner Anstellung keine relevanten finanziellen Beziehungen 
offengelegt.

Question: John Welch Jr. was CEO of what company beginning in 1981?

Answer:

Desired Answer: General Electric | जनरल इलेिक्ट्रिक

(a)

(b)

Figure 2: Example of a multilingual question-answering input from the MLNeedle dataset. (Top) There are no
distractor documents and the same needle (highlighted in green) is present in English (Left) and Hindi (Right);
(Bottom) There are distractor documents present (highlighted in red) and the same needle is present in English (Left)
and Hindi (Right).

distractor documents (highlighted in red) during
our experiments. The content of 𝑁 and 𝐻 remains
unchanged, only the language varies. Therefore,
the LLM’s performance should ideally not fluctuate
due to these changes. We also vary the position
of 𝑁 within the input context, as highlighted in
Figure 9 (Appendix), to understand the effect on
the LLM’s ability to retrieve. The language of the
question is kept fixed in English.

2.2 The MLNeedle Dataset

We instantiate MLNeedle with the MLQA dataset
(Lewis et al., 2020), which consists of over 5K
extractive question-answer instances across seven
languages (English, Arabic, German, Spanish,
Hindi, Vietnamese, and Simplified Chinese) in the
SQuAD (Rajpurkar et al., 2016) format. We choose
MLQA because of its aligned dataset structure,
where each question-answer pair is present in
multiple languages. Specifically, for each question-
answer instance, there are corresponding versions
in at least four different languages, allowing for
a direct comparison of how the same question is
answered across various linguistic contexts. We
highlight this in Figure 2 (a), where for the given
question, the needle document with the correct
answer can be presented in both English as well
as Hindi. This setting allows us to systematically

study the effect of changing the language of the
needle 𝑁 .
Constructing the Haystack (𝐻). In MLNeedle,
we collect the 𝐾 − 1 distractor documents for
each question-answer pair using the following
procedure: we use Wikipedia passages from
mMARCO (Bonifacio et al., 2022), a well-known
multilingual passage ranking dataset, as the source
of the distractor documents. For each question-
answer pair, we use multilingual sentence-BERT
(Reimers and Gurevych, 2020) to retrieve 𝐾 − 1
documents from mMARCO that are most relevant
to the question but do not contain the answer.
Appendix A provides a detailed explanation of
our retrieval system. In the final input context,
we arrange these distractor documents in order of
decreasing relevance. As highlighted in Table 1, we
conduct experiments across different context sizes
ranging from 4K up to 32K tokens. To modulate
the context length, we simply increase or decrease
the number of distractor documents in 𝐻. Further
details on varying the context length can be found
in Appendix C.
Positioning the Needle (𝑁). We modulate the
position of the relevant information within the
input context by placing the document with the
correct answer (𝑁) at either the start, middle, or
end of 𝐻 (Figure 9 in Appendix), following prior
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experimental setups (Liu et al., 2023; Ivgi et al.,
2023).

2.3 Models
We analyze several state-of-the-art open-source
language models for our evaluation, spanning
32𝐾, 8𝐾 and 4𝐾 models. We report Mistral-7B-
Instruct-v0.2 (Jiang et al., 2023), which features
a maximum context length of 32, 768 tokens and
is a multilingual model capable of understanding
and generating text in multiple languages. It makes
use of a unique positional encoding method, ALiBi
(Press et al., 2022), to effectively manage long-
range dependencies. Next, we evaluate Cohere-
Aya-23-8B (Aryabumi et al., 2024), which also
supports multilingual capabilities and has a context
size of 8, 192 tokens. This model is designed to
perform well across various language tasks. We
include Llama3-8B-Instruct (AI@Meta, 2024), an
instruction fine-tuned version of the Llama3 base
model (Dubey and Jauhri, 2024), which supports
a context size of 8, 192 tokens. This model is
optimized for following instructions and engaging in
open-ended dialogue. Lastly, we evaluate Llama2-
7B-Chat (Touvron and Martin, 2023), which has a
maximum context length of 4, 096 tokens.

2.4 Evaluation Metric
As we evaluate the model’s ability for retrieval
in question-answering, we use exact accuracy
(Kandpal et al., 2023b; Mallen et al., 2023b) as
our primary evaluation metric. Additionally, in our
ablation study (see Section 4), we report existence
accuracy (Wang et al., 2024), which evaluates the
secondary task of determining whether relevant
information is present within the input context.
Below, we formally define each of these metrics:

• Exact Accuracy measures the proportion
of samples where the model’s predicted
output contains any of the correct answers,
as specified in the MLQA dataset. This metric
checks whether the ground-truth answer is
contained in the model’s predictions.

• Existence Accuracy is the proportion of
samples where the model correctly identifies
whether a document containing the correct
answer exists within the input context.

We define the evaluation prompt templates for
respective tasks in Appendix B. For consistency, we
use the same evaluation prompts across all models
in our experiments. Furthermore, for each input
prompt, the model generates a prediction, which

may be in a different language from the ground
truth. To ensure accurate comparison, we translate
the prediction to English (since each instance has
a golden answer in English in MLQA) using the
Google Translate API2. We then use the translated
predictions and the ground truth to calculate Exact
Accuracy as defined earlier. Further details of our
evaluation framework are given in Appendix D.

3 Experimental Results

We run experiments with context sizes ranging from
4K to 32K tokens to compare the performance of
various models on MLNeedle3. Table 1 summarises
each model’s performance, averaged across the
seven languages in MLNeedle. As the context size
increases, all models show a significant drop in
performance. To evaluate the maximum context
size that each model can handle effectively, we
define the effective length as the maximum context
length at which the model’s performance does
not decrease by more than 25% from its baseline
accuracy 4. Our findings show that all models
struggle with longer contexts, exhibiting significant
drops in accuracy beyond their effective lengths.
Figure 1 shows the monolingual (both needle and
distractors in the same language) performance of
different models on the MLNeedle test. Models
consistently perform better in English than non-
English languages. In the following sections, we
will investigate the effect of modulating the position
and language of the needle.

3.1 Effect of Changing the Needle Position
In this experiment, we evaluate how the position
of the needle (𝑁) within the input context affects
retrieval performance. We systematically place the
needle at the start, middle, and end of the input
context to understand how its position influences
the model’s ability to accurately retrieve the correct
information. As shown in Figure 4, the model
performs best when the needle is placed at the
beginning or end of the input context. These
findings extend Liu et al. (2023) to multilingual

2https://cloud.google.com/translate/docs/reference/api-
overview - Google Translate API

3All generation experiments were conducted using fixed
sampling parameters to control the randomness and diversity
of the generated responses. Specifically, we set the temperature
to 0.7 and used top-𝑘 sampling with 𝑘 = 50. These parameters
were kept constant across all selected models to ensure a fair
comparison of their performance on the MLNeedle test.

4Baseline accuracy refers to the model’s performance when
there are no distractors in the input context (see Figure 2(a)).
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Model Claimed Length Effective Length Baseline 4K 8K 16K 32K Avg.
Llama2-7B-Chat 4K <4K 0.335 0.171 − − − 0.253
Llama3-8B-Instruct 8K 4K 0.622 0.479 0.295 − − 0.465
Cohere-Aya-23-8B 8K 4K 0.700 0.460 0.449 − − 0.536
Mistral-7B-Instruct-v0.2 32K 8K 0.579 0.485 0.455 0.427 0.397 0.469

Table 1: Long-context performance of selected models on the MLNeedle test. Models are evaluated for context
lengths ranging from 4K to 32K. Each score is determined by averaging the accuracy of MLNeedle’s multilingual
question-answering task. The effective length is the maximum context length beyond which the model’s performance
decreases by more than 25% from its baseline performance. The accuracy values within 25% of baseline performance
are underlined, showcasing the effective length. For all models, we observe that the claimed context size differs
from the effective context size.

Text

10-15 Total Distractor
Documents (~4k tokens)

25-30 Total Distractor
Documents (~8k tokens)

50-65 Total Distractor
Documents (~32k tokens)

No Distractor
Documents (~1k tokens)

Ac
cu

ra
cy

Figure 3: Effect of changing the language of answer document (needle). We observe a similar trend across two
differently pretrained families of models: Cohere-Aya-23 trained on highly parallel training data and Mistal-Instruct
/ Llama-3-Instruct trained on comparatively skewed training data.

settings. The preference for starting and ending
positions to retrieve relevant information indicates a
potential weakness in the model’s ability to maintain
effective attention throughout the input sequence
(Hsieh et al., 2024b), and exploring this in the
multilingual setting is an important future work.

3.2 Effect of Changing the Needle Language
In this experiment, we investigate how changing the
language of the document containing the correct
answer (𝑁) affects the retrieval performance of
selected models. To isolate the effects of needle
language, we keep the distractor passages (𝐻)
in English. The results, illustrated in Figure 3,
show that LLMs perform best when 𝑁 is either in
English or in a language that is close to English.
However, as we move away from the Latin languages
family, we notice a significant drop in performance.
The decrease in performance is most noticeable
when 𝑁 is presented in languages significantly
different from English, such as Chinese and Arabic.
When the language of 𝑁 is changed from English
to German or Spanish, both of which are close
to English, the performance drop is moderate.
This suggests that the model is relatively effective
in processing content in languages that share
similarities with English. On the other hand, the
drop in performance is more pronounced when

we change the language of 𝑁 from English to
non-Latin languages such as Chinese and Arabic.
The substantial drop in performance indicates that
the models struggle to effectively process and
retrieve the same content when presented in these
linguistically distant languages.

Our findings suggest that although the content of
𝑁 remains unchanged, LLMs display considerable
variability in their ability to retrieve the correct
information depending on the language of 𝑁 .
This inconsistency underscores a critical limitation
of current LLMs: The retrieval capability is
heavily influenced by the language in which the
content is presented. The models performs better
for high-resource languages like English, but
their performance diminishes in lower-resource
languages such as Hindi.

3.3 Effect of Changing the Haystack Language
Here, we investigate how varying the language of
the distractor documents, 𝐻, impacts the retrieval
performance of LLMs. We keep the language of the
needle constant, as English, and then systematically
change the language of the haystack. Table 2 shows
that changing the haystack language from English
to Arabic does not significantly affect the model’s
performance. This observation suggests that LLMs
are relatively robust to changes in the language
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Figure 4: Effect of changing position of answer document (needle). For all models at various context lengths,
retrieving relevant information situated in the middle of the context is hard.

of non-relevant information, indicating that the
model can focus on and retrieve the relevant content
without being easily confused by the language of
distractor passages. In contrast to the significant
decline in performance observed when changing the
language of the needle, the models’ performance
appears comparatively more stable when only the
language of the distractor documents is altered.
This suggests that the retrieval task’s difficulty is
more sensitive to the language of the needle than to
the language of the haystack. LLMs focus on the
content of the needle, rather than being distracted
by the language of the haystack, highlighting its
ability to prioritize relevant information effectively
in this cross-lingual setting.

4 Ablation Studies

Effect of Temperature Sampling. Here, we
investigate whether the choice of generation strategy
significantly influences the model’s performance.
Table 4 compares the performance of Mistral-
7B-Instruct-v0.2 under two different generation
strategies: sampling with fixed parameters
(temperature = 0.7, top-𝑘 = 50) and greedy
decoding. Both strategies yield comparable results
with minimal deviation across different context
sizes. Furthermore, as shown in Figure 6, the
overall accuracy remains consistent regardless of
the generation method.

Effect of Instruction Fine-tuning. To

understand the impact of instruction fine-tuning
on LLMs’ use of multilingual long contexts,
we compare the MLNeedle test performance of
Mistral-7B-Instruct-v0.2 with its base variant (pre-
instruction tuning) using the same experimental
setup as in Section 2. Table 3 shows that Mistral-7B-
Instruct-v0.2 consistently outperforms Mistral-7B-
v0.1 across different context lengths. Instruction-
tuning also reduces worst-case performance
disparity from nearly 70% to 30%. These findings
align with prior work showing that instruction-
tuning enhances cross-lingual knowledge alignment
and improves information retrieval across languages
(Shaham et al., 2024; Gao et al., 2024).

Effect of the Task Format. The task of
multilingual question answering through fact
retrieval from a long context can be considered
a challenging task for the choice of models under
study. To prove the reliability of our results as being
a property of long-context multilingual LMs, we
also evaluate the models on a simpler secondary task
— identifying the presence of relevant information
within the input context. To this end, we defined the
existence accuracy metric in Section 2.4, which
measures the proportion of samples where the
model correctly identifies whether the relevant
information is present in the provided passages.

Figure 7 shows the results for Mistral-7B-Instruct-
v0.2 across four different context lengths. We
observe similar results for both Exact Accuracy and
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𝐻𝑁 en de es zh vi hi ar
Mistral-7B-Instruct-v0.2

en 0.68 0.37 0.35 0.30 0.31 0.25 0.24
de 0.71 0.37 0.38 0.24 0.34 0.24 0.25
es 0.70 0.40 0.39 0.31 0.34 0.26 0.28
zh 0.73 0.43 0.39 0.31 0.35 0.28 0.27
vi 0.75 0.47 0.42 0.33 0.37 0.30 0.27
hi 0.80 0.47 0.44 0.36 0.38 0.32 0.33
ar 0.76 0.49 0.43 0.31 0.40 0.33 0.30

Llama3-8B-Instruct
en 0.61 0.21 0.24 0.21 0.23 0.23 0.22
de 0.64 0.25 0.25 0.15 0.20 0.22 0.19
es 0.66 0.28 0.28 0.19 0.25 0.24 0.24
zh 0.61 0.22 0.23 0.19 0.19 0.20 0.18
vi 0.65 0.29 0.28 0.18 0.30 0.24 0.20
hi 0.70 0.32 0.32 0.26 0.27 0.29 0.26
ar 0.65 0.27 0.29 0.22 0.25 0.25 0.25

Cohere-Aya-23-8B
en 0.70 0.51 0.47 0.36 0.39 0.33 0.30
de 0.71 0.53 0.46 0.36 0.41 0.33 0.33
es 0.68 0.48 0.62 0.35 0.43 0.35 0.32
zh 0.72 0.47 0.44 0.57 0.39 0.38 0.37
vi 0.73 0.46 0.46 0.31 0.49 0.36 0.36
hi 0.61 0.42 0.44 0.34 0.39 0.35 0.31
ar 0.66 0.45 0.44 0.35 0.41 0.37 0.50

Table 2: Pairwise accuracy results of selected models
(averaged across the context lengths) on the MLNeedle
test. Language of relevant information and distractor
documents is abbreviated as 𝑁 and 𝐻, respectively.
We observe that performance is heavily influenced by
the language of relevant information (𝑁), whereas the
language of distractor documents (𝐻) plays a limited
role.

Existence Accuracy, showcasing that our findings
are not solely because of the nature of the task.
We also observe similar results when we vary the
language of distractor passages in the input context.
More details can be found in Appendix E.

Statistical Significance. Figure 5 presents the
results of significance testing for selected models,
computed over linearly increasing sample sizes from
100 to 16, 800. We observe that accuracy stabilizes
after approximately 2, 500 samples. Furthermore,
a significant reduction in standard error is observed
as the sample size increases from 100 to 2, 500.
These results underscore that a sample size of
2, 500 is sufficient to achieve reliable and consistent
evaluation outcomes. Further details are provided
in Appendix E.

5 Related Work

Multilingual Question Answering and
Information Retrieval. Multilingual question
answering (QA) and information retrieval (IR)
have become increasingly important as LLMs
are deployed in diverse linguistic environments
(Shaham et al., 2024). Historically, QA datasets
and benchmarks have been monolingual, primarily
focusing on English. However, efforts such
as MLQA (Lewis et al., 2020) and XQuAD

(Artetxe et al., 2019) have introduced datasets
supporting multiple languages, facilitating
cross-lingual evaluation of QA systems. Despite
these advancements, much of the research in
multilingual QA has focused on scenarios where
the context is relatively short or where the question
and context are in the same language (Artetxe et al.,
2019; Lewis et al., 2020; Longpre et al., 2021).
A significant gap persists between monolingual
and multilingual QA performance, particularly
when models encounter cross-lingual scenarios or
low-resource languages (Loginova et al., 2021; Guo
et al., 2023). The MLQA (Lewis et al., 2020) and
MKQA (Longpre et al., 2021) datasets, for instance,
provide a foundation for evaluating cross-lingual
extractive QA, but do not address the complexities
introduced by long contexts. Our work extends
this line of inquiry by examining how LLMs
perform in retrieving relevant information from
long multilingual contexts, where input context
may span multiple documents — an increasingly
common scenario in real-world applications.

Long-context Language Models. The ability of
LLMs to effectively handle long input contexts
is a critical area of research, underpinning tasks
such as document summarization, long-form text
generation, and multi-hop question answering (Qin
et al., 2023; Wang et al., 2024). Transformer-
based models (Vaswani et al., 2017), traditionally
limited by their quadratic complexity relative to
sequence length, have spurred the development of
various techniques to scale attention mechanisms
and manage long contexts more efficiently (Dai
et al., 2019; Dao et al., 2022). Recent innovations
have extended context windows significantly, with
models now capable of processing up to 100K
tokens in some cases. Hsieh et al. (2024a)
explored the practical usability of long-context
LLMs and the effectiveness of different attention
mechanisms. Despite the recent improvements,
the practical utility of LLMs in long-context
scenarios is often constrained by issues related
to attention decay, memory management, and the
ability to accurately retrieve relevant information
from within extended sequences (Hsieh et al.,
2024a; Li et al., 2024; Qin et al., 2023). Liu et al.
(2023) highlighted a significant challenge in this
domain: a marked decline in LLM performance
when relevant information is situated in the middle
of a long context. This study revealed a “U-shaped"
performance curve, where models performed best
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when relevant information was at the beginning or
end of the context, with performance dropping
significantly for information located centrally.
These findings underscore ongoing challenges in
designing LLMs that can robustly handle long
contexts, particularly in maintaining attention
(Hsieh et al., 2024b) and relevance (Hsieh et al.,
2024a) across the entire sequence.

Long-context Benchmarks and Tasks.
Benchmarking the ability of LLMs to handle
long contexts is crucial for understanding their
real-world applicability (Hsieh et al., 2024a).
Previous benchmarks, such as ZeroSCROLLS
(Shaham et al., 2023b) and LongBench (Bai et al.,
2024), have provided insights into the potential
of LLMs in processing extended input sequences.
These benchmarks typically involve tasks such
as long-document QA or multi-hop reasoning
(Liu et al., 2023; Hsieh et al., 2024a). L-Eval
(An et al., 2023) curates tests using realistic
data, which is filtered manually to ensure quality.
Infinite-Bench Zhang et al. (2024a) includes tasks
with length greater than 100K tokens. However,
these benchmarks primarily focus on monolingual
English contexts, leaving a significant gap in
understanding how LLMs perform in multilingual
settings with long input sequences.

Recent findings by Zhao et al. (2024) reveal that
LLMs process multilingual content in three stages:
first, they convert input into an English-centric
representation, then process it during task solving,
and finally, generate output in the original language.
Our results extend this hypothesis by suggesting
that models struggle with retrieving information
when dealing with non-Latin languages (Figure 3).

Furthermore, a recent study (Hsieh et al., 2024b)
highlights the intrinsic positional attention bias in
Transformer-based architectures (Vaswani et al.,
2017), where models disproportionately focus on
tokens at the beginning and end of a sequence.
This explains the U-shaped performance curve
observed in Figure 4. We further speculate that
since the model’s attention mechanisms are already
biased due to positional encodings, the additional
complexity of processing low-resource languages
could exacerbate the difficulty in retrieving and
utilizing middle-positioned information.

6 Discussion
Why are language models sensitive to language
of relevant information? Recent findings by Zhao

Model Baseline 4K 8K 16K 32K Avg.
Mistral-Base 0.383 0.142 0.100 0.097 0.102 0.165
Mistral-Instruct 0.586 0.478 0.453 0.436 0.398 0.470

Δmodel†−model∗ ↑ 0.203 ↑ 0.336 ↑ 0.353 ↑ 0.339 ↑ 0.296 ↑ 0.305

Table 3: Effect of instruction fine-tuning.
Model Baseline 4K 8K 16K 32K Avg.
Mistral-Instruct(GD) 0.586 0.478 0.453 0.436 0.398 0.470
Mistral-Instruct(TS) 0.580 0.485 0.455 0.427 0.398 0.469

Δmodel†−model∗ ↓ 0.006 ↑ 0.007 ↑ 0.002 ↓ 0.009 0.000 ↓ 0.001

Table 4: Effect of temperature sampling vs greedy
decoding.

et al. (2024) reveal that LLMs process multilingual
content in three stages: first, they convert input
into an English-centric representation, then process
it during task-solving, and finally, they generate
output in the original language. This conversion
step, particularly for non-Latin languages like Hindi
or Arabic, can lead to significant information loss
due to structural and semantic differences from
English. During the task-solving phase, the model
relies on this English-centric representation, but
the lost or distorted information may not be fully
reconstructed, resulting in inaccurate or incomplete
internal representations. Consequently, the model
struggles more with retrieving correct information
when dealing with non-Latin languages, leading
to a more pronounced performance drop, as seen
in Figure 3. In contrast, languages like German
or Spanish, which share more similarities with
English, tend to retain more information during the
conversion process, resulting in better performance
and less information loss. This is potentially why
LLMs perform unevenly across different language
families and we aim to explore this further in future
work.

Why are language models sensitive to position
of relevant information? Hsieh et al. (2024b)
identify an intrinsic positional attention bias in
Transformer-based architectures (Vaswani et al.,
2017), such as LLMs. This bias manifests as
a U-shaped attention distribution, where models
disproportionately focus on tokens at the beginning
and end of a sequence, over those in the middle.
The authors show that this skewed attention
distribution is not merely a byproduct of positional
encodings but an inherent characteristic of the
models’ attention mechanisms (Hsieh et al., 2024b).
This explains the U-shaped performance curve
observed in Figure 4. As shown in the figure,
models consistently performed best when the needle
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was positioned at the start or end of the input
context, with a noticeable drop in accuracy when it
is placed in the middle. We aim to study this in the
multilingual context in depth in future work.

Are language models answering from parametric
knowledge? We construct our MLNeedle test
using the publicly available MLQA dataset (Lewis
et al., 2020). Since MLQA is curated from
Wikipedia there is potential for leakage into
LLMs’ pretraining data (Agarwal et al., 2024;
Bohnet et al., 2024; Zhang et al., 2024b), which
may interfere with the LLM’s performance on
MLNeedle. However, several aspects of our
experimental design and findings suggest that LLMs
are actively processing the provided context rather
than relying on memorisation . Firstly, as shown
in Figure 4, LLMs struggle with mid-context
retrieval ("lost in the middle"). If LLMs relied
purely on parametric knowledge, performance
would remain stable across positions since the
query and needle content stay unchanged. The
baseline scores in Table 1 further support this
claim. If models were purely retrieving parametric
knowledge, they would be expected to achieve
near-perfect accuracy when no distractor passages
are present. However, we observe that even in
the absence of distractors, models fail to answer
correctly in some cases. Lastly, our ablation study
on existence accuracy shows performance varies
with needle position and language (Figure 7). If
models were relying entirely on parametric retrieval,
existence accuracy would be consistently perfect
(a score of 1), irrespective of the needle’s position
or language. These findings suggest that models
are dynamically processing input text rather than
answering solely from parametric knowledge.

7 Conclusion
In this study, we introduced the MultiLingual
Needle in a Haystack (MLNeedle) test, designed to
systematically evaluate the long-context capabilities
of multilingual LLMs. Through a series of
controlled experiments, we investigated how
changes in the language and position of relevant
information in a long-context affects the LLMs’
retrieval performance. Our findings revealed that
LLMs exhibit significant sensitivity to both the
language and position of the relevant information,
particularly struggling when the relevant content
is in non-Latin languages or positioned in the
middle of a long context. Conversely, the models

Figure 5: Exact accuracy of models on varying sample
sizes for evaluation. Solid lines denote the accuracy, and
the shaded area denotes the standard error.

demonstrated relative robustness to variations in
the language of distractor passages, suggesting that
the primary challenges lie in how LLMs process
and retrieve the needle from diverse linguistic
contexts. These findings underscore the need
for further research to enhance the multilingual
capabilities of LLMs, particularly in handling
scenarios where relevant information may be
dispersed across different languages and positions
within the input. Our work represents a first step
towards systematically evaluating the long-context
behavior of multilingual LLMs.

8 Limitation

We select the distractor passages (haystacks) purely
based on semantic-similarity with the query. We do
not experiment with randomly selected distractors -
as Liu et al. (2023) has shown to be a non-effective
strategy. Due to resource and budget constraints, we
were unable to evaluate LLMs greater than 8 billion
parameters—like Command-R or LongAlapaca.
Simialrlu, we were also not able to assess API-
based models such as GPT-4 and Claude. In
future work we plan to extend our study in these
dimensions. We have used a single evaluation
prompt template for all our experiments. Since
LLM outputs can be prompt sensitive, it may be
necessary to evaluate across different prompts to
improve the reliability of our results. In our study,
we focus on evaluating foundational multilingual
LLMs via zero-shot prompting. We leave it to
future work to explore SFT models or strategies
like Chain-of-Noting (Yu et al., 2024). We leave
this for future work.

5173



Ethics Statement
The MLNeedle dataset is curated using the
publicly available MLQA (Lewis et al., 2020) and
mMARCO (Bonifacio et al., 2022) datasets. Our
data curation strictly adheres to the usage policies
of the original datasets, and we plan to release
MLNeedle under the same open-source license. No
human annotation or evaluation was conducted in
this study. Statistical tests supporting our results
are provided in both the main manuscript and the
Appendix E.

Acknowledgement
We extend our gratitude to the central HPC facility
(Padum) at IIT Delhi for computing. We also
sincerely thank the Anusandhan National Research
Foundation (CRG/2023/001351) for financial
support. Tanmoy Chakraborty acknowledges the
support of Rajiv Khemani Young Faculty Chair
Professorship in Artificial Intelligence.

References
Rishabh Agarwal, Avi Singh, Lei M. Zhang, Bernd

Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang,
Ankesh Anand, Zaheer Abbas, Azade Nova, John D.
Co-Reyes, Eric Chu, Feryal Behbahani, Aleksandra
Faust, and Hugo Larochelle. 2024. Many-shot in-
context learning.

AI@Meta. 2024. Llama 3 model card. ArXiv.

Chen An, Shansan Gong, Ming Zhong, Mukai Li, Jun
Zhang, Lingpeng Kong, and Xipeng Qiu. 2023. L-
eval: Instituting standardized evaluation for long
context language models. ArXiv, abs/2307.11088.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2019. On the cross-lingual transferability
of monolingual representations. CoRR,
abs/1910.11856.

Viraat Aryabumi, John Dang, Dwarak Talupuru, Saurabh
Dash, David Cairuz, Hangyu Lin, Bharat Venkitesh,
Madeline Smith, Jon Ander Campos, Yi Chern Tan,
Kelly Marchisio, Max Bartolo, Sebastian Ruder, Acyr
Locatelli, Julia Kreutzer, Nick Frosst, Aidan Gomez,
Phil Blunsom, Marzieh Fadaee, Ahmet Üstün, and
Sara Hooker. 2024. Aya 23: Open weight releases to
further multilingual progress.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. LongBench: A bilingual,
multitask benchmark for long context understanding.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:

Long Papers), pages 3119–3137, Bangkok, Thailand.
Association for Computational Linguistics.

Bernd Bohnet, Azade Nova, Aaron T Parisi, Kevin
Swersky, Katayoon Goshvadi, Hanjun Dai, Dale
Schuurmans, Noah Fiedel, and Hanie Sedghi. 2024.
Exploring and benchmarking the planning capabilities
of large language models.

Luiz Bonifacio, Vitor Jeronymo, Hugo Queiroz
Abonizio, Israel Campiotti, Marzieh Fadaee, Roberto
Lotufo, and Rodrigo Nogueira. 2022. mmarco: A
multilingual version of the ms marco passage ranking
dataset.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime
Carbonell, Quoc Le, and Ruslan Salakhutdinov.
2019. Transformer-XL: Attentive language models
beyond a fixed-length context. In Proceedings
of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 2978–2988,
Florence, Italy. Association for Computational
Linguistics.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.

Abhimanyu Dubey and Abhinav Jauhri. 2024. The llama
3 herd of models.

Changjiang Gao, Hongda Hu, Peng Hu, Jiajun Chen,
Jixing Li, and Shujian Huang. 2024. Multilingual
pretraining and instruction tuning improve cross-
lingual knowledge alignment, but only shallowly.
In Proceedings of the 2024 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pages
6101–6117, Mexico City, Mexico. Association for
Computational Linguistics.

Yiduo Guo, Yaobo Liang, Dongyan Zhao, Bing Liu,
and Nan Duan. 2023. Analyzing and reducing
the performance gap in cross-lingual transfer with
fine-tuning slow and fast. In Proceedings of
the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4002–4017, Toronto, Canada. Association for
Computational Linguistics.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman,
Shantanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. 2024a. Ruler: What’s the real
context size of your long-context language models?
arXiv preprint arXiv:2404.06654.

Cheng-Yu Hsieh, Yung-Sung Chuang, Chun-Liang
Li, Zifeng Wang, Long T. Le, Abhishek Kumar,
James Glass, Alexander Ratner, Chen-Yu Lee, Ranjay
Krishna, and Tomas Pfister. 2024b. Found in the
middle: Calibrating positional attention bias improves
long context utilization.

Maor Ivgi, Uri Shaham, and Jonathan Berant. 2023.
Efficient long-text understanding with short-text

5174

http://arxiv.org/abs/2404.11018
http://arxiv.org/abs/2404.11018
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://api.semanticscholar.org/CorpusID:259991740
https://api.semanticscholar.org/CorpusID:259991740
https://api.semanticscholar.org/CorpusID:259991740
http://arxiv.org/abs/1910.11856
http://arxiv.org/abs/1910.11856
http://arxiv.org/abs/2405.15032
http://arxiv.org/abs/2405.15032
https://aclanthology.org/2024.acl-long.172
https://aclanthology.org/2024.acl-long.172
http://arxiv.org/abs/2406.13094
http://arxiv.org/abs/2406.13094
http://arxiv.org/abs/2108.13897
http://arxiv.org/abs/2108.13897
http://arxiv.org/abs/2108.13897
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2024.naacl-long.339
https://doi.org/10.18653/v1/2024.naacl-long.339
https://doi.org/10.18653/v1/2024.naacl-long.339
https://doi.org/10.18653/v1/2023.acl-long.221
https://doi.org/10.18653/v1/2023.acl-long.221
https://doi.org/10.18653/v1/2023.acl-long.221
http://arxiv.org/abs/2406.16008
http://arxiv.org/abs/2406.16008
http://arxiv.org/abs/2406.16008
https://doi.org/10.1162/tacl_a_00547


models. Transactions of the Association for
Computational Linguistics, 11:284–299.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna
Lengyel, Guillaume Lample, Lucile Saulnier,
L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre
Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2023.
Mistral 7b. ArXiv, abs/2310.06825.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric
Wallace, and Colin Raffel. 2023a. Large language
models struggle to learn long-tail knowledge.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric
Wallace, and Colin Raffel. 2023b. Large language
models struggle to learn long-tail knowledge. In
Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org.

Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky.
2018. Sharp nearby, fuzzy far away: How neural
language models use context. In Proceedings of
the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 284–294, Melbourne, Australia. Association
for Computational Linguistics.

Mina Lee, Percy Liang, and Qian Yang. 2022. Coauthor:
Designing a human-ai collaborative writing dataset
for exploring language model capabilities. In CHI
Conference on Human Factors in Computing Systems,
CHI ’22. ACM.

Patrick Lewis, Barlas Oguz, Ruty Rinott, Sebastian
Riedel, and Holger Schwenk. 2020. MLQA:
Evaluating cross-lingual extractive question
answering. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 7315–7330, Online. Association
for Computational Linguistics.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and
Wenhu Chen. 2024. Long-context llms struggle with
long in-context learning.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin
Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. 2023. Lost in the middle: How
language models use long contexts. Transactions
of the Association for Computational Linguistics,
12:157–173.

Ekaterina Loginova, Stalin Varanasi, and Günter
Neumann. 2021. Towards end-to-end multilingual
question answering. 23(1):227–241.

Shayne Longpre, Yi Lu, and Joachim Daiber. 2021.
Mkqa: A linguistically diverse benchmark for
multilingual open domain question answering.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023a.
When not to trust language models: Investigating

effectiveness of parametric and non-parametric
memories.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023b.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric
memories. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9802–9822, Toronto,
Canada. Association for Computational Linguistics.

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim
Rocktäschel, Yuxiang Wu, Alexander H. Miller, and
Sebastian Riedel. 2020. How context affects language
models’ factual predictions.

Ofir Press, Noah A. Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation.

Guanghui Qin, Yukun Feng, and Benjamin Van Durme.
2023. The NLP task effectiveness of long-range
transformers. In Proceedings of the 17th Conference
of the European Chapter of the Association
for Computational Linguistics, pages 3774–3790,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual using
knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Uri Shaham, Jonathan Herzig, Roee Aharoni, Idan
Szpektor, Reut Tsarfaty, and Matan Eyal. 2024.
Multilingual instruction tuning with just a pinch of
multilinguality.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant,
and Omer Levy. 2023a. Zeroscrolls: A zero-shot
benchmark for long text understanding.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant,
and Omer Levy. 2023b. ZeroSCROLLS: A zero-shot
benchmark for long text understanding. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 7977–7989, Singapore.
Association for Computational Linguistics.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin,
Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam

5175

https://doi.org/10.1162/tacl_a_00547
https://api.semanticscholar.org/CorpusID:263830494
http://arxiv.org/abs/2211.08411
http://arxiv.org/abs/2211.08411
https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.1145/3491102.3502030
https://doi.org/10.1145/3491102.3502030
https://doi.org/10.1145/3491102.3502030
https://doi.org/10.18653/v1/2020.acl-main.653
https://doi.org/10.18653/v1/2020.acl-main.653
https://doi.org/10.18653/v1/2020.acl-main.653
http://arxiv.org/abs/2404.02060
http://arxiv.org/abs/2404.02060
https://api.semanticscholar.org/CorpusID:259360665
https://api.semanticscholar.org/CorpusID:259360665
https://doi.org/10.1007/s10796-020-09996-1
https://doi.org/10.1007/s10796-020-09996-1
http://arxiv.org/abs/2007.15207
http://arxiv.org/abs/2007.15207
http://arxiv.org/abs/2212.10511
http://arxiv.org/abs/2212.10511
http://arxiv.org/abs/2212.10511
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
http://arxiv.org/abs/2005.04611
http://arxiv.org/abs/2005.04611
http://arxiv.org/abs/2108.12409
http://arxiv.org/abs/2108.12409
http://arxiv.org/abs/2108.12409
https://doi.org/10.18653/v1/2023.eacl-main.273
https://doi.org/10.18653/v1/2023.eacl-main.273
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
http://arxiv.org/abs/2401.01854
http://arxiv.org/abs/2401.01854
http://arxiv.org/abs/2305.14196
http://arxiv.org/abs/2305.14196
https://doi.org/10.18653/v1/2023.findings-emnlp.536
https://doi.org/10.18653/v1/2023.findings-emnlp.536


Roberts, Maarten Bosma, Vincent Zhao, Yanqi Zhou,
Chung-Ching Chang, Igor Krivokon, Will Rusch,
Marc Pickett, Pranesh Srinivasan, Laichee Man,
Kathleen Meier-Hellstern, Meredith Ringel Morris,
Tulsee Doshi, Renelito Delos Santos, Toju Duke,
Johnny Soraker, Ben Zevenbergen, Vinodkumar
Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen
Olson, Alejandra Molina, Erin Hoffman-John, Josh
Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna,
Matthew Lamm, Viktoriya Kuzmina, Joe Fenton,
Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise
Aguera-Arcas, Claire Cui, Marian Croak, Ed Chi, and
Quoc Le. 2022. Lamda: Language models for dialog
applications.

Hugo Touvron and Louis Martin. 2023. Llama 2: Open
foundation and fine-tuned chat models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Hengyi Wang, Haizhou Shi, Shiwei Tan, Weiyi Qin,
Wenyuan Wang, Tunyu Zhang, Akshay Nambi, Tanuja
Ganu, and Hao Wang. 2024. Multimodal needle in a
haystack: Benchmarking long-context capability of
multimodal large language models.

Wenhao Yu, Hongming Zhang, Xiaoman Pan, Kaixin
Ma, Hongwei Wang, and Dong Yu. 2024. Chain-of-
note: Enhancing robustness in retrieval-augmented
language models.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang
Xu, Junhao Chen, Moo Khai Hao, Xu Han, Zhen Leng
Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun.
2024a. ∞bench: Extending long context evaluation
beyond 100k tokens.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang
Xu, Junhao Chen, Moo Khai Hao, Xu Han, Zhen Leng
Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun.
2024b. ∞bench: Extending long context evaluation
beyond 100k tokens.

Yiran Zhao, Wenxuan Zhang, Guizhen Chen, Kenji
Kawaguchi, and Lidong Bing. 2024. How do large
language models handle multilingualism?

A Process of retrieving the distractor
documents

We randomly sample 10,000 Wikipedia passages
from mMARCO for each of the languages
under study. We encode every question in
MLQA and every passage in mMARCO in a
768 dimensional dense embedding space using
paraphrase-multilingual-mpnet-base-v2, trained on
50+ languages. Following that, we rank 300 most
similar Wikipedia passages for every language
against each question in MLQA using cosine
similarity score.

B Prompt Templates
In our experiments, we adopt a vanilla
prompt template commonly used in multi-
document question answering, following the
linear <Instruction> + <Documents> +
<Query> input sequence. Table 5 and Table
6 highlight the respective prompt templates
used for evaluating exact_accuracy and
existence_accuracy. Additionally, Figure
2 and Figure 9 provide a example of actual input
prompt for exact_accuracy evaluation using
three documents.

C Controlling Context Length
To control the size of the input context within
provided context size proposed by the model
specifications, we allow for maximal number of
distractor passages to fit within the size allowance.
Using mMARCO passages as distractor passages
we observed following number of documents to
appear in the input context for each context size
: 4K - ∼10-15 distractor documents, 8K - ∼25-
30 distractor documents, 32K - ∼50-65 distractor
documents.

D Automated Evaluation Framework
This section outlines the key steps involved in our
automated evaluation process. To better understand
our evaluation setup, we provide an example of a
positive and negative instance from MLNeedle in
Figure 10.

For each input prompt, the model generates a
prediction (y_pred), which may be in a different
language from the ground truth (y_true). Each
question-answer instance in MLNeedle dataset
from MLQA has a golden answer provided in
English, regardless of its language. To accurately
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Figure 6: Performance of mistral-7b-instruct-v0.2 using
different decoding strategies. We report similar trends
for two different context lengths: ∼8K tokens and ∼32K
tokens.

Figure 7: Exact Accuracy and Existence Accuracy plots
for Mistral-7B-Instruct-v0.2 across four different context
lengths on varying (from left to left) : (i) Position of
Document with the Answer (Needle) and (ii) Language
of Document with the Answer (Needle).

Figure 8: Exact Accuracy and Existence Accuracy plots
for Mistral-7B-Instruct-v0.2 across four different context
lengths on the varying language of distractor passages
(Haystack).

compare y_pred with y_true, both must be in
the same language. However, since y_pred can
be generated in any language, we translate all model
predictions into English using Google Translate.

As shown in Figure 10, the translation step
ensures that the prediction is in the same language
as the ground truth, allowing for a direct and reliable
comparison. Once the predictions are translated,
we proceed to compute the exact accuracy metric
as defined in section 2.4. This comparison helps us

determine if the model has successfully identified
and retrieved the correct information from the input
context.

By translating all model outputs to English
before comparison, we minimize the risk of false
negatives due to language differences. This process
ensures that all comparisons are reliable and that
the evaluation accurately reflects the model’s ability
to retrieve relevant information, regardless of the
input language.

E Additional Results

E.1 Ablation Study: Effect of Evaluation
Metric

In Section 4, we discussed how we obtained
similar plots for ‘Exact Accuracy’ and ‘Existence
Accuracy’. From Figure 8, we observe the similarity
between plots obtained on changing the language of
the distractor documents in the input context. Both
‘Existence Accuracy’ and ‘Exact Accuracy’ do not
vary in changing the language of the distractor
documents in the input context.

E.2 Statistical Significance

To ensure the reliability of our evaluation, we
conduct a hypothesis test for exact accuracy as
defined in section 2.4. We conduct the test for
selected models under a binomial distribution
Binomial(1, 𝑝), where 𝑝 is the probability of
success on an individual trial. The standard error
(𝑆𝐸) of this test is computed as follows:
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𝑆𝐸 =

√︂
𝑝(1 − 𝑝)

𝑠
, (1)

where 𝑠 is the number of trials (evaluation
samples). We vary the sample size linearly, starting
from 100 samples and increasing by 500 samples at
each step, i.e., 100, 600, 1100, 1600, and so on, until
reaching the full sample size of MLNeedle (16, 800
samples). Note that at each step, we randomly
select the samples from the MLNeedle dataset.
Figure 5 highlights the results of our statistical tests.
We observe that the exact accuracy stabilizes after
approximately 2, 500 samples, and the standard
error decreases significantly as the sample size
increases from 100 to 16, 800.
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Prompt Template
for Exact Match

Write a high-quality answer for the given question using only the
provided passages (some of which might be irrelevant).

### Passages
{input_passages}

Question: {question}

Answer:

Table 5: Prompt template used for evaluating exact_accuracy. The model is asked to generate an answer based
solely on the provided passages.

Prompt Template
for Existence
Match

Read the following list of passages and indicate whether any of the
passages contain the right answer for the given question. Format
your output strictly as ’Yes’ or ’No’.

### Passages
{input_passages}

Question: {question}

Answer [Yes/No]:

Table 6: Prompt template used for evaluating existence_accuracy. The model is asked to determine if the
correct answer is present within the provided passages.

                         (needle position: start)                (needle position: end)

(needle position: middle)

Write a high-quality answer for the given question using only the provided passages (some of which might be irrelevant).

### Passages
[0] Wenn beispielsweise General Electric (GE) im letzten Quartal .., würde die Dividendenrendite 3,5% (0,68 US-Dollar dividiert durch 19,42 US-Dollar) betragen.

[1] जॉन फ्रांसस "जैक" वेल् श, जूनयर (जन् म 19 नवम्बर 1935) … रहे. वेल् श की कुल अनुमानत संपत्ति 720 मलयन डॉलर है।

[2] John Connolly, EdD, Präsident und CEO von Castle Connolly, … hat neben seiner Anstellung keine relevanten finanziellen Beziehungen offengelegt.

Question: John Welch Jr. was CEO of what company beginning in 1981?

Answer:

Write a high-quality answer for the given question using only the provided 
passages (some of which might be irrelevant).

### Passages
[0] Wenn beispielsweise General Electric (GE) im letzten Quartal .., würde die 
Dividendenrendite 3,5% (0,68 US-Dollar dividiert durch 19,42 US-Dollar) 
betragen.

[2] John Connolly, EdD, Präsident und CEO von Castle Connolly, … hat neben 
seiner Anstellung keine relevanten finanziellen Beziehungen offengelegt.

[3] जॉन फ्रांसस "जैक" वेल् श, जूनयर (जन् म 19 नवम्बर 1935) … रहे. वेल् श की कुल अनुमानत 
संपत्ति 720 मलयन डॉलर है।

Question: John Welch Jr. was CEO of what company beginning in 1981?

Answer:

Write a high-quality answer for the given question using only the provided 
passages (some of which might be irrelevant).

### Passages
[0] जॉन फ्रांसस "जैक" वेल् श, जूनयर (जन् म 19 नवम्बर 1935) … रहे. वेल् श की कुल अनुमानत 
संपत्ति 720 मलयन डॉलर है।

[1] Wenn beispielsweise General Electric (GE) im letzten Quartal .., würde die 
Dividendenrendite 3,5% (0,68 US-Dollar dividiert durch 19,42 US-Dollar) 
betragen.

[2] John Connolly, EdD, Präsident und CEO von Castle Connolly, … hat neben 
seiner Anstellung keine relevanten finanziellen Beziehungen offengelegt.

Question: John Welch Jr. was CEO of what company beginning in 1981?

Answer:

Figure 9: Modulating the position of relevant information (‘needle’) within the input context (‘haystack’) presented
in Figure 2.
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Ground-truth 
(y_true)

Model prediction 
(y_pred)

Translation
(y_pred_translated)

Exact Accuracy

{ 
“जनरल इलेिक्ट्रिक”, 
“General Electric” 
}

“جنرال الكتریك" “general electric” 1

{
“noroeste”, 
“northeast” 
}

“đông về phía bắc” “east to north” 0

Figure 10: An example of a positive and a negative instance while computing exact accuracy. The translation step
enables a direct comparison between y_true and y_pred, which in turn helps reduce false-negatives.
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