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Abstract

Integrating tools into Large Language Mod-
els (LLMs) has facilitated the widespread ap-
plication. Despite this, in specialized down-
stream task contexts, reliance solely on tools
is insufficient to fully address the complexities
of the real world. This particularly restricts
the effective deployment of LLMs in fields
such as medicine. In this paper, we focus on
the downstream tasks of medical calculators,
which use standardized tests to assess an indi-
vidual’s health status. We introduce MeNTi, a
universal agent architecture for LLMs. MeNTi
integrates a specialized medical toolkit and em-
ploys meta-tool and nested calling mechanisms
to enhance LLM tool utilization. Specifically,
it achieves flexible tool selection and nested
tool calling to address practical issues faced in
intricate medical scenarios, including calcula-
tor selection, slot filling, and unit conversion.
To assess the capabilities of LLMs for quantita-
tive assessment throughout the clinical process
of calculator scenarios, we introduce CalcQA.
This benchmark requires LLMs to use medical
calculators to perform calculations and assess
patient health status. CalcQA is constructed by
professional physicians and includes 100 case-
calculator pairs, complemented by a toolkit of
281 medical tools. The experimental results
demonstrate significant performance improve-
ments with our framework. This research paves
new directions for applying LLMs in demand-
ing scenarios of medicine1.

1 Introduction

Large Language Models (LLMs) have achieved
milestone successes, demonstrating exceptional
multi-tasking potential that includes reasoning,
planning, tool usage, and code generation (Tou-
vron et al., 2023; Chen et al.; Achiam et al., 2023;
Ouyang et al., 2022). Recent studies indicate
that by deeply integrating LLMs with large-scale

1Code and Dataset available in https://github.com/
shzyk/MENTI .

Figure 1: Instance of calculator application in Medical
Scenarios. Physicians use calculators to assist in the
quantitative assessment of patient’s status based on their
primary assessment.

toolsets, their task-solving efficiency can be signifi-
cantly enhanced, further expanding the functional
boundaries of the LLMs (Song et al., 2023; Qin
et al., 2023; Gao et al., 2023b; Hao et al., 2024).
Additionally, developing customized tools tailored
to specific application scenarios has become a key
approach to optimize performance and enhance
adaptability, showing remarkable results in numer-
ous downstream tasks (Qian et al., 2023; Cai et al.,
2023; Yuan et al., 2023).

In this paper, we focus on the issue of medi-
cal calculators, a typical and representative down-
stream task for LLMs tool application. Medical
calculators are standardized tools used to quanti-
tatively assess individual health status, functional
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levels, disease severity, and treatment outcomes.
They are extensively applied in clinical diagnostics,
therapeutic monitoring, and research fields, aiding
medical professionals in precisely evaluating and
guiding personalized medical decisions (Dziadzko
et al., 2016a; Green et al., 2019; Dziadzko et al.,
2016b). Instances of calculator applications in med-
ical scenarios are shown in Figure 1. Calculators
can help physicians quantify a patient’s condition,
providing a basis for formulating the next steps in
the treatment plan.

However, given the complexity of medical calcu-
lators in practical applications, the current methods
of tool application are insufficient. Specifically, se-
lecting the appropriate tool is challenging. Firstly,
there are currently over 700 calculators in use 2,
and this vast number makes it difficult to choose
the appropriate one. Secondly, each calculator is
developed for different conditions, and the med-
ical knowledge associated with these conditions,
as well as the specific rules embedded within each
calculator, make it hard to master them. Lastly,
the continuous publication of new calculators every
year adds ongoing pressure to keep tools up-to-date.
Consequently, we introduce the meta-tool mecha-
nism, aimed at promoting flexible tool selection in
vast toolkit. The meta-tool standardizes the timing
of tool usage in medical calculator scenarios and
refines the tool selection process, specifically cater-
ing to the selection within large-scale toolkits and
complex scenarios.

Moreover, after selecting the tools, their appli-
cation proves to be challenging due to locating
information within lengthy case histories, slots fill-
ing, and unit conversion. Medical scenarios involve
complex case histories, and selecting values from
these contexts tests the capacity for long-context
processing. Furthermore, the process demands sub-
stantial medical expertise to avoid errors in slot fill-
ing and to handle the challenges of unit conversion.
For instance, LLMs may conflate rheumatic heart
disease with congestive heart failure, or require
conversions between units of total cholesterol from
8.3 mmol/L to 320.92 mg/dL. Consequently, we
introduce the nested calling mechanism. Nested
tool calling allows LLM to introduce additional
tools when the current tools and information are
insufficient for the task at hand. This mechanism
is particularly valuable in scenarios requiring extra
unit conversion tools, ensuring robust handling of

2Counted by https://www.medcentral.com/calculators/all

complex medical calculation tasks.
We introduce a new benchmark, CalcQA, to val-

idate the practicality of the llm agent throughout
the entire clinical process of medical calculator
scenarios. In collaboration with board-certified
physicians, we develop this benchmark: physicians
select calculators based on real patient cases and
provide corresponding diagnostic pathways, then
use GPT-4 to simulate dialogue scenarios. Along-
side this benchmark, we develop a specialized med-
ical calculator toolkit. We compile 44 medical
calculators that are widely used in medical practice
and systematically organize conversion methods
for 237 common medical units.

Our contributions are as follows: (1) We intro-
duce the CalcQA benchmark, a new benchmark
to assess the capabilities of LLMs in clinical cal-
culator scenarios, including 100 calculator pairs
based on real patients’ cases, along with 281 med-
ical calculator tools. (2) We develop the gener-
alized MeNTi agent architecture, which expands
the LLMs’ ability to address real-world medical
calculator tasks through meta-tool and nested call-
ing mechanisms. (3) Our research indicates that
MeNTi represents the first full-process implemen-
tation of LLMs for calculator assessments in real
medical scenarios, demonstrating exceptional per-
formance in executing such tasks.

2 Related Works

LLMs for Medical Domain. With the applica-
tion of LLMs across various fields, their penetra-
tion into the medical domain has become a hot re-
search topic (Thirunavukarasu et al., 2023; Singhal
et al., 2023; Clusmann et al., 2023). Recent stud-
ies focus on fine-tuning LLMs using real or syn-
thetic medical data (Zeng et al., 2020; Zhang et al.,
2023a; Tang et al., 2023b) to optimize their per-
formance. For instance, PMC-LLaMA (Wu et al.,
2024) has undergone pre-training by incorporating
a vast resource of 4.9 million medical literature
records. Similarly, ChatDoctor (Yunxiang et al.,
2023) integrates real doctor-patient communication
data, enhancing the model’s ability to understand
patient needs and make appropriate recommenda-
tions. Additionally, several studies have explored
RAG to boost the efficacy of LLMs. The LLM-
AMT (Wang et al., 2023) adopts the RAG architec-
ture, incorporating authoritative medical textbooks
into the model. Self-BioRAG (Jeong et al., 2024)
trained with domain-specific retrievers, document
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Figure 2: The whole workflow of MeNTi: (a) The physician proposes the next step for a more quantitative analysis.
(b) Upon receiving the doctor’s request, MeNTi uses the meta-tool to determine and select the appropriate tool from
the toolkit. (c) While filling in the parameters, MeNTi detects a unit mismatch and uses the nested tool calling
mechanism to identify the need for additional tools. (d) MeNTi solves problems with more tools. (e) MeNTi
consolidates the results from all tools and refills the parameters. (f) The final result is computed.

databases, and instruction sets. Despite significant
breakthroughs in the medical field, LLMs still face
challenges in clinical calculator scenarios, due to
inherent shortcomings in mathematical computa-
tion and logical reasoning. To further evaluate the
capabilities of LLMs in calculator tasks, we intro-
duce CalcQA, a comprehensive benchmark derived
from real patients’ cases.

Agent and Tool Utilization. Although LLMs
excel at information processing and linguistic inter-
action, they cannot directly execute specific tasks
such as computation and calendar (Chen et al.,
2024; Huang et al., 2023; Ruan et al., 2023). Re-
cent research focuses on integrating LLMs with
real-world APIs to enhance their practical capabili-
ties (Wang et al., 2024; Tang et al., 2023a; Schick
et al., 2024). This integration generally involves
three stages: tool creation, selection, and applica-
tion. Regarding tool creation, previous practices
have relied on existing APIs, which present limita-
tions in specialized fields. LATM (Cai et al., 2023)
has pioneered creating tools by generating code.
CRAFT (Yuan et al., 2023) focuses on learning
for datasets to create tools. Regarding tool selec-
tion, the method of instructing LLMs with prompts
(Zhuang et al., 2024) is suitable for environments
with smaller tool libraries, while the technique of
using tool names for dense retrieval (Qin et al.,

2023) offers another approach. As for tool appli-
cation, the AnyTool (Du et al., 2024) introduces
self-reflection to guide operational processes. How-
ever, given the complexity of downstream tasks in
the medical field, there is still a lack of an agent
framework capable of flexible tool selection and
nested tool calling. This limitation restricts the
efficacy of LLMs in complex scenarios.

3 Methodology

In Section 3.1, we introduce CalcQA, a novel
benchmark and a toolkit with specialized medi-
cal tools, to assess the ability of LLMs to perform
end-to-end calculator assessment in clinical sce-
narios. We develop this benchmark by having pro-
fessional physicians diagnose real cases and then
structuring these cases and diagnostic results into
question-answer pairs. In Sections 3.2 and 3.3, we
introduce MeNTi, which employs the meta-tool
for tool selection and nested calling mechanism to
assist LLMs in tool utilization. By enabling flexi-
ble tool selection and nested tool calling, MeNTi
effectively addresses intricate scenario tasks with
the specialized toolkit.

Specifically, after the physician conducts a pri-
mary assessment of the patient and identifies the
next steps for quantification, the task is handed over
to MeNTi. After preliminary diagnosis, MeNTi
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uses the meta-tool (Section 3.2) to select an appro-
priate medical calculator. MeNTi then proceeds to
fill in the slots of calculator parameters. If MeNTi
detects a mismatch in parameter units, it employs
the nested tool calling (Section 3.3). This mech-
anism enables iterative tool selection and utiliza-
tion to resolve unit mismatches caused by complex
toolchains requiring multiple tools. Once the con-
version tool’s results are integrated, MeNTi contin-
ues filling the calculator parameters and completes
the final computation. This workflow, illustrated
with a concrete example in Figure 2, is further de-
tailed with complete patient information and case
examples in the appendix D.

3.1 Benchmark Creation
Existing LLM benchmarks for medical calculators
primarily focus on assessing the LLMs’ ability to
handle medical knowledge-based questions or their
capacity to make selective diagnostic judgments
in specific scenarios. However, these benchmarks
are not designed directly from clinical practice and
do not derive diagnostic conclusions directly from
actual cases, making them insufficient for evaluat-
ing the usability of LLMs in real clinical settings.
Therefore, we introduce CalcQA, a new benchmark
constructed based on real cases, aimed at assessing
LLMs within the context of medical calculators.

Toolkit Construction. Given the specialized
medical knowledge and complex computational
logic involved in medical calculators, LLMs re-
quire external knowledge. Accordingly, we de-
velop a generalized medical toolkit (Cai et al.,
2023; Yuan et al., 2023; Yuan et al.). Initially,
we scrap essential knowledge from authoritative
medical websites, then utilized GPT-4 for code
generation to perform precise mathematical calcu-
lations. Finally, we design real-world scenarios to
verify our tools. After meticulous selection and
integration, we compile 44 medical calculators that
are widely used in medical practice, whose applica-
tion scenarios and precise calculation rules are also
represented. These calculators extensively cover
multiple branches of medicine, as detailed in Figure
3. Additionally, considering that medical calcula-
tions often involve precise conversions between
medical units, like conversion between the mass
and molar quantities, we organize conversion tools
for 237 common medical units. The manufacturing
process and content are consistent with those of the
calculators above.

Annotation. In this benchmark, each question is

Figure 3: Distribution map of the assessment calcu-
lator departments. The calculator used in this study
encompasses 13 clinical departments, with a particular
emphasis on cardiology, involving 11 calculators.

derived from actual clinical cases and diagnosed by
professional physicians to serve as the ground truth.
We initially employed a stratified sampling strategy
based on the distribution of selected tools, extract-
ing 100 cases proportionally from different clinical
departments. Subsequently, we hired experienced
physicians to select the appropriate calculators for
each case and to thoroughly document the ratio-
nale for their choices, their diagnostic opinions,
and calculator assessment results. On this basis,
we utilized LLMs in conjunction with detailed di-
agnostic information to generate restrained user
queries, thereby creating the CalcQA benchmark.
This benchmark includes specific user queries, case
details, and diagnostic information, with expected
answers being the names of the recommended cal-
culators and their computed results.

3.2 Meta-Tool for Tool Selection

Existing tool selection strategies often rely on pre-
senting a complete toolkit to LLMs, expecting
them to autonomously choose the appropriate ones.
However, this approach is impractical for large
toolsets. Relying solely on retrieval methods to
match tools with specific task scenarios is also
challenging, which requires deep insights into the
nature of the tasks and a thorough understanding of
tools. Additionally, the existing timing strategy for
applying tools is determined by fine-tuned LLMs.
Although this approach has widespread applicabil-
ity, its inherent high level of uncertainty is unac-
ceptable in medical environments that prioritize
precision and reliability. Therefore, we introduce
the meta-tool mechanism specifically to address
tool selection challenges.

The meta-tool is tailored for medical calculator
scenarios, standardizing the timing of tool usage
based on specific situations, thus obviating the need
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for LLMs of tool calling capabilities. Specifically,
tool calling occurs in two scenarios: first, when the
user expresses the need for calculator assessment
during the inquiry process; second, when the cur-
rent task scenario lacks the capabilities required to
resolve the task, necessitating the introduction of
additional tools to augment existing abilities. In the
latter case, the nested calling (3.3) presents specific
tool usage requirements to the meta-tool, which
then assesses the demands for tool application and
proceeds to match the appropriate tools based on
the identified requirements.

Algorithm 1: Meta-Tool Selection Process
Data: Toolkit T = {tic}, where c is tool

category and i is tool index; User
Query Q, Case Diagnosis D, Patient
Case History H , Prompt P ,
Similarity Ranking R; LLM Model
F, Retrieval Model E, Rerank
Method RRF.

Result: Selected tool by meta-tool, S.
/* Meta-tool selects tools based on

the query and diagnosis. */
1 begin
2 D ← F(H | Pdiagnosis);
3 cclassfier ← F(Q,D | Pclassfier);
4 Qrewriter ← F(Q,D | Prewriter);
5 {Rq

key} ← E(Qrewriter, {ticclassfier});
6 Rtopk ← RRF({Rq

key});
7 S ← F(Q,H,Rtopk | Pdispathcer);
8 end

Additionally, the meta-tool facilitates a flexible
tool selection that aligns with various scenarios, as-
sisting the MeNTi system in choosing appropriate
tools to complete real tasks. The meta-tool achieves
tool selection through the following steps, as it is
shown in Algorithm 1. (1) Calculator Classifier. In
MeNTi, tools are categorized based on their origin
and application scenarios (Du et al., 2024; Song
et al., 2023), like scale tools for assessment and
unit tools for conversion. The classifier instructs
the LLM to accomplish tool-type localization by
matching the requirements of the task. (2) Query
Rewriter. The selection of calculators needs to
be based on the patient’s condition, and Rewriter
integrates the user’s query intent with the diagno-
sis overview, generating insightful query proposals
(Wang et al.; Gao et al., 2023a; Jagerman et al.,
2023), denoted as Q. The diagnostic overview is

Figure 4: Flow of Nested Tool Calling. MeNTi en-
hances LLMs’ tool utilization capabilities using meta-
tool and nested calling mechanism, while also extending
the knowledge boundaries of LLMs with a specialized
medical toolkit, complementing each other. Through
the nested tool calling of the toolkit, MeNTi provides
LLMs with more operation and information for solving
practical tasks.

provided by the LLMs in conjunction with the pa-
tient’s condition. (3) Tool Retrieval & Reranker.
The retrieval uses the query q and employs the
dense retrieval method (Zhou et al.; Lewis et al.,
2020; Yuan et al., 2023). This component also uti-
lizes a multi-key strategy to enhance the precision,
the tool’s name n, description d, and the docstring
associated with the tool s. By calculating the sim-
ilarity with the query q, three different similarity
rankings of Rq are constructed: name-based Rq

n, a
fusion of name and description Rq

n+d, and a fusion
of name and docstring Rq

n+s. That is ∀q ∈ Q:

Rq
n = ArgMax(sim(n, q)|N ⊂ T )

Rq
n+d = ArgMax(sim(n+ d, q)|N,D ⊂ T )

Rq
n+s = ArgMax(sim(n+ s, q)|N,S ⊂ T )

Then, the reranker adopts the Reciprocal Rank Fu-
sion (Cormack et al., 2009), applied to reranking in
multiple retrievals. Each query utilizes the rewriter
(|Q|) and multiple keywords (|Rq|) to perform mul-
tiple retrieval operations, to select tools that are
robust and superior across scenarios. (4) Dispatch
tool in actual scenario. Retrieval based on seman-
tic similarity matching does not necessarily ensure
that tools are well-suited to the actual scenarios.
The dispatcher integrates background information
about the task and detailed descriptions of each can-
didate tool, instructing the LLM to consider both
comprehensively (Shen et al., 2024; Zhao et al.,
2024).
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3.3 Nested Tool Calling

Previous studies primarily focus on aggregating
more tools to expand the functional boundaries
of LLMs. However, the application scenarios for
LLMs are far from straightforward, especially in
medical calculator tasks. Specifically, once a suit-
able calculator is chosen, its application presents
significant challenges. Medical scenarios involve
complex case histories, and selecting parameters
from these contexts tests the capacity for long-
context processing. Furthermore, the process de-
mands substantial medical expertise to avoid errors
in parameter judgment and to handle the challenges
of unit conversion. This demands the appropriate
use of current tools according to the context and
the ability to identify unmet demands and integrate
different tools, which is essentially the capability
of nested tool calling.

Therefore, we introduce the nested calling mech-
anism which consists of three steps: First, it in-
volves the tool slot filling from the patient’s case
history and previous tool outcomes; second, it ver-
ifies whether the current task requirements have
been met; and third, if not, the nested calling mech-
anism plans subsequent demands for the agent,
who then continues to orchestrate various tools for
nested tool calling, ensuring the final task require-
ments are satisfied. In the first step, we facilitate
the slot filling by inputting comprehensive medi-
cal records, tool descriptions, and their function
docstrings into the LLM, which encompasses the
specific functionalities of the tools, their expected
outputs, parameter constraints, and more, enabling
accurate information choices, and then to use the
tool appropriately.

In subsequent steps, the nested calling reviews
the tool slots filling, ensuring that they meet the pre-
requisites of each tool application. If there are ob-
stacles in the filling and the task requirements, the
nested calling records the reasons for failure, and
through natural language analysis troubleshooting
solutions and subsequent requirements. The sub-
sequent requirements are conveyed to the MeNTi
agent. MeNTi continues to select more tools by
meta-tool to provide additional information or han-
dle tasks to assist in resolving the current task. Dur-
ing this process, MeNTi continues to utilize the
nested calling to facilitate tool integration. This
nested calling leverages planning capabilities based
on the current task state, and reusing tools within
MeNTi, enables MeNTi to demonstrate a high de-

gree of flexibility and adaptability in handling com-
plex task scenarios. This workflow is depicted in
Figure 4.

4 Experiment

In this section, we test the performance of MeNTi
on CalcQA and compare it with other methods (4.1
& 4.2). Additionally, we conduct further analysis
(4.3), showing the rational design of MeNTi.

4.1 Experimental Setting
Metrics. We employ four novel metrics, designed
to quantify the accuracy of agents in selecting ap-
propriate calculators, the agents’ ability to fill tool
slots, their competence for nested tool calling, and
the overall performance of MeNTi in executing
end-to-end tasks.

• Calculator Selection Accuracy (CSA): We
calculate the percentage of cases where the
agent’s choice of calculators aligned with the
ground truth. This metric measures the agent’s
ability to select tools based on user demands
and patient conditions correctly.

• Slot Filling Accuracy (SFA): We calculate
the percentage of slots where the agents cor-
rectly fill it. This metric assesses the agent’s
ability to accurately fill in the slots of medical
calculators.

• Unit Converting Accuracy (UCA): We cal-
culate the percentage of slots that require unit
conversions and the agent correctly fills. This
metric measures the agent’s ability to handle
complex medical calculator slots.

• Calculator Calculation Accuracy (CCA):
We calculate the percentage of cases in which
the specific calculator assessment values pro-
vided by the agent matched the ground truth.
This metric measures the agent’s capability
to execute complete end-to-end tasks within
medical calculator scenarios.

Baselines. We compare the MeNTi with 2 kinds
of methods on our benchmark.

• Basic Reasoning: We explore the capabili-
ties of medical LLMs, directly tackling the
task to see if they can select the appropri-
ate calculators and provide evaluation results
without the use of tools. We use the CoT ap-
proach. Three open-source medical models
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Category Method Model Param. Size CSA SFA UCA CCA

Basic Reasoning CoT

BianQue2 6B 0% 0% 0% 0%
ChatGLM3 6B 31% 0% 0% 0%
LLaMA-3.1 8B 65% 33.4% 0% 13%
PULSE 20B 79% 11.2% 0% 7%
GPT-3.5 Turbo / 74% 60.4% 4.1% 10%
GPT-4o / 86% 75.7% 22.4% 22%

Tool Application CRAFT
PULSE 20B 0% 0% 0% 0%
GPT-3.5 Turbo / 25% 4.1% 0% 9%
GPT-4o / 28% 4.9% 0% 19%

Our Framework MeNTi
PULSE 20B 81% 35.2% 46.9% 36%
GPT-3.5 Turbo / 77% 56.2% 20.5% 24%
GPT-4o / 86% 70.3% 69.4% 49%

Table 1: The experimental results of MeNTi and other categories of baselines on CalcQA.

are selected: BianQue2 (Chen et al., 2023),
ChatGLM3 (Du et al., 2021), and PULSE
(Zhang et al., 2023b). Additionally, LLaMA-
3.1, GPT-3.5-Turbo, and GPT-4o are chosen
for comparison.

• Tool Application: We adopt the tool applica-
tion framework CRAFT (Yuan et al., 2023) to
explore its capabilities in executing complex
tool operations. To ensure a fair evaluation,
the customized toolkit is provided. To facili-
tate comparison with the MeNTi framework,
we employed PULSE, GPT-3.5-Turbo, and
GPT-4o as the backbone.

• Our Framework: We employed multiple
LLMs to drive testing of the MeNTi frame-
work. The objective is to evaluate the frame-
work’s performance across different back-
bones, aiming to verify its robust general-
ization capabilities and adaptability. PULSE,
GPT-3.5-Turbo, and GPT-4o are chosen.

4.2 Main results

The results are presented in Table 1. We observe
significant performance degradation in some small
models under the Basic Reasoning when process-
ing long contexts, highlighting the inherent dif-
ficulties of real medical scenario tasks. In con-
trast, LLaMA-3.1, PULSE, GPT-3.5, and GPT-4o
demonstrate outstanding performance in tool selec-
tion due to their superior model capabilities. How-
ever, they still feel short in completing unit con-
version and task computations. While the CRAFT
framework achieves some performance improve-
ments in GPT-4o, the extent of improvement is
limited, further confirming that simple tool appli-

cation strategies are inadequate for addressing the
complexities of real-world medical tasks.

Overall, MeNTi demonstrates exceptional per-
formance across various backbones, with notable
improvements in GPT-4o. Based on this, we derive
the following five experimental conclusions. (1)
Compared to traditional baselines, MeNTi demon-
strates significant performance enhancements in
both UCA and CCA. This validates the substantial
improvements of our framework, particularly the
nested calling mechanism, over existing methods.
(2) Although the meta-tool shows limited improve-
ment on the CSA, primarily due to the benchmark
containing only 44 commonly used medical calcu-
lators, its application in 237 unit conversion tools
significantly advances the UCA. This demonstrates
the effectiveness of the meta-tool, especially when
dealing with a larger toolkit. (3) The significant
advancements in UCA appear to slightly under-
mine the SFA. This may be attributed to the intro-
duction of unit conversion, which complicates slot
filling and consequently affects its efficiency. (4)
MeNTi achieves remarkable results in both medical
LLM like PULSE and general LLM like GPT-3.5
and GPT-4o, demonstrating its high generalizabil-
ity and broad applicability. (5) The outstanding
performance of GPT-4o within the MeNTi further
validates the potential of MeNTi in superior LLMs,
suggesting that its performance ceiling is far from
being reached.

It is noteworthy that in the calculation of the
CCA index, given the rounding errors inherent in
numerical operations, we acknowledge a tolerance
range of ±0.5. Based on this, we achieve a result
of 49% in the GPT-4o model. When we expand this
tolerance to ±1.5, the performance of the GPT-4o
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model improves to 68%; further extending the tol-
erance to ±2.5 resulted in a performance of 77%.
These data indicate that, despite some inaccuracies,
the evaluation results from MeNTi still hold signifi-
cant referential value. Through case study analysis,
we identify that these errors primarily stem from
the Knowledge Hallucination presented by LLMs.
For example, when using the "CHA2DS2-VASc
Score for Atrial Fibrillation Stroke Risk" calcula-
tor, LLMs incorrectly categorize a patient’s history
of rheumatic heart disease as congestive heart fail-
ure, though there is no direct equivalence between
them. This knowledge hallucination leads to sub-
tle errors in the parameter population, ultimately
impacting the results.

4.3 Further Analysis

To comprehensively evaluate the academic contri-
bution of the MeNTi framework, we systematically
implemented a series of studies. Results are shown
in Table 2 and Table 3.

4.3.1 Alternative Component Analysis

To further evaluate the performance improvement
brought by MeNTi, in addition to using the LLM
approach described in Section 4.1, we select
more methods and conduct comparative experi-
ments by replacing certain components of MeNTi:
(1) Alternative Retrieval. We compare our ap-
proach with the commonly used retrieval meth-
ods, BM25(Robertson et al., 2009), SimCSE(Gao
et al., 2021) and M3E(Wang Yuxin, 2023). We
only replace the meta-tool for tool selection with
these methods while keeping the toolkit unchanged.
(2) Alternative Calculator. We select ToRA (Gou
et al., 2023), a model for solving mathematical
problems, to address the calculator challenges, con-
trasting it with our toolkit approach. We replace
only the nested calling mechanism for calculation
with ToRA.

Model Param. Size CSA CCA
BM25 / 0% -
SimCSE / 2% -
M3E / 39% -
ToRA 13B - 0%
ToRA-Code 13B - 0%
PULSE 20B 81% 36%
GPT-3.5 Turbo / 77% 24%
GPT-4o / 86% 49%

Table 2: The alternative component analysis of MeNTi.

Overall, MeNTi demonstrates exceptional per-
formance. Experimental data indicate that tradi-
tional retrieval methods are only moderately effec-
tive in tool selection, and purely semantic retrieval
mechanisms lack reliability in real-world scenar-
ios. While retrieval tools are utilized for handling
large-scale datasets, the assistance of LLM is still
necessary for optimal tool selection. Unfortunately,
due to ToRA’s limitations in processing long con-
text, it is inadequate for handling tasks in medi-
cal scenarios involving long patient case histories.
Therefore, employing the agent to enhance tools
remains essential at present.

4.3.2 Ablation Analysis
We conducted ablation experiments on the tool se-
lection process of the meta-tool. The meta-tool im-
plements tool selection through four steps (shown
as Algorithm 1). The Classifier performs the ini-
tial classification of tools, the Rewriter explores
and expands the selection requirements, and the
Retrieval step uses the name, docstring, and de-
scription as keys for preliminary similarity-based
tool retrieval. Finally, the Dispatcher completes
the more granular tool selection in actual scenarios.
We will sequentially ablate each component and
evaluate its impact.

Classifier. We discard the previous tool catego-
rization methods and directly retrieve all tools for
the experiment. The results demonstrate that the
removal of the Classifier significantly reduces the
CSA and UCA. This underscores the importance of
tool management, particularly when dealing with a
large-scale toolkit.

Framework CSA SFA UCA CCA
MeNTi 81% 35.2% 46.9% 36%
w/o Classifier 57% 18.4% 10.2% 24%
w/o Rewriter 64% 21.8% 26.5% 27%
w/o Ret. name 30% 12.1% 26.5% 15%
w/o Ret. doc. 34% 12.8% 26.5% 15%
w/o Ret. desc. 31% 12.5% 28.5% 15%
w/o Dispatcher 37% 11.9% 16.3% 22%

Table 3: Ablation of MeNTi framework.

Rewriter. Rewriter of the meta-tool combines
user queries with patient conditions to uncover pro-
fessional insights. We discard this component and
use the original query for retrieval. The results
show a moderate reduction, highlighting the impor-
tance of integrating medical calculator tasks with
patient conditions.
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Retrieval. Retrieval of the meta-tool is designed
to perform preliminary tool filtering based on the
semantics of the tools. Our Retrieval adopts a multi-
key search strategy. By incrementally removing
each keyword, we delve into the specific utility of
each keyword. All three keys are important, as
removing any of them significantly impacts perfor-
mance.

Dispatcher. Dispatcher of the meta-tool inte-
grates real-world task scenarios and tool applica-
tion strategies to select the most suitable tools. We
remove the Dispatcher and use the tool with the
highest semantic similarity. The results indicate
that in practical tool usage scenarios, it is essential
to select tools based on their actual functionalities.

5 Conclusion

In this work, we introduce MeNTi, an agent frame-
work that achieves flexible tool selection and nested
tool calling, specifically designed for medical cal-
culator scenarios. We develop and validate a med-
ical calculator toolkit. Additionally, we intro-
duced CalcQA, a benchmark consisting of 100
case-assessment pairs, to assess the capabilities
of LLMs in medical calculator tasks. Extensive
experiments have shown that our method achieves
superior performance compared to existing meth-
ods. We hope our work will further inspire the
application of LLMs in medical contexts.

Limitations

Despite MeNTi making significant strides in medi-
cal calculator tasks through flexible tool selection
and nested tool calling, it still faces several limi-
tations that pose challenges to its overall perfor-
mance. The primary issue is the inherent com-
plexity and length of medical cases, which makes
MeNTi’s capabilities seem relatively insufficient
on a backbone with weaker long-context abilities.
Additionally, due to the high cost of data annota-
tion in medical calculator scenarios, the current
CalcQA benchmark only covers 100 instances, ne-
cessitating more examples to further enhance the
model’s generalization validation. Furthermore,
although the MeNTi framework theoretically has
broad applicability, the high difficulty and cost of
tool development have prevented us from system-
atically evaluating its generalization capabilities
across other downstream tasks, a shortfall that lim-
its the exploration of its potential for wider appli-
cation. These issues merit further research and

consideration.
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A Implementation Details

Toolkit. Figure 5 presents a detailed distribution
of the Medical Assessment Calculators. The calcu-
lators we have compiled demonstrate high practi-
cality in clinical practice, especially in 13 critical
specialties including Cardiology, Intensive Care
Medicine, and Nephrology. These specialties are
characterized by a multitude of test items and rely
heavily on computational tools to enhance diagnos-
tic precision. This collection of calculator tools
is highly reusable and designed to provide strong
support and assistance for a broad range of medical
assessment activities, thereby optimizing the clin-
ical decision-making process and enhancing the
quality of healthcare services. The code for this
toolkit is generated by GPT-4 (Achiam et al., 2023)
and has been manually validated.

LLM Used. All other components of MeNTi
uniformly utilize the PULSE model (Zhang et al.,
2023b) as their core computational unit. The
PULSE model, optimized specifically for the medi-
cal field, is an LLM that has demonstrated superior
performance and expertise in medical-related tasks.
The infrastructure of MeNTi demonstrates a high
degree of generalization allowing us to replace the
core backbone with other LLMs. In our experi-
ments, we switch to GPT-3.5-turbo and GPT-4o,
achieving outstanding performance.

Dense Retrieve Used. In the meta-tool of
the MeNTi system, the Retrieval component em-
ploys the Dense Retrieve method for tool selection.
Specifically, we use the highly acclaimed M3E re-
trieval model(Wang Yuxin, 2023). This model is
widely recognized for its outstanding performance
in semantic representation and similarity calcula-
tion.
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Figure 5: Distribution map of the assessment calculator departments.

Annotation Details. The cases in the annota-
tions all originate from China. Each question of
CalcQA required approximately 20 minutes to an-
notate and review. The cost is $40 per hour for the
physicians.

B Prompts

Toolkit Code Generation Prompt
You are a code generation model for

calculations. You will receive the name,
description, and calculation formula of a
medical calculator. Your task is to
generate a Python function to calculate
this calculator based on the provided
medical calculator information.

The requirements are as follows:
1. Your variable names should be as generic and

meaningful as possible for easy
understanding.

2. You need to provide a docstring that
introduces the function’s functionality,
uses, application scenarios, etc.

3. Your docstring should include detailed
descriptions of the function’s parameters,
their types, and the rules for populating
them, to ensure the function can be used
correctly.

4. To enhance versatility, if any of the
parameters are of string type, you should
provide a list of possible types and change
the parameter to the index of that list.

The function should be wrapped by
‘‘‘python
‘‘‘

Begin!

calculator name: {INSERT_NAME_HERE}
description of calculator: {INSERT_DESCRI_HERE}
formula of calculator: {INSERT_FORMULA_HERE}

Meta-Tool Diagnosis Prompt
You are a medical diagnostic model. Your task

is to analyze the abnormal parts of the
provided patient’s case and speculate on
which bodily functions might be impaired.

The requirements are as follows:
1. Every inference you make must be

substantiated by actual evidence from the
provided patient’s case.

2. You only need to analyze the main, abnormal
parts of the provided patient’s case.

3. You just need to make a brief analysis.

Begin!

Meta-Tool Classifier Prompt
You are a toolkit selection model. Below is a

toolkit list and their descriptions, and
you need to select the appropriate toolkit
based on the user query. Your answer should
be wrapped by ‘‘‘json and ‘‘‘

toolkit list: ["unit", "scale"]
"unit": This is a unit toolkit that contains a

variety of medical unit conversion tools.
When you need to perform unit conversions,
you will need to select this tookit.

"scale": This is a medical calculator toolkit,
which is used for assessing and quantifying
specific health conditions of individuals
in the medical field. When you need to
analyze a patient’s health condition, or
when a user has made a query regarding

5108



health status, you will need to select this
toolkit.

Requirements:
1. You can only select one toolkit, and it must

be from the toolkit list provided.
2. You need to output a JSON file.
3. Your answer should be wrapped by ‘‘‘json and

‘‘‘

Please follow this output format:
‘‘‘json
{

"chosen_toolkit_name": Str(toolkit you
choose)

}
‘‘‘

Begin!

user query: INSERT_QUERY_HERE

Meta-Tool Rewriter Prompt
You are a retrieval-augmented model for

rewriting queries. You will receive a query
from a doctor and a patient’s case
analysis. Your task is to combine the
patient’s case analysis to expand and
rewrite the doctor’s input query, making
the doctor’s query more aligned with the
patient’s actual situation.

The requirements are as follows:
1. The generated queries must not alter the

doctor’s original intent.
2. The generated queries must be closely

similar in meaning to the original query,
but the meanings should differ slightly
from each other.

3. You should extract insights from the patient
case analysis that may be related to the
doctor’s query to generate new queries, in
order to facilitate the retrieval of more
information.

4. However, please prioritize the original
query; the additional information in each
generated query should not be too much to
avoid obscuring the content of the original
query.

5. You need to generate 3 new queries, neither
more nor less.

6. You need to output a JSON file, which is a
list where each item is a new query you
have generated.

7. You need to answer in English. Your answer
should be wrapped by ‘‘‘json and ‘‘‘

Please follow this output format:
‘‘‘json
[

"the first generated query",
"the second generated query",
...

]
‘‘‘

Begin!

doctor input search query: INSERT_QUERY_HERE

Patient Case Analysis:

INSERT_CASE_HERE

Meta-Tool Dispatcher Prompt

You are a dispatching model. Your task is to
choose the most suitable tool from the tool
list based on User Demand and the Task
Scenario, which will then be provided to
the user for use.

Tool List: {{INSERT_TOOLLIST_HERE}}
Detailed information of each tool:

{{INSERT_TOOLINST_HERE}}

Requirements:
1. You need to conduct a detailed, step-by-step

analysis.
2. You must choose a tool from the Tool List.
3. The Final Answer is a JSON file, and the

JSON file must be wrapped by ‘‘‘json and ‘‘‘
4. The tool you choose in the JSON file must be

one of the items in the Tool List.

Here is a example of the Final Answer:
‘‘‘json
{

"chosen_tool_name": Str(the tool you choose)
}
‘‘‘

Begin!

User Demand: {{INSERT_DEMAND_HERE}}
Task Scenario: {{INSERT_SCE_HERE}}
Step By Step Analysis:

Slot Filling Prompt

You are a parameter extraction model. You will
receive a Reference Text and a Function
Docstring. Your task is to determine the
parameters from the Reference Text based on
the parameter filling rules described in
the Function Docstring, including the
values and units of the parameters.

The requirements are as follows:
1. The Value and Unit of parameters you output

need to be strictly in accordance with the
Reference Text. You are prohibited from
performing unit conversions.

2. If there is a discrepancy in the unit of the
parameter between the Reference Text and
the Function Docstring, please use the unit
from the Reference Text as the standard. Do
not convert the units on your own.

3. If the parameter does not have a unit,
output ’null’ in the Unit.

4. All parameters in the Function Docstring
must be included in the parameter list. If
the parameter values are missing, fill them
randomly. The Value must not be ’null’.

5. For parameters that do not have a clear
rating in the Reference Text, please infer
and fill them out based on the actual
circumstances described in the reference
text and the scoring standards provided in
the Function Docstring.
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6. You need to first produce a step-by-step
analysis, considering each parameter
individually.

7. The Parameters List you output is a JSON
file, and this JSON file should be wrapped
by ‘‘‘json and ‘‘‘

Please follow this output format:
‘‘‘json
{The parameters list here.}
‘‘‘

Here are some examples:
Function Docstring:
{{"Calculate the Body Mass Index (BMI) for an

individual.\n\nArgs:\nweight (float): The
weight of the individual in
kilograms.\nheight (float): The height of
the individual in
centimeters.\n\nReturns:\nfloat: the BMI
(kg/m^2).\n\nDescription:\nThe Body Mass
Index (BMI) is a simple index of
weight-for-height commonly used to
classify\nunderweight, overweight, and
obesity in adults. It is calculated by
dividing the weight in\nkilograms by the
square of the height in meters. Although
widely used, BMI has
limitations,\nparticularly for very
muscular individuals and in different
ethnic groups with varying body\nstatures,
where it may not accurately reflect body
fat percentages."}}

Reference Text:
{{The patient is a 16-year-old male, 175cm in

height and 65kg in weight}}
Step By Step Analysis:
{{Here is your step-by-step analysis.}}
Parameters List:
‘‘‘json
{

"weight": {"Value": 65, "Unit": "kg"},
"height": {"Value": 175, "Unit": "cm"}

}
‘‘‘

Begin!

Function Docstring:
{{INSERT_DOCSTRING_HERE}}
Reference Text:
{{INSERT_TEXT_HERE}}
Step By Step Analysis:

Nested Calling Prompt
You are a Parameter List checking model.

You will receive a Function Docstring, and
Parameter List. You need to verify that the
entries in the Parameter List comply with
the requirements described in the Function
Docstring, including the Value and Unit.

If all units are consistent, choose
"calculate". If there are any discrepancies
in the units, choose "toolcall".

You should not perform unit conversions
directly. When converting units is needed,
you must choose "toolcall" and elaborate on
this unit conversion task in the
"supplementary_information", including the

parameter value, the current unit of the
parameter, and the target unit of the
parameter.

Requirements:
1. You need to conduct a detailed, step-by-step

analysis of each parameter in the parameter
list. You need to output each parameter’s
Function Docstring individually, then
analyze and compare them.

2. You especially need to compare the Unit of
the Parameter List with the units required
in the Function Docstring.

3. If the units are inconsistent, please select
"toolcall" and specify the numerical value
of the parameter required for unit
conversion, as well as the units before and
after the conversion in the
"supplementary_information".

4. The unit conversion task may require
converting units of different parameters,
and you need to break down the task into
individual unit conversion tasks for each
parameter. Therefore,
"supplementary_information" is a list of
strings, each of which represents a
standalone, minimalized unit conversion
task.

5. The Final Answer is a JSON file, and the
JSON file must be wrapped by ‘‘‘json and ‘‘‘

Here are some examples:
Function Docstring:
{{"Calculate the Body Mass Index (BMI) for an

individual.\n\nArgs:\nweight (float): The
weight of the individual in
kilograms.\nheight (float): The height of
the individual in
centimeters.\n\nReturns:\nfloat: the BMI
(kg/m^2).\n\nDescription:\nThe Body Mass
Index (BMI) is a simple index of
weight-for-height commonly used to
classify\nunderweight, overweight, and
obesity in adults. It is calculated by
dividing the weight in\nkilograms by the
square of the height in meters. Although
widely used, BMI has
limitations,\nparticularly for very
muscular individuals and in different
ethnic groups with varying body\nstatures,
where it may not accurately reflect body
fat percentages."}}

Parameter List:
{{{

"weight": {"Value": 65, "Unit": "kg"},
"height": {"Value": 1.75, "Unit": "m"}

}}}
Step By Step Analysis:
{{(Here is your step-by-step analysis. You need

to ouptput the corresponding Function
Docstring first for each parameter, and
systematically compare each parameter with
the corresponding information in the
Parameter List and Function Docstring.)}}

Final Answer:
‘‘‘json
{

"chosen_decision_name": "toolcall",
"supplementary_information": ["The height is

1.75m. The height needs to be converted
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from meters to centimeters."]
}
‘‘‘

Function Docstring:
{{Calculate the Corrected Sodium for

Hyperglycemia using Hillier’s method from
1999.\n\nParameters:\n measured_sodium
(float): The measured sodium level in
mEq/L.\n serum_glucose (float): The serum
glucose level in mg/dL.\n\nReturns:\n
float: The corrected sodium level in
mEq/L.\n\n}}

Parameter List:
{{{

"measured_sodium": {"Value": 140, "Unit":
"mmol/L"},

"serum_glucose": {"Value": 80, "Unit":
"mmol/L"}

}}}
Step By Step Analysis:
{{(Here is your step-by-step analysis. You need

to ouptput the corresponding Function
Docstring first for each parameter, and
systematically compare each parameter with
the corresponding information in the
Parameter List and Function Docstring.)}}

Final Answer:
‘‘‘json
{

"chosen_decision_name": "toolcall",
"supplementary_information": ["The

measured_sodium is 140 mmol/L. It needs
to be converted from mmol/L to mEq/L.",
"The serum_glucose is 80 mmol/L. It
needs to be converted from mmol/L to
mg/dL."]

}
‘‘‘

Function Docstring:
{{"Calculate the Body Mass Index (BMI) for an

individual.\n\nArgs:\nweight (float): The
weight of the individual in
kilograms.\nheight (float): The height of
the individual in
centimeters.\n\nReturns:\nfloat: the BMI
(kg/m^2).\n\nDescription:\nThe Body Mass
Index (BMI) is a simple index of
weight-for-height commonly used to
classify\nunderweight, overweight, and
obesity in adults. It is calculated by
dividing the weight in\nkilograms by the
square of the height in meters. Although
widely used, BMI has
limitations,\nparticularly for very
muscular individuals and in different
ethnic groups with varying body\nstatures,
where it may not accurately reflect body
fat percentages."}}

Parameter List:
{{{

"weight": {"Value": 65, "Unit": "kg"},
"height": {"Value": 175, "Unit": "cm"}

}}}
Step By Step Analysis:
{{(Here is your step-by-step analysis. You need

to ouptput the corresponding Function
Docstring first for each parameter, and
systematically compare each parameter with

the corresponding information in the
Parameter List and Function Docstring.)}}

Final Answer:
‘‘‘json
{

"chosen_decision_name": "calculate",
"supplementary_information": "All parameters

comply with the Function Docstring
requirements. No unit conversion is
needed as the parameters use indices to
specify units."

}
‘‘‘

Attention: The Final Answer must be wrapped by
‘‘‘json and ‘‘‘. In the
’supplementary_information’, the Value of
the parameter is required!!!

Begin!

Function Docstring:
{{INSERT_DOC_HERE}}
Parameter List: {{INSERT_LIST_HERE}}
Step By Step Analysis:

C Toolkit Example

In our toolkit, each tool is meticulously integrated
with its core information, encompassing the tool
name, function name, description, code, and ac-
companying code docstring. Depending on the
tool’s classification and the diversity of the sources
of information, we have further supplemented spe-
cific information. For instance, for tools of scale
assessments, given the complexity and significance
of their computational methods, a dedicated col-
umn for calculation formulas has been added to
ensure users can accurately understand the algo-
rithmic logic. To use these tools, simply follow
the clear instructions provided in the function doc-
strings to configure the necessary parameters, and
then directly invoke the provided code to execute
the functions. Finally get the value of calculation
results. This process is both intuitive and efficient.
Below is an example of a typical tool for reference:

{
"tool_name": "Framingham Risk Score for Hard

Coronary Heart Disease",
"function_name":

"calculate_framingham_risk_score",
"description": "The Framingham Risk Score

for Hard Coronary Heart Disease is a
tool used by healthcare professionals
to estimate a patient’s 10-year risk of
developing severe heart disease. It
utilizes factors such as age, gender,
cholesterol levels, blood pressure, and
smoking status to calculate risk. This
score helps in identifying individuals
at high risk, guiding decisions on
preventive measures and interventions.",
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"formula": "Here are the parameter list:
\n\nAge: years\nSex: Female/Male\n
Smoker: No/Yes\nTotal cholesterol:
mg/dL\nHDL cholesterol: mg/dL\nSystolic
BP: mm Hg\nBlood pressure being treated
with medicines: No/Yes\n\nEquations as
follows:\n\nMen:\nLMen = 52.00961 x
ln(Age) + 20.014077 x ln(Total
cholesterol) - 0.905964 x ln(HDL
cholesterol) + 1.305784 x ln(Systolic
BP) + 0.241549 x Treated for blood
pressure + 12.096316 x Smoker -
4.605038 x ln(Age) x ln(Total
cholesterol) - 2.84367 x ln(Age) x
Smoker - 2.93323 x ln(Age) x ln(Age) -
172.300168\nPMen = 1 -
0.9402^exp(LMen)\n\nWomen:\nLWomen =
31.764001 x ln(Age) + 22.465206 x
ln(Total cholesterol) - 1.187731 x
ln(HDL cholesterol) + 2.552905 x
ln(Systolic BP) + 0.420251 x Treated
for blood pressure + 13.07543 x Smoker
- 5.060998 x ln(Age) x ln(Total
cholesterol) - 2.996945 x ln(Age) x
Smoker - 146.5933061\nPWomen = 1 -
0.98767^exp(LWomen)\n\nSupplementary
item:\n1. Smoker: Yes = 1, No = 0.\n2.
Men: if age >70, use ln(70) x Smoker.
Women: if age >78, use ln(78) x
Smoker.\n",

"code": "import math\n\n\ndef
calculate_framingham_risk_score(age,
sex, smoker_status, total_cholesterol,
hdl_cholesterol, systolic_bp,\n
bp_medication):\n \"\"\"\n Calculate
the Framingham Risk Score for Hard
Coronary Heart Disease in patients aged
30-79 years without prior coronary
heart disease history, diabetes, or
intermittent claudication.\n\n
Parameters:\n - age (int): The age of
the patient in years. Valid range:
30-79.\n - sex (int): The sex of the
patient. 0 for female, 1 for male.\n -
smoker_status (int): Smoking status of
the patient. 0 for non-smoker, 1 for
smoker.\n - total_cholesterol (float):
Total cholesterol level in mg/dL.\n -
hdl_cholesterol (float): HDL
cholesterol level in mg/dL.\n -
systolic_bp (float): Systolic blood
pressure in mm Hg.\n - bp_medication
(int): Indicates if the blood pressure
is being treated with medications. 0
for no, 1 for yes.\n\n Returns:\n
float: The risk percentage of
developing hard coronary heart
disease.\n\n Calculation is based on
the logarithmic transformations of risk
factors and their interactions,\n
separately for males and females. Note
that older population data was used to
develop this scale,\n which may not
fully align with current population
risks.\n \"\"\"\n # Converting inputs
for equation\n ln_age = math.log(age)\n
ln_total_cholesterol =
math.log(total_cholesterol)\n
ln_hdl_cholesterol =
math.log(hdl_cholesterol)\n

ln_systolic_bp =
math.log(systolic_bp)\n\n if sex == 0:
# Female\n if age > 78:\n
age_smoker_interaction = math.log(78) *
smoker_status\n else:\n
age_smoker_interaction = ln_age *
smoker_status\n\n L = (31.764001 *
ln_age +\n 22.465206 *
ln_total_cholesterol -\n 1.187731 *
ln_hdl_cholesterol +\n 2.552905 *
ln_systolic_bp +\n 0.420251 *
bp_medication +\n 13.07543 *
smoker_status -\n 5.060998 * ln_age *
ln_total_cholesterol -\n 2.996945 *
age_smoker_interaction -\n
146.5933061)\n\n P = 1 - 0.98767 **
math.exp(L)\n\n else: # Male\n if age >
70:\n age_smoker_interaction =
math.log(70) * smoker_status\n else:\n
age_smoker_interaction = ln_age *
smoker_status\n\n L = (52.00961 *
ln_age +\n 20.014077 *
ln_total_cholesterol -\n 0.905964 *
ln_hdl_cholesterol +\n 1.305784 *
ln_systolic_bp +\n 0.241549 *
bp_medication +\n 12.096316 *
smoker_status -\n 4.605038 * ln_age *
ln_total_cholesterol -\n 2.84367 *
age_smoker_interaction -\n 2.93323 *
ln_age ** 2 -\n 172.300168)\n\n P = 1 -
0.9402 ** math.exp(L)\n\n return P *
100 # Convert to percentage\n",

"docstring": "Calculate the Framingham Risk
Score for Hard Coronary Heart Disease
in patients aged 30-79 years without
prior coronary heart disease history,
diabetes, or intermittent
claudication.\n\n Parameters:\n - age
(int): The age of the patient in years.
Valid range: 30-79.\n - sex (int): The
sex of the patient. 0 for female, 1 for
male.\n - smoker_status (int): Smoking
status of the patient. 0 for
non-smoker, 1 for smoker.\n -
total_cholesterol (float): Total
cholesterol level in mg/dL.\n -
hdl_cholesterol (float): HDL
cholesterol level in mg/dL.\n -
systolic_bp (float): Systolic blood
pressure in mm Hg.\n - bp_medication
(int): Indicates if the blood pressure
is being treated with medications. 0
for no, 1 for yes.\n\n Returns:\n
float: The risk percentage of
developing hard coronary heart
disease.\n\n Calculation is based on
the logarithmic transformations of risk
factors and their interactions,\n
separately for males and females. Note
that older population data was used to
develop this scale,\n which may not
fully align with current population
risks.\n"

}
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D Inference Example

User Query

What scale should be used to assess a pa-
tient’s risk of Coronary heart attack?

Basic information: male, 49, civil servants
Chief Complaints: Chest tightness and
shortness of breath January
History of present disease: 1 month ago,
there was no incentive for chest tightness
and asthma, mostly at night, each lasting
about 1 hour, can be alleviated by itself, no
dizziness, headache, syncope, dark day, nau-
sea, vomiting, cough, phlegm, palpitations,
abdominal pain, diarrhea, edema of both
lower limbs and other discomfort. Chest
CT showed: a high high-density shadow of
two upper lung apexes and pleural effusion
on both sides. B-ultrasonography showed
bilateral pleural effusion. The ECG showed
sinus rhythm, left ventricular hypertrophy,
left atrial load increase, and some lead T-
wave changes. Color Doppler echocardio-
graphy indicated that the left heart was en-
larged and the ejection fraction of the left
heart was decreased. The symptoms were
not alleviated significantly after drug treat-
ment (specific details are unknown). Coro-
nary angiography was recommended, and
the patient was hospitalized in our hospi-
tal. During this period, the patient’s mental
appetite and sleep are OK, and urine and
bowel have no obvious abnormalities.
Previous history: The patient was found to
have elevated blood pressure for 5 years,
with a maximum blood pressure of 180/100
MMHG, taking oral antihypertensive drugs
and monitoring blood pressure. History of
diabetes 3 4 years, oral metformin tablets
0.5g, blood sugar control is good. A history
of smoking. The patient’s mother had a his-
tory of diabetes, and his father had a history
of hypertension and coronary heart disease.
Physical Examination: T: 36.5°C, P:
107 times/min, R: 18 times/min, BP:
160/110mmHg God clear, eyelid no edema,
sclera no yellow staining, soft neck, jugular
vein no angry expansion, liver jugular reflux
sign negative, thyroid gland no swelling.

The trachea was centered, the chest was not
malformed, the respiratory sounds of the
two lower lungs were slightly lower, and
the dry and wet rales were not heard, and
there was no pleural friction sound. There
was no abnormal eminence in the precar-
diac area and no uplifting beat. The apex
beat was in the fifth intercostal space above
the left midclavicular line, and the cardiac
boundary expanded to the left lower. The
rhythm was 107 beats/min, and the rhythm
was uniform. The whole abdomen was soft,
without tenderness and rebound pain, the
liver, spleen and ribs were not touched, both
kidneys were not touched, the mobile dull-
ness was negative, and the intestinal ringing
was 4-5 times/min. There was no edema
in both lower limbs. Physiological reflex
was present, but pathological reflex was not
induced.
Auxiliary Examination: Blood routine, liver
and kidney function, electrolyte, thyroid
function, troponin, creatine kinase isoen-
zyme, and tumor markers were not abnor-
mal. Blood biochemical test: total choles-
terol: 8.3mmol/L, high-density lipopro-
tein cholesterol: 0.2mmol/L, low-density
lipoprotein cholesterol (LDL-C) 4.1mmol/L
brain natriuretic peptide (NT-proBNP) 1013
ng/L. The results of B-ultrasound showed
that fatty liver, biliary pancreas, and spleen
were not abnormal. Cardiac color ultra-
sonography showed left atrial and left ven-
tricular enlargement [left atrial diameter
(LAD) 50 mm; left ventricular systolic di-
ameter (LVD) 56mm; left ventricular dias-
tolic diameter (LVDd) 66 mm], cardiac in-
sufficiency (LVEF 44%), mild mitral insuffi-
ciency, and mild aortic insufficiency. Holter
electrocardiogram showed: sinus rhythm,
frequent ventricular premature, short ven-
tricular tachycardia, occasionally unsus-
tained atrial tachycardia, intermittent T
wave low level. Ambulatory blood pres-
sure: mean blood pressure 150/92 MMHG,
maximum blood pressure 185/105 MMHG.
Chest CT showed left ventricular enlarge-
ment.
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Meta-Tool Classifier

Use the calculator toolkit.

Meta-Tool Rewriter

• What is the best assessment scale for
cardiovascular dysfunction, consider-
ing the patient’s symptoms of chest
tightness, shortness of breath, ECG
abnormalities, previous hypertension,
and reduced ejection fraction?

• Which scale should be used to evaluate
the risk of a heart attack in a patient
with a history of smoking, family his-
tory of diabetes and hypertension, and
current cardiovascular, respiratory, and
metabolic impairments?

• What risk assessment method is suit-
able for a coronary heart attack in a
patient with histories of hypertension
and diabetes, elevated cholesterol lev-
els, decrease in HDL, and impaired
liver function indicated by fatty liver?

Meta-Tool Retrieval

1. HEART Score for Major Cardiac
Events

2. Framingham Risk Score for Hard
Coronary Heart Disease

3. Revised Cardiac Risk Index for Pre-
Operative Risk

4. CHA2DS2-VASc Score for Atrial Fib-
rillation Stroke Risk

5. Mean Arterial Pressure (MAP)

Meta-Tool Dispatcher

Step 1: Understanding User Demand The
user demands a tool to assess a patient’s risk
of a coronary heart attack. Having a high
risk of a heart attack could help in early
diagnosis and preventive measures.
Step 2: Analyzing the Task Scenario The
task scenario is a description of a patient suf-
fering from several health issues including
hypertension, potential cardiovascular dis-

ease, potential respiratory issues, metabolic
dysfunction, and potential liver impairment.
Step 3: Matching User Demand and Task
Scenario to a Tool Comparing the user’s
requirement and the case, the tool needed
is one that can assess the risk of coronary
heart disease given the patient’s condition,
including multiple cardiovascular risk fac-
tors, such as diabetes, hypertension, ele-
vated cholesterol levels, and smoking his-
tory.
Step 4: Choosing the Most Suitable Tool
Based on the user’s requirement and the
task scenario, the Framingham Risk Score
for Hard Coronary Heart Disease would
be the most suitable tool. This tool helps
to evaluate the risk of coronary heart dis-
ease in patients without a prior history of
the disease. It considers variables such as
age, sex, smoking status, total cholesterol,
HDL cholesterol, systolic blood pressure,
and blood pressure treatment, which would
accurately reflect the patient’s medical his-
tory and current condition.
Framingham Risk Score for Hard Coronary
Heart Disease

Slot Filling

{
"age": {"Value": 49, "Unit": "years"},
"sex": {"Value": 1, "Unit": "null"},
"smoker_status": {"Value": 1, "Unit":

"null"},
"total_cholesterol": {"Value": 8.3,

"Unit": "mmol/L"},
"hdl_cholesterol": {"Value": 0.2,

"Unit": "mmol/L"},
"systolic_bp": {"Value": 160, "Unit":

"mmHg"},
"bp_medication": {"Value": 1, "Unit":

"null"}
}

Nested Calling

{
"chosen_decision_name": "toolcall",
"supplementary_information": [

"The total_cholesterol is 8.3
mmol/L. It needs to be
converted from mmol/L to
mg/dL.",

"The hdl_cholesterol is 0.2
mmol/L. It needs to be
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converted from mmol/L to
mg/dL."

]
}

MeNTi

The total_cholesterol is 8.3 mmol/L. It
needs to be converted from mmol/L to
mg/dL.

Meta-Tool Rewriter

• "How to convert 8.3 mmol/L total
cholesterol to mg/dL?",

• "Guidelines for conversion of total
cholesterol from mmol/L to mg/dL",

• "Can I convert 8.3 mmol/L total choles-
terol level to mg/dL?",

Meta-Tool Retrieval

1. Total Cholesterol

2. Low-density lipoprotein cholesterol

3. High-density lipoprotein cholesterol

4. Ethylene glycol

5. Methanol

Meta-Tool Dispatcher

Total Cholesterol.

Slot Filling

{
"input_value": {"Value": 8.3, "Unit":

"null"},
"input_unit": {"Value": 0, "Unit":

"null"},
"target_unit": {"Value": 2, "Unit":

"null"}
}

Nested Calling

{
"chosen_decision_name": "calculate",
"supplementary_information": null

}

For the Total Cholesterol, 8.3 mmol/L is
equal to 320.9195 mg/dL

MeNTi

The hdl_cholesterol is 0.2 mmol/L. It needs
to be converted from mmol/L to mg/dL.

Meta-Tool Rewriter

• "How to convert the HDL cholesterol
level from mmol/L to mg/dL when the
value is 0.2",

• "Conversion of 0.2 mmol/L HDL
cholesterol to mg/dL",

• "What is 0.2 mmol/L of HDL choles-
terol in mg/dL?",

Meta-Tool Retrieval

1. Total Cholesterol

2. High-density lipoprotein cholesterol

3. Low-density lipoprotein cholesterol

Meta-Tool Dispatcher

High-density lipoprotein cholesterol

Slot Filling

{
"input_value": {"Value": 0.2, "Unit":

"mmol/L"},
"input_unit": {"Value": 0, "Unit":

null},
"target_unit": {"Value": 2, "Unit":

null}
}

Nested Calling

{
"chosen_decision_name": "calculate",
"supplementary_information": null

}

For the High-density lipoprotein
cholesterol, 0.2 mmol/L is equal to
7.7330000000000005 mg/dL
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Slot Filling

{
"age": {"Value": 49, "Unit": "years"},
"sex": {"Value": 1, "Unit": "null"},
"smoker_status": {"Value": 1, "Unit":

"null"},
"total_cholesterol": {"Value":

320.9195, "Unit": "mg/dL"},
"hdl_cholesterol": {"Value": 7.733,

"Unit": "mg/dL"},
"systolic_bp": {"Value": 160, "Unit":

"mmHg"},
"bp_medication": {"Value": 1, "Unit":

"null"}
}

Nested Calling

{
"chosen_decision_name": "calculate",
"supplementary_information": "All

parameters comply with the
Function Docstring requirements.
No unit conversion is needed as
the parameters use correct units
or indices."

}

MeNTi

The patient’s Framingham Risk Score
for Hard Coronary Heart Disease is
93.70109147053569
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