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Abstract

Aspect Sentiment Triplet Extraction (ASTE)
is a thriving research area with impressive out-
comes being achieved on high-resource lan-
guages. However, the application of cross-
lingual transfer to the ASTE task has been rela-
tively unexplored, and current code-switching
methods still suffer from term boundary de-
tection issues and out-of-dictionary problems.
In this study, we introduce a novel Test-
Time Code-SWitching (TT-CSW) framework,
which bridges the gap between the bilingual
training phase and the monolingual test-time
prediction. During training, a generative model
is developed based on bilingual code-switched
training data and can produce bilingual ASTE
triplets for bilingual inputs. In the testing
stage, we employ an alignment-based code-
switching technique for test-time augmentation.
Extensive experiments on cross-lingual ASTE
datasets validate the effectiveness of our pro-
posed method. We achieve an average improve-
ment of 3.7% in terms of weighted-averaged
F1 in four datasets with different languages.
Additionally, we set a benchmark using Chat-
GPT and GPT-4, and demonstrate that even
smaller generative models fine-tuned with our
proposed TT-CSW framework surpass Chat-
GPT and GPT-4 by 14.2% and 5.0% respec-
tively.

1 Introduction

Aspect sentiment Triplet Extraction (ASTE) task
has drawn increasing attention in recent years
(Peng et al., 2020; Xu et al., 2020; Zhang et al.,
2023; Li et al., 2023). It aims at the co-extraction
of aspect terms, opinion terms and sentiment polari-
ties. Despite the success achieved on high-resource
languages, it is still challenging to attain compara-
ble performance for languages with limited annota-
tion resources. This highlights the need for cross-
lingual ASTE, an extended task commonly trained
on languages with rich annotation resources (e.g.,
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Figure 1: An example of testing phase in cross-lingual
ASTE task on Spanish dataset. Phrases with bold and
underlined words represent aspect and opinion terms re-
spectively. The substituted words are highlighted within
the orange boxes. The diagram on the bottom right il-
lustrates the pipeline of our proposed alignment-based
code-switching method.

English) and tested on those with low resources
(e.g., Basque and Catalan).

Recent studies have demonstrated that code-
switching can effectively facilitate cross-lingual
transfer for low-resource languages across various
NLP tasks (Li et al., 2022; Zhang et al., 2021a; Qin
et al., 2021; Zhu et al., 2023). However, in terms of
cross-lingual ASTE task, current code-switching
methods still suffer from two major issues.

Firstly, existing code-switching techniques are
mainly used during the training phase as a method
of data augmentation (Li et al., 2022; Zhang et al.,
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2021a), and the prediction is only based on the
target language. However, the detection of term
boundaries tends to be a challenge when conduct-
ing inference in a monolingual context for lan-
guages with limited annotation resources. As
shown in Figure 1, el sushi con cinta transporta-
dora means conveyor belt sushi(i.e., a type of sushi
restaurant) in English. Due to limited annotation
resources, the model may fail to recognize the as-
pect term el sushi con cinta transportadora as a
whole, and instead predict el sushi only. This leads
to the incorrect prediction of term boundaries.

Furthermore, in the context of the ASTE task,
both opinion and aspect terms typically form
phrases. This characteristic poses a challenge for
existing code-switching methods that rely on bilin-
gual dictionaries (Qin et al., 2021; Feng et al., 2022)
or follow the translate-then-align procedure (May-
hew et al., 2017; Fei et al., 2020). For instance,
sound insulation is not present in the bilingual dic-
tionary, and translating insulation directly could
result in semantic inaccuracies. Moreover, these
terms can frequently be proper nouns, like the En-
glish brand name Hard Rock Cafe. However, these
terms often fall outside the scope of bilingual dic-
tionaries (i.e., out-of-dictionary issues), leading to
issues of inconsistency and inaccuracies due to in-
correct translations.

Based on the above observations, we propose
a Test-Time Code-SWitching framework (TT-
CSW) for the cross-lingual ASTE task. In our
framework, the code-switching method offers a
bilingual context in both training and testing phases.
In this way, our framework can act as a bridge be-
tween the monolingual test-time prediction and the
bilingual training phase.

For the training stage, our model learns to predict
bilingual ASTE triplets based on code-switched in-
put.To address the issue of out-of-dictionary and
term boundary detection, we propose a boundary-
aware code-switching method. This approach pre-
serves the completeness of aspect and opinion
terms during the translation process, circumvent-
ing problems associated with inconsistency and
inaccuracies due to wrong translations from bilin-
gual dictionaries. Consequently, it considerably
enhances the alignment capability for models to
understand the bilingual context and predict term
boundaries accurately.

During the testing stage, our model can utilize
knowledge from code-switching to generate triplets
in the target language. To further address the incor-

rect prediction for term boundaries during test-time,
we introduce a code-switching method based on
alignment for test-time augmentation, as illustrated
in Figure 1. A heuristic switching strategy is de-
signed to generate a set of code-switched augmenta-
tion examples. The output triplets from these exam-
ples are then aligned into the target language for the
final output. The integration of code-switching dur-
ing the testing stage provides a bilingual multi-view
of the input sentence, which incorporates informa-
tion from source language with rich annotation re-
sources, and improves performance for predicting
term boundaries.

Extensive experiments on cross-lingual ASTE
datasets validate the effectiveness of our proposed
method. By integrating our method with various
backbone models, we achieve an average improve-
ment of 3.7% in terms of weighted-averaged F1
in four datasets with different languages. Further-
more, we benchmark ChatGPT 1 and GPT-4 2, Ope-
nAI’s widely-used Large Language Model (LLM)
and illustrate that small generative models fine-
tuned with our proposed TT-CSW framework still
outperform ChatGPT by 14.2% and 5.0% respec-
tively in terms of weighted-averaged F1.

Our main contributions are as follows.
1) We propose a novel test-time code-switching

framework for cross-lingual ASTE task, which can
be easily integrated with various backbone models.

2) We develop a boundary-aware code-switching
method based on translation system to solve the is-
sue of out-of-dictionary and phrase code-switching.

3) We design an alignment method for test-time
augmentation to improve term boundary prediction.

4) We benchmark ChatGPT and GPT-4 on the
cross-lingual ASTE task and show that small gen-
erative models finetuned with our TT-CSW frame-
work can still outperform ChatGPT and GPT-4.

2 Methodology

Our proposed TT-CSW framework, as depicted in
Figure 2, is made up of two key components: the
training phase and the testing phase. The structure
of the training phase, shown on the bottom side,
is composed of three elements: boundary-aware
code-switching, structural prediction, and align-
ment prediction. The layout of the testing phase,
as illustrated on the upper side, involves two parts:
alignment-based code-switching, and alignment of

1https://chat.openai.com/
2https://openai.com/gpt-4
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Figure 2: The overall architecture of our proposed TT-CSW framework.

candidate triplets. In this section, we begin by
providing a formal definition of the cross-lingual
ASTE task, then we delve into the specifics of our
proposed TT-CSW framework.

2.1 Task Definition

We denote an monolingual ASTE dataset with N
samples as D = {D1, D2, ..., DN}. For each
sample Di = {si, RTi}, si represents the input
sentence and RTi = {T1, ..., Tn} represents the
ground-truth triplet list for the input sentence. Each
triplet Ti = {ai, oi, pi} consists of the aspect term
(a), the opinion term (o) and the sentiment polarity
(p). The ASTE task aims to predict a list of m pre-
dicted triplets PTi = {T1, T2, ..., Tm} for each of
the input sentence si. For cross-lingual ASTE, we
denote the dataset for source language as D(src),
and the dataset for target language as D(tgt). We
need to train our model M on D(src) and perform
inference on D(tgt).

2.2 Training Phase

For the training phase, we first create a bilin-
gual code-switching dataset using our proposed
boundary-aware code-switching method. Follow-
ing this, we train two separate models utilizing
this dataset: a generative bilingual model and a
bilingual alignment model. The generative bilin-
gual model is designed to produce bilingual ASTE
triplets grounded on the bilingual context. Mean-
while, the role for bilingual alignment model is

to convert the bilingual candidate triplets into the
same language during the testing phase.

2.2.1 Boundary-aware Code-switching

Traditional methods for creating code-switching
context rely on bilingual dictionary (Qin et al.,
2021; Feng et al., 2022), or follow the procedure of
translate-then-align (Mayhew et al., 2017; Fei et al.,
2020), which utilizes word alignment tools after
translation. Inspired by Zhang et al. (2021a), we
propose a boundary-aware code-switching method
via the translation system without the use of bilin-
gual dictionaries or word alignment tools, as shown
on the bottom right of Figure 2.

Given that there are often multiple triplets within
a single sentence, we introduce the HTML tags to
locate these triplets. We employ <ai> and </ai>
to indicate the start and end of the i-th aspect term,
and <oi> and </oi> to denote the boundaries of the
i-th opinion term. Therefore, we can distinctively
differentiate multiple aspect and opinion term pairs
during the translation, while preserving their origi-
nal boundaries. With the help of the HTML tags,
we can easily construct bilingual parallel phrases
for training the bilingual alignment model in sec-
tion 2.2.3. Since the HTML tags are not part of the
original sentence, we can easily remove them af-
ter the translation. The sentiment polarity remains
unchanged during the translation, providing extra
training examples for both the bilingual generative
model and the bilingual alignment model.
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2.2.2 Bilingual Structural Prediction
We develop a bilingual generative model trained on
the boundary-aware code-switching dataset to per-
form the structural prediction task, as shown on the
bottom center of Figure 2. To serialize the output
triplets, we opt not to use commas or semicolons
as separators or connectors within and between
triplets, which is a standard practice in the GAS-
Extraction format (Zhang et al., 2021b). The reason
for this is that these symbols could also be present
in aspect or opinion terms, leading to format confu-
sion. Instead, we choose to use the special tokens
<split> and <join> for this purpose. As an exam-
ple, for a input sequence with two triplets (a1, o1,
p1) and (a2, o2, p2), we use the following format
for structural prediction: (a1<split>o1<split>p1)
<join> (a2<split>o2<split>p2).

2.2.3 Bilingual Alignment Prediction
We use bilingual parallel phrases from boundary-
aware code-switching dataset to train a bilingual
alignment model, which will be used for testing
phase in section 2.3. We use the mT5-base model
as the backbone. For a pair of parallel aspect term
a and a(T ), we append the translated term a(T )

to the end of original sentence and use a special
token <SEP> to separate them, as depicted on the
bottom left of Figure 2. We enhance computational
efficiency and improve diversity by segmenting the
original sentence into multiple chunks, each with
a maximum length of 128, using a sliding window
method. If the sentence chunk does not contain the
original term a after segmentation, we treat it as a
negative sample by setting the ground-truth label
to None. Additionally, to further generate negative
samples and improve robustness of our alignment
model, we substitute 10% of the translated term
a(T ) with a random token from the vocabulary. The
ground-truth label for these randomly substituted
terms is also set to None.

2.3 Testing Phase

During the testing phase, we initially leverage the
bilingual alignment model developed during the
training phase to generate code-switch augmented
examples. Subsequently, we utilize the bilingual
generative model to produce a group of bilingual
candidate triplets. Finally, using the bilingual align-
ment model, we align these candidate triplets into
the target language. Through candidate voting, we
obtain the final output triplets. For ease of demon-
stration, we denote the input sentence in target lan-

guage during testing phase as s(tgt), and the input
sentence in source language as s(src).

2.3.1 Alignment-based Code-switching
As depicted on the upper part of Figure 2, our code-
switching method for test-time augmentation con-
tains four steps. Initially, we use an off-the-shelf
translation system to convert the target language
into English. Then, we construct alignment in-
puts for the bilingual alignment model. A heuristic
method is designed to select phrases with a maxi-
mum of 3-grams from the translated sentence. The
criterion for selection is that bilingual alignment
model should not predict None as output. The
top-10 longest phrases are chosen to construct the
alignment inputs. There are two types of align-
ment inputs: s(tgt) <SEP> t(src) and s(src) <SEP>
t(tgt), where t(src) and t(tgt) represent aspect term
or opinion term in source language and target lan-
guage respectively. Subsequently, we use the bilin-
gual alignment model to get the augmented code-
switching sentences. Finally, these sentences are
used to create a set of candidate triplets with the
help of the bilingual generative model.

2.3.2 Alignment on Candidate Triplets
As discussed in section 2.3.1, we generate two
types of alignment inputs: s(tgt)<SEP>t(src) and
s(src)<SEP>t(tgt). Consequently, we manage to
create candidate triplets in two distinct languages.
The former situation is straightforward because we
aim for the triplets to be in the target language, and
wev́e already computed the bilingual parallel terms.
However, for the latter situation, we still need to
align the remaining terms from the source language
into the target language. For this alignment, we con-
tinue to employ the bilingual alignment model that
we obtain during the training time to ensure that
the candidate triplets conform to a single language.
Finally, to get the final output triplets, we use a vot-
ing mechanism to decide which of the terms in the
candidate triplets are the most likely to be correct.

3 Experiments

3.1 Datasets
We conduct experiments on the publicly available
datasets from Semeval-2022 task 10: structured
sentiment analysis (Barnes et al., 2022). We use
the English OpeNER dataset (Agerri et al., 2013)
for training, and perform cross-lingual validation
on four datasets in other languages respectively, i.e.,
Spanish (Agerri et al., 2013), Catalan (Barnes et al.,
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Dataset Language
Train Validation Test

# s # a # o # s # a # o # s # a # o

OpeNEREN English 2494 3850 4150 2494 3850 4150 2494 3850 4150
NoReCFine Norwegian - - - - - - 11437 8923 11115
MultiBEU Basque - - - - - - 1521 1775 2328
MultiBCA Catalan - - - - - - 1678 2336 2756

OpeNERES Spanish - - - - - - 2057 3980 4388

Table 1: Dataset statistics. # s, # a and # o refer to the number of sentences, the number of aspect terms, and the
number of opinion terms respectively. For cross-lingual evaluation, training and validation sets are not available for
the non-English datasets, which we denote as ’-’.

2018), Basque (Barnes et al., 2018) and Norwegian
(Øvrelid et al., 2020) datasets. For reproducibility,
we use the same train/validation/test split as the
official datasets. The statistics of the datasets are
listed in Table 1.

The original datasets contain four types of anno-
tations: holders, targets, expressions and polarities.
As for the task of aspect sentiment triplet extraction,
we treat the target annotations as aspect terms (a),
and the expression annotations as opinion terms
(o). The holder annotations are not used in our ex-
periments. We did not use the multi-lingual dataset
released in Semeval-2016 task 5 (Pontiki et al.,
2016) because it does not contain opinion term
annotations.

3.2 Implementation Details

All our experiments are conducted on a single
NVIDIA Tesla P40 GPU with 24GB of GPU mem-
ory. We set the maximum sequence length to 128
and the training batch size to 8. We use AdamW
optimizer with a learning rate of 1e-4. The model is
trained for 10 epochs and checkpoints with the best
performance on validation set are selected for the fi-
nal predictions on test set. We use Google translate
API 3 as the translation model in our experiments.

3.3 Compared Methods

We use the following models in our experiments:

mT5-base (Xue et al., 2021) mT5 is a multi-
lingual variant of T5 (Raffel et al., 2020). T5
is a large-scale pre-trained language model with
encoder-decoder architecture, and is trained with
the span corruption task. mT5-base is pre-trained
on a new Common Crawl-based dataset (mC4) cov-
ering 101 languages.

3https://translate.google.com/

m2m100_418M (Fan et al., 2021) m2m100 is a
variant of mBART (Liu et al., 2020b). mBART is a
multi-lingual sequence-to-sequence model aimed
for machine translation task. Compared to mBART,
m2m100 is designed to be a many-to-many mul-
tilingual translation model that can translate di-
rectly between any pair of 100 languages. It is
trained with the sequence-to-sequence denoising
auto-encoding task.

For performing cross-lingual ASTE task on
m2m100, we need to append an additional lan-
guage token to the input sentence, and set target
language id to be the first generated token. As the
original settings in m2m100 does not consider the
bilingual code-switched context, we manually set
the source language as English, and we use the tar-
get language id as the first generated token when
generating triplets. We use the spanish language id
as the first generated token for Basque dataset, for
the reason that the m2m100 model does not contain
Basque language id.

ChatGPT & GPT-4 ChatGPT and GPT-4 are
large language models developed by OpenAI. Chat-
GPT is trained with both supervised fine-tuning
(SFT) and Reinforcement Learning from Human
Feedback (RLHF). GPT-4 surpasses ChatGPT in
its advanced reasoning capabilities. It can solve
difficult problems with greater accuracy, resulting
from its broader general knowledge and problem
solving abilities.

3.4 Evaluation Metrics

We use weighted-averaged precision, recall and F1-
score to evaluate the performance of our model.
Our evaluation metrics are calculated in the same
way as Sentiment Graph F1 (Barnes et al., 2021),
with the exception that we do not utilize the graph-
based structure for triplet representation. This
graph-based structure requires additional alignment
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for generative models, which we sidestep by di-
rectly forming pairs based on the number of over-
lapping words between the predicted triplets and
the ground-truth triplets. When calculating the pre-
cision score, we identify the most similar ground-
truth triplet for each predicted triplet. Conversely,
when calculating the recall score, we focus on pair-
ing each ground-truth triplet with the most similar
predicted triplet. The details of calculation can be
found in A.

3.5 Main Results

The main results are illustrated in Table 2. Based
on the results, we have the following observations:

3.5.1 Our TT-CSW framework boosts the
performance of backbone models on
cross-lingual ASTE.

As shown in Table 2, the cross-lingual ASTE re-
sults of mT5-base and m2m100 are significantly
improved after applying our proposed TT-CSW
framework. Specifically, compare to the original
cross-lingual results, the weighted-averaged F1 on
Spanish, Basque, Catalan datasets are improved by
15.2%, 13.9% and 14.4% respectively when using
mT5-base as the backbone model. As for m2m100
backbone, the weighted-averaged F1 on Spanish,
Basque, Catalan datasets are improved by 43.8%,
27.8% and 41.8% respectively. This proves that
the combination of training phase bilingual code-
switching and testing phase alignment-based code-
switching can significantly improve cross-lingual
understanding of backbone models.

As for the results on Norwegian dataset, we can
observe some abnormal phenomena: all the mod-
els perform worse than the all-null baseline (i.e.,
outputs an empty list for all the test samples). We
notice that 47% of the test samples in Norwegian
dataset do not contain any aspect or opinion terms.
It is an unusual high rate of empty labels com-
pared to the other three datasets, which are 11.7%,
21.3% and 16.1% for Spanish, Basque and Catalan
datasets respectively. We suspect that the labeling
standard for Norwegian dataset is different from the
other three datasets, which drops irrelevant aspects
and opinions during the annotation process.

3.5.2 Test time augmentation further
improves performance.

As depicted in Table 2, we can observe that the per-
formance of complete translation (CT) and code-
switching (CSW) are both improved after apply-

ing our proposed test-time augmentation method.
For mT5-base backbone, the average wF1 on four
datasets improved by 1.8% and 1.6%, as com-
pared to the original CT and CSW results. As
for m2m100 backbone, the improvements are 2.8%
and 2.6% respectively. By combining training and
testing phases of code-switching, we can achieve
an improvement of 3.7% and 4.0% on average wF1
for mT5-base and m2m100 respectively. The bilin-
gual multi-view of the input sentence introduced
by our proposed test-time augmentation method
can reduce the ambiguity of the input sentence,
therefore further enhancing model performance.

We also compare our method with existing cross-
lingual approaches on the four datasets we used, as
shown in Table 3. ASC (Zhang et al., 2021a) can
be seen as a special case of our approach: when
the sample contains only a single triplet, our code-
switching method becomes equivalent to ASC. For
the EasyProject-1.3B (Chen et al., 2022b), we
treated their code-switching trained model as one
of our backbone models. Due to the increased pa-
rameter size and the support for Basque language in
NLLB-200 (Costa-jussà et al., 2022), this backbone
model outperforms our mT-5 and m2m-100 back-
bones with training-time code-switching. However,
we note that our proposed TTA method is also ap-
plicable to this baseline model, and when the TTA
method is applied, we achieve improved results on
the four language test sets.

3.5.3 Our TT-CSW framework surpasses
evaluation results of both ChatGPT and
GPT-4.

We use the same zero-shot prompt as in Gou et al.
(2023) for the cross-lingual ASTE task, which
briefly describes the task and the definition of the
output triplet first, and then provides the format
for the output. As for the few-shot prompt, we
randomly select 10 samples from the English train-
ing set and use them across all four datasets. The
details of the prompts are listed in Appendix B.

The results are listed in Table 2. We can observe
that our proposed TT-CSW framework outperforms
ChatGPT on all four datasets. Specifically, the av-
erage wF1 score of our proposed TT-CSW frame-
work with mT5-base as the backbone model is
46.6%, which is 15.7% higher than ChatGPT-0 and
14.3% higher than ChatGPT-10. This evidence indi-
cates that even though ChatGPT can perform zero-
shot cross-lingual transfer on ASTE tasks, its effi-
ciency is still significantly less than that of smaller,
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Spanish Basque Catalan Norwegian AVG
wP wR wF1 wP wR wF1 wP wR wF1 wP wR wF1

all-null 11.7 4.8 6.8 21.3 12.9 16.1 16.1 9.4 11.8 47.0 32.6 38.5 18.3

ChatGPT
-0 42.7 35.8 38.9 25.2 19.1 21.8 39.6 34.7 37.0 25.3 26.5 25.9 30.9
-10 48.9 48.2 48.5 24.0 26.8 25.3 41.3 41.9 41.6 12.4 15.7 13.9 32.3

GPT-4 -10 61.0 50.3 55.1 33.4 29.2 31.2 48.8 43.3 45.9 38.3 30.7 34.1 41.6

mT5-base
(Xue et al., 2021)

CL 45.5 29.4 35.7 35.1 28.1 31.2 42.6 34.5 38.1 39.3 33.6 36.2 35.3
CT 52.9 42.9 47.4 44.1 42.6 43.3 49.8 47.7 48.7 32.7 31.2 31.9 42.8
+tta 54.6 44.5 49.1 46.2 42.6 44.4 51.9 50.5 51.2 35.8 32.1 33.8 44.6

CSW 54.8 44.4 49.1 42.6 44.1 43.3 50.8 49.4 50.1 44.0 32.3 37.3 44.9
+tta 58.0 45.4 50.9 45.0 45.1 45.1 54.4 50.8 52.6 44.7 32.6 37.7 46.6

m2m100
(Fan et al., 2021)

CL 11.1 4.6 6.5 20.7 12.4 15.5 14.5 8.3 10.5 44.0 30.6 36.1 17.1
CT 52.7 47.0 49.7 31.9 33.8 32.8 47.3 51.1 49.1 31.2 31.8 31.5 40.8
+tta 55.6 47.5 51.2 39.1 36.9 38.0 49.7 54.4 51.9 34.0 32.7 33.3 43.6

CSW 53.6 46.9 50.0 35.6 37.7 36.6 51.5 48.6 50.0 33.9 30.7 32.2 42.2
+tta 53.8 47.2 50.3 43.5 43.2 43.3 53.4 51.3 52.3 35.7 31.0 33.2 44.8

Table 2: Main results on four datasets with different languages on cross-lingual ASTE task. The best results are in
bold, and the second best are underlined. AVG represents the average wF1 score on all four datasets. ChatGPT-0 and
ChatGPT-10 refer to zero-shot and 10-shot results of ChatGPT respectively. CL: cross lingual result; CT: complete
translation, i.e., translate-train; CSW: code-switching. +tta refers to the results after combining our proposed
test-time augmentation method.

Spanish Basque Catalan Norwegian AVG
our mt5-based CSW 49.1 43.3 50.1 37.3 44.9

+tta 50.9 45.1 52.6 37.7 46.6
our m2m100-based CSW 50.0 36.6 50.0 32.2 42.2

+tta 50.3 43.3 52.3 33.2 44.8
ACS(mt5-based) 48.7 43.3 49.1 35.4 44.1
EasyProject-1.3B 51.6 44.7 51.0 37.1 46.1

+tta 52.3 45.2 52.4 38.3 47.1

Table 3: Comparision with existing cross-lingual approaches. wF1 scores are reported.

Spanish Basque Catalan AVG
NP-wP NP-wR NP-wF1 NP-wP NP-wR NP-wF1 NP-wP NP-wR NP-wF1

mT5-base

CL 48.31 31.10 37.84 36.72 28.95 32.38 46.73 37.86 41.83 37.35
dict_csw (static) 58.39 43.00 49.53 40.07 41.63 40.83 54.31 45.81 49.70 46.69

dict_csw (dynamic) 59.18 44.10 50.54 40.54 37.39 38.90 55.56 43.91 49.05 46.16
CT 56.31 45.41 50.28 46.36 44.39 45.36 55.43 52.57 53.96 49.87

our CSW 56.73 46.00 50.81 43.79 45.80 44.77 55.47 53.90 54.67 50.08

m2m100

CL 12.68 5.17 7.35 20.98 12.75 15.86 15.52 9.01 11.40 11.54
dict_csw (static) 36.86 19.12 25.18 23.05 14.46 17.77 33.13 18.67 23.88 22.28

dict_csw (dynamic) 29.18 19.26 23.20 22.21 13.57 16.85 27.84 19.20 22.72 20.93
CT 56.89 50.53 53.52 35.61 36.98 36.28 51.95 56.14 53.96 47.92

our CSW 57.86 50.52 53.94 40.23 42.42 41.30 55.97 52.86 54.37 49.87

Table 4: Boundary prediction results with non-polar wF1 on three datasets with different languages on cross-lingual
ASTE task. dict_csw refers to the results of dictionary-based code-switching. Static and dynamic in the parentheses
refer to different strategies for loading the bilingual dictionary.

fine-tuned models using our proposed TT-CSW
framework. When it comes to GPT-4, except for
the Spanish dataset, our TT-CSW framework out-
performs its 10-shot performance. We surmise this
could be because GPT-4 has extensive knowledge
of the Spanish language, which is not the case for
the other three languages with scarce annotation
resources.

3.6 Boundary Prediction Analysis

To examine the effectiveness of our proposed
boundary-aware code-switching method, we con-
duct a further analysis on the boundary predic-
tion results on the Spanish, Basque and Spanish
datasets. In specific, we use an evaluation metric
called non-polar weighted-averaged F1 (NP-wF1).
This metric is similar to wF1 as defined in section
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A, except that we ignore the sentiment polarity part
during the matching between predicted triplets and
ground-truth triplets. In this way, we can focus on
evaluating term boundaries. For dictionary-based
code-switching, we use the bilingual dictionary
released by Qin et al. (2021), which is based on
MUSE (Lample et al., 2018). We use two differ-
ent strategies for loading the bilingual dictionary:
static and dynamic. Static refers to the strategy that
we construct the code-switched samples before the
training phase, and the switched words are fixed
during the training phase. Dynamic refers to the
strategy that we reconstruct the code-switched sam-
ples at the start of each epoch during the training
phase. We keep a ratio of 0.3 for the probability of
switching each word based on the bilingual dictio-
nary.

The results are listed in Table 4. We can ob-
serve that for both mT5-base and m2m100, our
proposed boundary-aware code-switching method
outperforms the dictionary-based code-switching
method and the complete translation method. For
dictionary-based code-switching, static strategy
performs better than dynamic strategy. Also,
m2m100 struggles to predict terms accurately given
the dictionary-based code-switched context. We
suspect that this is due to the fact that bilingual
dictionary contains some noisy translations, which
may lead to incorrect term boundaries. Overall, the
results prove the efficacy of improving term bound-
aries prediction with our proposed boundary-aware
code-switching method.

3.6.1 Effect Analysis
We conduct an analysis on the effect of maximum n-
gram and number of candidates for code-switching
in test phase. The results are depicted in Figure 3.
When the number of candidates is relatively small
(i.e., 5), increasing maximum n-gram helps to im-
prove performance. However, when the number of
candidates is larger, the improvement is not stable
and the performance even decreases. We suspect
that this is because the number of candidates is
already large enough to cover the possible code-
switched context, and increasing maximum n-gram
may introduce more noise.

4 Related Works

4.1 Aspect Sentiment Triplet Extraction

Aspect Sentiment Triplet Extraction (ASTE) task
was first proposed by Peng et al. (2020) as a subtask

a) OpeNERES (Spanish) with mT5-base b) MultiBCA (Catalan) with mT5-base 

c) OpeNERES (Spanish) with m2m100_418M d) MultiBCA (Catalan) with m2m100_418M 
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Figure 3: Effect of maximum n-gram and number of
candidates for code-switching in test phase on Spanish
and Catalan datasets. "# candidates" refers to the num-
ber of augmented input sentence.

of aspect-based sentiment analysis (ABSA), and
has drawn increasing attention in recent years with
various kinds of methods. Peng et al. (2020), Xu
et al. (2020) and Liang et al. (2023) proposed to use
tagging-based approaches to solve this task. Graph-
based encoding methods are also proposed for mod-
eling the relationships between words (Barnes et al.,
2021; Chen et al., 2022a). There also exists some
works that tried to formalize this task as a machine
reading comprehension (MRC) task (Chen et al.,
2021; Liu et al., 2022; Zhai et al., 2022). With the
fashion of multi-task learning, generative methods
are proposed to solve not only ASTE task, but also
other ABSA subtasks together in a unified frame-
work (Yan et al., 2021; Zhang et al., 2021b; Gao
et al., 2022; Gou et al., 2023).

4.2 Cross-lingual Transfer

Even though supervised methods have attained re-
markable results on high-resource languages, it
is still a challenge to attain comparable perfor-
mance for languages with limited annotated re-
sources. Cross-lingual transfer is one of the so-
lution to this data scarcity issue on low-resource
languages. It aims to solve the problem by leverag-
ing the knowledge from high-resource languages
(Schuster et al., 2019; Lin et al., 2019). Existing
methods on cross-lingual transfer can be roughly
divided into two categories: data transfer and rep-
resentation transfer. Data transfer methods usually
rely on pesudo-labels on target language generated
from machine translation tools (Fei et al., 2020;
Zhang et al., 2021a) or knowledge-distillation meth-
ods (Liu et al., 2020a; Ge et al., 2023). Represen-
tation transfer methods try to align the represen-
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tations of source and target languages in a shared
space and exploit the language-independent fea-
tures (Nooralahzadeh et al., 2020; Huang et al.,
2021, 2023). Existing works on cross-lingual
ABSA mainly focus on sentiment polarity part,
which utilize translation-based methods (Barnes
et al., 2016; Zhang et al., 2021a) or teacher-student
distillation (Lin et al., 2023). However, few at-
tempts have been made to apply cross-lingual trans-
fer to ASTE task.

5 Conclusion

In this study, we present a new code-switching
framework for the cross-lingual aspect-based sen-
timent extraction (ASTE) task that can be easily
incorporated with a variety of generative backbone
models. It bridges the gap between the bilingual
training phase and the monolingual test-time pre-
diction. Our approach includes a boundary-aware
code-switching method via the translation system,
significantly improving the accurate determination
of term boundaries. Additionally, we have designed
a test-time augmentation alignment method that
minimizes the ambiguity of the input sentence and
further boosts model performance. Our proposed
Test-time Code-Switching Framework (TT-CSW)
has been thoroughly evaluated under four cross-
lingual ASTE datasets with different languages,
demonstrating its effectiveness. By integrating our
method with several benchmark models, we obtain
an average improvement of 3.7% on weighted F1-
score. We also evaluate ChatGPT and GPT-4, two
commonly used Large Language Model (LLM) de-
veloped by OpenAI. Furthermore, we prove that
small generative models, when combined with our
proposed TT-CSW framework, can exceed the per-
formance of ChatGPT and GPT-4 by 14.2% and
5.0% respectively.

Limitations

Despite the promising results, our proposed TT-
CSW framework still has some limitations for fu-
ture work. Firstly, our proposed boundary-aware
code-switching method relies on the translation
system, which may introduce translation errors.
Secondly, our proposed test-time augmentation
method may introduce additional computational
cost, which requires a trade-off between perfor-
mance and efficiency for real-time applications.
Lastly, we only evaluate our proposed framework
on cross-lingual ASTE task, further experiments

are needed to expand the scope of our proposed
framework to other cross-lingual tasks.

Ethics Statement

Our experiments are conducted using publicly ac-
cessible datasets, ensuring no personal information
is gathered. There’s no utilization of sensitive or
private data in our research processes. We main-
tain a strict policy against the use of any data that
could potentially harm an individual, group, or the
environment.
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A Calculation of Evaluation Metrics

We use the same type of symbols as defined in
section 2.1. The similarity score between a pair
of triplets T1 and T2 can be calculated as shown
in Equation 1, where overlap(a, b) represents the
number of overlapping words between a pair of
string a and b. If the sentiment polarity part is not
correctly predicted, we consider it as an incorrect
prediction and the similarity score is set to 0. We
omit the respective terms in Equation 1 when OT1

or AT1 is left empty. For the special case when
terms in both triplets are empty, we regard it as an
exact match. The weighted-averaged precision and
recall score are calculated as shown from Equation
2 to 4 respectively. The RTi and PTi denote the
ground truth triplet list and the predicted triplet list
for sample Di.

sim(T1, T2) =
overlap(OT1, OT2)

2len(OT1)

+
overlap(AT1, AT2)

2len(AT1)

(1)

wP =

∑N
i=1

∑
Tj∈PTi

maxTk∈RTi(sim(Tj , Tk))

TP + FP
(2)

wR =

∑N
i=1

∑
Tj∈RTi

maxTk∈PTi(sim(Tj , Tk))

TP + FN
(3)

wF1 =
2wP · wR
wP + wR

(4)

B Prompts for ChatGPT and GPT-4

As shown in Listing 1 and 2, we list the zero-shot
and few-shot prompts for ChatGPT and GPT-4 in
our experiments on the cross-lingual ASTE task.
We use the same few-shot prompt across all the
four datasets with different languages.
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Listing 1: Zero-shot Prompt for cross-lingual ASTE task.
According to the following sentiment elements definition:

− The ’aspect term’ refers to a specific feature, attribute, or aspect of a product or service that a user may express an opinion
about.

− The ’opinion term’ refers to the sentiment or attitude expressed by a user towards a particular aspect or feature of a product
or service.

− The ’sentiment polarity’ refers to the degree of positivity, negativity or neutrality expressed in the opinion towards a
particular aspect or feature of a product or service, and the available polarities inlcudes: ’positive’, ’negative’ and ’
neutral’.

Recognize all sentiment elements with their corresponding aspect terms, opinion terms and sentiment polarity in the following
text with the format of [(’aspect term’, ’opinion term’, ’sentiment polarity’), ...]:

Listing 2: Few-shot Prompt (10 shots) for cross-lingual ASTE task.
According to the following sentiment elements definition:

− The ’aspect term’ refers to a specific feature, attribute, or aspect of a product or service that a user may express an opinion
about.

− The ’opinion term’ refers to the sentiment or attitude expressed by a user towards a particular aspect or feature of a product
or service.

− The ’sentiment polarity’ refers to the degree of positivity, negativity or neutrality expressed in the opinion towards a
particular aspect or feature of a product or service, and the available polarities inlcudes: ’positive’, ’negative’ and ’
neutral’.

Recognize all sentiment elements with their corresponding aspect terms, opinion terms and sentiment polarity in the following
text with the format of [(’aspect term’, ’opinion term’, ’sentiment polarity’), ...]:

Text: Although I wouldn ’t say this was a cheap holiday , it didn ’t break the bank either , so if you want a guaranteed tan go
to Egypt , if not and its your main summer / yearly holiday , I wouldn ’t recommended it ... I , d go somewhere else to
avoid disappointment .

[(’it’, "wouldn ’t recommended", ’negative’), (’somewhere else’, ’d go’, ’negative’)]

Text: The Frankfurter Hof is surrounded by some of Europe ’s most impressive skyscrapers .
[]

Text: Near hotel there are many bars , pubs , clubs .
[(’clubs’, ’Near hotel there are’, ’positive’), (’many bars’, ’Near hotel there are’, ’positive’), (’pubs’, ’Near hotel there are’, ’

positive’)]

Text: Great central location
[(’location’, ’central’, ’positive’), (’location’, ’Great’, ’positive’)]

Text: Ofitsyanty while working well .
[(’’, ’working well’, ’positive’)]

Text: Never worth the money we had to pay for the room and the stay !!!
[(’the money we had to pay’, ’Never worth’, ’negative’)]

Text: You can pay exrra for these by paying for a ’ gold all inclusive ’ package
[]

Text: Very good parking possibilties .
[(’parking possibilties’, ’Very good’, ’positive’)]

Text: Nevertheless , because of its good location aside the liverpool One Shopping centre , with a lot of bars and restaurant , I
continue going there when travelling to Liverpool .

[(’location’, ’good’, ’positive’), (’location’, ’continue going there’, ’positive’)]

Text: ( we had earplugs and used them !
[]
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