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Abstract

The fine-tuning of pre-trained language mod-
els has resulted in the widespread availability
of task-specific models. Model merging offers
an efficient way to create multi-task models by
combining these fine-tuned models at the pa-
rameter level, without the need for training data
or joint training on multiple datasets. Existing
merging approaches typically involve scaling
the parameters model-wise or integrating pa-
rameter importance parameter-wise. Both ap-
proaches exhibit their own weaknesses, lead-
ing to a notable performance gap compared
to multi-task fine-tuning. In this paper, we
unify these seemingly distinct strategies into
a more general merging framework, and intro-
duce Dynamic Fisher-weighted Merging (DF-
Merge)1. Specifically, candidate models are
associated with a set of coefficients that linearly
scale their fine-tuned parameters. Bayesian
optimization is applied to dynamically adjust
these coefficients, aiming to maximize overall
performance on validation sets. Each iteration
of this process integrates parameter importance
based on the Fisher information conditioned
by the coefficients. Experimental results show
that DF-Merge outperforms strong baselines
across models of different sizes and a variety of
tasks. Our analysis shows that the effectiveness
of DF-Merge arises from the unified view of
merging and that near-optimal performance is
achievable in a few iterations, even with mini-
mal validation data.

1 Introduction

Modern transformer-based pre-trained language
models (PLMs) (Devlin et al., 2019; Raffel et al.,
2020; Brown et al., 2020) have driven a paradigm
shift towards fine-tuning PLMs for specific tasks,

* work done during an internship at Meituan.
† Corresponding author.
1Code is available at https://github.com/sanwooo/

df-merge

Figure 1: Comparison of DF-Merge with primary ap-
proaches in model merging. left: leverages parameter
importance evaluated at the fine-tuned models. middle:
uniformly scales fine-tuned models to alleviate param-
eter interference. right: DF-Merge optimizes distinct
scaling coefficients and incorporates parameter impor-
tance evaluated at the scaled models.

achieving state-of-the-art performance across vari-
ous applications. The general-purpose representa-
tions learned through pretraining have significantly
enhanced numerous downstream tasks, leading to
the widespread development of fine-tuned expert
models (Min et al., 2023). For example, over a
million models have been uploaded to the Hugging
Face repository (Wolf, 2019), with many publicly
available for research study2.

Most off-the-shelf models are fine-tuned inde-
pendently for individual tasks, which limits their
performance outside of their specialized domains.
Ideally, models should be capable of handling mul-
tiple tasks relevant to a particular use case. Al-
though multi-task learning (MTL) (Søgaard and
Goldberg, 2016; Deng et al., 2019) offers a straight-
forward solution, it must require simultaneous ac-
cess to the labeled datasets of all tasks and training
over those datasets. This challenge is pronounced
given the increasing difficulty of fine-tuning PLMs
with their ever-growing sizes. More importantly,
since the original training data for each model is
often proprietary, it is time-consuming or even in-
feasible for users to label a large amount of data
for MTL.

2https://huggingface.co/models
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Model merging offers a cost-effective alterna-
tive for building multi-task models by combining
off-the-shelf models in the parameter space with-
out additional training. For example, this can be
done by simply weight-averaging the task vectors
(i.e. fine-tuned part of the parameters from the pre-
trained model) (Ilharco et al., 2023; Yang et al.,
2024). The success of model merging is supported
by recent findings that the local minima, optimized
from pre-trained parameters, are linearly connected
in a flat basin of the loss landscape with no bar-
riers in between (Neyshabur et al., 2020; Zhou
et al., 2024). As a result, linearly interpolating
between fine-tuned models potentially produces a
well-behaved model with multi-task capabilities.

Despite the advantages of model merging, cur-
rent methods still lag behind the performance of
multi-task fine-tuned models. This shortfall can
be attributed to the fact that existing approaches
improve only specific aspects of model merging.
These model merging methods can be divided into
two groups: (1) scaling the task vectors model-wise
(Ilharco et al., 2023; Yang et al., 2024; Liu et al.,
2024), and (2) accounting for parameter impor-
tance parameter-wise (Matena and Raffel, 2022;
Jin et al., 2023; Tam et al., 2024). We present a gen-
eral merging framework that these two seemingly
distinct approaches can be unified into. Building
on this framework, we introduce Dynamic Fisher-
weighted Merging (DF-Merge) which leverages
the strengths of both strategies, as illustrated in
Figure 1. In essence, DF-Merge uses Bayesian
optimization to adjust the scaling coefficients in
order to maximize the overall performance, with
each iteration targeting a low-loss basin informed
by (approximated) Fisher information.

Experimental results show that DF-Merge signif-
icantly outperforms competitive baselines across
PLMs of different sizes on a variety of tasks. Ab-
lation study confirms that the components of DF-
Merge collectively contributes to the performance,
validating the advantage of the general merging
framework. Additionally, our analysis demon-
strates that DF-Merge can achieve near-optimal
performance within just a few iterations using min-
imal validation data. Our contributions are summa-
rized as follows:

• We formulate the two primary model merging
approaches into an unified objective, achiev-
ing a more flexible and effective model merg-
ing framework.

• We introduce Bayesian optimization in model
merging to identify the optimal coefficients
which allows for direct maximization of non-
differentiable metrics.

• Our DF-Merge approach achieves significant
improvements over the baselines, making it an
effective and efficient alternative over multi-
task learning.

2 Model Merging Revisit

Notation. Let net(θ) be a neural network param-
eterized by θ ∈ Rd. Consider T task-specific mod-
els {net(θi)}Ti=1, each initialized from the same
pre-trained model net(θpre) and fine-tuned on the
i-th task dataset Di = {x(j)i , y

(j)
i }Ni

j=1 where Ni is
the dataset’s cardinality. The goal of model merg-
ing is to create a multi-task model net(θ∗) that is
proficient in all tasks.

Task Arithmetic (TA). Ilharco et al. (2023)
coined a concept of task vector which represents
the direction in the parameter space that enhances
a pre-trained model’s performance on the task. In
particular, the task vector τi for the i-th task is spec-
ified by the fine-tuned part of parameters from the
pre-trained model, expressed as τi = θi − θpre.
Task vectors can be combined by arithmetic opera-
tions to steer the pre-trained model’s behavior on
various tasks. This concept has been extended to
model-wise model merging (Yadav et al., 2024; Yu
et al., 2024; Yang et al., 2024), in which multiple
task vectors are added to the pre-trained parameters

θnew = θpre + λ

M∑

i=1

Φ(τi) (1)

where λ ∈ R is a scaling coefficient and Φ
denotes additional operations on the task vectors
such as trimming, electing (Yadav et al., 2024), or
dropout (Yu et al., 2024). These operations are de-
signed to reduce parameter interference across the
fine-tuned models. While the original implementa-
tion optimizes for a single coefficient λ on held-out
validations sets, this can be generalized to multiple
coefficients θnew = θpre +

∑M
i=1 λiΦ(τi), which

we name as General Task Arithmetic (GTA).

Fisher Information. Understanding the land-
scape of the loss function allows for better align-
ment of different models’ parameters. The local
curvature of a loss function ℓ(θ) at the point θ is
captured by its second-order derivatives ∇2ℓ(θ),
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denoted as the Hessian matrix Hθ ∈ Rd×d. Then
the expectation of Hessian over the data distribution
pθ(x, y) describes how sensitive the loss function
is to the parameters in the data distribution modeled
by θ, where highly sensitive parameters potentially
imply greater importance.

Assuming the model is fine-tuned using negative
log-likelihood loss ℓ(θ) = − log p(y|x, θ), the ex-
pectation of Hθ can be efficiently computed by the
Fisher information (FI):

Fθ = E
x∼q(x)

[
E

y∼pθ(y|x)
∇θℓ(θ)∇θℓ(θ)

⊤
]

(2)

which only requires computing the first-order
derivatives.

As estimating the expectation over the input dis-
tribution x ∼ q(x) is intractable, Fθ is approxi-
mated with the empirical Fisher information F̂θ

F̂θ =
1

N

N∑

i=1

[
E

y∼pθ(y|x(i))
∇θℓ(θ)∇θℓ(θ)

⊤
]

(3)

Note that the expectation over y is not calculated
over the true labels, but rather measured on the pre-
dictive distribution y ∼ pθ(y|x) parameterized by
θ. In practice, y ∼ pθ(y|x) can either be modeled
exactly or through sampling depending on the size
of label space (Matena and Raffel, 2022).

Fisher Merging from Geometric Perspective.
Tam et al. (2024) studied a geometric analysis of
Fisher Merging (Matena and Raffel, 2022), by rep-
resenting Fisher Merging (without some approxi-
mations) as

θ∗ =

(
M∑

i=1

QiΛiQ
⊤
i

)−1( M∑

i=1

QiΛiQ
⊤
i θi

)
(4)

where QiΛiQ
⊤
i is the eigendecomposition of Fθi .

Inspecting this form, QiΛiQ
⊤
i upweights the "im-

portant" eigenvector component of θi, such that
useful parameters are preserved during merging.

Building upon this insight, we consider the fol-
lowing geometric objective g(θ) and show that
Fisher Merging is a natural result of minimizing it:

θ∗ = argmin
θ

M∑

i=1

∥Λ1/2
i (Q⊤

i θi −Q⊤
i θ)∥2 (5)

which restricts θ to move along the loss-insensitive
principal directions in the parameter space, as indi-
cated by the eigenvectors associated with smaller
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Figure 2: Accuracy (y-axis) of linear inter/extrapolation
between the pre-trained model and fine-tuned models
with varying coefficients λ (x-axis), T5-base.

eigenvalues. Given that each fine-tuned model θi
represents a local minimum for its respective task,
moving along loss-insensitive directions is helpful
for preventing θ from increasing loss of each task,
thereby balancing the fine-tuned models and po-
tentially targeting a low-loss basin shared by all
tasks.

As g(θ) is convex, setting its gradient to zero
leads to the closed-form solution:

∂g(θ)

∂θ
= 2

M∑

i=1

[
Λ

1/2
i Q⊤

i (θ − θi)
]⊤ ∂Λ

1/2
i Q⊤

i (θ − θi)

∂θ

= 2
M∑

i=1

[
Λ

1/2
i Q⊤

i (θ − θi)
]⊤

Λ
1/2
i Q⊤

i

= 2
M∑

i=1

(θ − θi)
⊤Fθi = 0

which becomes equivalent to Fisher Merging:

θ∗ =

(
M∑

i=1

Fθi

)−1( M∑

i=1

Fθiθi

)
(6)

In practice, Fθi is replaced by its diagonal ap-
proximation to reduce computational complexity
(Matena and Raffel, 2022), which can be seen as
assuming independence between the parameters
(i.e., Qi = I) (Tam et al., 2024).

3 Dynamic Fisher-weighted Merging

Performance drop after merging models fine-tuned
on different tasks occurs due to parameter interfer-
ence, in which each task vector may represent a
loss-increasing direction for the other tasks. Our
pilot study (Figure 2) shows that linearly interpolat-
ing between a pre-trained model and a fine-tuned
model reveals numerous alternative local minima,
motivating us to search for a set of coefficients
such that applying Fisher Merging on the models
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Figure 3: An illustration of DF-Merge. (1) The black-box function f(·) takes coefficients as inputs to (a) scale the
task vectors, and (c) merges models (yellow star) after (b) accounting for the parameter importance using FI, where
a contour depicts the local loss landscape of a specific task. (2) The validation set accuracy f(·) is used by Bayesian
optimization to suggest the best guess on the coefficients for the next iteration that improve f(·).

interpolated by the coefficients minimizes parame-
ter interference. We apply Bayesian optimization
for an efficient search of optimal coefficients. An
overview of our proposed method, DF-Merge, is
illustrated in Figure 3. In the following paragraphs,
we present an unified view of model merging, then
proceed to the details of DF-Merge, divided into
merge function and coefficient optimization.

An Unified View of Model Merging. We show
that Fisher Merging (parameter-wise) and Task
Arithmetic (model-wise) both falls under the re-
stricted cases of a more generic form of model
merging. This generalized perspective offers a nat-
ural way to link both approaches. In particular,
we propose a general function of model merging
f(λ1, ..., λM ; θ1, ..., θM )

f =

(
M∑

i

Cθi

)−1(
M

M∑

i

Cθi · λiτi

)
+ θpre (7)

where Cθi is a covariance matrix (e.g., Fisher In-
formation) that depends on θi.

This formulation recovers Averaging by setting
λi = 1/M and Cθi = I . General Task Arith-
metic (GTA) follows from Cθi = I while Fisher
Merging is obtained with Cθi = diag(F̂θi) and
λi = 1/M . GTA and Fisher Merging make orthog-
onal improvements over Averaging: GTA removes
the implicit restriction of λi = 1/M , whereas
Fisher Merging refines parameter importance by
replacing Cθi = I with diag(F̂θi).

Drawing from this insight, we propose the merge
function of DF-Merge via linking the benefits of

the two:

f =

(
M∑

i

diag(F̂θi(λi))

)−1

(
M

M∑

i

diag(F̂θi(λi))λiτi

)
+ θpre (8)

where diag(F̂θi(λi)) is the diagonal Fisher Informa-
tion estimated at θi(λi) := λiτi + θpre. Intuitively,
this allows Fisher Information to be estimated with
varying λi along the path connecting θpre and θi,
unlike Fisher Merging with fixed diag(F̂θi(1)).

Coefficient Optimization. We employ Bayesian
optimization to determine the coefficients {λi}Mi=1

of Eq.8 that maximize average accuracy on the
held-out validation sets. Unlike gradient descent,
Bayesian optimization is well-suited for optimizing
non-differentiable metrics like accuracy, precision
or recall, which directly aligns with the goal of
model merging. In addition, Bayesian optimization
finds near-optimal coefficients within a few itera-
tions, making it far more scalable than grid search
as the number of models increases.

We utilize Gaussian Process to maximize the
black box function fb(λ) (λ := [λ1, ..., λM ] ∈
RM ) that returns a scalar metric (i.e., average accu-
racy) given the merging coefficients λ. Specifically,
the Gaussian process prior is placed over the ini-
tial random observations on t points (Williams and
Rasmussen, 2006; Frazier, 2018):

fb(λ
1:t) ∼ N

(
µ0(λ

1:t),Σ0(λ
1:t, λ1:t)

)
(9)
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where λ1:t is a compact representation of the col-
lection of t points [λ1, ..., λt], and µ0 and Σ0 are
the mean function and covariance function. Then,
the posterior distribution of the value of the next
point fb(λt+1) is updated by the Bayes’ Rule:

fb(λ
t+1)|fb(λ1:t) ∼ N

(
µt(λ

t+1), σ2
t (λ

t+1)
)

(10)
where µt(λ

t+1) and σ2
t (λ

t+1) are defined as:

µt(λ
t+1) = Σ0(λ

t+1, λ1:t)Σ0(λ
1:t, λ1:t)−1

· (fb(λ1:t)− µ0(λ
1:t)) + µ0(λ

t+1)

σ2
t (λ

t+1) = Σ0(λ
t+1, λt+1)− Σ0(λ

t+1, λ1:t)

· Σ0(λ
1:t, λ1:t)−1Σ0(λ

1:t, λt+1).

Subsequently, the next point λt+1 to sample
is determined by the acquisition functions, and
we consider Expected Improvement (EI) (Frazier,
2018) and Upper Confidence Bound (UCB) (Srini-
vas et al., 2010) in our experiments. EI chooses
λt+1 such that it maximizes the expected value of
improvement than the current best value f∗

b (t) over
its posterior distribution:

argmax
λt+1

Efb(λt+1)

[
max(fb(λ

t+1)− f∗
b (t), 0)

]
.

(11)
UCB selects λt+1 such that it maximizes the peak
of the confidence interval at λt+1:

argmax
λt+1

µt(λ
t+1) + β1/2σt(λ

t+1) (12)

where β is a constant that balances the exploration-
exploitation tradeoff. The sampling process is re-
peated until it reaches the pre-defined number of
iterations or the metric converges.

4 Experiments

4.1 Experimental Setup

Models and Datasets. We use T5-base and T5-
large (Raffel et al., 2020) which are based on the
encoder-decoder architecture and pre-trained on a
large-scale corpus with denoising objectives. Both
task-specific and multi-task models are fine-tuned
on six datasets: PAWS (Zhang et al., 2019), QASC
(Khot et al., 2020), QuaRTz (Tafjord et al., 2019),
Story Cloze (Sharma et al., 2018), WikiQA (Yang
et al., 2015) and Winogrande (Sakaguchi et al.,
2021). These datasets cover a range of NLP tasks,
including question answering, paraphrase identifi-
cation, sentence completion, and coreference reso-

Dataset # train # validation # test Task Type

PAWS 49401 8000 8000 Paraphrase Identification
QASC 8134 463 463 Question Answering
QuaRTz 2696 384 784 Question Answering
Story Cloze 1871 935 936 Sentence Completion
WikiQA 20360 2733 6165 Question Answering
Winogrande 40398 633 634 Coreference Resolution

Table 1: Dataset Statistics.

lution. See Table 1 for the dataset statistics3. The
inputs and outputs are formatted in natural lan-
guage using the templates in PromptSource (Bach
et al., 2022) toolkit. See details of training and
testing in Appendix A. Note that training is only
for simulating model merging under controlled en-
vironment, and we posit no access to the training
data during merging.

Evaluation Metric. All tasks are evaluated by
accuracy.

Baselines. We compare our approach with sev-
eral state-of-the-art baselines, including Averaging
(Wortsman et al., 2022), Fisher Merging (Matena
and Raffel, 2022), Task Arithmetic (Ilharco et al.,
2023), DARE (Yu et al., 2024) and TIES-Merging
(Yadav et al., 2024). TIES-Merging employs trim,
elect, and disjoint mean operation to resolve pa-
rameter interference between the fine-tuned mod-
els. DARE randomly drops and re-scales the task
vectors to sparsify them, potentially alleviating the
parameter interference.

Implementation Details. DF-Merge: We opti-
mize the coefficients using Bayesian Optimization
package (Nogueira, 2014–) to maximize average
accuracy on held-out validation sets. DF-Merge
runs for 50 iterations, preceded by 10 random ini-
tialization steps, with coefficients constrained to
the range of [0, 1]. For each iteration, diag(F̂ ) is
computed exactly over the model’s predictive dis-
tribution using 30 unlabeled validation samples.
Baselines: The best coefficients of Task Arithmetic
and TIES-Merging are determined by a grid search
(TA: [0, 1], TIES: [0.8, 1.8]) on validation sets with
a step size of 0.1. DARE is applied on TA, with ad-
ditional grid search over the drop rate p in [0.1, 0.9]
with a step size of 0.2. Unless otherwise stated, ex-
perimental results are averaged over five random
runs with significance testing.

3For datasets without a publicly available labeled test set,
the validation set is split into two halves to create new valida-
tion and test sets. For datasets with only validation and test
sets, the validation set is used for training, and the test set is
split into two halves to form new validation and test sets.
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Model Method Valid. Set PAWS QASC QuaRTz Story Cloze WikiQA Winogrande Avg.

T5-base

Zero-shot - 49.89 15.55 53.70 49.47 76.04 49.21 48.98
Fine-tune - 93.81 98.70 76.30 75.21 95.79 50.32 81.69
Multi-task - 93.26 98.49 66.38 80.73 95.46 56.09 81.73

Averaging ✗ 68.92 82.33 59.72 49.74 94.30 50.79 67.63*
Fisher Merging ✓ 88.47 84.02 64.64 52.76 94.79 51.04 72.62*
Task Arithmetic ✓ 79.75 88.21 62.81 67.09 95.17 48.64 73.61*

DARE ✓ 79.80 87.82 62.86 67.35 95.16 48.96 73.66*
TIES-Merging ✓ 90.18 78.32 61.53 57.78 95.10 49.43 72.06*

DF-Merge (EI) ✓ 89.62 97.37 68.21 68.97 95.02 49.62 78.14
DF-Merge (UCB) ✓ 89.58 96.11 66.63 68.70 95.19 49.21 77.57

T5-large

Zero-shot - 55.39 11.23 54.97 50.32 70.79 48.42 48.52
Fine-tune - 94.36 98.32 86.43 90.77 96.16 54.42 86.74
Multi-task - 94.29 99.18 83.11 89.83 95.94 67.54 88.31

Averaging ✗ 75.27 35.08 70.64 57.22 86.83 50.00 62.51*
Fisher Merging ✓ 67.70 61.64 81.30 68.35 89.16 51.10 69.88*
Task Arithmetic ✓ 90.86 95.46 73.05 84.78 93.24 53.79 81.86

DARE ✓ 91.01 95.68 72.07 84.66 93.20 52.84 81.58*
TIES-Merging ✓ 93.12 93.05 69.21 79.91 92.51 53.60 80.23*

DF-Merge (EI) ✓ 89.43 96.46 81.30 86.99 95.15 52.24 83.59
DF-Merge (UCB) ✓ 89.94 96.76 81.68 85.79 94.70 51.86 83.46

Table 2: Evaluation result (%) of DF-Merge and the baselines on six tasks. The best accuracy is bolded and the
second-best accuracy is underlined, for each column of a type of model. *: Both DF-Merge (EI) and DF-Merge
(UCB) significantly outperform the baseline (p < 0.05).

4.2 Main Results

Table 2 shows the performance of DF-Merge and
the baselines. There are several key observations
from the results. First, DF-Merge outperforms
the baselines in average accuracy by large margins
and the improvements are significant for almost
all baselines. In particular, DF-Merge improves
over the best baseline in the average accuracy by
4.48 point for T5-base and 1.73 point for T5-large.
Second, DF-Merge narrows the gap with the oracle
multi-task learning model by a substantial degree.
For example, the gap in average accuracy can be
narrowed down to 3.55 point for T5-base and 3.15
point for T5-large. This result indicates that DF-
Merge can be a useful training-free alternative to
multi-task learning in settings where a slight per-
formance drop is permissible. Third, DF-Merge
strikes an adequate balance between the perfor-
mances across multiple tasks. For instance, the
maximum drop in accuracy compared to the fine-
tuned model among the six tasks is 8.09 point for
T5-base and 4.75 point for T5-large, which are
smaller than all baselines. In contrast, the baselines
tend to build a multi-task model that excels in one
task yet at the cost of compromising the perfor-
mance of other tasks. For instance, Fisher Merging
achieves a notable accuracy on QuaRTz (T5-large)
while being much worse on the remaining tasks
than the other methods.

Method T5-base T5-large

DF-Merge (EI) 78.14 83.59
w/o Fisher Information 76.80* (-1.34) 82.52 (-1.07)
w/o Bayesian Optimization 72.62* (-5.52) 69.88* (-13.71)

DF-Merge (UCB) 77.57 83.46
w/o Fisher Information 76.72* (-0.85) 82.49 (-0.97)
w/o Bayesian Optimization 72.62* (-4.90) 69.88* (-13.58)

Averaging 67.63 62.51

Table 3: Ablation of DF-Merge components, evaluated
by the average test set accuracy (%). *: significant drop
in performance after ablation (p < 0.05).

5 Analysis and Discussion

5.1 Ablation Study

We conduct an ablation study of DF-Merge compo-
nents to understand each component’s contribution
to the final performance, as shown in Table 3. Re-
moving Fisher Information from DF-Merge—i.e.,
using GTA and selecting coefficients via Bayesian
optimization—results in a consistent drop in perfor-
mance across different model sizes and acquisition
functions. Notably, the performance drop is sig-
nificant with EI, highlighting the importance of
leveraging useful information from local loss cur-
vature. Besides, removing Bayesian optimization
from DF-Merge—i.e., Fisher Merging—causes sig-
nificant drops in performance, indicating that DF-
Merge benefits largely from a flexible coefficient
search. To summarize, both Fisher information and
Bayesian optimization are essential to the optimal
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Figure 4: Bayesian optimization trajectory of DF-Merge (T5-base, UCB). Coefficients (bottom) and the average
validation set accuracy (top) are rendered as a function of iterations. The coefficients with the new highest average
accuracy up to their corresponding iteration are shown. The red area denotes initial random evaluations.

performance of DF-Merge.

5.2 Efficiency Analysis

Though DF-Merge effectively identifies optimal
task vector coefficients in a vast search space, it still
requires a number of merge-then-evaluate rounds
with labeled validation sets, posing a challenge
in terms of both computational budget and data
labeling cost. Hence we examine whether the effec-
tiveness of DF-Merge remains solid within a few
number of iterations as well as with validations sets
of reduced sizes. Results in this section are based
on a single run with a fixed random seed.

Effect of the number of iterations. Figure 4
demonstrates that DF-Merge quickly achieves the
near-optimal performance within a few number of
iterations. In particular, after the initial evaluations
on 10 random points (red area), it takes 9 iterations
for DF-Merge to exploit previous observations and
discover near-optimal coefficients with 0.59%p gap
compared to the best ones (56th iteration).

The remaining iterations are responsible for a
marginal improvement, indicating that the major
enhancement in performance occurs in the early
stage of optimization. We observe similar trends
consistently when using EI as the acquisition func-
tion or using T5-large, shown in Appendix B.
Hence the optimization may be terminated early
to save much of the runtime and computational
resources.

Effect of the validation set size. We randomly
sample varying ratios of data from the validation set
of each task with larger sampled sets containing the
smaller ones, and observe the test set performance
of DF-merge, as shown in Figure 5. Similar to the
findings for the number of iterations, DF-merge
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Figure 5: Average test set accuracy (%) of DF-Merge
with varying ratios of validation samples used, T5-base,
based on a single run.

efficiently achieves optimal performance with a
minimal size of validation set. Notably, 5% of the
validation data suffices to closely approach the per-
formance of utilizing the full validation sets, as well
as to outperform Task Arithmetic by a large margin.
Additionally, this trend consistently holds regard-
less of which acquisition function (EI or UCB)
is used when ratio ≥ 30%. Consequently, DF-
Merge can save the data labeling cost and reduce
the computations for running inference on the vali-
dation sets while keeping its performance intact.

5.3 Metric Landscape of DF-Merge

We examine how DF-Merge improves multi-task
merging by analyzing the metric landscape of Gen-
eral Task Arithmetic and DF-Merge. In particu-
lar, we visualize instances of GTA and DF-Merge
specified by two merging coefficients in a two-
dimensional subspace4, as shown in Figure 6.

We make the following key observations. First,

4Following Garipov et al. (2018), we let u = τ1, û =
u/∥u∥, v = τ2 − ⟨τ2, û⟩û, and v̂ = v/∥v∥. Then, û and v̂
form an orthonormal basis of a 2-D plane, where a coordinate
(λ1, λ2) specifies a point in the plane as P (λ1, λ2) = θpre +
λ1û+ λ2v̂.
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Figure 6: A landscape of average validation accuracy
(denoted with colors) of merging two T5-base models,
based on a single run. A point in the 2-D plane repre-
sents a linear combination of the two task vectors. left:
GTA; right: DF-Merge.

the high accuracy region resides in the upper-right
side of the landscape, indicating that the optimal
accuracy is unlikely to appear when all coefficients
are low. Second, GTA and DF-Merge both have a
large and flexible search space of the coefficients,
compared to TA and Averaging. Overall, DF-
Merge has a broader high-accuracy regions com-
pared to GTA, possibly since DF-Merge incorpo-
rates parameter-wise importance given by Fisher
Information. Based on the analysis in Section 2,
using Fisher Information can also be interpreted
as merging along the low-loss basin. Third, DF-
Merge underperforms GTA when the coefficients
are low, as seen in the lower-right and upper-left
side of the landscape. A possible reason is that a
model scaled with a low coefficient no longer re-
mains as a local minimum to guarantee the low-loss
preserving property of Fisher information.

6 Related Work

Foundations of Model Merging. Recent stud-
ies have shown that models sharing the same ini-
tialization reside in the same low-loss basin, of-
ten connected by a path with non-increasing loss,
known as mode connectivity (Garipov et al., 2018;
Draxler et al., 2018; Mirzadeh et al., 2021). On
the contrary, barriers often exists between models
optimized from different initialization (Neyshabur
et al., 2020). Entezari et al. (2022) shows that SGD
solutions from different random initialization can
be teleported to the same low-loss basin after ac-
counting for the permutation invariance of neural
network. This idea has been introduced to merg-
ing models with different initializations (Ainsworth
et al., 2023; Stoica et al., 2024). In this paper, we
focus on merging fine-tuned models from the same
pre-trained initialization.

Building Multitask Model via Merging. An im-
portant application of model merging is building a
multitask model out of multiple task-specific mod-
els fine-tuned from the same initialization (e.g.,
pre-trained model). While simple averaging is a
strong baseline that improves single task merging
(Wortsman et al., 2022), it falls significantly short
when applied to multitask scenarios. This has led to
a series of methods which bridge the gap with mul-
titask fine-tuned models: Fisher Merging (Matena
and Raffel, 2022) frames merging as a maximiza-
tion of joint posterior of models’ parameters. Reg-
Mean (Jin et al., 2023) minimizes regression er-
rors between the merged model and the fine-tuned
models. Unlike previous methods aiming to find
closed-form solution, Tam et al. (2024) shows that
their iterative method can solve an improved merg-
ing objective which is intractable to solve analyt-
ically. Meanwhile, Task Arithmetic (TA) (Ilharco
et al., 2023) presents a scalable approach for edit-
ing fine-tuned parameters to guide the behavior of
pre-trained models, a theoretical analysis of which
suggests that weight disentanglement arising from
pre-training is what makes TA successful (Ortiz-
Jimenez et al., 2023). Building on these findings,
recent works has explored effective methods for
editing fine-tuned parameters with different em-
phasis, such as resolving parameter interference
(Yadav et al., 2024; Daheim et al., 2024), spar-
sifying task vectors (Yu et al., 2024; Davari and
Belilovsky, 2024; Deep et al., 2024), training coef-
ficients (Yang et al., 2024), or applying to adapters
(Tang et al., 2024).

Bayesian Optimization in NLP. Bayesian op-
timization is a family of iterative algorithms for
efficient hyperparameter search over a black-box
function that is expensive to evaluate. Its applica-
tions are found in a range of tasks in NLP, such
as optimizing hyperparmeters for text representa-
tion (Yogatama et al., 2015), data selection crite-
ria (Ruder and Plank, 2017), and model ensemble
(Pour et al., 2024). Most importantly, Liu et al.
(2024) utilize Bayesian optimization to find coef-
ficients for average merging that improve check-
point merging during LLM pre-training. Instead,
we leverage Bayesian optimization conditioned on
our newly proposed merging objective.

7 Conclusion

In this work, we propose an unified merging frame-
work and introduce Dynamic Fisher-weighted

4930



Merging (DF-Merge). This approach assigns scal-
ing coefficients to fine-tuned model parameters and
dynamically adjusts them using Bayesian optimiza-
tion, with the goal of maximizing validation per-
formance. Through this process, DF-Merge tries
to efficiently identify low-loss basins using Fisher
information. Experimental results demonstrate that
DF-Merge consistently outperforms strong base-
lines across models of different sizes on diverse
tasks. The method proves effective in achieving
near-optimal performance in just a few iterations,
even with minimal validation data, highlighting its
potential as a powerful tool for multitask model
merging.

Limitations

In this section, we discuss the limitations of our
work as follows. First, DF-Merge requires the
fine-tuned model share the same architecture and
pre-trained parameters. Though DF-Merge covers
a majority of merging settings given the prevalence
of fine-tuning the same pre-trained model, there
indeed exist scenarios where one wish to fuse the
distinct task expertise of models with different ini-
tializations or even across incompatible architec-
tures. We leave this direction for the future research.
Second, DF-Merge relies on the labeled validation
sets, albeit with a relatively small number of sam-
ples required to achieve optimal performance. Yet
we believe there may be ways to apply DF-Merge
when the validation sets are not available. For in-
stance, the fine-tuned models could serve as the
pseudo-labeler at the test time, in which case the
merging objective becomes maximally replicating
each model’s predictions on the test inputs. Since
we do not leverage the label when estimating the
Fisher information, the above approach is feasible.
Third, our use of Fisher Information is restricted
to its diagonal simplification, as the Fisher Informa-
tion is intractable to compute given its extremely
large number of entries (O(d2) with d being the
number of model parameters) for modern PLMs.
Diagonal Fisher information implicitly supposes
the model parameters are not related to each other
in terms of gradient, which is a strong assump-
tion that might lead to suboptimal performance. A
promising research direction would be relaxing this
assumption, such as representing Fisher Informa-
tion as a block-diagonal matrix (Tam et al., 2024).

Ethics Statement

Potential Risks If some of the fine-tuned models
are trained for malicious purpose, then the merged
model DF-Merge might risk producing biased pre-
dictions, harmful contents, or unfair decisions, even
if the safety of other models are guaranteed. Our
method does not address these potential risks, there-
fore the safety of the merged mode must be checked
before deployment.

Use of Scientific Artifacts The Bayesian Op-
timization (Nogueira, 2014–) is under MIT li-
cense and PromptSource (Bach et al., 2022) is
under Apache-2.0 license, both of which permits
the use of the tool for research purpose. For the
datasets used in our experiments, PAWS (Zhang
et al., 2019) permits its free use for any purpose,
QASC (Khot et al., 2020) is under the CC BY 4.0
license, QuaRTz (Tafjord et al., 2019) and Story
Cloze (Sharma et al., 2018) are under Creative
Commons License, Winogrande (Sakaguchi et al.,
2021) is under Apache, and WikiQA (Yang et al.,
2015) is licensed under Microsoft Research Data
License Agreement for Microsoft Research Wik-
iQA Corpus. These datasets are publicly available
for research purpose. The datasets are intended to
serve as benchmarks for testing the ability of AI
models on language tasks, hence our experiments
are aligned with the intended use.

Model Size and Computational Budget We use
T5-base and T5-large (Raffel et al., 2020) which
have 223 million and 738 million parameters, re-
spectively. DF-Merge is cost-effective compared to
training models, where running a single iteration of
DF-Merge approximately requires 70 seconds for
T5-base and 170 seconds for T5-large on a single
A100 GPU.
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A Training & Testing Details of T5
Models

Training is conducted with a batch size of 64, using
the AdamW (Loshchilov and Hutter, 2019) opti-
mizer, a fixed learning rate of 1× 10−4, and 2,500
steps for each task-specific model, while the mul-
titask model is trained for 25,000 steps with early
stopping. The model with the lowest validation
loss is selected for testing. For each test input, we
forward the input/output pairs of all possible labels
to the model and select the one with the lowest
perplexity as the final prediction.

B Optimization Trajectories

We complement the optimization trajectories of
DF-Merge for T5-base + EI, T5-base + UCB and
T5-large + EI in Figure 7, Figure 9 and Figure 8,
respectively.
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Figure 7: Bayesian optimization trajectory of DF-Merge (T5-base, EI).
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Figure 8: Bayesian optimization trajectory of DF-Merge (T5-large, EI).
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Figure 9: Bayesian optimization trajectory of DF-Merge (T5-large, UCB).
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