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Abstract

Despite the recent efforts from the NLP com-
munity, balancing the training budget, down-
stream performance, and general capabilities of
large language models (LLM) remains a chal-
lenge in many applications. Training the en-
tire model for downstream tasks is expensive,
and could easily result in catastrophic forget-
ting. Parameter-efficient fine-tuning (PEFT)
could reduce the training cost, but it still suf-
fers from forgetting, and limits the learning on
the downstream tasks. To address the afore-
mentioned issues, we propose a novel mixture
of experts (MoE) framework based on Soft
LoRA and Identity Mixture (SLIM). SLIM al-
lows dynamic routing between LoRA adapters
and identity layers, thus enabling the bypass
of LoRA adapters to suppress forgetting of
general capacity. We adopt weight yielding
with sliding clustering for better out-of-domain
distinguish to enhance the routing. We also
convert the mixture of LoRA adapters to the
model merging formulation and introduce dy-
namic merging with its fast implementation for
LoRA adapters to keep the general capabili-
ties. Extensive experiments demonstrate that
the proposed SLIM is comparable to the state-
of-the-art PEFT approaches on the downstream
tasks while achieving the leading performance
in mitigating catastrophic forgetting.

1 Introduction

In recent years, large language models (LLM) have
demonstrated extraordinary general capabilities,
and are widely used for question-answering, code
generation, mathematics, and other fields. How-
ever, the increasing utilization of LLM in special-
ized domains needs to support tasks with a mixture
of world and specific knowledge. Meanwhile, since
the scale of the LLM is large, fine-tuning the entire
model could be expensive, and thus may not be
affordable for many users. Furthermore, after fine-
tuning the downstream tasks, the LLM may lose the

Figure 1: The radar chart of the performance of the
parameter-efficient fine-tuning methods. The blue
benchmarks are evaluated after fine-tuning on other
downstream datasets. Compared with the state-of-the-
art parameter-efficient methods, the proposed SLIM
could achieve comparable downstream performance
while mitigating catastrophic forgetting.

general capability, due to catastrophic forgetting.
How to reduce the training cost while mitigating
catastrophic forgetting without loss of learning ca-
pacity, is an essential problem in the utilization
of LLM, especially when utilized in a scenario
where both common and professional capabilities
are needed.

An intuitive solution is to train only a small
bunch of parameters. For example, low-rank adap-
tation (LoRA) (Hu et al., 2022), a widely used
PEFT approach, is validated to forget fewer pieces
of knowledge compared with fine-tuning the full
weight of the base model, with limitations of learn-
ing capacity (Biderman et al., 2024). Chaudhry
et al. (2020) propose to optimize the model in the
orthogonal subspace with low-rank adaptation to
alleviate forgetting. Singh et al. (2020) propose
to insert calibrating modules to the base model
for learning the downstream tasks. Liang et al.
(2023) utilize learnable mask prompts to fine-tune
the CLIP without loss of text-vision alignment.
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These approaches attempt to introduce minimal
changes to the base model to keep its raw capacity.
Some approaches utilize data replay to reduce for-
getting. For example, Glorioso et al. (2024) utilize
a 60% data replay for continual training. Zhu et al.
(2024) utilize a 30% replay rate in the continual
pre-training for the coding model. Despite the fact
that data replay could effectively reduce the influ-
ence of forgetting, the large amount of training data
is still a burden, and the pre-training data may not
be accessible for downstream fine-tuning.

In this work, we propose a novel MoE architec-
ture with Soft LoRA and Identity Mixture (SLIM),
a mixture of LoRA adapters and identity layers. By
introducing identity layers as experts, the model
is enabled to activate these layers as information
“highways” to skip the LoRA adapters, thus avoid-
ing the influence of downstream tasks. We further
propose weight yielding with sliding clustering to
estimate the distribution of the samples from the
downstream tasks and modify the routing weight
according to the consistency between the input sam-
ple and the distribution. This mechanism encour-
ages the model to dynamically route the samples
from the downstream tasks to the LoRA adapters
while assigning the samples out of the downstream
distribution to the identity layers to alleviate forget-
ting. Inspired by DARE (Yu et al., 2024), we con-
vert the low-rank adaptation to model merging for-
mulation and propose a dynamic merging approach
and its fast implementation to mix LoRA adapters
to the base model for forgetting alleviation. We con-
duct experiments on various downstream datasets
while validating the model performance on multi-
ple general tasks. Extensive experiments show that
the proposed SLIM could achieve SOTA PEFT per-
formance, and significantly mitigate catastrophic
forgetting, as demonstrated in Fig. 1. Our main
contributions could be summarized as follows:

1. We propose SLIM, a novel MoE PEFT algo-
rithm that achieves comparable performance
to the SOTA PEFT methods, while effectively
alleviating catastrophic forgetting.

2. We propose a weight-yielding mechanism
with sliding clustering to enhance dynamic
routing between identity layers and LoRA
adapters, improving input distribution dis-
tinction and enhancing general competence
preservation.

3. We propose dynamic merging that converts

the MoE low-rank adaptation to model merg-
ing, which effectively mitigates catastrophic
forgetting without any data replay.

2 Related work

2.1 Parameter-efficient fine-tuning (PEFT)

With the growth of the scale of the deep models,
it becomes expensive to fine-tune all the parame-
ters of the models. Therefore, parameter-efficient
fine-tuning has attracted more attention from re-
searchers in recent years. There are several strate-
gies of PEFT. The most common strategies are
LoRA-styled, adapter insertion, and prefix-tuning.

Prefix tuning The prefix tuning introduces ex-
tra learnable prompts and re-parameterization to
the transformer layers to introduce adaptations
to the original model (Li and Liang, 2021). P-
tuning v2 removes the re-parameterization strat-
egy, and manages to expand it to more tasks (Liu
et al., 2022). Some approaches, such as p-tuning
(Liu et al., 2023) and prompt-tuning (Lester et al.,
2021), propose only assigning learnable tokens to
the initial word embedding layer for training effi-
ciency. SMoP (Choi et al., 2023) mixing short soft
prompts for efficient training while maintaining
performance gains typically induced by longer soft
prompts.

Adapter modules Adapter modules introduce ad-
ditional adaptive layers to the pre-trained model for
fine-tuning. Serial Adapter (Houlsby et al., 2019)
introduces adapter modules cascaded to the self-
attention layers and the FFN layers. AdapterFusion
(Pfeiffer et al., 2021) further proposes to insert
the adapters only after the normalization layers for
the FFN layers to further boost training efficiency.
Some approaches also introduce parallel adapters
to the transformer layers (He et al., 2021; Lei et al.,
2023).

LoRA-styled approaches LoRA-styled adapters
assume that the change of the full-weight matrix
could be approximated by a low-rank matrix (Hu
et al., 2022). AdaLoRA (Zhang et al., 2024) pro-
poses to adaptively estimate the parameters’ impor-
tance and modify the adapters’ rank. DoRA (Liu
et al., 2024) further decomposes the pre-trained
weights to scale and direction, proposing only to
update the direction of the pre-trained weights.
MoRA (Jiang et al., 2024b) proposes to increase
the rank of the adapters with the same number of
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parameters. Inspired by the Mixtral 8×7B model
(Jiang et al., 2024a), LoRAMoE (Dou et al., 2024)
and MixLoRA (Li et al., 2024) propose mixing the
LoRA adapters with dynamic routing. LoRAMoE
further introduces a contrastive loss function to
mitigate knowledge forgetting during downstream
fine-tuning.

2.2 Task incremental learning

Task incremental learning, a subfield of continual
learning, addresses the challenge of learning multi-
ple tasks sequentially without forgetting previously
acquired knowledge. Many explorations have been
made to mitigate knowledge forgetting.

Replay-Based methods Replay-based methods,
such as Experience Replay (ER) and Generative
Replay, mitigate forgetting by reintroducing sam-
ples from previous tasks during training on new
tasks. For example, Rolnick et al. (2019) leverage
behaviour cloning and off-policy learning from the
replay for training stability. Chaudhry et al. (2019)
maintain a memory bank during training, and sam-
ple from the bank when training the consequent
batches. Many approaches further modify the hy-
perparameters and training schema (e.g. learning
rate, re-warm up) along with the data replay dur-
ing the continual pre-training (Zhu et al., 2024;
Glorioso et al., 2024; Ibrahim et al., 2024).

Regularization-based methods Some ap-
proaches adopt extra regularization terms to the
adapted weights to mitigate forgetting. For exam-
ple, Chaudhry et al. (2020) propose to fine-tune
the base model on the orthogonal sub-space of
its parameters to avoid the influence of the tasks
trained previously. Wang et al. (2021) introduce
Adam-NSCL that forces the update of the network
parameters to lie in the null space of the previous
tasks for capability reservation. Zhai et al.
(2024) propose a selective patch-level distillation
approach to adaptively balance plasticity and
stability.

3 Method

3.1 Overview of LoRA-styled adapters

For an MLP layer with weight matrix W ∈ Rd1,d2 ,
a LoRA adapter utilizes two low-rank learnable
matrices B ∈ Rd1,r and A ∈ Rr,d2 to modify the
output as:

y = Wx+ b+ E(x) = Wx+ b+BAx, (1)

in which r << min(d1, d2), and b represents the
bias of the MLP layer.

Although LoRA is efficient and does not directly
modify the weight of the base model, it still in-
fluences the output and therefore impacts the gen-
eralization of the LLM. Since LoRA adapters are
additional modules to the base model, an intuitive
solution for recovering the generalization is to dis-
card the LoRA adapters from the fine-tuned model
when not needed. We formulate this alternative
implementation of LoRA adapters as in Eq. 2:

y = (W + R̂BA+ (1− R̂)0)x+ b, (2)

in which R̂ ∈ {0, 1} is an expert (e.g., human) rout-
ing operation that determines if the LoRA adapter
should be discarded. Since it is not feasible to let
users decide whether to utilize the LoRA adapter
for each individual instruction, we propose a dy-
namic approach as illustrated in the following.

3.2 Mixture of experts as soft R̂
Similar to the MoE architecture of the Mixtral mod-
els, the mixture of LoRA adapters also introduces a
routing layer to assign the input tokens to multiple
LoRA adapters. Formally, given M LoRA adapters
and input token x ∈ RC in which C represent the
number of channels, a routing layer R : RC → RM

is adopted to assign the token to the LoRA experts
as in Eq. 3:

ŵi =

{
Softmax (R(x))i ,R(R(x)i) ≤ K
0, otherwise

(3)

in which R(R(x)i) represent the descending order
of R(x)i in R(x). Then select the top-K LoRA
experts to process the input as in Eq. 4:

{
y = Wx+ 1

Z

∑
i
ŵiEi(x) + b

Z =
∑

i ŵi

. (4)

To dynamically assign the token to the adapters, we
implement the expert routing operation R̂ with a
learnable routing layer, formulated as follows:

y = (W + R̂(x)BA+ (1− R̂(x))0)x+ b.
(5)

To be more general, when multiple experts are in-
troduced, Eq. 5 could be formulated as follows:

y = Wx+ b+
∑
i
R̂(x)ifi(x), (6)

in which fi could either be a LoRA adapter, or an
identity layer F that satisfies

g(x) + F(x) = g(x), (7)
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Figure 2: The overall framework of the proposed approach. “Iden” denotes the identity layer, which could be
activated by the router as an information “highway” to bypass the LoRA adapters (see Sec. 3.2 for details), thereby
preserving general capabilities. First, the router predicts the routing weight for each expert. Second, we calculate the
distance from the input to the clusters and yield the routing weight accordingly. Then we activate the top-K experts
according to the yielded routing weight and fuse their output via dynamic merging. We remove the connections
from the input to the weight matrices (W , LoRA adapters) and the “Iden” in the figure for simplicity.

which holds for any function g and any input x.
By setting R̂(x)i = ŵi/Z, and considering both
LoRA adapters and identity layers as experts {Ek},
Eq. 6 could be transformed to the same formulation
with Eq. 4.

3.3 Weight yielding with sliding clustering

To identify the samples occluded from the down-
stream tasks, we assume the distribution of the
input samples during downstream fine-tuning is a
mixture of Gaussian distribution. Therefore, we
calculate the distance from the input sample to the
nearest cluster. We suppose that if the distance
is large, the sample is rarely probable to be sam-
pled from the downstream distribution, therefore
it should be processed by the identity layer. In the
training phase, we assign each input sample to a
cluster and update the cluster center accordingly.
We also estimate the variance of each channel of
the cluster. We do not update the clusters during
inference.

Formally, we randomly initialize a set of cluster
centers C = {ci ∈ RC}. For each input sample
x ∈ RC,N , we assign the sample to the nearest
cluster as follows:

idx|x = argmin
i

∣∣∣ci − 1
N

∑
k

x:,k

∣∣∣. (8)

We then yield the routing weights as:

wi =

{
R̃(x)i,TYPE(fi) = LoRA
R̃(x)i + d− 1, otherwise

, (9)

in which TYPE(·) return the type of the expert,
R̃ : RC → RM calculate the routing logits of the
input, and the distance d could be calculated as
follows:

d =
(

max(3−∑ |x−cidx|
σidx|xC

, 1e− 4)
)−1

. (10)

The yielded routing weight could finally be formu-
lated as follows:

ŵi =

{
Softmax(wi),R(wi) ≤ K
0, otherwise

, (11)

in which K represents the number of experts to be
activated.

3.4 Mixing LoRA adapters with dynamic
merging

DARE (Yu et al., 2024) proposes to merge multiple
LLMs with the same pre-trained parameters to ob-
tain the capacity of the merged LLMs. DARE sup-
poses the weights of the fine-tuned models could be
formulated as θSFT = θPRE+τ , in which θSFT, θPRE
represent the weight of the fine-tuned model and
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the pre-trained model. τ is named as “task vector”.
As depicted in DARE, LLM has the following na-
tures:

1. LLM is robust to slight parameter changes.

2. By merging the task vectors of fine-tuned
LLMs, the LLM could obtain multiple down-
stream capabilities.

Inspired by the findings of DARE, we propose to
convert the mixing of multiple LoRA adapters to
dynamic model merging to further recover the gen-
eralization of the LLM. DARE randomly sets the
elements of τ to 0 to formulate θDARE. The merg-
ing of the models could be formulated as follows:

θM = θPRE + λ
∑

k

(θtkDARE − θPRE)

= θPRE +
λ

1− p

∑

k

Mtk ⊗ (θtkSFT − θPRE)
,

(12)
in which ⊗ represents the Hadamard product, p ∈
(0, 1) is the masking rate, Mtk is the binary mask
for task k. θM , θPRE, θ

tk
SFT represent the weight of

the merged model, the pre-trained model, and the
fine-tuned model for task k. We formulate the
merging of the general instruction tuning model
and the downstream fine-tuned model as:

θM = θPRE

+
λ

1− p
ML ⊗ (θIns − θPRE)

+
λ

1− p
MA ⊗ (θIns +BA− θPRE)

, (13)

in which ML and MA are random binary masks,
and θIns is the instruction-tuning model. We need
to eliminate the θPRE from the equation to avoid
access to the pre-training model during inference.
Suppose ML and MA satisfy XOR(ML,MA) =
1. Setting λ = 1− p, Eq. 13 could be simplified as
follows:

θM = θPRE +
λ

1− p
ML ⊗ (θIns − θPRE)

+
λ

1− p
MA ⊗ (θIns +BA− θPRE)

= θIns +MA ⊗ (BA).

(14)

Then formulate the mixture of LoRA experts as:

θM = θIns +
1
Z

∑
i ŵiM

i
A ⊗ (BiAi) . (15)

For simplicity, we ignore the identity layers in this
equation. Although Eq. 15 could mimic the DARE

Figure 3: The FAST implementation of dynamic merg-
ing. By masking the sub-matrices of the low-rank
adapter, we approximate the random sampling with-
out introducing extra computational cost.

approach to the mixture of LoRA experts, the cal-
culation of the full-size BA for all LoRA adapters
is required, resulting in multiple d1 × d2 matri-
ces, which is not computationally efficient. To
address this issue, we propose a fast implemen-
tation to approximate the random masking. For-
mally, denote the row set of the masked elements
as Srow = {i|∃j ∈ [0, d2],Mi,j = 0} and the col-
umn set Scol = {j|∃i ∈ [0, d1],Mi,j = 0}, we
could approximate the masking as follows:





B′ = MASK(B,Srow)
A′ = MASK(AT ,Scol)

T

MA ⊗ (BA) ≈ B′A′
, (16)

in which MASK(a,b) is a function that masks the
rows of a according to the index set b, which could
be formulated as follows:

MASK(a,b)i,:
{

0, i ∈ b
ai,:, otherwise

. (17)

Compared with masking with Hadamard product,
this approach will set the entire row (column) to
0, which dramatically increases the masking ratio.
To address this, we randomly sample a subset of
Srow and Scol to fit the original masking ratio. It is
worth noting that, for simplicity of implementation,
we directly mask the rows and columns instead
of using the approximation approach mentioned
above.

We introduce L1 regularization to the adapters.
Denote l and k as the index of layers and the at-
tached LoRA adapters, it could be formulated as:

LL1 =
∑

l

∑
k

(
Bl

k
r×Cout

+
Al

k
r×Cin

)
. (18)

3.5 Summarising the proposed SLIM
To adapt to the downstream tasks while mitigating
catastrophic forgetting, the proposed SLIM modi-
fies the LoRA architecture on the following sides:
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1. Inspired by Mixtral (Jiang et al., 2024a), we
propose to utilize mixture of experts architec-
ture as soft R̂ in Eq. 2. To mimic the discard-
ing operation, we utilize identity layers along
with the LoRA adapters as experts.

2. We introduce weight yielding with sliding
clustering to correct the routing weight and
encourage the model to predict downstream
tasks with the fine-tuned adapters, and the
general tasks without them.

3. We also propose a dynamic merging approach
that converts the MoE to the model merging
formulation to fuse the general capacity of the
base model and the downstream capability of
the fine-tuned adapters. The overall architec-
ture is depicted in Fig. 2.

For a given input, we first assign it to its near-
est cluster center and calculate the distance in be-
tween. During training, the centers and the dis-
tributions of the clusters are updated according to
the assigned samples. Then the router predicts the
routing weight of the input. The routing weight is
then yielded according to the distance, as depicted
in Eq. 10, and then normalized to the final routing
weight as in Eq. 11. We activate the mixed experts
including identity layers and LoRA adapters ac-
cording to the yielded routing weight, and utilizing
the dynamic merging to obtain the final output. The
overall process could be summarized as:

y = Wx+ b+ 1
Z

∑
i ŵifi(x),

fi(x) =

{
0, i ≤ K

B′
iA

′
ix, otherwise

,
(19)

in which all symbols have the same meaning as in
the equations mentioned earlier.

4 Experiments

4.1 Implementation details
We evaluate the proposed SLIM on the OpenChat-
8B model (Wang et al., 2024), an extension of
Llama3-8B-Instruct. We conduct two different
training settings: single dataset setting (SDS) and
multi-dataset setting (MDS). For SDS, we train
the model with a single downstream task. For
MDS, we mix the datasets for the model fine-
tuning. MDS include OBQA (Mihaylov et al.,
2018), SIQA (Sap et al., 2019) and BOOLQ (Clark
et al., 2019) datasets. For SDS, we involve CSQA
(Talmor et al., 2019), Hellaswag (Zellers et al.,

2019), Winogrande (Sakaguchi et al., 2021), ARC-
e and ARC-c (Clark et al., 2018) datasets. The
fine-tuned models under MDS are evaluated on the
general tasks including MMLU (Hendrycks et al.,
2021), GSM8K (Cobbe et al., 2021), and PIQA
(Bisk et al., 2020) to measure the catastrophic for-
getting of the PEFT approaches. We fine-tune the
model 2 epochs for all tasks, on a single NVIDIA-
A100 80G GPU, the batch size is set to 16.

4.2 Comparison with SOTA approaches

First, we compare the proposed approach with
other widely used PEFT approaches. Following
(Li et al., 2024), LoRAMoE (Dou et al., 2024),
MixLoRA (Li et al., 2024), MoLA (Gao et al.,
2024) are set to rank = 16, Nexperts = 8, and
SLIM holds Nexperts = 10 with K = 2 identity
layers as experts, contains the same number of pa-
rameters. For a fair comparison, we set the rank
of LoRA and DoRA to 128. The results are shown
in Tab. 1. The proposed approach achieves compa-
rable performance on the downstream tasks and the
best performance on multiple datasets. The mod-
els fine-tuned under the MDS setting are further
evaluated on the general tasks, and the results are
shown in Tab. 2. Compared with the other PEFT ap-
proaches, the proposed SLIM method significantly
alleviates the loss of generalization capacity of the
fine-tuned model, without any extra data replay.

4.3 Ablation study

Effectiveness of the main modules We first vali-
date the effectiveness of the proposed modules, and
the results are shown in Tab. 3. The baseline is the
MixLoRA approach. Simply removing the LoRA
adapters for the attention layers has a minor effect
on the MDS dataset, but reduces the forgetting by
2.29%. The insertion of identity layers reduces the
forgetting by 0.96% but results in a performance
drop on the MDS. Combining weight yielding with
identity layers boosts the model by 1.73% on MDS,
and alleviates forgetting by 2.59%. This indicates
some MDS tasks could benefit from the general ca-
pabilities, and the weight yielding further enhances
the mixed utilization of world and specific knowl-
edge. The dynamic merging significantly boots
the model on MMLU by 5.54%, demonstrating its
effectiveness for forgetting alleviation. Although
mixing identity layers and LoRA adapters benefit
downstream tasks, it does not imply that fine-tuning
is ineffective, as demonstrated by the following ex-
periments.
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Table 1: Comparison with SOTA approaches on downstream tasks. We BOLD the best result for each downstream
task and the average performance.

Model
SDS MDS

AVGCSQA HellaS WinoG ARC-c ARC-e OBQA SIQA BOOLQ

LoRA
(Hu et al., 2022)

78.13 87.82 78.37 81.65 85.26 68.40 72.36 67.15 77.39

DoRA
(Liu et al., 2024)

78.95 87.93 79.29 81.56 82.28 69.60 71.85 67.09 77.32

LoRAMoE
(Dou et al., 2024)

88.78 94.61 84.21 84.21 89.68 87.00 77.53 74.98 85.12

MixLoRA
(Li et al., 2024)

85.01 93.68 85.08 82.33 85.48 84.00 77.89 72.11 83.06

MixLoRA-Dy
(Li et al., 2024)

85.50 93.82 84.92 83.19 87.83 82.60 78.40 73.30 83.16

MoLA
(Gao et al., 2024)

85.66 93.82 82.00 82.84 87.33 82.00 78.40 72.84 83.11

SLIM (Ours) 93.28 94.87 84.13 88.22 91.83 87.00 81.57 72.14 86.63

Table 2: Comparison with SOTA approaches on general
tasks with the base model fine-tuned under MDS to
measure catastrophic forgetting. We BOLD the best
result for each task and the average performance.

Model
Generalization

AVGMMLU GSM8K PIQA

LoRA 32.73 0.00 60.99 31.24
DoRA 31.07 0.00 57.18 29.41

LoRAMoE 60.20 59.43 79.54 66.39
MixLoRA 55.41 20.47 77.36 51.08

MixLoRA-Dy 56.14 21.38 78.43 51.98
MoLA 53.15 15.54 74.70 47.79

SLIM (Ours) 65.83 76.11 84.65 75.65

Table 3: Ablation study of main modules of the pro-
posed approach. “Attn. w/o LoRA” means we eliminate
the LoRA adapters for the attention layers, and “Iden”
represents the insertion of identity layers, respectively.

Attn. w/o
LoRA

Iden
Weight
yielding

Dynamic
merging

MDS MMLU

× × × × 78.00 55.41
✓ × × × 77.80 57.70
× ✓ × × 76.87 56.37
✓ ✓ ✓ × 79.53 60.29
✓ ✓ ✓ ✓ 80.23 65.83

Table 4: The comparison of the standard dynamic merg-
ing (STD) and its fast implementation (FAST). The fast
implementation dramatically speeds up the model, while
having a minor influence on the performance.

method OBQA SIQA BOOLQ MMLU Time(ms)

FAST 87.00 81.57 72.14 65.83 12.02
STD 86.60 81.21 71.83 65.97 41.11

Efficiency of dynamic merging To validate the
efficiency and effectiveness of the proposed fast
implementation of dynamic merging, we conduct
an experiment on the MDS and the MMLU dataset,
and the results are demonstrated in Tab. 4. The
fast implementation of the dynamic merging has a
slight influence on the model performance, while
dramatically reducing the time cost.

Influence of the masking rate As the masking
ratio controls the contribution of the LoRA ex-
perts, we conduct experiments to measure this in-
fluence. As depicted in Eq. 15, we sample rows
from the low-rank matrices. It is worth noting
that the masking rate p is quadratic to the mask-
ing rate of the rows and columns prc. Specifically,
p = 1− (1− prc)

2. For convenience, we validate
the masking rate of rows and columns, instead of
directly validating the masking rate. The exper-
iment results are shown in Fig. 4. If the mask-
ing ratio is too large, the LoRA experts will be
eliminated from the model, resulting in a signif-
icant performance drop in the downstream tasks.
On the contrary, a small masking ratio can not in-
hibit catastrophic forgetting, therefore resulting in
a degenerated performance for MMLU. We find
that utilizing a balanced masking rate p (0.4∼0.6)
boosts both downstream tasks while maintaining
the generalization of the model, which indicates
the downstream task could benefit from the general
capability of the instruction tuning model.
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Degradation of general capacity during fine-
tuning To validate the general ability degrada-
tion of different methods, we evaluate LoRA,
MixLoRA, and SLIM in the MDS training process
on the MMLU dataset. The result is shown in Fig. 5.
Compared with LoRA and MixLoRA approaches,
the proposed SLIM is robust to the fine-tuning pro-
cedure, while the LoRA and MixLoRA degrade
along with the training process.

Figure 4: The influence of masking ratio for the rows
of B and AT of LoRA adapters. The masking ratio is a
trade-off between the downstream performance and the
general capability.

Figure 5: Model evaluation on the MMLU benchmark
during the fine-tuning with LoRA, MixLoRA and the
proposed SLIM on the MDS.

Figure 6: The validation of the proposed SLIM on MDS
(downstream) and MMLU (general) with different num-
bers of LoRA experts.

Validation for the number of LoRA adapters
in SLIM We conduct experiments on the MDS
to measure the influence of the number of LoRA
adapters. The result is shown in Fig. 6. A larger

Nexperts enhances the downstream performance and
has no obvious influence on the result of MMLU.

4.4 Case study on the GSM8K dataset

We further utilize a case study to visualize the result
of DoRA, LoRAMoE, and the proposed SLIM. We
set the temperature t = 0, and repetition penalty
p = 0. For DoRA, we set p = 1.5 since it tends to
generate repeated output. The results are listed as
follows:
Question: In a dance class of 20 students, 20% en-
rolled in contemporary dance, 25% of the remain-
ing enrolled in jazz dance, and the rest enrolled
in hip-hop dance. What percentage of the entire
students enrolled in hip-hop dance?
DoRA: (An) The new student arrives tomorrow on
Monday because her sister was fired from here job
after working into someone else’s home last Friday
night. Why did Addison do this? (A) ... (B) ... (C)
... Answer: B
LoRAMoE: ... The rest of the students enrolled in
hip-hop dance, so 12 students enrolled in hip-hop
dance. The answer is 12
SLIM: ... The rest of the students enrolled in hip-
hop dance, so 16 - 4 = 12 students. The percentage
of the entire students enrolled in hip-hop dance is
12/20 x 100 = 60% The answer is 60
The results show that the DoRA tends to convert the
GSM8K questions to multi-choice questions. Both
LoRAMoE and SLIM are capable of generating
formulated output, but LoRAMoE failed to under-
stand the question asking about “percentage”.

5 Conclusion

In this work, we propose SLIM, an MoE parameter-
efficient fine-tuning approach. In addition to imple-
menting the LoRA adapters, SLIM adopts identity
layers as experts which could be activated as infor-
mation "highways" to bypass the LoRA adapters
for general capacity preservation. We propose
weight yielding with sliding clustering to modify
the routing weight according to the consistency
between the input sample and the downstream dis-
tribution to take advantage of these “highways”.
We further introduce dynamic merging that for-
mulates PEFT to model merging, which effectively
combines the downstream capabilities with the gen-
eral capabilities of the base model. SLIM achieves
comparable performance to state-of-the-art PEFT
methods, with much less general capability loss.
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6 Limitations

6.1 Performance degradation still exists
Although the proposed approach effectively miti-
gates catastrophic forgetting, we could still observe
a slight performance drop after fine-tuning. This
might be because random sampling is not the opti-
mal solution for the merging of LLMs, and the loss
function solely for downstream fine-tuning cannot
effectively alleviate knowledge loss. Advanced
exploration of sampling strategy and training ob-
jectives might be solutions to this issue.

6.2 Difficulty for implementation
Many implementation and acceleration frameworks
have been proposed for LLM, such as vLLM
(vLLM Team) and ollama (ollama Team). How-
ever, despite the LoRA adapters could be re-
parameterized to the base model, and vLLM sup-
port implementing multiple LoRA adapters to the
same base model, it is still a challenge to implement
LLM with mixed heterogeneous experts (LoRA
adapters and identity layers). We are working
on the acceleration engine for the MoE of LoRA
adapters for its further utilization.
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A Appendix

A.1 Case study on GSM8K for identity layers
To further demonstrate the effectiveness of the iden-
tity layers that skip the LoRA adapters, we con-
ducted a case study on the GSM8K dataset. For the
baseline, we utilize the MixLoRA model without
LoRA adapters for the attention layers, denoted as
“w/o iden”, and the proposed method is denoted
as “w/ iden”. Note that the dynamic merging is
discarded for a fair comparison. We utilize the red
to mark the first mistake. The results are listed as
follows:
Question 1: Toula went to the bakery and bought
various types of pastries. She bought 3 dozen
donuts which cost $68 per dozen, 2 dozen mini
cupcakes which cost $80 per dozen, and 6 dozen
mini cheesecakes for $55 per dozen. How much
was the total cost?

w/ iden: Toula bought 3 dozen donuts which cost
$68 per dozen, so she spent 3 * $68 = $204 on
donuts. She bought 2 dozen mini cupcakes which
cost $80 per dozen, so she spent 2 * $80 = $160
on cupcakes. She bought 6 dozen mini cheesecakes
for $55 per dozen, so she spent 6 * 55 =330 on
cheesecakes. The total cost was $204 + $160 +
$330 = $694. The answer is 694
w/o iden: The cost of the donuts was 3 x $68 =
$204. The cost of the mini cupcakes was 2 x $80 =
$160. The cost of the mini cheesecakes was 6 x $55
= $330. The total cost was $204 + $160 + $330 =
$694.
Question 2: Marie ordered one chicken meal that
costs $12, 5 packs of milk that costs $3 each, 4
apples that cost $1.50 each, and some boxes of
pizza. Marie paid a total of $50. How many boxes
of pizza did Marie order if each box costs $8.50?
w/ iden: Marie paid $12 for the chicken meal, $3 x
5 = $15 for the milk, $1.50 x 4 = $6 for the apples,
and $50 - $12 - $15 - $6 = $17 for the pizza. $17 /
$8.50 = 2 boxes of pizza The answer is 2
w/o iden: Marie paid $12 for a chicken meal, $3
for 5 packs of milk, $1.50 for 4 apples, and $50 in
total. So, $50 - $12 - $3 - $1.50 = $33.50 was spent
on the boxes of pizza. Therefore, $33.50 / $8.50 per
box = 4 boxes of pizza were ordered. The answer
is 4
Question 3: Gloria is shoe shopping when she
comes across a pair of boots that fit her shoe bud-
get. However, she has to choose between the boots
and two pairs of high heels that together cost five
dollars less than the boots. If one pair of heels
costs $33 and the other costs twice as much, how
many dollars are the boots?
w/ iden: The cost of the two pairs of heels is $33 +
$33 * 2 = $99. The cost of the boots is $99 + $5 =
$104. The answer is 104
w/o iden: The first pair of heels cost $33 and the
second pair cost twice as much, so the second pair
cost 33 * 2 = $66. The two pairs of heels together
cost 33 + 66 = $99. The boots cost five dollars less
than the two pairs of heels, so the boots cost 99 - 5
= $94. The answer is 94
Question 4: A treasure hunter found a buried trea-
sure chest filled with gems. There were 175 dia-
monds, 35 fewer rubies than diamonds, and twice
the number of emeralds than the rubies. How many
of the gems were there in the chest?
w/ iden: The number of rubies is 175 diamonds -
35 rubies = 140 rubies. The number of emeralds is
140 rubies x 2 = 280 emeralds. The total number of
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gems is 175 diamonds + 140 rubies + 280 emeralds
= 595 gems. The answer is 595
w/o iden: The number of rubies was 35 fewer than
the diamonds, so there were 175-35 = 140 rubies.
The number of emeralds was twice the number
of rubies, so there were 140*2 = 280 emeralds.
The total number of gems in the chest was 175
diamonds + 140 rubies + 280 emeralds = 495
gems. The answer is 495
Question 5: Vincent can buy flowers in packages
of 3 for $2.50 or in packages of 2 for $1. How
much money does he save by buying 18 flowers at
the better price?
w/ iden: Vincent can buy 3 flowers for $2.50, so the
cost per flower is $2.50 / 3 = $0.8333. He can buy
2 flowers for $1, so the cost per flower is $1 / 2 =
$0.50. The difference in cost per flower is $0.8333
- $0.50 = $0.3333. Vincent wants to buy 18 flowers,
so he saves 18 * $0.3333 = $6.00 by buying the
flowers at the better price. The answer is 6
w/o iden: Vincent can buy 6 flowers for $2.50 and
9 flowers for $1. Therefore, he can buy 15 flowers
for $3.50. If he buys 18 flowers at the better price,
he will spend $3.50 + $1 = $4.50. Thus, he saves
$4.50 - $3.50 = $1.00. The answer is 1

For the first question, the baseline model failed
to follow the formulations of the examples (summa-
rize the output with “The answer is”). For the rest
of the questions, the baseline misunderstands the
question or calculates incorrectly. This result indi-
cates that the skipping of LoRA adapters via iden-
tity layers enhances the instruction-follow ability
of the fine-tuned model, and mitigates the degener-
ation of instruction understanding and calculation.

Fig. A1. The standard dynamic merging pipeline. Compared
with the fast implementation, it needs to obtain the full-size
weight matrix BA.

A.2 Standard dynamic merging pipeline
In Fig. A1, we demonstrate the standard dynamic
merging pipeline. The standard dynamic merg-
ing needs to first calculate and mask BA, then
multiply the result with the hidden state. Since

r << min(Cin, Cout), calculate M ⊗ (BA)x is not
efficient. On the contrary, the fast implementation
calculates B′(A′x), therefore reducing the compu-
tation cost.

A.3 Details of the involved datasets
OBQA OpenBookQA is a question-answering
dataset modeled after open book exams for assess-
ing human understanding of a subject. It consists
of 5,957 multiple-choice elementary-level science
questions (4,957 train, 500 dev, 500 test).

SIQA Social Interaction QA (SIQA) is a
question-answering benchmark for testing social
commonsense intelligence. Social IQa focuses
on reasoning about people’s actions and their so-
cial implications. It consists of 37,588 QA pairs (
33,410 train, 1,954 dev, 2,224 test).

BOOLQ BoolQ is a binary QA dataset contain-
ing 15942 examples, of which 9.4k for the train set,
3.2k for the dev set, and 3.2k for the test set.

HellaSwag HellaSwag is a sentence-completion
multi-choice dataset, that contains 50k samples, in
which 40k for training, 10k for test.

WinoGrande WinoGrande is a common-sense
reasoning dataset, including 43,972 samples
(40,938 for training, 1,267 for development, and
1,767 for testing).

CSQA The Commonsense QA (CSQA) is a
dataset for commonsense question-answering tasks.
The dataset consists of 12,247 questions with 5
choices each and is split in a (80/10/10) distribu-
tion.

ARC-c and ARC-e ARC is a commonsense rea-
soning dataset, consisting of ARC-c and ARC-e.
ARC-c contains 2590 samples, 1172 for the test,
and ARC-e contains 5197 samples, 2376 for the
test.

GSM8K The GSM8K dataset is a mathematics
dataset that contains 8.5K samples, of which 1.3k
are for testing.

MMLU MMLU is a benchmark dataset that con-
tains 57 subjects from STEM, containing 14079
test samples.

PIQA The PIQA (Physical Interaction Ques-
tion Answering) dataset is designed to evaluate
a model’s understanding of physical commonsense
reasoning. It contains over 16,000 training samples
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and about 2k and 3k samples are held out as the
dev set and test set.

All the mentioned datasets are open-sourced and
allow academic use. We report results for the test
set when the ground truth is available, otherwise,
use the dev set.
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