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Abstract

The rapid development of large-scale text-to-
speech (TTS) models has led to significant
advancements in modeling diverse speaker
prosody and voices. However, these mod-
els often face issues such as slow inference
speeds, reliance on complex pre-trained neu-
ral codec representations, and difficulties in
achieving naturalness and high similarity to
reference speakers. To address these chal-
lenges, this work introduces StyleTTS-ZS, an
efficient zero-shot TTS model that leverages
distilled time-varying style diffusion to capture
diverse speaker identities and prosodies. We
propose a novel approach that represents hu-
man speech using input text and fixed-length
time-varying discrete style codes to capture di-
verse prosodic variations, trained adversarially
with multi-modal discriminators. A diffusion
model is then built to sample this time-varying
style code for efficient latent diffusion. Using
classifier-free guidance, StyleTTS-ZS achieves
high similarity to the reference speaker in the
style diffusion process. Furthermore, to expe-
dite sampling, the style diffusion model is dis-
tilled with perceptual loss using only 10k sam-
ples, maintaining speech quality and similarity
while reducing inference speed by 90%. Our
model surpasses previous state-of-the-art large-
scale zero-shot TTS models in both naturalness
and similarity, offering a 10-20× faster sam-
pling speed, making it an attractive alternative
for efficient large-scale zero-shot TTS systems.
The audio demo, code and models are available
at https://styletts-zs.github.io/.

1 Introduction

Recent advancements in text-to-speech (TTS) tech-
nology have achieved remarkable progress, bring-
ing TTS systems close to, or even surpassing,
human-level performance on various benchmark
datasets (Tan et al., 2024; Shen et al., 2024; Li
et al., 2024a). With studio-level TTS capabilities
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nearly perfected, there is a growing demand for
more sophisticated tasks such as diverse and per-
sonalizable zero-shot speaker adaptation (Casanova
et al., 2022). These tasks present a significant
challenge due to the need to replicate the unique
characteristics and prosodic variations of a vast ar-
ray of speakers without extensive training data for
each individual. Although there have been rapid
developments in zero-shot adaptation, driven by
large-scale modeling techniques in large language
models (LLMs) (Jiang et al., 2023b; Wang et al.,
2023a; Peng et al., 2024; Kim et al., 2024a; Chen
et al., 2024a), high-quality discrete audio codecs
(Zeghidour et al., 2021; Défossez et al., 2022; Ku-
mar et al., 2024), and diffusion-based models (Shen
et al., 2024; Ju et al., 2024; Le et al., 2024; Lee
et al., 2024; Yang et al., 2024), current models
face crucial limitations. Many large-scale speech
synthesis models rely on auto-regressive modeling
(Jiang et al., 2023b; Wang et al., 2023a,c; Jiang
et al., 2023a; Peng et al., 2024; Kim et al., 2024a;
Chen et al., 2024a; Meng et al., 2024), which re-
sults in slower scaling of inference speed as the
length of the target speech increases. Alternatively,
diffusion-based models are used for building large-
scale speech synthesis models (Shen et al., 2024;
Le et al., 2024; Ju et al., 2024; Lee et al., 2024;
Yang et al., 2024; Eskimez et al., 2024). However,
since these models require iterative refinement to
produce high-quality results, they also suffer from
efficiency issues. Moreover, these models often
depend on pre-trained neural codecs not specifi-
cally designed for TTS tasks (Wang et al., 2023a,c;
Shen et al., 2024), limiting their ability to naturally
model diverse human speech, which encompasses
a wide range of speaking styles that can be chal-
lenging to control with existing codecs.

In this work, we introduce StyleTTS-ZS, an in-
novative approach to diverse speech synthesis that
aims to address these limitations. Our model de-
composes human speech into a global style vector
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derived from a speaker prompt and prompt-aligned
text embeddings that encapsulate the timbre and
acoustic features of the speech. Additionally, it
includes a fixed-length time-varying style vector
that encodes the diverse prosodic variations, such
as pitch and duration changes over time. By care-
fully designing the bottleneck for the style vector
space with vector quantization (Van Den Oord et al.,
2017) and multimodal adversarial training (Jan-
iczek et al., 2024), we can reconstruct speech with
high fidelity. We then train a diffusion model (Ho
et al., 2020) to sample the time-varying style vec-
tor, effectively modeling the diversity of prosodic
variations conditioned on the speaker prompt. This
results in efficient latent diffusion, as the latent vari-
able is a fixed-length style vector. The simplicity
and efficiency of our latent space enable us to distill
the teacher diffusion model into a student model
using only 10k samples. This distillation maintains
diversity and similarity to the prompt speaker while
reducing inference to one step. Our evaluation re-
sults demonstrate the effectiveness of StyleTTS-ZS.
When trained on the small-scale LibriTTS dataset
(Zen et al., 2019), our model surpasses several pub-
lic zero-shot TTS baseline models. Furthermore,
when trained on the large-scale LibriLight dataset
(Kahn et al., 2020), comprising 60k hours of data,
our model performs comparably to previous large-
scale state-of-the-art (SOTA) TTS models in sim-
ilarity and even surpasses them in naturalness for
unseen speakers on the LibriSpeech dataset using
only a 3-second reference speaker prompt. Remark-
ably, we achieve this with nearly 10-20 times faster
inference speeds compared to previous SOTA mod-
els, showcasing its real-time applicability.

2 Related Work

Zero-Shot TTS Synthesis. Zero-shot TTS syn-
thesizes speech in unseen voices using reference
speech, offering adaptability without extra train-
ing. Traditional models train on small datasets, uti-
lizing pre-trained speaker embeddings or speaker
encoders (Casanova et al., 2022, 2021; Wu et al.,
2022; Lee et al., 2022; Li et al., 2024a; Min et al.,
2021; Li et al., 2022; Choi et al., 2022). Recent
large-scale methods focus on in-context learning
with reference prompts (Wang et al., 2023a), em-
ploying either autoregressive models like large lan-
guage models to predict speech tokens (Shen et al.,
2024; Le et al., 2024; Ju et al., 2024; Lee et al.,
2024; Yang et al., 2024; Eskimez et al., 2024) or

non-autoregressive diffusion techniques for higher-
quality speech (Jiang et al., 2023b; Wang et al.,
2023a,c; Jiang et al., 2023a; Peng et al., 2024; Kim
et al., 2024a; Chen et al., 2024a; Meng et al., 2024;
Yang et al., 2024; Lee et al., 2024). Our method
combines encoder techniques with in-context learn-
ing by modeling speech as prompt-aligned text em-
beddings while using diffusion-based models to
predict the global prosody.
Efficient High-Quality Speech Synthesis. Au-
toregressive models produce diverse speech but
suffer from slow inference (Wang et al., 2023a;
Song et al., 2024). Non-autoregressive models
(Ren et al., 2020) are faster but often miss fine
details. Adversarial training (Kim et al., 2021)
and diffusion models (Popov et al., 2021) enhance
quality but add inference time. Speed-ups, like
diffusion model distillation (Huang et al., 2022b;
Ye et al., 2023, 2024; Guan et al., 2024), sacrifice
quality due to trade-offs. StyleTTS-ZS minimizes
these issues by focusing diffusion modeling only
on prosody, reducing the diffusion model’s burden.
It distills the model in one step, outperforming a
very recent efficient TTS models like FlashSpeech
(Ye et al., 2024) while keeping similar speed.

3 StyleTTS-ZS

StyleTTS-ZS consists of four modules: acoustic
synthesizer, prosody autoencoder, time-varying
style diffusion, and multimodal discriminators. We
detail these four modules in the following sections
with an overview of our framework in Figure 1 and
implementation details in Appendix D and C.

3.1 Acoustic Synthesizer

The role of the acoustic synthesizer is to reconstruct
input speech x using its text transcription t and a
speech prompt x′ from the same speaker into the
reconstructed speech x̂. This process starts with
extracting pitch p, energy n, and duration d from
the input speech x. The joint prompt-text encoder
T then encodes the phoneme text t and the prompt
speech x′ into prompt-aligned text embeddings
htext = T (t,x′) and a global style s. The speech
is then reconstructed as x̂ = G(htext, p, n, d, s).

We use the same pitch extractor F , duration ex-
tractor A, and decoder G as in (Li et al., 2024a).
Unlike previous works that rely solely on global
speaker embeddings or style vectors (Min et al.,
2021; Casanova et al., 2022; Li et al., 2022, 2024a)
or prompt-aligned text embeddings (Huang et al.,
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Figure 1: Overview of StyleTTS-ZS architecture. During training, the model uses ground truth speech to extract
prosodic features and encode text and style with prompt speech. The prosody encoder compresses these features into
a fixed-length time-varying style vector, which is regularized and decoded back by the prosody decoder. The style
diffusion denoiser uses this vector for diffusion model training, and the decoder reconstructs speech using prosodic
features, text embeddings, and global style, with multimodal discriminators assessing the output. Bold indicates
system input, where speech prompts and phonemes are used for both style diffusion and acoustic synthesizer.

2022a; Kim et al., 2024b), we combine both ap-
proaches and jointly encode the speech prompt and
text to produce both prompt-aligned text embed-
dings and a style vector (Figure 2c). Our prompt-
text encoder is similar to (Kim et al., 2024b) but
uses conformer blocks (Gulati et al., 2020) instead
of transformer blocks (Vaswani et al., 2017) to bet-
ter model the speech. Moreover, instead of discard-
ing the output portion from the speech input, we
apply average pooling and use the pooled results
as the global style. Utilizing both prompt-aligned
text embeddings and global style vectors enhances
speaker similarity, as demonstrated in Section 4.3.

When training on large-scale datasets with thou-
sands of speakers, we observed that the mel-
spectrogram reconstruction loss alone was insuf-
ficient for achieving high-fidelity voice similarity
due to the limited capacity of the acoustic synthe-
sizer, which does not use transformers to optimize
the inference speed. To address this, we introduced
an additional reconstruction loss that aligns with
the intermediate features of speaker embedding
models (Wang et al., 2023b). Since our model
operates directly in the waveform domain and gen-
erates waveforms end-to-end without relying on
any codec decoder or vocoder, we can compute and
match these intermediate features directly. This sig-
nificantly enhances speaker similarity, as shown in
Section 4.3. Moreover, the AdaIN-based decoder

from (Li et al., 2024a) is easier to train than the
attention-based module in the prompt-text encoder,
causing the model to over-rely on the global style
vector. Consequently, the prompt-aligned text em-
beddings become too similar to plain text embed-
dings. To mitigate this, we apply a 20% dropout
to the global style vector during training, which
compels the prompt-text encoder to focus more
on aligning text with the prompt and producing
a global style. This strategy enhances reconstruc-
tion quality by ensuring the prompt-text encoder
actively contributes to acoustic synthesis.

3.2 Vector Quantized Prosody Autoencoder

While the acoustic synthesizer can reconstruct
speech from prompt-aligned text embeddings,
phoneme duration, pitch, energy, and a global
style vector with high fidelity, we lack ground
truth for these prosodic features during inference.
Predicting these features from text alone is chal-
lenging due to their variability and diversity, espe-
cially in large-scale datasets with various speakers.
Prosodic features are crucial for both speech natu-
ralness and speaker similarity; unnatural prosody
can make speech sound robotic, while uncharac-
teristic prosody produces dissimilar voices despite
having the same timbre as the prompt speaker. Re-
cent works in large-scale TTS model this variability
on large datasets using methods from large lan-
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guage models (LLMs) (Jiang et al., 2023b,a) and
large diffusion models (Ju et al., 2024). However,
these methods are inefficient as the computation
required to infer prosody is proportional to the
length of the target speech. We take an innovative
approach to compressing these prosodic features
into a fixed-length time-varying style vector via a
prosody autoencoder, allowing efficient diffusion
sampling for diverse prosody of human speech.

The prosody encoder (Figure 2a) processes
stacked pitch, energy, and duration inputs, map-
ping them into a fixed-length vector. We repre-
sent duration using upsampled positional embed-
dings PE(·), where for each i ∈ {1, . . . , N}, the
positional embedding PE(i) is repeated di times.
This representation efficiently distinguishes each
phoneme’s duration without complicating the la-
tent space by taking additional text embeddings as
input. The stacked prosody representations are fed
into conformer blocks to extract variable-length
prosody representations hvl. To compress these
into a fixed-length vector, we use cross-attention
Attn(k, q, v) with hvl as the query and value, and
learnable fixed-length positional embeddings hpe
as the key. This yields hstyle = Attn(hpe,hvl,hvl),
named as time-varying style to differentiate it from
previous works that use global style vectors to rep-
resent speech styles. The prosody decoder PD(·)
(Figure 2b) then uses hstyle to decode the duration d̂,
pitch p̂, and energy n̂ conditioned on the PL-BERT
(Li et al., 2023b) phoneme embeddings from t.

We noticed that this method achieves almost per-
fect prosody reconstruction with minimal percep-
tual difference from the input, even with a vector
length of K = 50 for up to 30 seconds of speech
without adversarial training. However, this leads
to a latent space that is overly detailed, making dif-
fusion modeling and one-step distillation difficult.
To address this, we apply residual vector quantiza-
tion (RVQ) (Zeghidour et al., 2021), simplifying
the latent space by quantizing it. This reduces de-
tails in the latent space and simplifies the diffusion
model’s task at the cost of reconstruction accuracy
of the autoencoder, which can be mitigated using
adversarial training with multimodal discrimina-
tors. We use 9 codebooks with 1024 codes each
and project the time-varying style with d = 512
into a lower space with d = 8 for efficient quan-
tization following (Kumar et al., 2024), achieving
a balance between diffusion model difficulty and
prosody reconstruction fidelity (see Appendix A.2).

To further shift the burden of the diffusion model

to the prosody decoder, we randomly mask and
truncate the input pitch, energy, and duration fed
to the prosody encoder. This technique encourages
the prosody decoder to learn to reconstruct prosodic
features from partial input, particularly beneficial
for zero-shot TTS where the input prompt is short.

3.3 Distilled Time-Varying Style Diffusion
We deterministically sample the latent hstyle (de-
note as h) using DDIM (Song et al., 2020b):

dh =

[
f(h, τ)− 1

2
g2(τ)∇h log pτ (h|t,x′)

]
dτ,

h(1) ∼ N (0, σ2
1I),

(1)
where f(h, τ) := d

dτ logατ is the drift coefficient,
g(·, τ) := d

dτ σ
2
τ (1− 2 log (ατ )) is the diffusion

coefficient, στ is the noise level, ατ is the schedule
for στ , and ∇h log pτ (h|C) is the score function
of probability distribution of h at time τ condi-
tioned on C = {t,x′}, the PL-BERT embeddings
t and speech prompt x′, estimated using a denoiser
K(· ;στ , C) with architecture in Figure 2d:

∇h log pτ (h|C) =
ατK(h;στ , C)− h(τ)

στ
. (2)

We train the denoiser using the velocity formulation
(Salimans and Ho, 2022):

Ldiff = Ex,x′,t,τ∼U([0,1]),ξ∼N (0,I)[∥K(ατE(x)+

στξ;στ , C)− v(στ , E(x))∥1],
(3)

where E(·) : X → H denotes combined pitch, en-
ergy and duration extractor and prosody encoder
that maps speech x ∈ X to latent h ∈ H. The
velocity v is defined as v(στ , x) := ατξ − στx,
with an angular scheduler ατ := cos(ϕτ ) and
στ := sin(ϕτ ) for ϕτ = π

2 τ .
We apply classifier-free guidance (CFG) (Ho and

Salimans, 2022) using both speech prompt x′ and
text t as a condition. The modified denoiser with
CFG is:

K̃(· ;ω, σn, C) := K(· ;σn, ∅)+
ω · (K(· ;σn, C)−K(· ;σn, ∅)) ,

(4)

where ω is the guidance scale and ∅ indicates null
condition embeddings. We randomly dropped out
the condition x′ with rate of 0.1 during training
and fixed ω = 5 during inference.

Equation 1 can be viewed as a neural ODE fol-
lowing a trajectory that maps a Gaussian noise
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Figure 2: Architectures for newly proposed components in StyleTTS-ZS. For (b) and (d), the dark part of the output
means this part is discarded for output, and only the grey part is used.

ξ ∈ N (0, I) to the time-varying style h ∈ H
conditioned on x′ and t. We denote this map as
h(· ;ω, C) : N → H. We solve this ODE using
the deterministic solver DDIM (Song et al., 2020a)
for later distillation that repeatedly applies the fol-
lowings for n ∈ {L,L− 1, . . . , 0}:

hσn−1 = αn−1vn + σn−1ṽn, (5)

where vn := αnvn − σnK̃(hσn ;ω, σn, C) and
ṽn = σnvn + αnK̃(hσn ;ω, σn, C) for L = 100.

We can train a student network H(· ;ω, C) to
approximate h as it is a deterministic map. Since
obtaining samples to train H through equation 5
can be expensive especially with large integration
steps L = 100 due to the need to accurately re-
flect the effects of CFG, we initialize our student
network using a pre-trained network H ′ that pre-
dicts prosody decoder output from the text t and
a speech prompt x′. This student initialization al-
lows sample reduction to as small as 10k samples
as shown in Appendix A.3, since the model has al-
ready learned a deterministic map from the speech
prompt and text to the time-varying style as we
match the initial student network and target dis-
tilled diffusion sampler in the output space. The
student network can be pre-trained during the style
diffusion training. We use perpetual loss for dis-
tillation (Liu et al., 2023), for which our perpetual

metric is the prosody decoder’s output. The distil-
lation loss is defined as:

Ldist =Ex′,t,ξ∼N (0,I),
ω∈U([1,15])

[|PD (H(ξ;ω, C))

− PD (h(ξ;ω, C))|1].
(6)

We show this simulation-based approach for distil-
lation is superior to other simulation-free methods
that use bootstrapping, such as consistency distil-
lation (Song et al., 2023) and adversarial diffusion
distillation (Sauer et al., 2023) in Appendix A.3.
This is because our latent space is a 50×512 vector
and can be sampled fairly fast and distilled with
10k samples, which took a few hours to obtain on
8 NVIDIA RTX 3090 GPUs.

3.4 Multimodal Discriminators
One observation we made is the trade-off between
latent space complexity, reconstruction error, and
the difficulty of diffusion model training and distil-
lation (see Appendix A.2). A simpler latent space
makes the diffusion model easier to train and dis-
till but increases the reconstruction error for the
autoencoder. To achieve efficient latent diffusion
and high-fidelity distillation, we opted to simplify
the latent space for the time-varying style and opti-
mize the autoencoder for high-quality reconstruc-
tion. We introduce multimodal discriminators that
evaluate not only the decoder output to determine
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Table 1: Comparative mean opinion scores of naturalness (CMOS-N) and similarity (COMS-S) for StyleTTS-ZS
(LL) relative to other models (negative scores indicate StyleTTS-SZ (LL) is better; one asterisk * indicates p < 0.05
and two asterisks ** indicate p < 0.01), predicted MOS (UT-MOS), speaker embedding similarity (SIM), word
error rate (WER), coefficient of variation for pitch and energy (CVp+n) and real-time factor (RTF)3 in comparison
to other recent large-scale models and StyleTTS-ZS (LT).

Model Training Set CMOS-N CMOS-S UT-MOS ↑ WER ↓ SIM ↑ CVp+n ↑ RTF ↓
Ground Truth — 0.44∗ −0.77∗∗ 4.17 0.34 0.67 1.49 —

Vall-E LibriLight −1.07∗∗ −0.65∗∗ 3.31 4.97 0.47 0.94 0.62 †

NaturalSpeech 2 MLS −0.57∗∗ −0.19∗ 3.78 1.25 0.55 1.07 0.37 ‡

VoiceCraft GigaSpeech −0.84∗∗ −0.11∗ 3.58 3.73 0.54 0.79 1.24 ‡

FlashSpeech MLS −0.42∗ −0.52∗∗ 3.98 1.47 0.50 0.50 0.02 ‡

NaturalSpeech 3 LibriLight −0.28∗ 0.01 4.09 1.81 0.66 1.23 0.30 ‡

StyleTTS-ZS (LT) LibriTTS −0.21∗ −0.31∗ 4.24 0.90 0.47 1.06 0.03 ‡

StyleTTS-ZS (LL) LibriLight 0.00 0.00 4.16 0.79 0.56 1.67 0.03 ‡

if the sample is real or fake but also consider the
decoder input as an additional modality, which has
been shown to improve speech quality for zero-shot
speech synthesis (Janiczek et al., 2024).

Specifically, we use two multimodal discrimi-
nators (Figure 2e): one for the waveform decoder
and one for the prosody decoder. The waveform
discriminator takes the WavLM (Chen et al., 2022)
features of the decoder’s output following the idea
of SLM discriminator in (Li et al., 2024a) that
has been subsequently demonstrated effectively
(Li et al., 2023c; Ye et al., 2024) and conditions
on all the inputs to the decoder (prompt-aligned
text embeddings, global style, pitch, energy, and
duration). The prosody discriminator takes the
prosody decoder’s output and conditions on all
the inputs to the prosody decoder, including the
time-varying style and PL-BERT text embeddings.
This approach significantly enhances the natural-
ness and similarity of the reconstructed speech, as
demonstrated in Section 4.3. In addition to the
multimodal discriminator, we also have the multi-
period discriminator (MPD) (Kong et al., 2020)
and multi-resolution STFT discriminator (MRD)
(Kumar et al., 2024) for the waveform decoder.

4 Experiments

4.1 Model Training
We trained our model on the LibriTTS and Libri-
Light datasets. First, we used the LibriTTS dataset
(Zen et al., 2019), with 585 hours of speech from
1,185 speakers, excluding utterances shorter than
1 second or longer than 30 seconds. The model
was trained on the train-clean-100, train-clean-
360, and train-other-500 subsets. We then trained
on the LibriLight dataset (Kahn et al., 2020), which

consists of 57,706 hours of audio from 7,439 speak-
ers, and used the methods from (Kang et al., 2024)
to transcribe the text. All datasets were resampled
to 24 kHz, and texts were converted into phonemes
using Phonemizer (Bernard and Titeux, 2021). We
truncated input speech randomly to the smallest
batch length and used it as prompts. Training was
done for 30 epochs on LibriTTS and 1 million steps
on LibriLight. The style diffusion denoiser was dis-
tilled using 10k samples, and the student model
was trained for 10 epochs. We trained our model
using the AdamW optimizer (Loshchilov and Hut-
ter, 2018) with β1 = 0, β2 = 0.99, weight decay
λ = 10−4, learning rate γ = 10−4, and a batch
size of 32 samples on four NVIDIA L40 GPUs.

4.2 Evaluations

We employed two metrics in our experiments:
Mean Opinion Score of Naturalness (MOS-N) for
human-likeness, and Mean Opinion Score of Simi-
larity (MOS-S) for similarity to the prompt speaker.
These evaluations were conducted by native En-
glish speakers from the U.S. on Amazon Mechan-
ical Turk. All evaluators reported normal hearing
and provided informed consent. We conducted
two experiments with different groups of baseline
models: one for small-scale models and another
for large-scale models. For small-scale models,
we compared our model to three high-performing
public models: XTTS-v2 (Casanova et al., 2022),
StyleTTS 2 (Li et al., 2024a), and HierSpeech++
(Lee et al., 2023) on the LibriTTS dataset. Each
synthesized speech set was rated by 10 evaluators
on a 1-5 scale, with 0.5 increments. We random-
ized the model order and kept their labels hidden,
similar to the MUSHRA approach (Li et al., 2021,
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Table 2: Comparison of MOS with 95% confidence
intervals (CI), word error rate (WER) and real-time
factor (RTF) for public models trained on LibriTTS.
StyleTTS-ZS uses LT model, and StyleTTS 2 uses 5
steps for style diffusion.

Model MOS-N (CI) ↑ MOS-S (CI) ↑ WER ↓ RTF ↓
Ground Truth 4.67 (± 0.11) 4.32 (± 0.10) 0.34 —
StyleTTS-ZS 4.54 (± 0.11) 4.33 (± 0.11) 0.90 0.0320
StyleTTS 2 4.23 (± 0.11) 3.42 (± 0.09) 1.61 0.0671
HierSpeech++ 3.54 (± 0.12) 4.27 (± 0.12) 7.82 0.1969
XTTSv2 3.68 (± 0.09) 3.74 (± 0.10) 6.17 0.3861

2022). We tested 40 samples from the LibriSpeech
(Panayotov et al., 2015) test-clean subset with 3-
second refernece speech, following (Wang et al.,
2023a). Official checkpoints trained on LibriTTS
were used for all baseline models (see Appendix
B.1 for more information). For large-scale experi-
ments, since most state-of-the-art large-scale mod-
els are not publicly available, we compared our
model to audio samples obtained from the authors
or official demo pages using comparative MOS
(CMOS) tests, as raters can ignore subtle differ-
ences in MOS experiments, making it difficult to
estimate accurate performance from limited sam-
ples. Raters compared pairs of samples and rated
whether the second was better or worse (or more
or less similar to the prompt speaker) than the first
on a -6 to 6 scale, with 1-point increments. We
included five recent models: Vall-E, NaturalSpeech
2, NaturalSpeech 3, FlashSpeech, and VoiceCraft.
For Vall-E, NaturalSpeech 2/3 and FlashSpeech,
we obtained 40 samples from the authors with 3-
second of prompt speech of unseen speakers in
LibriSpeech test-clean subset and used these sam-
ples for evaluations. Since the model of VoiceCraft
is publicly available, we synthesized the samples
using the same 40 prompts and texts.

In addition to subjective evaluations, we fol-
lowed (Shen et al., 2024; Ju et al., 2024; Ye et al.,
2024) for objective evaluations of sound quality us-
ing predicted MOS (UT-MOS) (Saeki et al., 2022),
robustness using word error rate (WER) from a
pre-trained ASR model 1 and similarity to the ref-
erence speaker (SIM) by cosine similarity from a
pre-trained speaker verification model 2. Addition-
ally, we measured prosody similarity by computing
the Pearson correlation coefficients of acoustic fea-
tures associated with emotions and speech duration

1https://huggingface.co/facebook/
hubert-large-ls960-ft

2https://github.com/microsoft/UniSpeech/tree/
main/downstreams/speaker_verification

between the prompt and the synthesized speech,
following (Li et al., 2022).

As shown in Table 1, our model trained on the
large dataset has outperformed previous state-of-
the-art (SOTA) large-scale TTS models in multiple
metrics: human rated naturalness (CMOS-N), pre-
dicted sound quality (UT-MOS), similarity (CMOS-
S), expressiveness (CV), inference time (RTF), and
robustness (as indicated by WER). We note that we
achieve competitive performance in SIM with most
models except NaturalSpeech 3 despite having a
statistically insignificant CMOS-S compared to it.
This may be due to our model’s adversarial training
with multimodal discriminators, which enhances
speaker likeness from a human perception perspec-
tive, whereas other models use a pre-trained neural
codec that aligns more with neural network per-
ceptions but not necessarily human perceptions (Ju
et al., 2024). Although the current SOTA Natural-
Speech 3 has achieved ground-truth level perfor-
mance in terms of similarity measured by speaker
verification models, it still falls short of robustness
and naturalness where our model excels. Notably,
our model has demonstrated similar performance
in terms of human-perceived similarity as Natu-
ralSpeech 3 and has achieved similarly superior
perceived similarity than ground truth. In addition,
our model is 10× faster than NaturalSpeech 3.

Since our model does not use iterative refine-
ment methods, it is among the fastest large-scale
TTS models, second only to FlashSpeech in ef-
ficiency, while significantly surpassing it in both
naturalness and similarity. Additionally, our model
exhibits greater robustness than all other models,
as indicated by the WER scores. The expressive-
ness of our model, shown by the pitch and energy
standard deviation, indicates that it closely matches
the ground truth in terms of speech variation and
expressiveness. We also include an breakdown of
time taken for each module in Appendix 4.4.

Our model also outperforms other public models
on small-scale data with only 585 hours of audio,
as shown in Table 2. Moreover, when compar-
ing our model trained on larger data (StyleTTS-ZS
LL), both CMOS-N and CMOS-S scores are signifi-
cantly higher than the model trained on smaller data
(StyleTTS-ZS LT), despite using the same amount
of parameters. This demonstrates our model’s scal-
ability and capability to handle larger datasets ef-

3 †: device unknown and results are taken from the original
paper. ‡: RTF was computed on an NVIDIA V100 GPU.
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Table 3: Ablation study on LibriTTS for verifying the effectiveness of each proposed component. Significant results
(p < 0.05) are marked by an asterisk (*). For w/o distillation, the RTF is 0.28.

Model CMOS-N CMOS-S UT-MOS SIM WER

StyleTTS-ZS 0 0 4.24 0.47 0.90

w/o PATE −0.24∗ −0.18∗ 3.98 0.38 1.14
w/o global style −0.31∗ −0.47∗ 3.54 0.34 1.45
w/o SEFM Loss −0.02 −0.23∗ 4.31 0.40 1.01

Model CMOS-N CMOS-S UT-MOS SIM WER

StyleTTS-ZS 0 0 4.24 0.47 0.90

w/o distillation −0.02 0.06 4.12 0.46 0.90
w/o MMWD −0.24∗ −0.29∗ 3.97 0.42 1.22
w/o MMPD −0.58∗ −0.32∗ 4.19 0.45 0.96

fectively. In Table 5, we see that our model has
outperformed other zero-shot TTS models in most
of the acoustic characteristics associated with emo-
tions, demonstrating its ability to reproduce the
speech style of prompt speech.

4.3 Ablation Study

To verify the effectiveness of each proposed com-
ponent, we conducted ablation studies on LibriTTS
using two subjective metrics, CMOS-N for natu-
ralness and CMOS-S for similarity, and evaluated
UT-MOS, speaker embedding similarity (SIM) and
word error rate (WER) for robustness. We used the
same texts and prompt speech as in the other MOS
experiments and tested the following variations:

• w/o PATE: Using only global styles in acoustic
synthesizer without prompt-aligned text embed-
dings (PATE). Global styles are computed along
with the prompt, but the text embeddings are
computed with a prompt of value all 0.

• w/o global style: Using only prompt-aligned
embeddings in the acoustic synthesizer without
global styles. All AdaIN layers in the decoder
were replaced with instance normalization.

• w/o SEFM Loss: No speaker embedding feature
matching (SEFM) loss as in eq. 14.

• w/o distillation: Using the original diffusion
model instead of distilled one for inference.

• w/o MMWD: No multimodal waveform discrimi-
nator (MMWD) for acoustic synthesizer.

• w/o MMPD: No multimodal prosody discrimina-
tor (MMPD) for the prosody autoencoder.

As shown in Table 3, both prompt-aligned text
embeddings and global style vectors are crucial
for high-quality speech synthesis with high fidelity
to the prompt speaker, with global style being
more important likely because the AdaIN-based
decoder benefits significantly from the global style,

as demonstrated in (Li et al., 2022). Without the
speaker embedding feature matching loss, there is
a significant decrease in speaker similarity, though
UT-MOS is slightly higher because the model does
not have to follow the sound quality of the prompt
strictly. Using the distilled instead of the origi-
nal diffusion model has minimal impact on per-
ceived naturalness and similarity with even a boost
of predicted MOS due to mode shrinkage during
distillation as the model learns sample the mode of
the distributions. However, it significantly reduces
inference speed by nearly 90%, proving the effec-
tiveness and efficiency of our distillation design.
Lastly, removing either the multimodal waveform
discriminator or multimodal prosody discrimina-
tor significantly decreases perceived naturalness
and similarity, with the multimodal prosody dis-
criminator having a more substantial impact. This
is because the acoustic synthesizer still benefits
from MPD and MRD during training, while the
prosody autoencoder only relies on ℓ1 loss without
adversarial training. However, since UT-MOS pri-
marily focuses on the acoustic aspects of speech
for naturalness while largely ignores the prosody
naturalness, the predicted MOS is unaffected. A
similar effect is observed with SIM, which largely
focuses on global characteristics such as timbre,
and hence prosody has little effect on this metric.

4.4 Processing Time Analysis

We analyzed the processing time of each module
using the same 40 samples as those used for com-
puting the real-time factor (RTF). The percentage
of time taken by each module is shown in Table
4. The results indicate that the acoustic decoder
is the most time-consuming component, suggest-
ing a potential area for improvement. Future work
could focus on reducing the acoustic synthesis time
by employing ultra-fast acoustic decoders, such as
those utilizing inverse short-time Fourier transform
(iSTFT), as demonstrated in Voco (Siuzdak, 2023)
and HiFT-NET (Li et al., 2023a).
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Table 4: The average percentage of processing time for
each module for synthesizing varying lengths of speech.

Module % Time

Prompt-Text Encoder 6.1%
Distilled Style Diffusion Model 12.3 %
Prosody Decoder 9.9 %
Acoustic Decoder 71.7 %

5 Conclusions

We introduced StyleTTS-ZS, a highly efficient
zero-shot TTS system that matches previous state-
of-the-art models while being 10-20 times faster.
With distilled time-varying style diffusion, it cap-
tures diverse speaker identities and prosodies,
showing strong scalability on large datasets like
LibriLight. The model’s speed make it ideal for
real-time applications, such as virtual assistants and
customized dialog generation, especially when inte-
grated with large language models as demonstrated
by StyleTalker (Li et al., 2024b) where style-based
TTS is integrated into spoken dialog systems. This
advancement also benefits audiobook narration, ac-
cessibility tools, and media content creation.

6 Limitations

Although our model outperforms previous state-of-
the-art models, it still has not achieved human-level
performance for zero-shot TTS with unseen speak-
ers, as models trained on small-scale datasets for
seen speakers have achieved (Tan et al., 2024; Li
et al., 2024a). Moreover, our model prioritizes
speed over quality, meaning the acoustic synthe-
sizer does not benefit from the latest generative
modeling developments with iterative refinements
that could further enhance speaker fidelity to the
prompt speaker. Since recent works have demon-
strated that diffusion-based models with iterative
sampling can achieve close-to-human similarity to
the prompt speaker (Eskimez et al., 2024; Chen
et al., 2024b; Wang et al., 2024), it is worth in-
vestigating the potential of replacing our GAN-
based acoustic synthesizer with diffusion-based
one while preserving the superior inference speed
through further distillation. Additionally, the mod-
els were trained on English audiobook reading
datasets rather than audio from more diverse, real-
world environments and other languages. Future
research should explore higher-quality generation
methods to improve quality without compromis-
ing speed, expand training to include more diverse

datasets and languages to enhance generalizabil-
ity, and further refine prosody modeling to achieve
even more natural and expressive speech synthe-
sis. Still, our findings indicate that StyleTTS-ZS
is a robust and efficient solution for zero-shot TTS
synthesis, with promising potential for applications
on large-scale real-world data and future research
directions.

7 Ethical Concerns

The capabilities of our model can bring potential
negative impacts. The ability to generate high-
quality, recognizable speech could be misused for
voice spoofing, posing risks to personal and finan-
cial security. There is also the potential for creating
convincing deepfake audio, which can be used ma-
liciously in misinformation campaigns, fraud, or
defamation. To mitigate these risks, we recommend
controlled access to the model, with strict licens-
ing agreements that require users to obtain consent
from individuals whose voices are being cloned.
Establishing ethical guidelines and usage policies
is essential to prevent misuse. Additionally, encour-
aging collaboration in the research community to
develop and improve deepfake detection technolo-
gies and incorporating mechanisms to watermark
or trace synthetic audio to ensure accountability
and traceability are necessary steps.
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A Additional Results

A.1 Other Applications

Speech Editing. By training our prosody decoder
with masked prosody, we enable speech editing.
To edit a specific part of the speech, we mask the
prosody of that segment and decode the prosody
conditioned on the new text and input speech as a
prompt. This approach retains the original prosody
as much as possible while generating new prosody
for the edited segment. Re-synthesizing the speech
using the edited prosody and the input speech
prompt allows for seamless speech editing.
Zero-Shot Voice Conversion. Our model also
supports zero-shot voice conversion conditioned
on the text of the input speech, which can be accu-
rately obtained through modern ASR models. We
extract the duration, energy, and pitch from the
input speech, and the energy and pitch from the
prompt. By computing the median of both input
and prompt pitch and energy and re-normalizing
the input pitch and energy to match the prompt’s
median values, we ensure consistency. Using the
ground truth duration, rescaled pitch, and energy,
we can re-synthesize the speech with the prompt
speech, achieving effective zero-shot voice con-
version. We provide samples on our audio demo
page.

A.2 Prosody Autoencoder Bottleneck

We examine the trade-off between the reconstruc-
tion error of the prosody autoencoder and the dif-
fusion modeling difficulty by varying the code-
book size with the length K = 50 of time-varying
style and varying length with a fixed codebook
size of 1024. We measure the reconstruction er-
ror by the aggregated prosody loss Lprosody =
Ldur + Lf0 + Ln as defined in C.2. We use the
normalized standard deviation error as a measure
for diffusion modeling complexity:

σerror =
∥σdata − σdiff∥1

σdata
, (7)

where σdata is the standard deviation of the data
distribution D and σdiff is that of diffusion samples.
When the diffusion model converges but the error
in standard deviation is large, it indicates that the
diffusion model is not powerful enough to sample
from D starting from a unit standard deviation dis-
tribution N (0, 1), an observation made in (Karras
et al., 2022).
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(a) Effects of codebook size with K = 50.
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(b) Effects of K with codebooks size of 1024.

Figure 3: Effects of bottleneck complexity of prosody
autoencoder and diffusion denoiser’s performance. (a)
Fixed time-varying style length K = 50 and varying
codebook size. (b) Fixed codebook size of 1024 and
varying style length K.

As shown in Figure 3 (a), higher codebook size
results in lower reconstruction error but higher
σerror, with reconstruction error being the lowest
while σerorr being the highest when no RVQ is used.
This finding justifies the importance of using RVQ
in our prosody autoencoder design. Similarly, with
a fixed codebook size, the higher the length of
the time-varying style, the lower the reconstruc-
tion error but the higher the σerror. When varying
length style vector is used as in the “No FT" case,
the prosody encoder is the same as just applying
RVQ to the input prosody, and thus, the diffusion
complexity is proportional to the input size. This
finding motivates us to apply adversarial training
with multimodal discriminators for our prosody
autoencoder training in order to shift the burden
from the diffusion model to the prosody decoder
for efficient sample generation.

A.3 Diffusion Distillation
We compare our simulation-based distillation with
perceptual loss to simulation-free bootstrapping
methods such as consistency distillation (Song
et al., 2023) and adversarial diffusion distillation
(Sauer et al., 2023) with varying sample sizes and
whether the student network is initialized with a
pre-trained model that predicts the ground truth
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Table 5: Comparison of Pearson correlation coefficients of acoustic features associated with emotions between
prompt and synthesized speech.

Model Pitch
mean

Pitch
standard
deviation

Energy
mean

Energy
standard
deviation

Harmonics-
to-noise

ratio

Speaking
rate Jitter Shimmer

Ground Truth 0.86 0.35 0.56 0.63 0.68 0.38 0.36 0.62

NaturalSpeech 2 0.88 0.41 0.81 0.40 0.83 0.03 0.57 0.74
FlashSpeech 0.89 0.02 0.83 0.23 0.67 0.03 0.64 0.49
VoiceCraft 0.96 0.69 0.63 0.33 0.74 0.10 0.72 0.76
XTTSv2 0.93 0.39 0.70 0.26 0.73 0.45 0.84 0.63

StyleTTS-ZS (LT) 0.94 0.53 0.74 0.32 0.84 0.26 0.76 0.77
StyleTTS-ZS (LL) 0.96 0.53 0.88 0.70 0.81 0.46 0.88 0.81

time-varying style conditioned on the input text t
and prompt x′. We use the ℓ1 distance of the de-
coded duration (Ldur), pitch (Lf0) and energy (Ln)
between teacher and student models from the same
input noise conditioned on unseen text and speaker
prompts as the metric to measure the distillation
performance. We tested the model performance
using the guidance ω = 5 as during our inference
process.

For the consistency distillation (CD) baseline,
we follow Algorithm 1 in (Luo et al., 2023) for
guided distillation. We use the DDIM solver
with noise schedule specified in section 3.3, ℓ1
norm for distance, EMA rate µ = 0.999943 as
in (Song et al., 2023) and guidance scale range
ωmin = 1, ωmax = 15 as in equation 6. For the ad-
versarial diffusion distillation (ADD) baseline, we
use the architecture of multimodal prosody discrim-
inator as the discriminator that takes the denoised
time-varying style as input and text embeddings t
and prompt x′ as conditions. We set τn = 200 as
our simulation-based method uses 100 steps and
the student step N = 4 as in (Sauer et al., 2023).
We initialized the student network with the teacher
network for both CD and ADD baselines as in
(Sauer et al., 2023). For the case of the simulation-
based approach without pre-trained initialization,
we also initialized our student network with the
teacher network for fair comparison. We trained
our model for 100k steps with a batch size of 32.

As shown in Table 6, our simulation-based ap-
proach with only 10k samples achieves better re-
sults than both CD and ADD baselines and much
lower perceptual discrepancies compared to stu-
dent models without the pre-trained initialization.
This is likely because the classifier-free guidance
is not easily approximated with bootstrapping-
based methods, as their effects depend on fine-

grained trajectories with small step sizes. These
bootstrapping-based methods are useful for distill-
ing large-scale diffusion models that are expensive
to run sampling processes to get samples directly.
However, since our latent is a fixed-size 50× 512
vector, it is straightforward to run simulations and
obtain enough samples to cover the latent space,
particularly with our novel initialization approach
with pre-trained networks that directly predict the
ground truth latent.

B Evaluation Details

B.1 Baseline Models and Samples
In this section, we provide brief introductions to
each baseline model and our methods to obtain
samples to conduct our evaluations.

• Vall-E: Vall-E (Wang et al., 2023a), a previous
SOTA model trained on 60k hours of LibriLight
data, is the first large-scale zero-shot TTS model
using language modeling techniques. Since it is
not publicly available, we obtained 40 samples
from the authors along with text transcriptions
and 3-second prompts to synthesize speech for
comparison. These samples were also used to cal-
culate speaker embedding similarity (SIM) and
word error rate (WER).

• NaturalSpeech 2: NaturalSpeech 2 (Shen et al.,
2024), trained on the 44k-hour Multilingual Lib-
riSpeech (MLS) dataset, excels in high-fidelity
zero-shot TTS. We obtained 40 samples with the
same texts and 3-second prompts as Vall-E for
comparison. SIM and WER were computed from
these samples.

• FlashSpeech: FlashSpeech (Ye et al., 2024), the
current SOTA TTS model with fast inference,
was trained on the MLS dataset. We obtained
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Table 6: Comparison of Ldur, Lf0 and Ln with various distillation methods and sample size. The method used in
our experiments is highlighted in italics.

Method Sample size Ldur Lf0 Ln

Consistency distillation (Song et al., 2023) — 0.34 0.83 0.36
Adversarial diffusion distillation (Sauer et al., 2023) — 0.29 0.77 0.24

Simulation-based (w/ pre-trained initialization) 1k 0.37 1.07 0.34
Simulation-based (w/ pre-trained initialization) 5k 0.29 0.93 0.29
Simulation-based (w/ pre-trained initialization) 10k 0.18 0.64 0.18
Simulation-based (w/ pre-trained initialization) 30k 0.16 0.52 0.13
Simulation-based (w/ pre-trained initialization) 50k 0.13 0.43 0.09
Simulation-based (w/ pre-trained initialization) 100k 0.11 0.44 0.07

Simulation-based (w/o pre-trained initialization) 1k 0.65 1.74 0.59
Simulation-based (w/o pre-trained initialization) 5k 0.58 1.63 0.52
Simulation-based (w/o pre-trained initialization) 10k 0.53 1.35 0.44
Simulation-based (w/o pre-trained initialization) 30k 0.44 1.02 0.29
Simulation-based (w/o pre-trained initialization) 50k 0.38 0.81 0.24
Simulation-based (w/o pre-trained initialization) 100k 0.24 0.67 0.18

40 samples from the authors, using the same
texts and 3-second prompts as Vall-E and Natu-
ralSpeech 2. SIM and WER were computed for
comparison.

• NaturalSpeech 3: NaturalSpeech 3 (Ju et al.,
2024), trained on LibriLight with factorized
codec and diffusion models, achieves near-
human performance in speaker similarity. We
used 40 samples from the authors, matching the
texts and 3-second prompts provided by Vall-E
and NaturalSpeech 2 for comparison. SIM and
WER were also computed.

• VoiceCraft: VoiceCraft (Peng et al., 2024), an
autoregressive model trained on the GigaSpeech
dataset, shows high speaker similarity for real-
world prompts. We synthesized 40 samples
using the same texts and 3-second prompts
as Vall-E and others. The model is publicly
available at https://github.com/jasonppy/
VoiceCraft.

• XTTSv2: XTTSv2 (Casanova et al., 2022),
trained on various public datasets, is a strong
baseline for zero-shot TTS. We synthesized
40 samples with the same texts and 3-second
prompts as used by other models. The model
is publicly available at https://huggingface.
co/coqui/XTTS-v2.

• StyleTTS 2: StyleTTS 2 (Li et al., 2024a),
a SOTA model for fast and high-quality
zero-shot TTS, was evaluated with 40 sam-
ples synthesized using the same texts and
3-second prompts as others. The model

and LibriTTS checkpoint are available at
https://github.com/yl4579/StyleTTS2
and https://huggingface.co/yl4579/
StyleTTS2-LibriTTS/tree/main.

• HierSpeech++: HierSpeech++ (Lee et al., 2023)
is a strong baseline trained on limited data,
achieving high speaker similarity. We syn-
thesized 40 samples using the same texts and
3-second prompts for comparison with the
LibriTTS-train-960 checkpoint. The model
is publicly available at https://github.com/
sh-lee-prml/HierSpeechpp.

B.2 Subjective Evaluations
To ensure high-quality evaluation from MTurk, we
followed (Li et al., 2024a) by enabling the follow-
ing filters on MTurk:

• HIT Approval Rate (%) for all Requesters’ HITS:
greater than 95.

• Location: is UNITED STATES (US).

• Number of HITs Approved: greater than 50.

We provided the following instructions for rating
the naturalness and similarity of our MOS experi-
ments following (Li et al., 2024a):

• Naturalness:

Some of them may be synthesized while
others may be spoken by an American
audiobook narrator.

Rate how natural each audio clip
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sounds on a scale of 1 to 5 with 1
indicating completely unnatural
speech (bad) and 5 completely natural
speech (excellent).

Here, naturalness includes whether you
feel the speech is spoken by a native
American English speaker from a human
source.

• Similarity:

Rate whether the two audio clips could
have been produced by the same speaker
or not on a scale of 1 to 5 with 1
indicating completely different
speakers and 5 indicating exactly the
same speaker.

Some samples may sound somewhat
degraded/distorted; for this question,
please try to listen beyond the
distortion of the speech and
concentraten on identifying the voice
(including the person's accent and
speaking habits, if possible).

An example survey used for our MOS evaluation
can be found at https://survey.alchemer.com/
s3/7858362/styletts-new-MOS-521 4.

For CMOS experiments, since all the models
have high-quality synthesis results, we removed
the instruction regarding audio distortion and used
the following instructions instead:

• Naturalness:

Some of them may be synthesized while
others may be spoken by an American
audiobook narrator.

Rate how natural is B compared to A on
a scale of -6 to 6, with 6 indicating
that B is much better than A.

Here, naturalness includes whether
you feel the speech is spoken by a
native American English speaker from
a human source.

4 An example survey used for our CMOS evaluation is
available at https://survey.alchemer.com/s3/7854889/
CMOS-stylettsz-flashspeech-librispeech-0519.

• Similarity:

Rate how similar is the speaker in B
to the reference voice, compared to A.
Here, "similar" means that you feel
that the recording and the reference
voice are produced by the same speaker.

We ensured the survey quality by applying ad-
ditional attention checking following (Li et al.,
2024a). In the MOS assessment, we utilized the
average score given by a participant to ground truth
audios, unbeknownst to the participants, to ascer-
tain their attentiveness. We excluded ratings from
those whose average score for the ground truth did
not rank in the top three among all five models. In
the CMOS evaluation, we checked the consistency
of the rater’s scores: if the score’s sign (indicating
whether A was better or worse than B) differed for
over half the sample set, the rater was disqualified.
Four raters were eliminated through this process in
all of our experiments.

For the CMOS experiments with (Wang et al.,
2023a; Shen et al., 2024; Ye et al., 2024; Peng et al.,
2024) and ground truth, since we have 40 samples,
we divided it into two batches with 20 samples each.
We recruited 10 raters for the first batch, which
consisted of 20 pairs of samples, and obtained 200
ratings from this batch. We then launched a second
batch with another 20 pairs of samples and obtained
another 200 ratings.

The raters were paid $3 for completing the 10-
minute CMOS survey and $8 for completing the
25-minute MOS survey on MTurk.

C Training Objectives

In this section, we provide detailed training ob-
jectives for our acoustic synthesizer and prosody
autoencoder, as the training objective for style dif-
fusion is provided in Section 3.3.

C.1 Acoustic Synthesizer Training
In this section, we follow the notation of (Li et al.,
2024a) where the decoder G(·) takes upsampled
text embeddings htext · a, pitch px, energy nx, and
global style s instead of five inputs as in Section 3.1
for consistency with (Li et al., 2024a). In section
3.1, we use duration dx as a compact representa-
tion for the phoneme-speech alignment a, which
is what is being used in the actual implementa-
tion. a can be obtained by repeating the value 1
for di times at ℓi−1, where ℓi is the end position of
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the ith phoneme ti calculated by summing dk for
k ∈ {1, . . . , i}, and di is the duration of ti.

Mel-spectrogram reconstruction. The decoder
is trained on waveform y, its corresponding mel-
spectrogram x, a speech prompt mel-spectrogram
x′ which is a small chunk of x, and the text t, using
L1 reconstruction loss as

Lmel =

Ex,t

[∥∥x−M
(
G
(
htext · aalgn, s, px, nx

))∥∥
1

]
.

(8)
Here, htext, s = T (t,x′) is the encoded phoneme
representation aligned with the prompt x′ and
global style of x′, and the attention alignment is
denoted by aalgn = A(x, t). px is the pitch F0
and nx indicates energy of x, which are extracted
by a pitch extractor px = F (x), and M(·) repre-
sents mel-spectrogram transformation. Following
(Li et al., 2022), half of the time, raw attention
output from A is used as alignment, allowing back-
propagation through the text aligner. For another
50% of the time, a monotonic version of aalgn is
utilized via dynamic programming algorithms (see
Appendix A in (Li et al., 2022)).

TMA objectives. We follow (Li et al., 2022)
and use the original sequence-to-sequence ASR
loss function Ls2s to fine-tune the pre-trained text
aligner, preserving the attention alignment during
end-to-end training:

Ls2s = Ex,t

[
N∑

i=1

CE(ti, t̂i)

]
, (9)

where N is the number of phonemes in t, ti is
the i-th phoneme token of t, t̂i is the i-th pre-
dicted phoneme token, and CE(·) denotes the cross-
entropy loss function.

Additionally, we apply the monotonic loss Lmono
to ensure that soft attention approximates its non-
differentiable monotonic version:

Lmono = Ex,t

[∥∥aalgn − ahard
∥∥
1

]
, (10)

where ahard is the monotonic version of aalgn ob-
tained through dynamic programming algorithms
(see Appendix A in (Li et al., 2022) for more de-
tails).

Adversarial objectives. Two adversarial loss
functions, originally used in HifiGAN (Kong et al.,
2020), are employed to enhance the sound qual-
ity of the reconstructed waveforms: the LSGAN
loss function Ladv for adversarial training and the

feature-matching loss Lfm.

Ladv(G;D) =

Et,x

[(
D

((
G
(
htext · aalgn, s, px, nx

))
; C

)
− 1

)2]

(11)
Ladv(D;G) =

Et,x

[(
D

((
G
(
htext · aalgn, s, px, nx

)))
; C

)2]
+

Ey

[
(D(y; C)− 1)2

]
,

(12)

Lfm = Ey,t,x

[
Λ∑

l=1

1

Nl

∥∥∥Dl(y; C)−Dl (ŷ; C)
∥∥∥
1

]
,

(13)
where ŷ = G

(
htext · aalgn, s, px, nx

)
is the gener-

ated waveform and D represents both MPD, MRD,
and multimodal waveform discriminator (MMWD).
C denotes the conditional input to MMWD (see
Section 3.4) and is ∅ for MPD and MRD. Λ is the
total number of layers in D, and Dl denotes the
output feature map of l-th layer with Nl number of
features.

Speaker Embedding Feature Matching Loss.
We compute the intermediate features of a ResNet-
based speaker embedding model (Wang et al.,
2023b) V for the following loss:

Lfm = Ey,t,x

[
Λ∑

l=1

1

Nl

∥∥∥V l(y)− V l (ŷ)
∥∥∥
1

]
,

(14)
ŷ = G

(
htext · aalgn, s, px, nx

)
is the generated

waveform, Λ is the total number of layers in V , V l

denotes the output feature map of l-th layer with
Nl number of features.

Acoustic synthesizer full objectives. Our full
objective functions in acoustic synthesizer training
can be summarized as follows with hyperparame-
ters λs2s and λmono:

min
G,A,T,F

Lmel + λs2sLs2s + λmonoLmono

+ Ladv(G;D) + Lfm

(15)

min
D

Ladv(D;G) (16)

Following (Li et al., 2022), we set λs2s = 0.2
and λmono = 5.

C.2 Prosody Autoencoder Training
Duration reconstruction. We employ the L-1
loss to reconstruct the duration:
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Ldur = Ex

[∥∥∥dx − d̂x

∥∥∥
1

]
, (17)

where d̂x = PDd(PAE(dx, px, nx), t) is the de-
coded duration conditioned on t from the duration
decoder PDd(·) after being encoded by the prosody
encoder PAE(·).

Prosody reconstruction. We use Lf0 and Ln,
which are F0 and energy reconstruction loss, re-
spectively:

Lf0 = Ex [∥px − p̂x∥1] (18)

Ln = Ex [∥nx − n̂x∥1] (19)

where p̂x, n̂x = PDp(PAE(dx, px, nx), t) are the
decoded pitch and energy of x conditioned on t
from the pitch and energy decoder PDp(·).

Adversarial objectives. We employed sim-
ilar adversarial objectives as during the acoustic
synthesizer training:

Ladv(G;D) = Et,x

[
(D ((G (P)) ; C)− 1)2

]
,

(20)

Ladv(D;G) = Et,x

[
(D ((G (P))) ; C)2

]

+ Ey

[
(D(P; C)− 1)2

]
,

(21)

Lfm

= Ey,t,x

[
Λ∑

l=1

1

Nl

∥∥∥Dl(P; C)−Dl (G (P) ; C)
∥∥∥
1

]
,

(22)
where D represents the multimodal prosody dis-
criminator (MMPD) for duration and pitch and
energy and G represents the combined prosody en-
coder and decoder PD(PAE(·), t). C denotes the
conditional input to MMPD and P denotes either
duration, pitch or energy. Λ is the total number of
layers in D, and Dl denotes the output feature map
of l-th layer with Nl number of features.

Prosody autoencoder training full objectives.
Our full objective functions in joint training can
be summarized as follows with hyperparameters
λdur, λf0, and λn:

min
G,D

Ldur + λf0Lf0 + λnLn

+ Ladv(G;D) + Lfm

(23)

min
D

Ladv(D;G) (24)

where G represents both prosody encoder and
decoder. Following (Li et al., 2024a), we set
λf0 = 0.1 and λn = 1.

D Model Architectures

This section provides a detailed outline of
StyleTTS-ZS architecture. We keep the same
architecture for the waveform decoder, duration
extractor (or text aligner in (Li et al., 2024a)),
and pitch extractor as in (Li et al., 2024a). The
prosodic text encoder is a pre-trained PL-BERT
(Li et al., 2023b) available at https://github.
com/yl4579/PL-BERT. Additionally, we adopt the
same acoustic discriminators as in (Kumar et al.,
2024). This section focuses primarily on our new
proposed components as outlined in Figure 2.
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Table 7: Prompt-text encoder architecture. N represents the input phoneme length of the mel-spectrogram and
T represents the prompt length, t represents the input phonemes with shape 1 × N , x′ is the speech prompt
mel-spectrogram with shape 80× T .

Submodule Input Layer Output Shape

Embedding
t Phoneme Embedding 512 ×N
x′ Linear 80× 512 512 ×T
− Concat 512× (N + T )

Conformer Block (×1) −
# of head: 8,

head features: 64,
kernel size: 31,

feedforward dimension: 1024

512 ×(N + T )

Conformer Block (×5) −
# of head: 8,

head features: 64,
kernel size: 15,

feedforward dimension: 1024

512 ×(N + T )

Output
− Split w.r.t. t and x′ 512×N

512× T
− Adaptive Average Pool w.r.t. x′ 512× 1
− Linear 512× 512 w.r.t. t 512× T

Table 8: Prosody encoder architecture. T represents the length of pitch p and energy n with shape 1× T , while N
represents the length of duration d with shape 1×N . kl represents position inputs from {1, . . . , l}.

Submodule Input Layer Output Shape

Input
d, kT Position Upsampling with d and Embedding 512 ×T
p, n Concat 514 ×T
− Linear 514× 512 512 ×T

Conformer Block (×1) −
# of heads: 8,

head features: 64,
kernel size: 31,

feedforward dimension: 1024

512 ×T

Conformer Block (×5)

(output denoted as hvl)
−

# of heads: 8,
head features: 64,

kernel size: 15,
feedforward dimension: 1024

512 ×T

Output
k50 Embedding 512× 50
hvl 8-Head Cross Attention with 64 head features 512× 50

Table 9: Prosody decoder architecture. t represents the input text embeddings from PL-BERT with size 512×N
where N is the text length. h represents the time-varying style output from the prosody encoder with size 512× 50.
k = 2 for pitch and energy decoder and k = 1 for duration decoder.

Submodule Input Layer Output Shape
Input t,h Concat 512 ×(N + 50)

Conformer Block (×6) −
# of heads: 8,

head features: 64,
kernel size: 31,

feedforward dimension: 1024

512 ×(N + 50)

Output
− Truncate w.r.t. t 512×N
− Linear 512× k k ×N
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Table 10: Style diffusion denoiser architecture. We used the same architecture for the distilled student model. t
represents the input text embeddings from PL-BERT with size 512×N where N is the text length and x′ is the
prompt speech with size 80× T . ξ represents the noisy input with the size 512× 50. σ represents either the noise
level (for the teacher diffusion model) or the guidance scale (for the distilled student model). During pre-training of
student model, σ = 0 and ξ = 0.

Submodule Input Layer Output Shape

Input
x′ Linear 80× 512 512 ×N
t, ξ Concat as output x 512 ×(T +N + 50)

Embedding
σ Sinusoidal Embedding 512 ×1
− Repeat 512 ×(T +N + 50)
x Addition 512 ×(T +N + 50)

Conformer Block (×2) −
# of head: 8,

head features: 64,
kernel size: 31,

feedforward dimension: 1024

512 ×(N + T + 50)

Conformer Block (×10) −
# of head: 8,

head features: 64,
kernel size: 15,

feedforward dimension: 1024

512 ×(N + T + 50)

Output − Truncate w.r.t. ξ 512× 50

Table 11: Multimodal discriminator architecture. x represents the decoder output with shape d×N and C represents
conditions for the discriminator with shape k × T .

Submodule Input Layer Output Shape

Input
x Linear d× 512 512×N
C Linear k × 512 512× T
− Concat 512× (T +N)

Conformer Block (×6) −
# of heads: 8,

head features: 64,
kernel size: 15,

feedforward dimension: 1024

512 ×(T +N)

Output − Linear 1024× 1 1× (T +N)
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