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Abstract

Large Language Model (LLM) can enhance
its credibility and verifiability by generating
text with citations. However, existing research
on citation generation is predominantly lim-
ited to sentence-level statements, neglecting
the significance of positional fine-grained ci-
tations that can appear anywhere within sen-
tences. To facilitate further exploration of the
positional fine-grained citation generation, we
propose ALiiCE, the first automatic evaluation
framework for this task. Our method employs
a dependency tree based approach to parse the
sentence-level claim into atomic claims. Then
ALiiCE evaluates citation quality using three
metrics, including positional fine-grained cita-
tion recall, precision, and coefficient of vari-
ation of citation positions. We evaluate the
positional fine-grained citation generation per-
formance of several LLMs on long-form QA
datasets. Our experiments and analyses demon-
strate the effectiveness and reasonableness of
ALiiCE. We offer our insights into the current
advancements and future directions for the po-
sitional fine-grained citation generation task.1

1 Introduction

Large Language Models (LLMs; Brown et al.,
2020) can improve performance in several NLP
tasks by incorporating external knowledge (Lewis
et al., 2020). In order to improve LLMs’ credibility,
Gao et al. (2023b); Liu et al. (2023) propose a new
paradigm for long-form QA, in which LLMs are
required to provide citations to the retrieved pas-
sages for the statements they generate. Since then,
many studies (Ye et al., 2024; Huang et al., 2024a;
Slobodkin et al., 2024) have focused on how to
enhance LLMs’ citation generation capabilities.

However, existing research on citation gener-
ation is predominantly limited to sentence-level

*Corresponding author.
1Our code is available at https://github.com/ylXuu/

ALiiCE.

What can cups be made of ?

[1]: One of the raw materials of the cup is glass…
[2]: Plastic can be used to make cups of various…
[3]: Tea or coffee rituals involve special cups…

Query

Documents

A1: Cups can be made of glass or plastic[1][2][3].
Sentence-level Citation

A2: Cups can be made of glass[1] or plastic[2][3].
Any-level Citation

Figure 1: "Sentence-level" vs. "Any-level" in the task
of citation text generation. The text with grey underline
corresponds to the claim in A1 cited by "[1][2][3]". The
texts of orange and blue underlines correspond to the
claims in A2 cited by "[1]" and "[2][3]", respectively.

statements. Malaviya et al. (2024) suggest that a
sentence might not be the smallest unit capable of
representing an atomic claim, potentially leading
to inaccurate evaluations. As shown in Figure 1,
response A1 actually contains two different claims,
but the sentence-level citation treats the entire sen-
tence as one claim. Additionally, Liu et al. (2023)
highlight that the generated text scope of a single in-
line citation is often ambiguous. Citations of A1 in
Figure 1 is ambiguous, because the citation marks
at the end of A1 do not clearly indicate whether
they support both claims or only the last claim.

In fact, in many long-form contexts, particularly
in professional fields such as academic writing
(Funkquist et al., 2023), citation marks often ap-
pear in the middle of a sentence rather than always
at the end, as response A2 illustrated in Figure 1.
Compared with sentence-level citation, the advan-
tages of this fine-grained generation are: 1) clearer
indication of the text scope associated with each
citation mark, and 2) better user-friendliness, allow-
ing users to locate more specific content to check.
We refer to this improved generation task as Posi-
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tional Fine-grained Citation Text Generation.
Despite the importance of this task, an effective

evaluation method has yet to be developed. Some
studies directly apply sentence-level metrics to fine-
grained citations (Huang et al., 2024b), but this can
affect the accuracy of evaluation. First, sentence-
level metrics simply merge evidences of multiple
atomic claims (Gao et al., 2023b). When using
Natural Language Inference (NLI; Honovich et al.,
2022) to judge entailment, merged evidences can
easily result in the issue of excessively long NLI
contexts. Second, if there is an overlap between
evidence of different atomic claims, sentence-level
judgments can also become unreasonable, for cor-
rect citations might be mistakenly excluded. Thus,
it is essential to design an evaluation method specif-
ically tailored for positional fine-grained citations.

We propose a new evaluation method, ALiiCE,
Automatic LLM’s Positional Fine-grained Citation
Evaluation. Our method first employs a Depen-
dency Tree based approach to parse atomic claims
of each citation in the response. For instance, the
two claims of A2 in Figure 1 are parsed as "Cups
can be made of glass" and "Cups can be made of
plastic". Further, our method incorporates three
metrics for evaluating citation quality, including
citation recall and precision at the level of atomic
claims, as well as the Coefficient of Variation of
Citation Positions (CVCP), which measures the
dispersion of citation positions within a sentence.

In our experiment, we employ two long-form QA
datasets, ASQA (Stelmakh et al., 2022) and ELI5
(Fan et al., 2019) to evaluate outputs of LLMs in-
cluding GPT-3.5, GPT-4 and LLaMA-3-8B. We ob-
serve that existing LLMs generate a limited number
of positional fine-grained citations. We compare
the citation quality of LLMs’ outputs in sentence-
level metrics with ALiiCE to demonstrate the ne-
cessity of evaluation method for positional fine-
grained citations. We also conduct error analyses
to assess the impact of parsing errors. Additionally,
we conduct human evaluation to verify the consis-
tency between ALiiCE and human judgment.

To summarize, our main contributions include:

• We propose the first dedicated evaluation
method for positional fine-grained citation
generation and we prove its effectiveness
through experiments;

• We evaluate the performance of several exist-
ing LLMs on positional fine-grained citation
generation in long-form QA datasets;

• We offer our insights on the study of po-
sitional fine-grained citation generation: 1)
open-source LLMs show great progress in ci-
tation generation, substantially narrowing the
gap with closed-source LLMs; 2) feedback
from human evaluation suggests that exist-
ing citation evaluation methods still overlook
citation utility, which is a crucial aspect of
assessing citation quality.

We hope that our work can inspire more research
into positional fine-grained citation text generation.

2 Background & Task Definition

In this section, we briefly introduce the background
of our research and provide a definition of posi-
tional fine-grained citation generation.

2.1 Citation Generation in Long-form QA
Unlike short-form QA, which typically provides bi-
nary, entity-level, or short sentence answers, long-
form QA generates detailed and comprehensive
responses including explanations, context, and ad-
ditional relevant information (Krishna et al., 2021).
Citation generation involves producing citation
marks (namely, passage IDs) while generating text,
indicating the source passages on which the text is
based (Funkquist et al., 2023; Huang and Chang,
2024). In our work, we focus on positional fine-
grained citation generation for long-form QA. Un-
like traditional task, it allow citation marks to ap-
pear at any position within the sentence.

2.2 Task Definition
Formally, given a query q and a set D of retrieved
passages based on q, the generatorM is required
to generate a long-form responseR containing ci-
tations. Specifically, R is composed of several
sentences, with each sentence containing words
and in-line citation markers. We assume that the
k-th sentence sk has a length of l and can be rep-
resented as x1, x2, . . . , xl, where xi represents the
i-th minimal semantic unit in sk.

In this paper, the minimal semantic unit can be
either a word (including punctuation) or a group of
citation marks. If xi is the latter, we denote it as
Ci = {ci,1, ci,2, . . .}, where ci,j is a citation mark
of a passage inD. And Ci corresponds to an atomic
claim parsed from its sentence, marked asAi. Take
A2 in Figure 1 as an example, "plastic" is a word,
and "[2][3]" is a group of citation marks with its
atomic claim "Cups can be made of plastic".
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What can cups be made of ?

[1]: One of the raw materials of cup is glass...
[2]: Plastic can be used to make cups of...
[3]: Tea or coffee rituals involve special cups...

Long-form Answer

Sentence 1: Cups can be made from a wide variety of materials.

...

Sentence k : Cups can be made of glass[1] or plastic[2][3].

Claim 1: cups can be made of glass

[1] Claim 1NLI

Recall = 1           Precision = 1

Query

Documents

Claim 2: cups can be made of plastic

[2][3] Claim 2NLI

[2] Claim 2NLI

[3] Claim 2NLI

Recall = 1           Precision = 1/2

made

cups be ofcan

glass

made

cups be ofcan

plastic

Dependency Tree

made

cups be ofcan

glass

or plastic

[1]

[2][3]
LCA:

Sentence 2: Each material offers different advantages.

glass

Figure 2: An example of ALiiCE evaluation framework on positional fine-grained citation generation. Given a
query and related documents, the LLM generates a long-form answer. For sentence i in answer, the parsing pipeline
involves constructing the dependency tree, identifying the LCA node to obtain the modified tree of each claim, and
converting modified trees into texts. Finally, we calculate the citation recall and precision for each claim.

3 ALiiCE: Automatic LLMs’ Positional
Fine-grained Citation Evaluation

In this section, we give a detailed description of
ALiiCE. First, we introduce how we construct the
atomic claim parsing pipeline based on dependency
trees. Then, we present three metrics for the evalu-
ation of positional fine-grained citation quality.

3.1 Dependency Tree

Dependency trees are hierarchical representations
of the grammatical structure of a sentence, show-
ing how words rely on each other (Culotta and
Sorensen, 2004), and is more concise compared
with the hierarchical syntax tree based on opera-
tors. In a dependency tree, a subtree can represent
a phrase or clause that depends on its root, which is
highly suitable for atomic claims extraction. Thus
in ALiiCE, we employ dependency trees to repre-
sent sentences inR for subsequent parsing stage.

For simplicity, we assume that the nodes in the
dependency tree are all words. To extract atomic
claim based on the position of the Ci in the original
sentence, we find a matching node in the tree for
each Ci, as shown in the lower left part of Figure
2. In this paper, we refer to the node with citation
marks attached as the citation node.

When handling multiple citations in different po-
sitions within a sentence, their respective claims
need to be parsed. To parse the claim of Ci, we need

to exclude irrelevant content from other claims, as
different claims may share identical sentence com-
ponents. Thus, we consider the Lowest Common
Ancestor (LCA), which is the deepest node of two
different nodes possessing both of them as descen-
dants in a tree. For two distinct citation nodes, we
can modify the dependency tree to obtain atomic
claims based on the relative positions with respect
to their LCA node (see Section 3.2).

3.2 Parsing Pipeline

Our parsing pipeline is illustrated by Figure 2 and
simplified pseudo code is shown in Algorithm 1.

For sentence sk in responseR, we extract groups
of citation marks {Ci} from difference positions.
Then we do text cleaning on sk to obtain raw sen-
tence sk

′, involving removing citation marks and
other punctuation. sk ′ is used to construct depen-
dency tree T . Next, we match citation node for
each Ci. The principle of matching node is to select
word closest to Ci in sk, giving priority to the one
before Ci. Then we modify the dependency tree
based on the citation nodes.

For each citation node, denoted as node i, iterate
other citation nodes except node i. When iterating
to node j, we calculate the LCA node of node i
and node j in T . Then we find the subtrees of LCA
node’s children containing node i and node j, and
denote them as Ti and Tj , respectively. Next, we
discuss in different situations:
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Algorithm 1 ALiiCE’s Parsing Algorithm
Input: A sentence s with in-line citation marks
Output: A list of claim of each group of citation

marks
1: L = ϕ
2: s′ = TEXTCLEANING (s)
3: T = DEPENDENCYTREE (s′)
4: nodes = MATCHCITATIONNODES (T, s)
5: for each nodei in nodes do
6: T ′ = DEEPCOPY (T )
7: for each nodej in nodes \ {nodei} do
8: nodelca = LCA (T ′, nodei, nodej)
9: Ti = SUBTREE (nodelca, nodei)

10: Tj = SUBTREE (nodelca, nodej)
11: if nodelca = nodei∨
12: (nodelca ̸= nodej ∧ Ti < Tj) then
13: MASK (T ′, Tj)
14: else
15: REPLACE (nodelca, Ti)

16: r = CONVERTTOTEXT (T ′)
17: r −→ L

18: return L

• If LCA node is node i, remove Tj from T .
• If LCA node is node j, replace LCA node’s

subtree with Ti.
• If LCA node is another node in T , then we

compare the relative positions between Ti and
Tj , according to the word’s order in the sen-
tence of subtree’s root: If Ti is before Tj , then
remove Tj from T ; If Ti is after Tj , then re-
place LCA node’s subtree with Ti.

After iteration, we obtain a modified dependency
tree. We convert words in the modified tree to text
following the order in original sentence, getting
the claim of citations corresponding to node i. We
provide additional details and running examples of
our algorithm in Appendix C and D, respectively.

3.3 Metrics for Citation Quality
In this section, we display the three metrics for
positional fine-grained citation quality in ALiiCE.

3.3.1 Positional Fine-grained Citation Recall
For each Ci and its corresponding Ai, if the con-
catenation of passages in Ci can entail Ai, then the
citation recall is 1, otherwise it is 0. The judgement
of entailment can be formulated as:

Ψ(H,S) =
{
1, if H entails S
0, else

(1)

where Ψ represents a NLI model, and H and S
represent hypothesis and statement, respectively.

3.3.2 Positional Fine-grained Citation
Precision

Following Gao et al. (2023b), we calculate citation
precision to evaluate whether every citation is nec-
essary. This metric checks for redundant citations
to improve readability and verifiability.

We compute citation precision only when the
citation recall of Ci is 1; otherwise, the citation pre-
cision is set to 0. Specifically, for each ci,j in Ci,
if ci,j can not entail Ai alone while the concatena-
tion of passages in Ci \ ci,j can, it is indicated that
ci,j is a redundant citation and the precision score
of ci,j is 0, otherwise the precision score of ci,j is
1. Finally we calculate the mean of the precision
scores from each ci,j as the precision score of Ci.

3.3.3 Coefficient of Variation of Citation
Positions

Positional fine-grained citation generation allows
citation marks to appear in multiple positions
within a sentence (e.g., in the middle, at the end).
Consequently, to some extent, the dispersion of cita-
tion marker positions can reflect the LLMs’ ability
to generate positional fine-grained citations. For
example, in Figure 1, A2 has a greater dispersion
of citation marker positions than A1. To quan-
tify the degree of dispersion, we propose CVCP
(Coefficient of Variation of Citation Positions).

For responseR, we first calculate the indices of
citation marks’ positions for every sentence. For
sentence sk, which has a length of l and can be
represented as x1, . . . , xl, we extract the subscripts
corresponding to the citation marks as the indices,
denoted by p1, . . . , pt, where t is the number of ci-
tation marks. We normalize the indices to eliminate
the interference of sentence length as follows:

pi ←
pi
|sk|

(2)

Then we compute standard deviation for sk as:

σ (sk) =

√
1

t

t∑

j=1

(pj − µk)
2 (3)

where µk = 1
t

∑t
j=1 pj , which represents the

mean of normalized indices. Assuming sk has n
sentences, the CVCP ofR is as follows:
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Dataset Model (k-psg-form)
ALiiCE

CVCP Fluency Correct. LengthRec. Prec. F1.

ASQA

GPT-3.5 (5-psg) 78.4 (0.5) 74.4 (0.4) 76.3 (−) 0.10 (−) 86.1 (2.9) 51.1 (0.3) 50.5 (37.3)

GPT-3.5 (5-psg-summ) 76.9 (0.4) 71.6 (0.9) 74.2 (−) 0.13 (−) 75.4 (2.3) 49.3 (0.3) 40.2 (33.2)

GPT-3.5 (5-psg-snip) 74.4 (0.7) 69.4 (0.3) 71.8 (−) 0.13 (−) 73.1 (3.7) 48.0 (0.6) 36.0 (29.7)

GPT-3.5 (10-psg) 77.7 (1.2) 75.9 (0.8) 76.8 (−) 0.15 (−) 84.6 (7.1) 44.1 (0.3) 63.4 (52.6)

GPT-4 (5-psg) 76.8 (1.2) 68.2 (1.1) 72.2 (−) 0.15 (−) 52.2 (9.5) 47.0 (0.4) 28.1 (20.8)

LLaMA-3-8B (5-psg) 64.8 (1.0) 61.4 (1.4) 63.1 (−) 0.44 (−) 84.2 (5.0) 50.9 (0.3) 64.0 (53.1)

LLaMA-3-8B (10-psg) 61.8 (1.3) 62.5 (0.5) 62.1 (−) 0.45 (−) 88.8 (9.6) 41.7 (1.4) 73.2 (64.9)

ELI5

GPT-3.5 (5-psg) 61.0 (0.5) 58.6 (2.2) 59.8 (−) 0.10 (−) 21.8 (0.6) 20.8 (0.3) 131.7 (46.2)

GPT-3.5 (5-psg-summ) 53.9 (2.6) 52.0 (1.1) 52.9 (−) 0.15 (−) 21.3 (5.1) 20.8 (1.1) 111.3 (46.5)

GPT-3.5 (5-psg-snip) 53.4 (1.3) 50.9 (1.1) 52.1 (−) 0.13 (−) 34.9 (7.3) 20.8 (0.4) 106.7 (47.9)

GPT-3.5 (10-psg) 58.1 (2.4) 56.8 (2.0) 57.4 (−) 0.12 (−) 18.5 (4.7) 19.7 (0.7) 155.9 (57.4)

GPT-4 (5-psg) 55.1 (0.5) 54.0 (3.0) 54.5 (−) 0.15 (−) 20.4 (7.2) 21.3 (0.9) 102.2 (59.7)

LLaMA-3-8B (5-psg) 45.9 (0.3) 47.1 (0.7) 46.5 (−) 0.53 (−) 36.2 (1.0) 20.5 (0.9) 203.9 (71.4)

LLaMA-3-8B (10-psg) 42.8 (0.8) 44.2 (0.9) 43.5 (−) 0.61 (−) 32.5 (6.2) 19.5 (0.7) 224.2 (77.7)

Table 1: Results on ASQA and ELI5. The k-psg indicates using top-k relevant documents for response generation.
Document formats include summary (summ), snippet (snip), and default original text. The correctness refers to the
exact match recall for ASQA and ROUGE-L for ELI5. The value in bracket represents the standard deviation.

CVCP (R) = 1

n

n∑

k=1

σ (sk)

µk
(4)

When the positions of the citation markers in
the sentence are more dispersed, the CVCP can be
higher. Conversely, if all citation markers appear-
ing at the end of the sentence, the CVCP can be
very low (i.e., 0). Thus, CVCP encourages LLMs
to generate more positional fine-grained citations.

4 Experimental Setup

In this section, we describe the datasets and imple-
mentation details of our experiments. Additional
details are provided in Appendix A.

Datasets We utilize two popular datasets for the
task of long-form QA, including: 1) ASQA, which
is an open-domain long-form QA dataset for am-
biguous factoid queries, collected from AmbigQA
(Min et al., 2020); 2) ELI5, which is a dataset
for complex QA with paragraph-length responses,
collected from subreddit "Explain Like I’m Five".
The queries of these two datasets are well suited
for retrieval-augmented generation, thus more con-
ducive for evaluating fine-grained citation gener-
ation. Following Gao et al. (2023b), we use the
Generalizable T5-based dense Retriever (GTR; Ni
et al., 2022) to retrieve relevant passages for queries
from Wikipedia corpus snapshot dated 2018-12-20.

Implementation We utilize SpaCy2 to construct
dependency trees for sentences, which is a useful
and efficient python toolkit for many NLP tasks.
We use TRUE3, a fine-tuned T5-11B (Raffel et al.,
2020) model as the NLI model for the judgement
of entailment in citation quality.

Models For closed-source LLMs, we evaluate
gpt-4-turbo-2024-04-09 and gpt-3.5-turbo-
0125 (OpenAI, 2022; OpenAI et al., 2024).
For open-source LLMs, we evaluate LLaMA-3-8B
(AI@Meta, 2024). In addition, we incorporate vari-
ables such as the number of retrieved passages and
the passage form used in generation (truncated orig-
inal text, summary, or snippet) into the model set-
ting. The prompts are provided in Appendix E.

Evaluation Metrics In addition to the three met-
rics of citation quality introduced at Section 3.3, we
utilize three common metrics in long-form QA, in-
cluding: 1) correctness, which checks whetherR
answers the query q accurately; 2) fluency, which
evaluates whether R is coherent; and 3) length,
which is the average length of R. Regarding cor-
rectness, for ASQA, we follow Stelmakh et al.
(2022) to calculate exact match recall by check-
ing whether ground truths are exact substrings of
R; for ELI5, we follow Fan et al. (2019) to use the
F1 score of ROUGE-L. We quantify the fluency
by MAUVE (Pillutla et al., 2021). For compari-

2https://spacy.io/
3https://huggingface.co/google/t5_xxl_true_

nli_mixture
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Case 1
Q: Who dies in the plane crash on greys?
A: In the plane crash on Grey‘s Anatomy, the characters who die are Dr. Lexie
Grey [1][2] and Dr. Mark Sloan [3][4][5].

[1][2][3][4][5]
ALCE Evaluation

Claim: “In the plane…Dr. Mark Sloan.”
Recall = 0

[1][2]
ALiiCE Evaluation

Claim1: “In the plane…Dr. Lexie Grey.”

Recall = 1

[3][4][5] Claim2: “In the plane…Dr. Mark Sloan.”

Case 2

[3][4]
ALCE Evaluation

Claim: “Unlike…offered for free.”

Recall = 1      Precision = 1/2

ALiiCE Evaluation
Claim1: “Unlike some…since 2003.”

Claim2: “Windows…offered for free.”

[3] Claim: “Unlike…offered for free.”
[4] Claim: “Unlike…offered for free.”

Recall = 1      Precision = 1

[3]
[4]

Q: Microsoft live movie maker is an example of free?

A: Unlike some other video editing software like Apple’s iMovie, which has
been included for free with new Mac computers since 2003[3], Windows
Movie Maker was not offered for free[4].

Figure 3: Evaluation process of citation quality by
ALCE and ALiiCE on two examples from ASQA. The
answers are generated by GPT-3.5 (5-psg).

son, we also use ALCE (Gao et al., 2023b) as the
sentence-level evaluation to assess citation quality.

5 Main Results

In this section, we present our key observations on
the experiment results, and then provide our case
study to prove the necessity of developing method
for positional fine-grained citation evaluation.

5.1 Overall Performances

The result of our experiment is presented in Table
1. We obtain some key observations as follows:

Citation quality In ASQA, GPT-3.5 (10-psg)
achieves the best performance in citation recall
and precision, while in ELI5, the top performer is
GPT-3.5 (5-psg). Overall, these two models exhibit
outstanding performance of citation quality across
both datasets. Moreover, simpler passage formats,
such as summary and snippet, do not yield perfor-
mance improvements. Through CVCP, we observe
that most models generate a limited number of posi-
tional fine-grained outputs. LLaMA-3-8B is able to
generate more fine-grained samples than GPT-3.5
and GPT-4, among which LLaMA-3-8B (10-psg)
achieves the highest CVCP in both datasets.

Other metrics The difference in fluency between
the models is not significant; however, it is evident

Dataset Num of Claims Num of same NLI

ASQA 1935 1930
ELI5 3923 3891

Table 2: Results on parsing error analyses. The second
column is the total number of claims. The last column is
the number of claims with consistent NLI results before
and after refinement on the claims.

that the model outputs for ELI5 are much less flu-
ent compared to ASQA. This discrepancy is also
observed in terms of correctness. Regarding length,
the model outputs for ELI5 are substantially longer
than those for ASQA, and the output length of
LLaMA-3 is longer than that of GPT-3.5 and GPT-
4. As for the difference between the two datasets,
we believe that this may be due to the more dif-
ficult queries and the more complex knowledge
contained in the passages in ELI5.

5.2 Case Study

In this section, we compare the evaluations of
ALCE and ALiiCE on two instances from ASQA,
and analyze the shortcomings and insufficiency of
sentence-level metrics on positional fine-grained
citation evaluation. Our objective is to demonstrate
the necessity of designing a dedicated citation eval-
uation method with atomic claim parsing.

Long-context issue Sentence-level evaluation
can result in inaccuracies when dealing with long-
context NLI. For instance, in Case 1 depicted in
Figure 3, when assessing citation recall, the con-
catenated passages exceed the context length of
NLI model, potentially leading to incorrect infer-
ence results due to distracted attention or truncation
of evidences. In ALiiCE, evidences are dispersed
by parsing atomic claims, reducing the likelihood
of exceeding context limits.

Citation precision issue If there is an overlap
between different evidences, it is potential for the
NLI model to misjudge multiple atomic claims si-
multaneously. Taking the Case 2 in Figure 3 as
an example, citation "[3]" contains evidences sup-
porting both atomic claim 1 and 2. According to
ALCE’s citation precision, citation "[3]" alone can
support the entire sentence-level claim, whereas ci-
tation "[4]" cannot, as it only supports atomic claim
2. Consequently, citation "[4]" is considered redun-
dant, despite being or even though it is actually a
reasonable citation. In ALiiCE, we evaluate based
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Model (k-form)
ALiiCE ALCE

Rec. Prec. Rec. Prec.

GPT-3.5 (5) 75.4 (0.6) 74.2 (0.8) 80.4 (0.3) 67.2 (0.8)

GPT-3.5 (5-summ) 73.9 (0.6) 72.4 (0.3) 76.9 (0.3) 59.4 (0.4)

GPT-3.5 (5-snip) 60.5 (0.3) 62.6 (1.0) 68.1 (1.4) 59.4 (1.1)

GPT-3.5 (10) 75.8 (0.6) 77.9 (1.0) 78.6 (0.8) 65.6 (0.9)

GPT-4 (5) 69.3 (0.8) 75.7 (0.8) 76.0 (0.3) 66.1 (0.7)

LLaMA-3 (5) 56.9 (1.0) 64.3 (0.4) 60.3 (0.4) 57.9 (1.2)

LLaMA-3 (10) 57.7 (1.0) 66.1 (1.2) 58.2 (1.5) 55.2 (1.4)

Table 3: Results on ASQA when only outputs contain-
ing positional fine-grained citations are evaluated. We
omit the string "-psg" in the model settings for clarity.
The best performances are highlighted in bold.

Model (k-psg-form)
ALiiCE ALCE

Rec. Prec. Rec. Prec.

GPT-3.5 (5) 40.1 (1.8) 50.0 (2.8) 48.1 (2.4) 44.2 (2.2)

GPT-3.5 (5-summ) 35.9 (2.5) 35.1 (2.6) 42.9 (1.2) 32.4 (1.5)

GPT-3.5 (5-snip) 39.6 (2.4) 39.1 (1.3) 43.4 (3.5) 34.5 (2.7)

GPT-3.5 (10) 44.2 (0.7) 48.1 (1.0) 46.7 (0.5) 41.0 (1.7)

GPT-4 (5) 40.5 (1.9) 46.2 (1.1) 44.6 (3.6) 38.7 (3.5)

LLaMA-3 (5) 41.1 (1.6) 44.0 (0.9) 43.4 (1.5) 39.7 (1.0)

LLaMA-3 (10) 41.8 (1.7) 47.7 (3.7) 43.6 (3.0) 41.0 (3.6)

Table 4: Results on ELI5 when only outputs with po-
sitional fine-grained citations are evaluated. Other de-
scriptions follow Table 3.

on atomic claims, ensuring that the assessment is
not influenced by evidences from other claims.

5.3 Error Analyses
We further analyzed the potential errors in ALiiCE,
which mainly come from two aspects:

Grammatical error Grammatical errors in the
sentence can lead to inaccurate parsing results.
However, current LLMs exhibit strong grammati-
cal capabilities (Zhao et al., 2023), and after our
manual evaluation, the number of samples contain-
ing grammatical errors in LLMs’ outputs is nearly
zero, thus this type of error can be ignored.

Parsing error Dependency tree parsing itself
might contain errors. For example, in sentence
"Other radiological signs of fetal death include gas
in the fetus or in the portal and umbilical vessels
[1], and Deuel’s halo sign [2].", the atomic claim
of citation "[2]" is parsed as "Other radiological
signs of fetal death include gas Deuel ’s halo sign"
by SpaCy, which contains an extra word "gas" due
to an error from dependency recognition.

Therefore, we conduct further experiment to
test the potential impact of parsing errors on NLI.
We firstly collect all the atomic claims from two
datasets. Next, we utilize GPT-3.5 to refine each

claim based on its original sentence (the prompt
is provided in Appendix E). And then we employ
the NLI model to assess the entailment before and
after the claim refinement. As indicated in Table 2,
the result show that the proportion of claims with
inconsistent NLI results is less than 1% across both
datasets. Therefore, the parsing error is unlikely to
have a significant impact on the evaluation.

6 Human Evaluation

We conduct human evaluation to examine the cor-
relation between ALiiCE and human judgment.
Since Gao et al. (2023b); Liu et al. (2023) have
thoroughly studied sentence-level citation evalua-
tion, we only focus on LLMs’ responses that in-
clude positional fine-grained citations. In addition
to the citation recall and precision, we also con-
sider: 1) the proportion of positional fine-grained
responses to total responses, 2) the answer util-
ity, which assesses whether the LLM’s response
is helpful in answering the question, and 3) the
citation utility, evaluates whether the positional
fine-grained citation is useful for the response. We
recruit three annotators to evaluate the outputs of
the models used in the previous experiments.

We observe that ALiiCE and human judgment
show a strong correlation. The model rankings
evaluated by ALiiCE align closely with those eval-
uated by human judgement. The average Cohen’s
kappa coefficients between ALiiCE and annotators
for ASQA are 0.71 for citation recall and 0.62 for
citation precision, demonstrating high consistency.
In addition, responses containing fine-grained ci-
tations constitute a small proportion of the total
output. For instance, the fine-grained output of
GPT-3.5 (5-psg-summ) on ELI5 accounts for only
8% of the total samples. This pattern is consistent
with the results shown by CVCP. Details on the
human evaluation are provided in the Appendix B.

7 Discussion

Based on the experimental results and observations,
we discuss our insights on the task of positional
fine-grained citation generation, as follows:

ALiiCE has a higher decision threshold. Com-
pared to ALCE, ALiiCE calculates lower citation
recall, but higher citation precision. And this differ-
ence becomes more dramatic when only positional
fine-grained citation outputs are evaluated, as illus-
trated in Table 3 and Table 4. We can observe this
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Figure 4: Comparison of citation recall and precision
between ALCE and ALiiCE across three models using
the 5-psg setting on ASQA. ALiiCE achieves lower
citation recall and higher citation precision.

more intuitively in Figure 4. This means that ALi-
iCE has a higher decision threshold, indicating that
ALiiCE is more conservative, only considering a ci-
tation correct when it has a high level of confidence.
This is more beneficial for the citation generation
task because the higher decision threshold encour-
ages more accurate and relevant citations, reducing
the likelihood of misleading information, which is
particularly crucial in professional and high-risk
fields (e.g., law and medicine) where incorrect cita-
tions can lead to serious consequences.

Open-source LLMs display great progress.
LLaMA-3 narrows the gap between open-source
LLMs and closed-source LLMs in the citation text
generation task. In previous studies, the citation
quality of open-source LLMs is significantly worse
than that of closed-source LLMs (Gao et al., 2023b;
Huang et al., 2024a). However, our experimen-
tal results show that the citation recall and preci-
sion of GPT-4 with 5-passages are only improved
by 20.0% and 14.6%, respectively, compared to
LLaMA-3-8B with 5-passages on ELI5. Addition-
ally, LLaMA-3-8B has a higher CVCP and exhibits
greater fluency, than both GPT-3.5 and GPT-4.

Rethinking citation quality through the lens of
citation utility. Our human evaluation indicates
that citation utility and citation quality do not show
a strong correlation. And our annotators observe
that in some responses, even when the citation
utility score is zero, the citation quality remains
high. Thus, existing citation quality metrics can
only evaluate the correctness of citation marks for
each claim, but they fail to assess the utility of these
marks, as being correct is not equal to being useful.
We believe that this is worth further exploration in

future research on citation evaluation methods.

How to study positional fine-grained citation
generation? Through our observation of the fine-
grained responses, we find that most atomic claims
with sufficient citation utility, exhibit certain logi-
cal relationships, such as parallelism, causality, and
transitions. Under these logical structures, posi-
tional fine-grained citations often have better utility
and significantly enhance user-friendliness. Con-
structing reasoning paths for multi-step retrieval
and generation can establish clearer logical rela-
tionships for long-form responses, thereby promot-
ing fine-grained citations. Additionally, in the su-
pervised learning method, creating labeled data
presents a significant challenge. Ye et al. (2024)
design an algorithm for automatically annotating
citation marks at sentence-level. However, this
method becomes more challenging for positional
fine-grained citation generation. Similarly, we rec-
ommend constructing supervised labels by multi-
hop QA datasets and also combining sentence-level
citation sequences to ensure generalization.

8 Related Work

Attribution Attribution refers to the ability of
LMs to generate and provide evidence (Li et al.,
2023). The source of attribution can be pre-training
data (Han and Tsvetkov, 2022; Weller et al., 2024),
or out-of-model knowledge (Shuster et al., 2021;
Li et al., 2024). When the source is documents,
citation is a common form of attribution (Kamalloo
et al., 2023). Ye et al. (2024); Huang et al. (2024a)
study generating response and citations simultane-
ously, while Gao et al. (2023a); Huo et al. (2023)
research on adding citations in the post-hoc stage.

Retrieval-Augmented Generation Retrieval-
augmented generation (RAG; Lewis et al., 2020)
combines the strengths of information retrieval
and generation models, demonstrating improve-
ment in several NLP tasks. The primary methods
for incorporating external knowledge into gener-
ation include modifying model parameters (Sen
et al., 2023) and Chain-of-Thought (CoT; Wei et al.,
2022; Xu et al., 2024). Since RAG exhibits a black-
box nature (Gao et al., 2024), adding citations in
response can effectively mitigate the hallucination
problem and enhance verifiability.

Citation Evaluation The current citation evalua-
tion methods are mainly performed by human eval-
uation, which is costly and time-intensive (Chen
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et al., 2023). Thus, automatic evaluation methods
are studied, including classification-based metrics
(Liu et al., 2023; Yue et al., 2023) and quantita-
tive metrics (Gao et al., 2023b; Li et al., 2024). In
specific domains, Li et al. (2022); Li and Ouyang
(2024) study the citation generation for academic
writing. However, most research is primarily
sentence-level, leading to issues with atomicity of
claims (Malaviya et al., 2024) and ambiguity (Liu
et al., 2023). We propose ALiiCE, the first evalua-
tion method for positional fine-grained citations.

9 Conclusion

In this study, we propose ALiiCE, the first evalua-
tion method for positional fine-grained citation gen-
eration. Our approach incorporates an algorithm
for parsing atomic claims based on dependency
analysis, along with three metrics designed to as-
sess the quality of positional fine-grained citations.

We evaluate several LLMs and observe that cur-
rently, LLMs lack strong capabilities for generating
fine-grained citations. We demonstrate the need
of designing dedicated method for positional fine-
grained citation evaluation and the effectiveness of
ALiiCE in addressing this need. We also discuss
some useful conclusions: 1) the latest open-source
LLMs narrow the gap between them and closed-
source LLMs in citation generation; 2) current met-
rics for citation quality lack consideration of ci-
tation utility; 3) the logical relationships between
atomic claims can be considered when designing
methods for positional fine-grained citation gen-
eration. We hope that our work can inspire more
research into this underexplored task.

Limitations

In the implementation of our parsing method, we
only employ SpaCy to construct dependency trees.
Other dependency analysis methods with higher
accuracy can improve our benchmark, which are
not evaluated in our work. In addition, dependency
analysis may be primarily applicable to mainstream
languages such as English. Thus directly transfer-
ring ALiiCE to other languages might result in
reduced evaluation accuracy.

In our experiments, we only utilize the open-
domain long-form QA datasets. However, posi-
tional fine-grained citation generation is applicable
to a broader range of scenarios, such as academic
writing and summarization. Therefore, it is neces-
sary to expand the data domain of the benchmark.

Ethics Statement

The citation generation task aims to enhance the
credibility of the generative model, assist users in
verifying information, and mitigate the spread of
misunderstandings or incorrect information. Addi-
tionally, it helps reduce ethical risks by clarifying
responsibilities and respecting intellectual prop-
erty rights. This research utilizes publicly avail-
able datasets sourced from widely recognized and
reputable repositories. We have ensured that all
datasets used in this study comply with relevant
data usage and privacy policies.
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A Experimental Setup Details

A.1 Datasets
We utilize two datasets of long-form QA, and a
detailed description of them is as follows:

ASQA This is an open-domain long-form QA
dataset for ambiguous factoid queries, collected
from AmbigQA (Min et al., 2020). Each query
is annotated with long-form answers and multiple
sub query-answer pairs that should be answerable
by the long-form answers. We only use the devel-
opment split of ASQA, which has 948 queries.

ELI5 This is a dataset for long-form QA, col-
lected from subreddit "Explain Like I’m Five".
First, its queries are complex enough to encour-
age paragraph-length responses. Second, each
query requires reference to multiple knowledge
sources. We only employ 1,000 examples collected
randomly from its validation split.

A.2 Models
For LLaMA-3-8B, we set top_p=0.95 for Nucleus
Sampling (Holtzman et al., 2020). And we set the
sampling temperature to 0.5 for all models.

B Human Evaluation Details

We conduct human evaluation to examine the corre-
lation between ALiiCE and human judgment. We
manually inspect only those samples containing po-
sitional fine-grained citations in the model output,
as these are aligned with our task requirements. We
focus on five metrics, as detailed below:

PF Sample This represents positional fine-
grained sample, which is the quantity of responses
containing positional fine-grained citations.

Answer Utility Whether LLM’s response is help-
ful in answering the question. We employ a 1-5
Likert scale, corresponding to Strongly Disagree,
Disagree, Neutral, Agree, and Strongly Agree.

PF Citation Utility Whether the positional fine-
grained citation in the response is useful. We em-
ploy a binary annotation rule. PF Citation Utility
is 1 when all the following conditions are met: 1)
the positions of the fine-grained citations are rea-
sonable (i.e., each citation corresponds to a clear
atomic claim); 2) the fine-grained citations improve
readability and user verifiability, and reduce am-
biguity compared to sentence-level citations (for
details, see Section 1); and 3) there is no excessive

or redundant citation. Otherwise, PF Citation Util-
ity is 0. For example, "Filming began in late May
2015[3], and the movie was released on March 25,
2016[3]." contains redundant citations and does not
improve readability or user verifiability. Therefore,
its PF Citation Utility is annotated as 0.

Citation Recall This is the human-calculated ci-
tation recall. The annotator extract atomic claims
manually and judge whether the cited passages can
entail the claim. Its calculation is consistent with
the description in Section 3.3.1.

Citation Precision This is the human-calculated
citation precision. The annotator judge whether
each citation is redundant. Its calculation is consis-
tent with the description in Section 3.3.2.

We recruit three annotators who are highly famil-
iar with NLP research and well-acquainted with our
work. The results of ASQA and ELI5 are shown in
Table 5. Our analysis of the results is as follows:

ALiiCE and human judgement show a strong
correlation. We observe that the ranking of mod-
els evaluated by ALiiCE is consistent with the rank-
ing based on human judgment. Furthermore, we
calculate the Cohen’s kappa coefficient between
ALiiCE and each annotator’s judgement, and the
average result shows that the coefficient of citation
recall is 0.71, and the coefficient of citation preci-
sion is 0.62, demonstrating high consistency. Ad-
ditionally, under positional fine-grained citations,
human judgment does not align with ALCE’s eval-
uation. This underscores the necessity of positional
fine-grained evaluation methods, which cannot be
substituted by sentence-level evaluation methods.

Current LLMs generate limited outputs con-
taining positional fine-grained citation. This
indicates that LLMs still face difficulties in provid-
ing positional fine-grained citations, which echoes
the observation in Section 5.1.

No direct relationship between citation utility
and answer utility. We suggests that in long-
form QA, fine-grained citations often occur within
supplementary explanations rather than in the core
sentences of the answers. However, answer utility
is mainly contributed by the core sentence. Hence,
there is no strong correlation between them.

Citation utility should be given serious consid-
eration. This conclusion is consistent with that
in Section 7. Our findings indicate that PF citation
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Datasets Model (k-psg-form) PF Sample Answer Utility PF Citation Utility
Human ALiiCE

Rec. Prec. Rec. Prec.

ASQA

GPT-3.5 (5-psg) 71 (7.5%) 3.4 (0.58) 0.62 (0.78) 77.0 75.2 75.4 74.2
GPT-3.5 (5-psg-summ) 161 (17.0%) 3.2 (0.64) 0.50 (0.73) 70.1 69.8 73.9 72.4
GPT-3.5 (5-psg-snip) 190 (20.0%) 3.5 (0.57) 0.47 (0.68) 63.9 62.4 60.5 62.6
GPT-3.5 (10-psg) 129 (13.6%) 3.2 (0.47) 0.49 (0.72) 77.8 78.8 75.8 77.9
GPT-4 (5-psg) 140 (14.8%) 3.7 (0.50) 0.63 (0.69) 70.5 75.5 69.3 75.7
LLaMA-3-8B (5-psg) 286 (30.2%) 3.0 (0.49) 0.45 (0.66) 58.1 66.7 56.9 64.3
LLaMA-3-8B (10-psg) 252 (26.7%) 2.7 (0.44) 0.41 (0.63) 58.9 67.2 57.7 66.1

ELI5

GPT-3.5 (5-psg) 85 (8.5%) 3.1 (0.57) 0.43 (0.67) 41.4 49.4 40.1 50.0
GPT-3.5 (5-psg-summ) 80 (8.0%) 2.8 (0.56) 0.46 (0.63) 37.1 35.8 35.9 35.1
GPT-3.5 (5-psg-snip) 104 (10.4%) 2.9 (0.42) 0.51 (0.60) 40.9 39.7 39.6 39.1
GPT-3.5 (10-psg) 132 (13.2%) 2.7 (0.48) 0.46 (0.63) 42.7 46.6 44.2 48.1
GPT-4 (5-psg) 119 (11.9%) 3.3 (0.55) 0.50 (0.62) 41.0 45.7 40.5 46.2
LLaMA-3-8B (5-psg) 230 (23.0%) 2.8 (0.51) 0.36 (0.70) 40.4 46.0 41.1 44.0
LLaMA-3-8B (10-psg) 207 (20.7%) 2.4 (0.66) 0.33 (0.61) 39.6 47.2 41.8 47.7

Table 5: Human evaluation results on ASQA and ELI5. The value in bracket of PF Sample is the percentage of
responses containing positional fine-grained citation to the total responses. The value in bracket of Answer Utility
and PF Citation Utility is the Fleiss’ Kappa coefficient of three annotators. Every value of human evaluation metrics
in the table is the average of the results from three annotators.

utility and citation quality do not demonstrate a
strong correlation. Our annotators observed that in
some samples, even when the utility score is zero,
the citation quality remains high. For example, the
PF Citation Utility of "Filming began in late May
2015[3], and the movie was released on March 25,
2016[3]." is 0, but the citation recall and citation
precision are all 1. Therefore, existing citation
quality metrics can only evaluate the correctness
of citation marks for each claim, but they fail to
assess the utility of these marks.

C Parsing Algorithm Details

In section 3.2, we simplify the process of pars-
ing algorithm. In practice, we consider more de-
tails when decomposing modified trees for different
claims. The dependency type, represented by the
edge values in the dependency tree (which can re-
fer to Figure 5), is a crucial factor in dependency
analysis. Thus we take dependency types into ac-
count when modifying the dependency tree. Table
6 shows some common dependency types, and a
comprehensive explanation can be found in the of-
ficial SpaCy documentation4.

Specifically, when calculating the modified tree
for node i and traversing to node j in iteration, if
the LCA node is neither node i nor node j, a more
detailed discussion by situations is as follows:

• If there is a subtree between Ti and Tj with a
dependency relation of "cc" between its root

4https://spacy.io/api/dependencyparser

node and the LCA node (we refer to this sub-
tree Tc), then we discuss:

– If Ti is before Tj , then we discuss: If the
LCA node is the root node of the depen-
dency tree and Ti has a dependency rela-
tion of "prep" or "advcl" with the LCA
node, then replace the root node of the
dependency tree with Ti; else, then re-
move Tj and Tc.

– If Ti is after Tj , then we discuss: If the
LCA node is the root node of the depen-
dency tree and Ti has a dependency rela-
tion of "prep" or "advcl" with the LCA
node, then remove Tj and Tc; else, then
replace the root node of the dependency
tree with Ti.

• Else, then we discuss: If the LCA node is the
root node of the dependency tree, then replace
the root node of the dependency tree with Ti;
else, then remove Tj from T .

D Parsing Examples

To improve the intuitiveness of the parsing algo-
rithm, we present three straightforward examples
(Figures 5 to 13). Each figure shows a dependency
tree, where each node represents a word node. For
word nodes matched with citations (marked in red),
the format of the node value is "word : index : cita-
tion marks", where "index" denotes the position of
the word in the original sentence. For word nodes
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Relation Type Explanation

acomp adjectival complement
advcl adverbial clause modifier
amod adjectival modifier

cc coordination
conj conjunct

nmod nominal modifier
nsubj nominal subject

nsubjpass passive nominal subject
pobj object of a preposition
prep prepositional modifier
punct punctuation

Table 6: Several common types of dependency relation.

without citations (marked in green), the format of
the node value is "word : index". The sentences to
be parsed are all from the outputs of the GPT-3.5
(5-psg) on the ASQA dataset.

Specifically, Figure 5 illustrates the dependency
tree for "In the plane crash on Grey’s Anatomy, the
characters who die are Dr. Lexie Grey [1][2] and
Dr. Mark Sloan [3][4][5].", and Figures 6 and 7 dis-
play the modified trees for the two atomic claims
in the output. Similarly, Figure 8, 9, and 10 cor-
respond to output "Some brands, such as Export
As, come in packs of 25 [2], while standard packs
typically contain 20 cigarettes [4].", and Figure 11,
12, and 13 correspond to output "Queen Victoria
became Queen of the United Kingdom on 20 June
1837[3], while Queen Anne became Queen of Eng-
land, Scotland, and Ireland on 8 March 1702[1].".
Notably, in the dependency tree shown in Figure
5, the LCA node of the two citation nodes is one
of them. This structure represents the parallel rela-
tionship between two claims, which is a common
form in positional fine-grained citations.

E Prompts

We provide the prompts used in our experiments.
We utilize the same prompt in fine-grained citation
generation for all models, as shown in Table 7.
And Table 8 shows the prompt for claim rewriting
employed in our error analysis experiments.

F CVCP Details

In Appendix B, we preliminarily verify the con-
sistency of CVCP with the degree of positional

fine-grained citations. In this section, we further
analyze the meaning of the CVCP value and pro-
vide a reference. We use the output of GPT-3.5,
GPT-4, and LLaMA-3-8B with 5-psg generated
from ASQA. We randomly select 200 responses
containing fine-grained citations (denoted as E)
and 200 responses without fine-grained citations
(denoted as F ). The CVCP for E is 0.85, while for
F it was 0. We then randomly select 100 samples
from each of E and F to form G, and repeat the
calculation five times, resulting that the average
CVCP of G is 0.67. The reference of CVCP here is
not entirely sufficient, as it would be more reason-
able to use gold answers written by human experts.
Thus, it is necessary to design a dedicated datasets
for long-form QA with positional fine-grained cita-
tions, which should be addressed in future work.
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Figure 5: The dependency tree of sentence "In the plane
crash on Grey’s Anatomy, the characters who die are
Dr. Lexie Grey [1][2] and Dr. Mark Sloan [3][4][5].",
from the response generated by GPT-3.5 (5-psg). The
query is "Who dies in the plane crash on greys?" from
ASQA. The modified tree of claim corresponds to cita-
tion "[1][2]" is shown at Figure 6. The modified tree
of claim corresponds to citation "[3][4][5]" is shown at
Figure 7.
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Figure 6: The modified tree of claim "In the plane crash
on Greys Anatomy , the characters who die are Dr Lexie
Grey and". This claim corresponds to citation "[1][2]"
of sentence which is illustrated in Figure 5.
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Figure 7: The modified tree of claim "In the plane crash
on Greys Anatomy , the characters who die are Dr Mark
Sloan". This claim corresponds to citation "[3][4][5]"
of sentence which is illustrated in Figure 5.
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Figure 8: The dependency tree of sentence "Some
brands, such as Export As, come in packs of 25 [2],
while standard packs typically contain 20 cigarettes
[4].", from the response generated by GPT-3.5 (5-psg).
The query is "Number of cigarettes in a pack in usa?"
from ASQA. The modified tree of claim corresponds to
citation "[2]" is shown at Figure 9. The modified tree of
claim corresponds to citation "[4]" is shown at Figure
10.
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Figure 9: The modified tree of claim "Some brands ,
such as Export As , come in packs of 25". This claim
corresponds to citation "[2]" of sentence which is illus-
trated in Figure 8.
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Figure 10: The modified tree of claim "while standard
packs typically contain 20 cigarettes". This claim corre-
sponds to citation "[4]" of sentence which is illustrated
in Figure 8.
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Figure 11: The dependency tree of sentence "Queen Vic-
toria became Queen of the United Kingdom on 20 June
1837[3], while Queen Anne became Queen of England,
Scotland, and Ireland on 8 March 1702[1].", from the
response generated by GPT-3.5 (5-psg). The query is
"When did the queen became queen of england?" from
ASQA. The modified tree of claim corresponds to cita-
tion "[3]" is shown at Figure 12. The modified tree of
claim corresponds to citation "[1]" is shown at Figure
13.
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Figure 12: The modified tree of claim "Queen Victoria
became Queen of the United Kingdom on 20 June 1837".
This claim corresponds to citation "[3]" of sentence
which is illustrated in Figure 11.
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Figure 13: The modified tree of claim "while Queen
Anne became Queen of England , Scotland , and Ireland
on 8 March 1702". This claim corresponds to citation
"[1]" of sentence which is illustrated in Figure 11.
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Instruction: Please provide an accurate and concise answer that includes fine-grained in-text
citations immediately following the relevant information. Place the citation numbers within brackets
directly after the facts they support.

Citation format examples:
1. One of the most important areas is the automatic detection of vandalism[1][3] and data quality
assessment in Wikipedia[2][4].
2. Cups can be made of glass[1] or plastic[2][3].Wikipedia’s community has been described as
cultlike[1], although not always with entirely negative connotations[2].
3. Wikipedia’s community has been described as cultlike[1], although not always with entirely
negative connotations[2].

Question: Who gets fired on grey’s anatomy season 6?

Documents [1] (Title: Now or Never (Grey’s Anatomy)) an accident during the episode and dies in the
season 6 premier. In the episode Cristina Yang (Sandra Oh), Alex Karev (Justin Chambers), George
O’Malley (T.R. Knight), and Meredith Grey (Ellen Pompeo) are all sleeping and waiting for Izzie
Stevens (Katherine Heigl) to wake up after the surgery. Derek Shepherd (Patrick Dempsey) comes up
with an alternative treatment plan for Izzie, Miranda Bailey (Chandra Wilson) confronts Chief’s
Richard Webber (James Pickens Jr.) and Arizona Robbins (Jessica Capshaw), about the peds fellowship
program. Yang deals with her relationship with Owen Hunt (Kevin McKidd) who helps George with career
advice. The episode

Documents [2] (Title: Grey’s Anatomy) the head of neurosurgery and Meredith’s love interest; Preston
Burke (Isaiah Washington), the head of cardio, who becomes Yang’s fiancé; and Richard Webber (James
Pickens, Jr.), the Chief of Surgery and attending general surgeon, and the previous lover of Ellis
Grey. In the sixth season, these residents are joined by Jackson Avery (Jesse Williams) and April
Kepner (Sarah Drew), former Mercy-West residents who join Seattle Grace following an administrative
merger. During the first six seasons, Burke, O’Malley, and Stevens all depart the series. In addition
to Webber, Burke, and Shepherd, the surgical wing is primarily supervised by Addison Montgomery (Kate

Documents [3] (Title: Grey’s Anatomy (season 6)) Grey’s Anatomy (season 6) The sixth season of the
American television medical drama "Grey’s Anatomy,̈ commenced airing on the American Broadcasting
Company (ABC) in the United States on September 24, 2009, and concluded on May 20, 2010. The season
was produced by ABC Studios, in association with Shondaland Production Company and The Mark Gordon
Company; the showrunner being Shonda Rhimes. Actors Ellen Pompeo, Sandra Oh, Katherine Heigl, and
Justin Chambers reprised their roles as surgical residents Meredith Grey, Cristina Yang, Izzie
Stevens, and Alex Karev, respectively. Heigl was released from her contract in the middle of the
season, while T.R.

...

Answer: In "Grey’s Anatomy" Season 6, the characters who get fired include Preston Burke, the head of
cardio[2], and Izzie Stevens, portrayed by Katherine Heigl, who was released from her contract in the
middle of the season[3]. Additionally, during the first six seasons, Burke, George O’Malley, and
Izzie Stevens all depart the series[2].

Table 7: The prompt used to generate a response. The blue text indicates the output of GPT-3.5. The question is
from ASQA and the documents is retrieved from Wikipedia corpus by GTR.

Instruction: The following sentence may have some grammatical errors and may have some redundant
ingredients. As long as it ensures fluency, you can delete some parts of the sentence that you think
don’t make sense.

Original sentence: Other radiological signs of fetal death include gas in the fetus or in the portal
and umbilical vessels, and Deuel’s halo sign.

Sentence to modify: Other radiological signs of fetal death include gas Deuel ’s halo sign

Modified sentence: Other radiological signs of fetal death include Deuel’s halo sign.

Table 8: The prompt used to refine a claim. The blue text indicates the output of GPT-3.5.
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