
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 4422–4435

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Threshold Filtering Packing for Supervised Fine-Tuning: Training Related
Samples within Packs

Jiancheng Dong1, Lei Jiang1, Wei Jin2, Lu Cheng1

1University of Illinois Chicago, 2Emory University
dongjiancheng77@gmail.com, {ljian43, lucheng}@uic.edu, wei.jin@emory.edu

Abstract

Packing for Supervised Fine-Tuning (SFT) in
autoregressive models involves concatenating
data points of varying lengths until reaching the
designed maximum length to facilitate GPU
processing. However, randomly concatenat-
ing data points can lead to cross-contamination
of sequences due to the significant difference
in their subject matter. The mainstream ap-
proaches in SFT ensure that each token in the
attention calculation phase only focuses on to-
kens within its own short sequence, without pro-
viding additional learning signals for the pre-
ceding context. To address these challenges, we
introduce Threshold Filtering Packing (TFP),
a method that selects samples with related
context while maintaining sufficient diversity
within the same pack. Our experiments show
that TFP offers a simple-to-implement and scal-
able approach that significantly enhances SFT
performance, with observed improvements of
up to 7% on GSM8K, 4% on HumanEval. Fur-
thermore, results from bias benchmark datasets
highlight TFP’s promising performance in im-
proving fairness while also boosting prediction
accuracy by 15%.

1 Introduction

In Supervised Fine-Tuning (SFT) for large lan-
guage models (LLMs), sequence lengths can vary
substantially, requiring the wrapping of data into
tensors to apply matrix operations optimized for
CUDA and GPUs (Raffel et al., 2020). As illus-
trated in Figure 1(a), vanilla fine-tuning pad shorter
sequences with special tokens "[PAD]" up to the
maximum sequence length. While this ensures uni-
formity, it introduces inefficiencies by including
irrelevant padding tokens in the computation, wast-
ing GPU resources and dilutes the model’s learning
signal (Kundu et al., 2024).

To address this issue, packing sequences has be-
come a common technique in autoregressive trans-
former models during training and inference to

optimize context length and reduce padding (Liu
et al., 2019; Brown et al., 2020). This method in-
volves randomly selecting and concatenating data
of varying lengths until reaching the designed max-
imum length. Recent studies suggest that packed
data, when batched and processed on multi-GPUs,
effectively minimize idle time within each batch
(Bai et al., 2024).

However, randomly concatenating these data
samples (Figure 1(b)), can result in sequence
cross-contamination (Krell et al., 2021). Cross-
contamination occurs when predictions for one se-
quence are influenced by an unrelated sequence,
complicating accurate predictions, especially when
the subjects differ. For instance, imagine a model
tasked with generating a multiplication table, fol-
lowed by a prompt to list useful expressions in
French. If these two sequences are concatenated
without proper separation, the model might mix the
tasks, producing results like "3 x 2 = Bonjour." This
leads to incorrect and confusing outputs, where
instructions and contexts become inappropriately
blended. Moreover, current SFT pipelines (Kundu
et al., 2024) cause previous samples to provide
no signal for predicting the next sample, thereby
reducing learning efficiency and negatively impact-
ing the few-shot performance of LLMs.

To address these challenges, in this work, we
present Threshold Filtering Packing (TFP), a new
packing approach that packs sequences of related
yet diverse samples, encouraging context richness
and reasoning across sample boundaries. Specif-
ically, we employ a greedy algorithm inspired by
the Traveling Salesman Problem (TSP) (Applegate
et al., 2006) to efficiently map out a path for seg-
mentation into multiple packs. TFP further refine
these packs by ensuring that overly similar sam-
ples are not grouped together. Setting the threshold
is crucial in this context as it allows us to strike
a balance between similarity and diversity within
each pack, preventing homogeneity and ensuring

4422

instruction1 output1

instruction3 output3

instruction2 output2

instruction4 output4 embedding2

8.4

embedding48.6

20.5

embedding1

20.4embedding3

2.1embedding1 8.4embedding2 embedding315.7embedding4TSP

2.1embedding1 8.4embedding2 embedding315.7embedding4TFP

20.5embedding1 embedding220.4embedding3 8.4embedding4Random ...

...

...

8.6

instruction1 output1 instruction3 output3 instruction2 output2instruction4 output4 [PAD]...

instruction1 output1 instruction3 output2instruction2output3 instruction4 output4 [PAD]...

instruction1 output1 [PAD]... [PAD][PAD][PAD][PAD][PAD][PAD][PAD][PAD][PAD]

Random Packing:

Vanilla FT:

Threshold Filtering Packing:

15.72.1

Threshold Filtering

(a)

(b)

(d)

(c)

Figure 1: Overview of TFP. Different from vanilla FT (a), which uses “[PAD]” tokens up to the maximum
length, and random packing (b), which places randomly shuffled samples in the same pack and may lead to
cross-contamination, TFP (d) places related samples in the same pack while applying a threshold on TSP (c) to
ensure that these samples are sufficiently distinct. This approach allows models to learn across diverse contexts and
prevent overly similar samples from being grouped together.

the robustness of the generated packs. As shown
in Figure 1(c), each sample is first converted to
an embedding and then represented as a node in
the graph. As shown in Figure 1(d), TFP employs
threshold filtering to ensure each sample is distinct
enough from recent ones, preventing the model
from merely replicating previous outputs. This
method results in packs that provide useful context
while avoiding cross-contamination from unrelated
texts.

For experiments, we fine-tune various LLMs on
standard instruction fine-tuning datasets and con-
duct bias-related experiments to evaluate the po-
tential effect of packing on fairness. Additionally,
we assess the impact of TFP on computational ef-
ficiency for SFT. Our findings indicate that TFP
demonstrates superior performance across various
models. The bias-related experiments show that
TFP offers a flexible operational space, allowing
for adjustments in the ratio of sensitive attributes
(e.g., race) within packs to effectively manage bias.

2 Related Work

SFT and Alignment Fine-tuning is a prevalent
strategy to enhance model performance on down-
stream tasks, evidenced in domains such as coding
(Wei et al., 2023; Luo et al., 2024) and arithmetic
(Yue et al., 2024). Other work has highlighted
the importance of consistency in format (Liang
et al., 2023), data quality (Chung et al., 2022), and
mixing tasks from different categories (Longpre
et al., 2023; Iyer et al., 2022) in SFT. As LLMs

evolve, the risk of generating unsafe content in-
creases (Su et al., 2024; Wang et al., 2023a). Estab-
lished methods for LLM alignment include instruc-
tion fine-tuning and reinforcement learning with
human feedback (RLHF) (Ouyang et al., 2022). In-
struction fine-tuning, also known as SFT, refines
pre-trained models using annotated instructional
data, often preceding RLHF to aid initial align-
ment (Touvron et al., 2023). RLHF employs rein-
forcement learning to adapt models based on feed-
back on generated responses. Although RLHF has
been pivotal for developing systems like ChatGPT
(OpenAI, 2021), isolated instruction fine-tuning
can yield comparable outcomes (Sun et al., 2023)
with much less computational and labor costs.
Packing While packing is relatively less re-
searched, it is a technique extensively used in
frameworks like Hugging Face’s SFT Trainer 1 to
expedite inference and training. To prevent cross-
contamination during self-attention calculation, ex-
isting packing approaches involve concatenating
sequences into a single tensor and using masking
to disregard elements from other sequences during
computation (Kundu et al., 2024). This method,
including variations like LongAlign (Bai et al.,
2024) and Prepacking (Zhao et al., 2024a), en-
hances training efficiency and minimizes the cross-
contamination impact on model performance. How-
ever, it necessitates calculating a distinct attention
mask for each batch, complicating implementation
and increasing memory consumption for masks,

1https://huggingface.co/docs/trl/sft_trainer

4423

https://huggingface.co/docs/trl/sft_trainer

which can hinder the effectiveness of flash atten-
tion.

In contrast, TFP avoids the need for masking
to prevent cross-contamination. Instead, it forms
data packs that provide relevant context without
additional masking, streamlining implementation
and reducing memory overhead.

3 Threshold Filtering Packing

The standard practice in packing is to form a pack
by concatenating random samples until reaching
the maximum context length (Zhao et al., 2024a).
However, randomly concatenated packs do not pro-
vide additional learning signals and can lead to
cross-contamination of sequences, compared to
training on individual samples. In contrast, TFP
generates more coherent packs by concatenating re-
lated and useful samples together, improving SFT
performance and computational efficiency.

3.1 Problem Statement
Given a set of samples D = {di}, where each
sample di has its instruction converted into an em-
bedding ei, our goal is to organize these samples
into packs such that each of them consists of related
samples that provide semantic context. Formally,
we aim to form a set of packs P1 · · ·Pm where each
pack Pi = {d1, . . . , dki} ⊂ D and

⋃m
i=1 Pi = D.

3.2 k-NN Packing
An intuitive method for packing is to apply k-NN
and place each sample along with its retrieved top-
k neighbors in the same pack, referred to as k-NN
packing. This approach maintains sample similar-
ity within each pack but introduces a significant
issue: data repetition. Some samples frequently ap-
pear as nearest neighbors for multiple others, lead-
ing to overlapping packs, i.e., ∃i ̸= j, Pi ∩ Pj ̸= ∅.
For instance, in the CodeAlpaca dataset (Chaud-
hary, 2023), the sample "Construct a loop in Python
to display all elements in a list" was included in 94
different packs with k-NN Packing, greatly reduc-
ing the diversity of pack content.

The data repetition problem can contaminate
both individual packs and the entire training pro-
cess. Within a pack, popular samples that are close
to many others in the embedding space do not
serve as diverse contexts, increasing the risk of
cross-contamination. Across the training process,
repeated exposure to these popular samples reduces
the diversity of the dataset, potentially leading to
overfitting (Shi et al., 2023).

3.3 Threshold Filtering Packing Algorithm

To address these challenges, we propose pack-
ing data samples that provide meaningful context
while avoiding repeated selection. Recent research
on pretraining language models with related doc-
uments has inspired our approach (Staniszewski
et al., 2023; Shi et al., 2023; Zhao et al., 2024b),
where similar documents are retrieved to enhance
pretraining effectiveness. For Supervised Fine-
Tuning datasets, we do not need to consider the
degree of the starting node, as the shorter sequence
length allows us to easily generate a complete
graph. A basic approach involves using a greedy
algorithm to select samples with the smallest Eu-
clidean distance to their corresponding embed-
dings, ensuring that each sample is included only
once. This is essentially a greedy algorithm for
the TSP (Applegate et al., 2006). Intuitively, k-NN
can select the same data point multiple times when
retrieving the nearest neighbors, whereas TSP en-
sures that each data point is selected only once.

Further, previous studies (Yasunaga et al., 2023;
Liu et al., 2023) show that maintaining diversity
among the input contexts is crucial. We adopt a
greedy algorithm for TSP with conditional adjust-
ments and then segment this path into multiple
packs to generate packs composed of diverse and
relevant samples. TFP is designed to assemble re-
lated samples, with Threshold Filtering specifically
addressing the challenge of placing overly similar
samples in the same pack. As shown in Figure 1(d),
threshold filtering separates overly similar embed-
dings, such as embedding1 and embedding2, which
were initially connected by TSP.

The mathematical formulation of this approach
is as follows:

Minimize
m∑

i=1

ki∑

j=1

ki∑

l=j+1

weij ,eil

subject to
m⋃

i=1

Pi = D,

Pi ∩ Pj = ∅ ∀i ̸= j,

|Pi| = ki ∀i,

wij =

√√√√
n∑

q=1

(di,q − dj,q)2,

weij ,eil > t for all pairs of recent samples

4424

Here, m represents the number of packs. ki
is the number of elements in the i-th pack. eij
refers to the j-th element in the i-th pack. wij is
the Euclidean distance between elements ei and
ej . di,k represents the k-th feature of element ei.
n is the dimensionality of the feature space. t is
the distance threshold to ensure diversity within a
pack.

This objective function minimizes the sum of
the Euclidean distances weij ,eil between all pairs
of elements within each pack Pi. These constraints
guarantee that the packs are disjoint, meaning no
two packs share any common elements, and en-
sure that each pack Pi contains exactly ki elements.
The Euclidean distance between elements ei and
ej is calculated based on their feature vectors di,k.
Additionally, to ensure diversity within each pack,
the constraint weij ,eil > t is applied . This method
results in packs that provide useful context while
avoiding cross-contamination from unrelated texts.

Algorithm 1 Threshold Filtering Packing

1: Input: Instruction embeddings array E, dis-
tance threshold t, the distance threshold num-
ber r

2: Output: A shortest path satisfying the thresh-
old condition

3: Initialize n ← length of E, visited ←
[False]× n , visited[0]← True

4: for i ∈ {1, 2, . . . , n− 1} do
5: next← SelectNext(E, visited, t, r)
6: // SelectNext(E, visited, t, r) select the

nearest unvisited embedding in E while en-
suring the distance from the recent r sam-
ples is greater than t

7: path← path ∪ [next]
8: visited[next]← True
9: end for

10: return path

As depicted in Algorithm 1, TFP consists of
three primary steps: first, generating sentence em-
beddings E for the instruction parts of the samples,
then selecting the nearest unvisited embedding in
E while ensuring that the distance from the recent
r samples is greater than distance threshold t. Sub-
sequently, we use the pack formed by instruction-
related samples to train the language model. Since
TFP only changes the distribution of data within
the pack, it can be seamlessly integrated into exist-
ing SFT pipelines for LLMs. As a final step, we

traverse the samples along the path and concatenate
them to create packs.

4 Experiment

We evaluate the proposed approach from three as-
pects: (1) Performance Comparison: We compare
TFP with various LLMs fine-tuned on common in-
struction fine-tuning datasets under both zero-shot
and few-shot settings. (2) Bias and Fairness: In-
spired by previous research (Wang et al., 2023a)
that studies the impact of the ratio of different de-
mographic groups in in-context learning (ICL) on
LLM fairness, we investigate how adjusting the ra-
tio in each pack during SFT can influence the bias
and fairness of LLMs. (3) Efficiency: We study
how various SFT methods influence computational
efficiency on different GPU setups.

4.1 Experimental Setup

Datasets. We use commonly adopted datasets for
instruction fine-tuning, which include tasks related
to helpfulness, code-generation capabilities, and
mathematical reasoning: (1) Alpaca dataset, gener-
ated from the Self-Instruct method (Wang et al.,
2023c) via the text-davinci-003 model (Buruk,
2023), covering various tasks such as arithmetic,
coding, and question-answering. (2) CodeAlpaca
dataset(Chaudhary, 2023), which aims to build and
share an instruction-following LLaMA model for
code generation. (3) GSM8K dataset (Cobbe et al.,
2021), curated to examine mathematical reasoning
capabilities, comprises 8.8k high-quality arithmetic
word problems designed at the grade school level.

For the fairness-related experiments, we use the
Jigsaw Unintended Bias in Toxicity Classification
task (Adams et al., 2019) and Adult dataset (Becker
and Kohavi, 1996). The Jigsaw Unintended Bias
in Toxicity Classification task involves perform-
ing toxicity classification on comment texts pub-
lished by the Civil Comments platform. It contains
human-annotated demographic information such
as race, gender, and religion. The goal is to ensure
that models make predictions based on the text toxi-
city, rather than demographic information included
in the text. We use race (Black and non-Black) as
the protected attributes. The Adult dataset is a tab-
ular dataset that includes 14 attributes of a person
(e.g., age and education level) as input, to predict
whether the person’s income exceeds $50k per year.
We evaluate the fairness of fine-tuned models based
on the sensitive attribute of sex, specifically com-

4425

Llama2-7B Llama3-8B Mistral-7B

Method WR HumanEval GSM8K WR HumanEval GSM8K WR HumanEval GSM8K

Vanilla FT 48.2 ± 0.4 19.5 ± 0.3 26.2 ± 0.0 51.2 ± 0.5 38.4 ± 0.0 61.8 ± 0.2 62.9 ± 0.6 35.4 ± 0.3 59.7 ± 0.5

Sorted batching 48.2 ± 0.5 20.1 ± 0.3 26.5 ± 0.0 51.8 ± 0.6 37.2 ± 0.4 62.0 ± 0.6 61.2 ± 0.3 34.1 ± 0.5 61.0 ± 0.1

Random packing 47.1 ± 0.3 19.5 ± 0.3 26.1 ± 0.4 51.7 ± 0.5 37.8 ± 0.3 62.1 ± 0.6 62.4 ± 0.0 34.8 ± 0.6 59.1 ± 0.4

Random packing (mask) 47.6 ± 0.5 19.5 ± 0.6 26.1 ± 0.2 52.4 ± 0.0 37.8 ± 0.3 62.5 ± 0.4 63.5 ± 0.2 35.4 ± 0.5 59.2 ± 0.1

Packing+loss weighting 47.1 ± 0.6 18.9 ± 0.4 25.8 ± 0.0 51.2 ± 0.3 38.4 ± 0.0 60.9 ± 0.3 60.6 ± 0.4 34.8 ± 0.5 59.5 ± 0.0

k-NN packing 45.3 ± 0.0 15.9 ± 0.6 29.3 ± 0.3 48.8 ± 0.4 36.0 ± 0.0 59.5 ± 0.5 55.3 ± 0.4 34.1 ± 0.3 57.2 ± 0.2

TFP 51.2 ± 0.2 22.6 ± 0.3 33.6 ± 0.4 54.1 ± 0.6 42.7 ± 0.5 66.7 ± 0.3 63.5 ± 0.0 38.4 ± 0.5 64.1 ± 0.4

Table 1: Comparison of different methods and training datasets: Alpaca, CodeAlpaca, and GSM8K, with
results represented by WR, HumanEval, and GSM8K, respectively. In the table, we follow the most common
few-shot settings: using Win rate judged by PandaLM and a 0-shot setting for HumanEval, while the GSM8K task
uses a 4-shot setting.

paring “male” and “female”.
Baselines. We compare TFP with the following
baselines:

(1) Vanilla fine-tuning: This method appends
special padding tokens to shorter prompts to match
the maximum length within a batch. Huggingface’s
inference framework (Wolf et al., 2019) generates
corresponding attention masks to ensure the lan-
guage model disregards the padded tokens during
computation to handle prompts of variable lengths.

(2) Sorted batching (Bai et al., 2024): This ap-
proach sorts inputs by length and samples batches
to minimize padding. As a result, each batch con-
sists entirely of either long or short sequences.

(3) Random packing: Random packing involves
concatenating data of varying lengths randomly
until reaching the maximum length (Brown et al.,
2020).

(4) Random packing (mask): A variant of ran-
dom packing that uses masking to prevent cross-
contamination between different sequences within
the same pack during self-attention calculations.

(5) Packing + loss weighting (Bai et al., 2024):
A typical packing strategy skews towards longer se-
quences and those with more target tokens, as packs
with fewer sequences or more target tokens dispro-
portionately influence the final loss, especially for
datasets designed for long contexts. This method
ensures equal loss weighting for each sequence.

(6) k-NN packing: In this method, each sample
is directly placed together with its retrieved top-k
samples in the same pack.
Evaluation Metrics. We follow commonly used
protocols (Luo et al., 2024; Yue et al., 2024; Ge
et al., 2024) to evaluate SFT in LLMs. Specifically,
we use PandaLM (Wang et al., 2023b, 2024) to
evaluate the helpfulness of various models. Pan-
daLM provides reproducible and automated com-
parisons between different LLMs. By providing

PandaLM with the same context, it can compare
the responses of different LLMs, offer reasons for
the decisions, and provide a reference answer. We
report the win rate (WR), which is the proportion
of instances where the responses are favored over
those produced by GPT-3.5 (Brown et al., 2020).
The code generation skills are enhanced using the
CodeAlpaca dataset (Chaudhary, 2023), while eval-
uation is conducted using the HumanEval dataset
(Chen et al., 2021). GSM8K dataset (Cobbe et al.,
2021) uses its own test set. We followed the most
common few-shot settings: using Win rate judged
by PandaLM and a 0-shot setting for HumanEval,
while the GSM8K task uses a 4-shot setting.

We utilize the Llama2-7B (Touvron et al., 2023),
Llama3-8B (AI@Meta, 2024), and Mistral-7B
(Jiang et al., 2023) as the base LLM in our ex-
periments. Due to limited computation resources,
we employ the QLoRA technique (Dettmers et al.,
2023) in all fine-tuning experiments. To ensure fair
comparison, we maintain consistency in nearly all
hyperparameters across all methods. For all results
below, we run the experiments five times and report
the mean and standard deviations for all compared
methods.

4.2 Results
Comparisons of Various Packing Methods in
Instruction Fine-tuning
Table 1 displays the results of fine-tuning on three
downstream datasets: Alpaca (Taori et al., 2023),
CodeAlpaca(Chaudhary, 2023), and GSM8K
(Cobbe et al., 2021). We have the following key
observations:

(1) TFP consistently outperforms the best of
other baselines across various base LLMs, achiev-
ing improvements of up to 7% on GSM8K, 4%
on HumanEval, and 3% on Alpaca. This suggests
that TFP learns more effectively about answering

4426

Method 0-shot 4-shot 32-shot

ACC ↑ Mdpd ↓ Meod ↓ ACC ↑ Mdpd↓ Meod↓ ACC ↑ Mdpd ↓ Meod↓
Vanilla FT 0.84 ± 0.01 0.10 ± 0.00 0.12 ± 0.01 0.75 ± 0.02 0.08 ± 0.01 0.10 ± 0.02 0.73 ± 0.01 0.08 ± 0.00 0.16 ± 0.02

Random packing 0.78 ± 0.02 0.10 ± 0.01 0.14 ± 0.02 0.73 ± 0.02 0.10 ± 0.01 0.14 ± 0.02 0.74 ± 0.02 0.10 ± 0.01 0.14 ± 0.02

Random packing (mask) 0.84 ± 0.00 0.08 ± 0.01 0.12 ± 0.02 0.71 ± 0.02 0.08 ± 0.01 0.12 ± 0.02 0.72 ± 0.01 0.08 ± 0.01 0.12 ± 0.02

Balanced ratio 0.71 ± 0.02 0.04 ± 0.01 0.08 ± 0.01 0.57 ± 0.02 0.06 ± 0.01 0.12 ± 0.00 0.64 ± 0.02 0.03 ± 0.01 0.06 ± 0.01

Resampling 0.85 ± 0.01 0.11 ± 0.02 0.16 ± 0.00 0.66 ± 0.02 0.07 ± 0.01 0.14 ± 0.02 0.71 ± 0.02 0.14 ± 0.01 0.28 ± 0.02

TFP 0.87 ± 0.01 0.06 ± 0.01 0.10 ± 0.02 0.77 ± 0.02 0.10 ± 0.01 0.24 ± 0.02 0.81 ± 0.01 0.01 ± 0.01 0.02 ± 0.00
TFP (Balanced) 0.85 ± 0.01 0.04 ± 0.01 0.10 ± 0.01 0.78 ± 0.01 0.01 ± 0.00 0.04 ± 0.01 0.80 ± 0.01 0.01 ± 0.01 0.02 ± 0.01
TFP (Resampling) 0.87 ± 0.01 0.08 ± 0.01 0.12 ± 0.01 0.78 ± 0.01 0.06 ± 0.01 0.12 ± 0.01 0.83 ± 0.01 0.05 ± 0.01 0.06 ± 0.00

Table 2: Accuracy and group fairness metrics on Llama3-8B for the Jigsaw Dataset with balanced few-shots.

Method 0-shot 4-shot 32-shot

ACC ↑ Mdpd ↓ Meod ↓ ACC ↑ Mdpd ↓ Meod↓ ACC ↑ Mdpd↓ Meod ↓
Vanilla FT 0.78 ± 0.02 0.26 ± 0.03 0.44 ± 0.04 0.67 ± 0.02 0.06 ± 0.01 0.09 ± 0.02 0.54 ± 0.03 0.04 ± 0.01 0.08 ± 0.02

Random packing 0.76 ± 0.03 0.25 ± 0.02 0.42 ± 0.04 0.50 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.50 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Random packing (mask) 0.78 ± 0.02 0.25 ± 0.02 0.44 ± 0.04 0.65 ± 0.02 0.06 ± 0.01 0.08 ± 0.02 0.56 ± 0.02 0.06 ± 0.01 0.08 ± 0.02

Balanced ratio 0.78 ± 0.02 0.28 ± 0.03 0.40 ± 0.03 0.64 ± 0.02 0.03 ± 0.01 0.06 ± 0.02 0.56 ± 0.02 0.02 ± 0.01 0.02 ± 0.01

Resampling 0.72 ± 0.03 0.21 ± 0.02 0.36 ± 0.03 0.58 ± 0.03 0.04 ± 0.01 0.06 ± 0.02 0.50 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

TFP 0.80 ± 0.02 0.22 ± 0.02 0.32 ± 0.03 0.81 ± 0.02 0.08 ± 0.01 0.10 ± 0.02 0.78 ± 0.02 0.02 ± 0.01 0.04 ± 0.02

TFP (balanced) 0.80 ± 0.02 0.11 ± 0.02 0.16 ± 0.03 0.78 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 0.74 ± 0.02 0.01 ± 0.01 0.02 ± 0.01
TFP (resampling) 0.81 ± 0.02 0.10 ± 0.01 0.16 ± 0.02 0.80 ± 0.02 0.14 ± 0.02 0.18 ± 0.03 0.79 ± 0.02 0.15 ± 0.02 0.24 ± 0.03

Table 3: Accuracy and group fairness metrics on Llama3-8B for the Adult Dataset with balanced few-shots.

questions from the related data within the pack.
However, naive packing strategies (random pack-
ing, random packing (mask)) fail to improve per-
formance and can even degrade it.

(2) Comparing TFP with k-NN packing, we
find that k-NN packing can lead to performance
declines, especially in well-trained models like
Llama3-8B and Mistral-7B, whereas TFP consis-
tently outperforms. Although Llama2-7B showed
some improvement on GSM8K with k-NN packing,
as inferred from previous work (Yuan et al., 2023),
these gains are likely due to repeated training ef-
fects rather than genuine generalization. In contrast,
TFP enhances diversity and relevance within packs,
leading to better performance without overfitting,
underscoring its robustness.

(3) Sorted batching and loss weighting methods,
which are designed for long context, prove less ef-
fective on shorter datasets like GSM8K, where the
average sequence length of around 500 tokens is
far below the model’s maximum length. As high-
lighted in previous work (Bai et al., 2024), sorted
batching can introduce bias in data distribution
across batches, where entire batches consist of ei-
ther long or short sequences, potentially disrupting
the optimization process during stochastic gradient
descent.

Impact of TFP on Fairness
Our method, which groups similar data together
into packs, can sometimes lead to imbalanced rep-

resentation across demographic groups, potentially
amplifying biases. To address this, we explore two
approaches: TFP (balanced) and TFP (resampling),
both designed to achieve balance while maintain-
ing text relevance. TFP (balanced) ensures that
data with different sensitive attributes are evenly
distributed within each pack, continuing this pro-
cess until samples from one demographic group are
exhausted. In contrast, TFP (resampling) addresses
imbalances by resampling underrepresented data,
ensuring all packs have a balanced representation
of attributes, even when certain categories have
fewer samples. For comparison, we apply balanced
ratio and resampling methods to the data’s default
sequence as controls, referred to as Balancing ratio
and Resampling, respectively.

Inspired by DecodingTrust (Wang et al., 2023a),
which demonstrates that a balanced ratio across
groups in ICL can improve LLM fairness, we ex-
amine whether maintaining a balanced ratio of de-
mographic groups within packs during SFT affects
LLM fairness in classification tasks. We report pre-
diction accuracy (ACC) and two common fairness
metrics used in classification: equalized odds dif-
ference (eod) (Hardt et al., 2016) and demographic
parity difference (dpd) (Zemel et al., 2013). De-
tailed definitions of these metrics are provided in
Appendix A. We use 0-shot and balanced 32-shot
ICL settings for evaluation following the experi-
mental design of DecodingTrust, and we also ex-

4427

2*L40S 1*3090

Method LLaMA2 7B LLaMA3 8B Mistral 7B LLaMA2 7B LLaMA3 8B Mistral 7B

Vanilla FT 1.73 1.05 1.15 4.68 4.43 5.25
Sorted batching 1.70 1.05 1.08 4.68 4.42 5.22
Random packing 0.37 0.40 0.40 2.53 2.03 2.58
Random packing (mask) 0.40 0.38 0.40 2.57 2.50 2.62
Packing + loss weighting 0.42 0.43 0.45 2.48 2.07 2.55
k-NN packing 1.57 1.35 1.42 9.68 9.40 9.87
TFP 0.40 0.37 0.38 2.57 2.02 2.55

Table 4: Training time (hrs) on 2*L40S and 1*3090 under different training methods.

plore the effects of a small number of samples with
a balanced 4-shot setting. Experiments in Tables 2
and 3 were conducted on text and tabular datasets
respectively, from which we have the following
three observations.

(1) TFP (balanced) excels in fairness tasks for
both text and tabular data, especially when the num-
ber of balanced ICL few shot examples is large. We
believe this is due the compounded effect of both
balanced group ratio within the pack and the ICL
demonstrations. The original TFP does not excel in
fairness in 0-shot settings due to imbalanced data
across social groups. TFP (resampling) results in
instability due to the repeated sampling of same
samples. By providing the model with hard nega-
tive examples (i.e. closely positioned samples with
differing labels) within a pack, TFP enables more
efficient learning from data with similar texts but
different labels. Balancing the ratio within packs
introduces many samples with similar texts but
varying sensitive attributes, which helps mitigate
biases in LLMs.

(2) In nearly all settings, TFP and its variants
demonstrate superior accuracy, particularly on tab-
ular data (as shown in Table 3). LLMs are known
not to excel in prediction tasks for tabular data,
especially under ICL settings (Fang et al., 2024).
When using an excessive number of ICL examples,
all baseline approaches tend to predict the same
value for all samples, showing degraded prediction
performance. TFP, however, presents strong poten-
tial in ICL, with improved fairness and competitive
accuracy (up to 15% improvement in accuracy).

(3) Conventional packing methods often strug-
gle to balance the trade-off between fairness and
accuracy. For example, when the ratio within a
pack is adjusted to achieve fairness, accuracy tends
to decrease across all shot settings. Additionally,
the instability caused by repeated training through
direct resampling is more pronounced compared

LLaMA3 8B Mistral 7B LLaMA2 7B
Models

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 ti
m

e
(h

)

Comparison of Methods across Models
Methods

Vanilla FT
Sorted Batching
Random Packing (mask)
Packing + loss weighting
Random Packing
kNN Packing
Threshold Filtering Packing

Figure 2: Training time (hrs) of LLaMA3-8B using
different methods on GSM8K.

to TFP (resampling), possibly because unrelated
sequences can disrupt the model’s judgment.

Impact of Packing on Efficiency

Previous work has proposed two methods for han-
dling long data: sorted batching and packing with
loss weighting (Bai et al., 2024). It is suggested
that these two methods can reduce idle time and
speed up the training process across multiple GPUs.
The acceleration achieved by these two methods on
long data is approximately the same.

In this experiment, we study how various SFT
methods influence computational efficiency on dif-
ferent GPU setups. We select the GSM8K dataset
due to its widespread use and report the SFT time
of each approach in Figure 2. The results under
different GPU settings are reported in Table 4.

We observe that: (1) When data lengths are much
shorter than the maximum token limit of LLMs,
packing significantly reduces training costs, par-
ticularly in the fine-tuning phase, by optimizing
CUDA matrix operations. This improvement is
beneficial for both multi-GPU and single-GPU con-
figurations. (2) Our packing method reduces the
need for distinct attention masks per batch by allow-

4428

be
rt

Ro
BER

Ta

LLa
MA3 L6 E5

Model

50

55

60

65

70
Pe

rfo
rm

an
ce

 M
et

ric
Data Part
instruction part
output part
entire data part

Figure 3: Performance comparison of different embed-
ding models and different data segments on GSM8K.

0 1 2 4 8
The distance threshold number r

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

 fo
r L

la
m

a3
-8

b

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

 fo
r L

la
m

a2
-7

b

TFP on Llama3-8b
Random Packing on Llama3
TFP on Llama2-7b
Random Packing on Llama2

Figure 4: Accuracy of TFP on Llama Models of differ-
ent distance threshold number r.

ing a single standard diagonal for the whole batch.
It avoid increased mask memory consumption from
incorrect implementation. (3) The time costs of
graph traversal and pairwise similarity computation
in our current experiments account for only 1% to
3% of the total fine-tuning process. Additionally,
compared to training, these operations consume
significantly less GPU memory.

5 Ablation Studies

5.1 TFP Design

We conduct a series of ablation studies on several
critical design choices for TFP using the GSM8K
dataset due to its widespread use and high quality.
Embedding models play a pivotal role in these ab-
lation studies, as they capture different semantic
meanings, which is essential for understanding the
operational mechanisms of TFP.

Initially, we evaluate various embedding models,
including bert-base-uncased (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), all-MiniLM-L6-v2,
E5-mistral-7b-instruct (Wang et al., 2022), and
the hidden layers of Llama3 (AI@Meta, 2024).
These models can be divided into two main ap-
proaches (Liu et al., 2023): Model-based methods,
such as bert-base-uncased, Llama3, and RoBERTa,
and Semantic-based methods, like E5-mistral-7b-
instruct and all-MiniLM-L6-v2.

As shown in Figure 3, the model-based ap-
proaches generally outperform the semantic-based
ones, with bert-base-uncased achieving the best
results. This suggests that base models are more
effective for sample aggregation in contextual train-
ing, likely because TFP relies on models that cap-
ture contextual information. In contrast, models
focused primarily on semantic similarity, like those

used in clustering or retrieval tasks, do not perform
well.

Further analysis explores the optimal data seg-
ments for TFP within the Alpaca format, which
typically includes instruction, input, and output
components. Given that inputs often lack substan-
tial content, we conduct experiments on the in-
struction part, output part, and entire data. Our
experiments on the GSM8K dataset indicate that
using instructions for similarity calculations is the
most beneficial. This finding is significant because
calculating similarity within the instruction section
reduces the risk of cross-contamination. By avoid-
ing the clustering of similar outputs, we can prevent
models from simply reproducing previous outputs
since SFT only calculates loss on the outputs.

5.2 The distance threshold number r

We analyze the effect of the distance threshold num-
ber r on the TFP algorithm. The parameter analysis
were conducted using Llama3-8B and Llama2-7B
to determine how variations in r impact perfor-
mance within models from the same series. The
results, evaluated on the GSM8K dataset, are pre-
sented in Figure 4.

Setting r = 0 results in a greedy selection (equiv-
alent to TSP), showing degraded performance. As
r becomes too large, performance declines further,
approaching random packing. An appropriate r
helps Llama2-7B and Llama3-8B to maintain con-
textual relevance and avoid excessive similarity.
Llama3-8B needs a larger r than Llama2-7B be-
cause it is a more powerful model and, therefore,
more sensitive to contextual reasoning and more
prone to performance degradation when exposed
to overly similar or repetitive data.

4429

6 Conclusion

We present TFP, a novel and scalable method for
packing samples during SFT, enabling language
models to learn from relevant context and adapt ef-
fectively to few-shot evaluation. TFP is simple-to-
implement and integrates with existing SFT frame-
work by adjusting the sample sequence. Our evalu-
ation shows TFP significantly boosts SFT perfor-
mance on both text and tabular data, especially in
few-shot tasks. It also improves fairness by in-
troducing similar texts with varying sensitive at-
tributes, helping reduce biases in LLMs without
compromising accuracy.

Limitations

One limitation of this work is that we currently
train on only one dataset at a time and evaluate us-
ing the corresponding evaluation methods for that
dataset. To obtain usable LLMs, it is necessary
to finetune them on a series of downstream tasks,
which involves the selection and use of different
datasets (Liu et al., 2023; Ivison et al., 2023). Fu-
ture research will explore the application of TFP
in multi-task and multi-dataset settings, investigat-
ing the trade-offs of TFP in multi-task scenarios
and potential issues in identifying relevant samples
across multiple datasets.

Additionally, while TFP has made significant
progress in fairness by modifying the ratio, many
datasets lack annotations for sensitive attributes.
The fairness improvements achieved by TFP
largely depend on these annotations. Efficiently an-
notating datasets with sensitive attributes remains
a challenge. A promising direction for future re-
search could be exploring how to maintain balance
within packs when such annotations are absent, fur-
ther examining the relationship between TFP and
responsible AI.

Moreover, we have not fully explored the rela-
tionship between providing related context within
packs and other stages of training. Recent studies
highlight the importance of maintaining internal
knowledge consistency before and after SFT (Ren
et al., 2024; Yang et al., 2024). Earlier research
on pretraining language models with related docu-
ments has shown promising results (Staniszewski
et al., 2023; Shi et al., 2023; Yasunaga et al., 2022;
Yu et al., 2022; Zhao et al., 2024b). These meth-
ods either use metadata or retrieval techniques to
group mutually relevant documents into long, co-
herent training examples. Our experiments indicate

that providing context during SFT stages enhances
in-context learning. We plan to explore integrat-
ing TFP with pretraining and in-context learning
methods in future work.

Ethics Statement

Our study involves the development of a method
for enhancing SFT, focusing on optimizing train-
ing efficiency and improving model performance.
We also explored the potential of this method to
improve fairness and mitigate bias. The dataset we
used contains text that may be considered profane,
vulgar, or offensive. The techniques and method-
ologies proposed in this paper are intended solely
for research purposes and should not be applied
to sensitive or high-risk domains without rigorous
validation and oversight.

All the data used in this paper are publicly avail-
able and are used under the following licenses:
MIT License, CC BY-NC 4.0 License, and CC0
1.0 License. All the LLMs used in this paper are
used under the following licenses: Mistral AI Non-
Production License, Llama 2 Community License,
Meta Llama 3 Community License.

Acknowledgments

This work is supported by the National Science
Foundation (NSF) Grant #2312862, NSF-Simons
SkAI Institute, National Institutes of Health (NIH)
#R01AG091762, and a Cisco gift grant.

References
C. J. Adams, Daniel Borkan, Jeffrey Sorensen, and Lu-

cas Dixon. 2019. Jigsaw unintended bias in toxicity
classification.

AI@Meta. 2024. Llama 3 model card.

David Applegate, Robert Bixby, Vašek Chvátal, and
William Cook. 2006. The traveling salesman prob-
lem: A computational study. The Traveling Salesman
Problem: A Computational Study.

Yushi Bai, Xin Lv, Jiajie Zhang, Yuze He, Ji Qi, Lei
Hou, Jie Tang, Yuxiao Dong, and Juanzi Li. 2024.
Longalign: A recipe for long context alignment of
large language models.

Barry Becker and Ronny Kohavi. 1996. Adult.
UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5XW20.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda

4430

https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2401.18058
https://arxiv.org/abs/2401.18058

Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Oğuz “Oz” Buruk. 2023. Academic writing with gpt-3.5
(chatgpt): Reflections on practices, efficacy and trans-
parency. In 26th International Academic Mindtrek
Conference, Mindtrek ’23. ACM.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. ArXiv preprint, abs/2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning

of quantized llms. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang,
Ziqing Hu, Yanjun Qi, Scott Nickleach, Diego Socol-
insky, Srinivasan Sengamedu, and Christos Faloutsos.
2024. Large language models(llms) on tabular data:
Prediction, generation, and understanding – a survey.

Yuan Ge, Yilun Liu, Chi Hu, Weibin Meng, Shimin
Tao, Xiaofeng Zhao, Hongxia Ma, Li Zhang, Hao
Yang, and Tong Xiao. 2024. Clustering and ranking:
Diversity-preserved instruction selection through
expert-aligned quality estimation.

Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equal-
ity of opportunity in supervised learning. In Ad-
vances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Process-
ing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pages 3315–3323.

Hamish Ivison, Noah A. Smith, Hannaneh Hajishirzi,
and Pradeep Dasigi. 2023. Data-efficient finetuning
using cross-task nearest neighbors. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 9036–9061, Toronto, Canada. Associa-
tion for Computational Linguistics.

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru,
Todor Mihaylov, Daniel Simig, Ping Yu, Kurt Shuster,
Tianlu Wang, Qing Liu, Punit Singh Koura, Xian Li,
Brian O’Horo, Gabriel Pereyra, Jeff Wang, Christo-
pher Dewan, Asli Celikyilmaz, Luke Zettlemoyer,
and Ves Stoyanov. 2022. Opt-iml: Scaling language
model instruction meta learning through the lens of
generalization.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Mario Michael Krell, Matej Kosec, Sergio P. Perez, and
Andrew Fitzgibbon. 2021. Efficient sequence pack-
ing without cross-contamination: Accelerating large
language models without impacting performance.

4431

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1145/3616961.3616992
https://doi.org/10.1145/3616961.3616992
https://doi.org/10.1145/3616961.3616992
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2402.17944
https://arxiv.org/abs/2402.17944
https://arxiv.org/abs/2402.18191
https://arxiv.org/abs/2402.18191
https://arxiv.org/abs/2402.18191
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://doi.org/10.18653/v1/2023.findings-acl.576
https://doi.org/10.18653/v1/2023.findings-acl.576
https://arxiv.org/abs/2212.12017
https://arxiv.org/abs/2212.12017
https://arxiv.org/abs/2212.12017
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2107.02027
https://arxiv.org/abs/2107.02027
https://arxiv.org/abs/2107.02027

Achintya Kundu, Rhui Dih Lee, Laura Wynter,
Raghu Kiran Ganti, and Mayank Mishra. 2024. En-
hancing training efficiency using packing with flash
attention.

Shihao Liang, Runchu Tian, Kunlun Zhu, Yujia Qin,
Huadong Wang, Xin Cong, Zhiyuan Liu, Xiaojiang
Liu, and Maosong Sun. 2023. Exploring format con-
sistency for instruction tuning.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2023. What makes good data for align-
ment? a comprehensive study of automatic data se-
lection in instruction tuning.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The flan collection: Designing data and methods for
effective instruction tuning. In International Con-
ference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
22631–22648. PMLR.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:
Empowering code large language models with evol-
instruct. In The Twelfth International Conference on
Learning Representations.

OpenAI. 2021. Chatgpt: A large-scale generative
model for open-domain chat. https://github.
com/openai/gpt-3.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Mengjie Ren, Boxi Cao, Hongyu Lin, Cao Liu, Xianpei
Han, Ke Zeng, Guanglu Wan, Xunliang Cai, and
Le Sun. 2024. Learning or self-aligning? rethinking
instruction fine-tuning.

Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou,
Margaret Li, Gergely Szilvasy, Rich James, Xi Vic-
toria Lin, Noah A. Smith, Luke Zettlemoyer, Scott
Yih, and Mike Lewis. 2023. In-context pretraining:
Language modeling beyond document boundaries.

Konrad Staniszewski, Szymon Tworkowski, Sebastian
Jaszczur, Yu Zhao, Henryk Michalewski, Łukasz Ku-
ciński, and Piotr Miłoś. 2023. Structured packing in
llm training improves long context utilization.

Jiayuan Su, Jing Luo, Hongwei Wang, and Lu Cheng.
2024. Api is enough: Conformal prediction for
large language models without logit-access. ArXiv
preprint, abs/2403.01216.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin
Zhang, Zhenfang Chen, David D. Cox, Yiming
Yang, and Chuang Gan. 2023. Principle-driven self-
alignment of language models from scratch with min-
imal human supervision. In Advances in Neural In-
formation Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie,
Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi
Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong,
Simran Arora, Mantas Mazeika, Dan Hendrycks, Zi-
nan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, and
Bo Li. 2023a. Decodingtrust: A comprehensive as-
sessment of trustworthiness in GPT models. In Ad-
vances in Neural Information Processing Systems 36:

4432

https://arxiv.org/abs/2407.09105
https://arxiv.org/abs/2407.09105
https://arxiv.org/abs/2407.09105
https://arxiv.org/abs/2307.15504
https://arxiv.org/abs/2307.15504
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://proceedings.mlr.press/v202/longpre23a.html
https://proceedings.mlr.press/v202/longpre23a.html
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://github.com/openai/gpt-3
https://github.com/openai/gpt-3
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2402.18243
https://arxiv.org/abs/2402.18243
https://arxiv.org/abs/2310.10638
https://arxiv.org/abs/2310.10638
https://arxiv.org/abs/2312.17296
https://arxiv.org/abs/2312.17296
https://arxiv.org/abs/2403.01216
https://arxiv.org/abs/2403.01216
http://papers.nips.cc/paper_files/paper/2023/hash/0764db1151b936aca59249e2c1386101-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/0764db1151b936aca59249e2c1386101-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/0764db1151b936aca59249e2c1386101-Abstract-Conference.html
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
http://papers.nips.cc/paper_files/paper/2023/hash/63cb9921eecf51bfad27a99b2c53dd6d-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/63cb9921eecf51bfad27a99b2c53dd6d-Abstract-Datasets_and_Benchmarks.html

Annual Conference on Neural Information Process-
ing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. ArXiv preprint,
abs/2212.03533.

Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang,
Qiang Heng, Cunxiang Wang, Hao Chen, Chaoya
Jiang, Rui Xie, Jindong Wang, Xing Xie, Wei Ye,
Shikun Zhang, and Yue Zhang. 2023b. Pandalm:
Reproducible and automated language model assess-
ment. https://github.com/WeOpenML/PandaLM.

Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang,
Cunxiang Wang, Hao Chen, Chaoya Jiang, Rui Xie,
Jindong Wang, Xing Xie, Wei Ye, Shikun Zhang, and
Yue Zhang. 2024. Pandalm: An automatic evaluation
benchmark for llm instruction tuning optimization.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023c. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. ArXiv preprint, abs/2312.02120.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

Zhaorui Yang, Tianyu Pang, Haozhe Feng, Han Wang,
Wei Chen, Minfeng Zhu, and Qian Liu. 2024. Self-
distillation bridges distribution gap in language
model fine-tuning.

Michihiro Yasunaga, Armen Aghajanyan, Weijia Shi,
Richard James, Jure Leskovec, Percy Liang, Mike
Lewis, Luke Zettlemoyer, and Wen-Tau Yih. 2023.
Retrieval-augmented multimodal language model-
ing. In International Conference on Machine Learn-
ing, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learn-
ing Research, pages 39755–39769. PMLR.

Michihiro Yasunaga, Jure Leskovec, and Percy Liang.
2022. LinkBERT: Pretraining language models with
document links. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 8003–8016,
Dublin, Ireland. Association for Computational Lin-
guistics.

Wenhao Yu, Chenguang Zhu, Yuwei Fang, Donghan Yu,
Shuohang Wang, Yichong Xu, Michael Zeng, and
Meng Jiang. 2022. Dict-BERT: Enhancing language
model pre-training with dictionary. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1907–1918, Dublin, Ireland. Association
for Computational Linguistics.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. 2023. Scaling relationship on learning
mathematical reasoning with large language models.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2024. MAmmoTH: Building math generalist models
through hybrid instruction tuning. In The Twelfth In-
ternational Conference on Learning Representations.

Richard S. Zemel, Yu Wu, Kevin Swersky, Toniann
Pitassi, and Cynthia Dwork. 2013. Learning fair
representations. In Proceedings of the 30th Interna-
tional Conference on Machine Learning, ICML 2013,
Atlanta, GA, USA, 16-21 June 2013, volume 28 of
JMLR Workshop and Conference Proceedings, pages
325–333. JMLR.org.

Siyan Zhao, Daniel Israel, Guy Van den Broeck, and
Aditya Grover. 2024a. Prepacking: A simple method
for fast prefilling and increased throughput in large
language models.

Yu Zhao, Yuanbin Qu, Konrad Staniszewski, Szymon
Tworkowski, Wei Liu, Piotr Miłoś, Yuxiang Wu, and
Pasquale Minervini. 2024b. Analysing the impact
of sequence composition on language model pre-
training. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7897–7912, Bangkok,
Thailand. Association for Computational Linguistics.

A Fairness Metrics

We introduce two commonly used definitions of
group fairness metrics (Wang et al., 2023a) for
classification tasks. Suppose we have n data sam-
ples {(X,Y,A)}ni=1 with features X ∈ X , la-
bels Y ∈ Y := {0, 1}, and a sensitive attribute
A ∈ {0, 1} drawn from the distribution PXY . Note
that the sensitive attribute A is also included in the
feature vector X . Let f : X → Y represent a ma-
chine learning model. We adopt the demographic
parity difference metric Mdpd to evaluate model
prediction fairness:

Mdpd = |P(X,Y,A)∼PXY
[f(X) = 1 | A = 1]

−P(X,Y,A)∼PXY
[f(X) = 1 | A = 0]|

(1)

The demographic parity difference (Zemel et al.,
2013) measures the difference between the proba-
bility of positive predictions conditioned on the

4433

https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2212.03533
https://github.com/WeOpenML/PandaLM
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2402.13669
https://arxiv.org/abs/2402.13669
https://arxiv.org/abs/2402.13669
https://proceedings.mlr.press/v202/yasunaga23a.html
https://proceedings.mlr.press/v202/yasunaga23a.html
https://doi.org/10.18653/v1/2022.acl-long.551
https://doi.org/10.18653/v1/2022.acl-long.551
https://doi.org/10.18653/v1/2022.findings-acl.150
https://doi.org/10.18653/v1/2022.findings-acl.150
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
http://proceedings.mlr.press/v28/zemel13.html
http://proceedings.mlr.press/v28/zemel13.html
https://arxiv.org/abs/2404.09529
https://arxiv.org/abs/2404.09529
https://arxiv.org/abs/2404.09529
https://doi.org/10.18653/v1/2024.acl-long.427
https://doi.org/10.18653/v1/2024.acl-long.427
https://doi.org/10.18653/v1/2024.acl-long.427

sensitive attribute A = 1 and that conditioned
on A = 0. A large demographic parity differ-
ence Mdpd indicates a significant prediction gap
between the groups with A = 1 and A = 0, reflect-
ing the model’s prediction unfairness. Since the
demographic parity difference does not consider
the ground truth label, we also use the metric of
equalized odds difference Meod (Hardt et al., 2016)
to evaluate model prediction fairness:

Meod = max{MTP ,MFP } (2)

where MTP denotes the true positive equalized
odds difference:

MTP = |P(X,Y,A)∼PXY
[f(X) = 1 | Y = 1, A = 0]

−P(X,Y,A)∼PXY
[f(X) = 1 | Y = 1, A = 1]| (3)

and MFP denotes the false positive equalized
odds difference:

MFP = |P(X,Y,A)∼PXY
[f(X) = 1 | Y = 0, A = 0]

−P(X,Y,A)∼PXY
[f(X) = 1 | Y = 0, A = 1]| (4)

A large equalized odds difference Meod indicates
a significant prediction gap conditioned on differ-
ent values of the sensitive attribute, indicating the
model’s prediction unfairness.

B Experiment Details

We use the hyperparameters from the original
framework for SFT, and the parameters of TFP are
set in Section 5. The threshold value corresponds
to the nearest 2% of all pairwise distances, ensur-
ing that TFP-generated packs have significantly
reduced average distances compared to random
packing and the greedy TSP algorithm.

The prompts used for different datasets are as
follows:

• Adult dataset

You are a helpful, pattern-following assistant.
For each snippet of text, predict whether the
person described has a good credit risk. The
answer should be exactly ’yes’ or ’no’.

• The Jigsaw Unintended Bias in Toxicity Clas-
sification task

You are a helpful, pattern-following assistant.
For each snippet of text, predict whether the
text of the individual comment is harmless or
toxic. The answer should be exactly ’harm-
less’ or ’toxic’.

• Code task

You are a professional programmer. Please
provide the corresponding code based on the
description of Human.

• GSM8K and Alpaca

Below is an instruction that describes a task.
Write a response that appropriately com-
pletes the request.

C Evaluation Details

For the Adult dataset, we followed the setup from
(Wang et al., 2023a): We selected 200 samples to
construct the test set. In both the test set and few-
shot examples, the proportions of income and sex
are balanced. We have converted the table data into
a natural language format.

For the Jigsaw Unintended Bias in Toxicity Clas-
sification task, we select sensitive attributes simi-
larly to the Adult dataset and use the same method
to construct the test set.

The prompts used during evaluation are as fol-
lows:

• The Jigsaw Unintended Bias in Toxicity Clas-
sification task

You are a helpful, pattern-following assistant.
For each snippet of text, predict whether the
text of the individual comment is harmless or
toxic. The answer should be exactly ’harm-
less’ or ’toxic’. Predict whether the com-
ment is harmless or toxic:

• Adult dataset

Predict whether the annual income of the
person is greater than $50k:

D Analysis of Packs

This appendix provides further details regarding
the methods used to generate data packs for SFT.

D.1 Comparison of Packing Methods
We compared different packing methods by calcu-
lating the average distances between data points
within each pack using bert-base-uncased as the
embedding model. The results for GSM8K are
summarized in the Table 5.

The results show that TFP outperforms other
methods in preserving meaningful context, as in-
dicated by the lower average distance. The k-NN

4434

Packing Method Average Distance
Random Order 9.23

TSP Order 6.18
TFP Order 6.48

k-NN (limiting overlap) 8.07

Table 5: Average distances between data points within
each pack for different packing methods on the GSM8K
dataset.

method, even with limiting overlap, results in more
dispersed packs, making it less effective for fine-
tuning tasks.

D.2 Graph Creation
A fully connected graph is used for packing, where
each node represents a data sample, and edges are
weighted based on pairwise cosine similarity be-
tween sample embeddings. This graph construction
ensures robust and diverse pack generation.

Initial node selection has minimal impact on
TFP’s performance due to the diversity-focused
packing strategy. Additionally, the randomized
training order of packs further minimizes the effect
of the starting point.

E Other Results

To evaluate TFP’s generalizability, we conducted
experiments on Llama3-8B using two additional
training datasets: MathInstruct and CodeAlpaca-
20k.

Method MATH GSM8K
Vanilla FT 20.5 63.9
Random packing 18.4 56.6
TFP 22.7 68.2

Table 6: Results on MathInstruct datasets.

Method MBPP HumanEval
Vanilla FT 45.4 38.4
Random packing 45.4 39.6
TFP 49.4 42.1

Table 7: Results on CodeAlpaca-20k datasets.

As shown, TFP consistently outperforms other
methods across all benchmarks, demonstrating its
adaptability to various datasets.

4435

