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Abstract

Watermarking is a prominent technique to
trace the usage of specific large language mod-
els (LLMs) by injecting patterns into model-
generated content. An ideal watermark should
be imperceptible, easily detectable, and robust
to text alterations, yet existing methods typi-
cally face trade-offs among these properties.
This paper utilizes a key-centered scheme to
unify existing methods by decomposing a wa-
termark into two components: a key module
and a mark module. We show that the trade-off
issue is the reflection of the conflict between
the scale of the key sampling space during gen-
eration and the complexity of key restoration
during detection within the key module. To
this end, we introduce WaterPool, a simple yet
effective key module that preserves a complete
key sampling space for imperceptibility while
utilizing semantics-based search to improve the
key restoration process. WaterPool can inte-
grate seamlessly with existing watermarking
techniques, significantly enhancing their per-
formance, achieving near-optimal impercepti-
bility, and markedly improving their detection
efficacy and robustness (+12.73% for KGW,
+20.27% for EXP, +7.27% for ITS)1.

1 Introduction

The world has recently witnessed the great power
of large language models (LLMs). However, the
widespread use of these systems has raised signif-
icant concerns about their potential misuse. For
example, LLMs could be used to generate mas-
sive amounts of fake news or automated comments
to manipulate social media, posing threats to aca-
demic integrity and intellectual property rights
(Bender et al., 2021; Liu et al., 2023b).

To address these issues, watermarking has been
proposed to track the usage of specific models
(Kirchenbauer et al., 2023a). It embeds a hidden

1The code is available in https://github.com/skpig/
waterpool.
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Figure 1: Previous methods face trade-offs among im-
perceptibility, efficacy and robustness. WaterPool mit-
igates this problem to a significant extent. It can be
integrated with other watermarking methods, improving
them on all three aspects. This figure is based on the
experiments on open-ended text generation presented in
Table 1 and 2.

pattern into generated contents of a specific LLM
during decoding, which is conduct by sampling out-
puts from a stochastic modified distribution instead
of the original language modeling distribution. Ide-
ally, the expectation of the modified distribution
is nearly identical to the original one, making the
watermarked text almost indistinguishable from the
original (imperceptibility). This pattern can be re-
liably detected by a detector (efficacy) and remains
high detection rate even if the text is corrupted by
semantic-preserving attacks (robustness).

Prior works have made great progress towards
these properties for an ideal watermark (Kirchen-
bauer et al., 2023a,b; Kuditipudi et al., 2023; Zhao
et al., 2023; Hu et al., 2023). However, none of
them have achieved all three properties simultane-
ously as illustrated in Figure 1. It is widely ac-
cepted that there is a trade-off among impercepti-
bility, efficacy, and robustness. Previous methods
often use hyper-parameters to balance this trade-off
issue, like the δ in KGW controlling the degree of
distribution shift.

In this paper, we try to explore this issue. We
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begin by unifying existing watermarking methods
with a key-centered scheme. It decomposes a water-
marking technique into two independent modules,
a key module and a mark module, as shown in Fig-
ure 2. During generation, the key module samples
a private key. It is then utilized by the mark module
as a random seed to distort the next token distribu-
tion, from which watermarked texts are sampled.
During detection, the key module attempts to re-
store the private key. Then the mark module aligns
the text with the restored key to compute statis-
tics, which imply the likelihood of watermark pres-
ence. The decomposition separates requirements
of imperceptibility, efficacy and robustness into the
two modules. Subsequently, we show that the key
module significantly contributes to the trade-off
problem. Specifically, the trade-off problem ac-
tually stems from the conflict between the scale
of key sampling space during generation and the
complexity of key restoration during detection.

To overcome this trade-off, we introduce Water-
Pool, a simple but effective key module. WaterPool
maintains the complete key sampling space, crucial
for imperceptibility, while leveraging a semantics-
based search to significantly enhance the preci-
sion and effectiveness of the key restoration pro-
cess, thereby ensuring high robustness against at-
tacks. We integrate WaterPool into three of the
most renowned watermarking techniques, EXP
(Kuditipudi et al., 2023)), KGW (Kirchenbauer
et al., 2023a) and ITS (Kuditipudi et al., 2023)).
WaterPool effectively mitigates the traditionally
"inevitable" trade-offs, achieving superior perfor-
mance as shown in Figure 1.

Our experiments include two scale of large lan-
guage models (LLMs) across tasks of open-ended
generation and long-form question answering. Ex-
perimental results demonstrate the supreme capa-
bilities of our proposed WaterPool. On one hand,
it elevates the imperceptibility of KGW, EXP and
ITS to near-optimal levels. On the other hand, it
significantly enhances the efficacy and robustness
of previous watermarking techniques, yielding sub-
stantial improvements across different experimen-
tal settings (+12.73% for KGW, +20.27% for EXP,
+7.27% for ITS)2.

2 Preliminary
Problem Formulation. We begin by formalizing
the process of watermarking. Given any prompt x,

2The results are the performance of WaterPool with OPT-
1.3B on the open-ended generation task

a LLM will generate a sequence of output token
yi ∼ PM (·|x,y<i) in an auto-regressive manner.
A watermark will stochastically distort the distri-
bution to a Modified Distribution P̂M (·|x,y<i) ∈
∆(Σ) over the vocabulary Σ. The detection of
watermarked texts is formulated as a hypothesis
testing problem with an alternative hypothesis that
the candidate is sampled from a modified distribu-
tion. It is typically proved by gathering per-token
statistics si for significance test.
Imperceptibility. An ideal watermark should
maintain the output distribution of LLM as un-
changed as possible (Christ et al., 2023; Hu et al.,
2023; Kuditipudi et al., 2023; Liu et al., 2023b).
Formally, we define the imperceptibility following
"N -shot undetectable" from Hu et al. (2023): for
all xn,yn ∈ Σ∗,

N∏

n

PM (yn|xn) = EP̂M
[
N∏

n

P̂M (yn|xn)] (1)

Here, superscripts n indicates different rounds
of generation. For LLMs, which model language
in an auto-regressive manner, the equation above
can be expressed as:

∏

i,n

PM (yi|xn,yn
<i) = EP̂M

[
∏

i,n

P̂M (yi|xn,yn
<i)] (2)

We want to highlight the importance of the prod-
uct over multiple generations above. It indicates
that it is infeasible to distinguish between the origi-
nal and the watermarked texts without prior knowl-
edge about the modified distribution, even when
multiple queries are allowed (Christ et al., 2023).
Efficacy. An ideal watermark technique should
be able to distinguish watermarked texts from the
others. Empirically, it is required to achieve high
true positive rate with low false positive rate. Most
watermarking techniques achieve this by ensuring a
substantial difference between the per-token statis-
tic under alternative hypothesis (H1: the candidate
token is sampled from the modified distribution
P̂M (·|xn,yn

<i)) and null hypothesis (H0: the can-
didate token is sampled from other distributions).
This can be formulated as,

E[si|H1]− E[si|H0] ≥ ϕ(pi), (3)

where si is the statistic of i-th token. We denote
the left-hand side as Statistical Difference. ϕ(pi)
only depends on pi, the probability vector for i-th
step distribution PM (·|x,y<i), remaining constant
given x and y<i. It indicates the innate potential
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Figure 2: Overview of key-centered watermarking scheme. A watermark is decomposed into two modules, a key
module and a mark module. (a) During generation, the LLM provides an next token distribution PM . The key
module samples a private key ki as a random seed for the mark module to stochastically modify the distribution
to P̂M , from which watermarked texts are sampled. (b) During detection, the key module restores the key k̂i for
each candidate token. The mark module then calculates the per-token statistic si based on the restored key and
aggregates them for p-value.

for watermark injection3. The statistical difference
enables the application of statistical tests like per-
mutation tests (Kuditipudi et al., 2023) or paramet-
ric tests assuming specific distribution forms under
the null hypothesis (Kirchenbauer et al., 2023a;
Fernandez et al., 2023).
Robustness. Robustness is a one-step-further re-
quirement of efficacy. The statistical pattern of
watermarked texts could be vulnerable to poten-
tial attacks, including lexical modification or para-
phrasing (Krishna et al., 2023; Kirchenbauer et al.,
2023b). An ideal watermark technique should be
resilient to removal and should maintain high effi-
cacy even after such semantics-preserved attacks.

3 Methods

3.1 Decompose Watermark: a Key-centered
Scheme

As stated in Section 2, the critical part of water-
marking falls in the modified distribution, which
is stochastic and determined by a random seed, i.e.
the Private Key (Christ et al., 2023; Kuditipudi
et al., 2023). With private keys as connection, we
decompose watermarks into two independent mod-
ules: a Key Module and a Mark Module. The for-
mer handles the sampling and restoration of private
keys, while the latter is responsible for the mod-
ification process and per-token statistic based on
private keys. The overall scheme is illustrated in
Figure 2.

3ϕ(p) has different forms and names in previous works.
(Kuditipudi et al., 2023) defines it as watermark potentials.
(Kirchenbauer et al., 2023a) connects it with a special form of
entropy.

Specifically, during the i-th step of generation,
the key module samples a private key ki from the
possible key space Ξ ⊂ R to provide randomness.
Then the mark module takes the sampled key as a
random seed to stochastically modify the next to-
ken distribution Pi := PM (·|xn,yn

<i) to F (ki, Pi),
where F : R×∆(Σ)→ ∆(Σ).

During detection, a candidate text ŷ is given. Wa-
termarking techniques generally frame the detec-
tion as a hypothesis testing problem, treating each
token as an i.i.d sample. For each token ŷi, the key
module tries to restore the corresponding private
key k̂i used in generation based on the context. The
mark module then calculates the per-token statistic
si = S(ŷi, k̂i), where S : R × Σ → R. These
statistics are then aggregated to indicate the likeli-
hood of the entire sequence being watermarked.

In this scheme, the key module and the mark
module operate independently, which allows for
the combination of any key module with any mark
module to create new watermarking methods (Piet
et al., 2023). We review several well-known wa-
termarking techniques, list their designs of mark
modules (i.e. F and S) and key modules in Ap-
pendix A. In specific, we mainly focus on three
renowned watermarking techniques in this work:

• KGW (Kirchenbauer et al., 2023a). For the
key module, KGW utilizes the hash value of
the c-length context yi−c:i−1 as the private key
ki. For the mark module, it randomly samples
a partition of the vocabulary Σ, denoted as
the green list Gki

4. The logits of green list

4Thoughout the paper, we use the subscript ki to indicate
a random variable seeded by the private key ki.
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tokens are added by a constant τ to form the
modified distribution.

• EXP (Kuditipudi et al., 2023). For the key
module, EXP limits the possible key space
Ξ to a finite set sampled from R. With the
finite key space, the key restoration process
during detection can be estimated via greedy
search. Specifically, EXP utilizes a edit dis-
tance trick dedit to search for the key with high-
est statistics, improving robustness in case of
potential text alteration. For the mark module,
EXP takes the private key as seed to sample
a standard Gumbel vector gki

. Gumbel-max
sampling is then conduct to sample a token
t∗. Finally, the degenerate distribution δ(t∗)
is returned as modified distribution.

• ITS (Kuditipudi et al., 2023). ITS utilizes
the same key module as EXP. For the mark
module, ITS takes the private key as seed to
sample a standard uniform variable uki

and a
random permutation πki

for a permutational
inverse transform sampling. The degenerate
distribution of the sampled token is then re-
turned as the modified distribution.

3.2 Behind Trade-offs: Conflicts within Key
Module

In this section, we examine how the key module af-
fects imperceptibility, efficacy and robustness. As
stated in Section 2, the statistical difference be-
tween the null and alternative hypotheses is crucial
for ensuring efficacy and robustness, i.e., whether
the candidate token is sampled from a modified
distribution. Regardless of the choice of statistic
S(k̂i, ŷ), prior knowledge of the modified distribu-
tion is essential. Since the modification process is
stochastic and only dependent on the private key,
successful detection requires that the restored key
k̂i matches the true key used during generation.

The key restoration process fundamentally in-
volves searching through the potential key space
Ξ. Both the ITS and EXP methods use a greedy
search strategy, enumerating each potential key
to identify the one exhibiting the highest statis-
tic. While reliable in key restoration, it is markedly
time-consuming. Moreover, the per-token statis-
tic is now s̃ = max s, potentially diminishing the
statistical difference. To mitigate the issue, ITS
and EXP limit the possible key space size. To the
extreme, Unigram directly fixes the private key. Al-
ternatively, methods like KGW, Delta, and Gamma

take the context window through a hash function
for key restoration, reducing time complexity com-
pared to exhaustive searches. But there are risks
of incorrect key restoration if context is altered by
attacks, diminishing their robustness.

As for imperceptibility under the key-centered
scheme, Equation 2 can be rewritten as:
∏

i,n

PM (yn
i |xn,yn

<i)=Ek1,...,kN [
∏

i,n

F (kn
i ,P

n
i )(y

n
i )]

We then propose two requirements:

Proposition 3.1. A watermark is imperceptible if
(1) Independent condition: the sampled private
key vectors for each generated output are mutu-
ally independent, i.e. k1, ...,kN i.i.d∼ U(RL)5; (2)
Unbiased condition: the modification function F
satisfies PM (·|xn,yn

<i) = Eki∼U(R)[F (ki, Pi)].

The proposition describes separate requirements
for key and mark modules. The detailed proof
is presented in Appendix C.1. While many mark
modules meet the unbiased condition (Kuditipudi
et al., 2023; Hu et al., 2023), ensuring independent
condition is challenging for key modules. The inde-
pendence of private keys over the whole space R in
successive generations indicates the search space Ξ
of key restoration grows linearly with the number
of generations, as all previously used keys must be
considered.

The conflict within key modules now becomes
apparent. Imperceptibility requires a large possible
key space Ξ, which complicates the key restoration
process during detection, thereby hindering both ef-
ficacy and robustness. This trade-off within the key
module is a critical factor underlying the broader
trade-off among the three properties.

3.3 WaterPool: Semantics-based Key Module
The previous section highlights a conflict within
the key module, which contributes to the trade-off
issue in watermarking. A natural question arises:
is it possible to break the conflict for mitigating the
trade-off? To ensure imperceptibility, it is essential
to maintain a sufficiently large key space, charac-
terized by an i.i.d. sampling strategy. Thus, an effi-
cient and precise search strategy for the private key
is needed for efficacy. The context-hash strategy
provides insights by leveraging contextual informa-
tion, yet hash functions are fragile to attacks. We
aim to find a robust signal within the candidate’s
context that withstands semantic-preserved attacks.

5L is the maximum output length of LLM.
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To this end, we propose WaterPool, a simple
but effective key module empowered by semantic
searching. Specifically, for each generation, Wa-
terPool independently samples a private key vec-
tor kn ∼ U(RL) to meet the independent condi-
tion in Proposition 3.1. Each private key is then
used for the mark module to modify the next to-
ken distribution. We maintain a vector database
[(Enc(y1),k1), ..., (Enc(yN ),kN )] to store the
semantic embedding Enc(yn) of each output as
keys and the corresponding private key vector kn

as values6. For each candidate text ŷ during de-
tection, regardless of whether it is watermarked,
the most plausible private key vector k̂ is retrieved
based on semantic similarity:

k̂=kn∗
, where n∗=argmax

n
sim(Enc(yn),Enc(ŷ))

The restored key vector is then provided for the
mark module to calculate the statistics. Given that
the most similar text to the candidate is its own
even under attacks, this method ensures accurate
key restoration if the candidate is watermarked.

As a key module, WaterPool is able to integrate
with diverse mark modules. In this study, we inte-
grate WaterPool with mark modules of three promi-
nent watermarking techniques including EXP, ITS
and KGW. These improved watermarks are referred
to as EXP-Pool, ITS-Pool and KGW-Pool. Pseudo
codes are presented in Appendix B.

Building on Proposition 3.1, the imperceptibility
of WaterPool is readily established with EXP and
ITS satisfying the unbiased condition 7.

Proposition 3.2. Both ITS-Pool and EXP-Pool are
imperceptible.

Furthermore, the efficacy of WaterPool can also
be assured based on the efficacy of combined mark
module. This can be formalized as,

Proposition 3.3. The statistical difference in Wa-
terPool is bounded from below, as expressed by:

E[S(k̂i,yi)|H1]−E[S(k̂i,yi)|H0] ≥ precall·ϕ(pi)

,where ϕ(p) is watermarking potentials of the cor-
responding mark module depending on the prob-
ability vector pi for the i-th token distribution
PM (·|x,y<i).

6Enc can be any semantic embedding models, e.g. BERT.
7The mark module of KGW does not satisfy the unbi-

ased condition. Therefore, WaterPool can only enhance its
imperceptibility performance, but not achieve optimal imper-
ceptibility.

This proposition indicates that WaterPool can ef-
fectively leverage the power of mark modules (i.e.
the lower bound of its statistical difference with
golden private key restoration), slightly modulated
by the recall performance precall of WaterPool’s
retriever. We will empirically demonstrate that the
recall performance is near-optimal even in large
scale database employing relatively weak retrievers
in the following experiments. Proofs of proposi-
tions above are presented in Appendix C.2 to C.6.

3.4 Difference from Retrieval Watermark

Krishna et al. (2023) proposed a retrieval water-
mark to distinguish watermarked texts with se-
mantic retrieval. Different from the key-centered
scheme described in Section 3.1, they directly store
every output o generated by the specific LLM to
be “watermarked" in a vector database D. During
detection, they search over the database for simi-
lar items, and utilize maxo∈D sim(o, ocandidate) as
confidence of the candidate being watermarked.

WaterPool fundamentally differs from retrieval
watermark, though they both leverage retrieval tech-
niques. WaterPool’s efficacy and robustness rely
primarily on the statistical difference guaranteed
by the mark module. In specific, E[S(ki,yi)] is de-
signed to be high if yi is sampled from ki-induced
modified distribution and low if ki and yi are inde-
pendent. Therefore, the retriever of WaterPool only
needs to retrieve the correct private key for water-
marked candidates, without concern for retrieval
results of non-watermarked candidates, since all
keys stored in the database are independent of all
non-watermarked texts.

In contrast, retrieval watermark directly uses sim-
ilarity as score. For efficacy, it should ensure high
similarity scores for watermarked texts and low
similarity scores for non-watermarked ones. How-
ever, due to the dense semantic space of human
language, texts stored in the database often have
similar non-watermarked neighbors (semantic colli-
sions in Krishna et al. (2023)), and hence reducing
efficacy. This issue will become more severe as the
number of non-watermarked samples or the size of
the vector database increases. We conduct an exper-
iment to empirically demonstrate this by utilizing
responses of other models to the same prompts as
non-watermarked samples in Appendix E.2. In this
scenario, the performance of retrieval watermark is
over 40% worse than other watermarking methods.
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Glob-distinct2 Glob-distinct3 Group-distinct2 Group-distinct3 Perplexity
value↑ ∆↑ value↑ ∆↑ value↑ ∆↑ value↑ ∆↑ value↓ ∆↓

Open-Ended Text Generation
Non-watermark 38.8±0.0 0.0±0.0 76.2±0.0 0.0±0.0 86.2±0.0 0.0±0.0 96.2±0.0 0.0±0.0 7.8±0.0 0.0±0.0

Gamma 38.8±0.0 0.0±0.0 76.2±0.0 -0.0±0.0 86.2±0.0 -0.0±0.0 96.2±0.0 -0.0±0.0 7.8±0.0 0.0±0.0

Delta 38.8±0.0 -0.0±0.0 76.2±0.0 -0.0±0.1 86.2±0.0 -0.0±0.1 96.2±0.0 -0.0±0.0 7.8±0.0 0.0±0.0

Unigram 33.4±1.9 -5.3±1.9 69.9±2.8 -6.3±2.7 82.6±2.4 -3.6±2.4 95.1±0.6 -1.1±0.6 9.9±0.6 2.2±0.6

KGW 36.7±0.1 -2.0±0.2 73.6±0.1 -2.7±0.1 85.5±0.1 -0.7±0.1 95.9±0.0 -0.3±0.1 9.6±0.0 1.8±0.0

KGW-Pool 40.5±0.2 1.8±0.2 78.7±0.2 2.4±0.2 87.3±0.1 1.1±0.2 96.7±0.0 0.5±0.1 9.9±0.0 2.1±0.0

EXP 30.2±0.0 -8.5±0.0 59.2±0.0 -17.0±0.0 73.4±0.1 -12.8±0.0 82.2±0.1 -14.0±0.0 7.8±0.0 0.0±0.0

EXP-Pool 38.7±0.0 -0.0±0.0 76.2±0.0 -0.0±0.0 86.2±0.0 -0.0±0.1 96.2±0.0 -0.0±0.0 7.8±0.0 0.0±0.0

ITS 34.4±0.7 -4.4±0.7 66.4±1.5 -9.8±1.5 75.2±1.8 -11.0±1.8 83.7±2.1 -12.6±2.1 7.5±0.0 -0.3±0.0

ITS-Pool 38.8±0.0 0.0±0.0 76.2±0.0 -0.0±0.0 86.2±0.0 0.0±0.0 96.2±0.0 -0.0±0.0 7.8±0.0 0.0±0.0

Long-Form Question Answering
Non-watermark 31.5±0.0 0.0±0.0 70.0±0.0 0.0±0.0 86.7±0.0 0.0±0.0 97.0±0.0 0.0±0.0 9.5±0.0 0.0±0.0

Gamma 31.5±0.0 0.0±0.0 70.0±0.0 0.0±0.1 86.7±0.0 0.0±0.0 97.0±0.0 0.0±0.0 9.5±0.0 0.0±0.0

Delta 31.5±0.0 0.0±0.0 70.0±0.0 -0.0±0.1 86.8±0.0 0.0±0.0 97.0±0.0 0.0±0.0 9.5±0.0 0.0±0.0

Unigram 26.4±2.0 -5.1±2.0 62.0±2.9 -7.9±2.9 81.2±2.5 -5.5±2.5 94.8±0.6 -2.2±0.6 10.9±1.4 1.4±1.4

KGW 29.5±0.2 -2.0±0.2 66.2±0.3 -3.8±0.2 85.4±0.1 -1.3±0.1 96.4±0.0 -0.7±0.1 11.6±0.1 2.1±0.1

KGW-Pool 32.9±0.2 1.4±0.2 71.6±0.3 1.6±0.3 83.8±0.3 -2.9±0.3 94.3±0.2 -2.8±0.2 10.9±0.1 1.4±0.1

EXP 22.6±0.3 -8.9±0.3 50.0±0.7 -20.0±0.7 75.3±1.1 -11.4±1.1 85.1±1.4 -11.9±1.4 9.6±0.0 0.1±0.0

EXP-Pool 31.5±0.0 0.0±0.0 70.0±0.0 0.0±0.0 86.8±0.0 0.1±0.0 97.1±0.0 0.0±0.0 9.5±0.0 0.0±0.0

ITS 27.8±0.6 -3.7±0.6 60.7±1.4 -9.3±1.4 76.1±1.9 -10.6±1.9 84.7±2.3 -12.3±2.3 9.1±0.0 -0.4±0.0

ITS-Pool 31.5±0.0 -0.0±0.0 69.9±0.0 -0.0±0.0 86.8±0.0 0.1±0.0 97.0±0.0 0.0±0.0 9.8±0.0 0.3±0.0

Table 1: Imperceptibility of different watermarking methods on OPT-1.3B. ∆ is the difference between watermarked
and non-watermarked texts. The best and second-best results before rounding are highlighted in bold and underline.

4 Experiments

Datasets. Following Kirchenbauer et al. (2023a,b),
we include two common used datasets, the C4
dataset and "Explain Like I’m Five" (ELI5) (Fan
et al., 2019) for open-ended text generation and
long-form question answering, respectively. We
randomly select about 3000 texts from both
datasets as prompts for two LLMs, OPT-1.3b and
OPT-6.7b, following Krishna et al. (2023).
Metrics. We generate 20 watermarked outputs
for each prompt, while considering outputs of
the original LLM as non-watermarked. Subse-
quently, 120,000 samples are used to evaluate each
method. For both efficacy and robustness, we re-
port true positive rate at 1% false positive rate, de-
noted as TPR@FPR=1%. We also include ROC-
AUC in Appendix E. To evaluate the robustness of
watermarking techniques, we include three kinds
of attacks, namely Lexical-Attack, Dipper-Attack
and Translation-Attack. Lexical-attack randomly
add/delete/replace 10% tokens of texts. Dipper
is a paraphrasing model (Krishna et al., 2023).
Translation-attack represents roundtrip-translation,
which is a paraphrasing pipeline. For the evaluation
of imperceptibility, we split the criteria into two
aspects: (1) the distribution bias within each output
(2) the independence among different outputs. The
former can be evaluated with Perplexity while the
latter can be roughly evaluated with n-gram distinc-
tion (Kirchenbauer et al., 2023b). Specifically, we

consider the distinction across all outputs (Glob-
distinct-N ) and within outputs in response to one
single prompt (Group-distinct-N ).
Baselines and implementation details. We in-
clude several typical methods as baselines. In
addition to EXP, ITS and KGW, we also include
Gamma (Hu et al., 2023), Delta (Hu et al., 2023)
and Unigram (Zhao et al., 2023). All baselines
are reproduced based on source codes provided
by original paper. We use a 128 dimension sen-
tence embedding model (Nussbaum et al., 2024)
as Enc(·) in WaterPool. For implementation of
mark modules in different WaterPool (i.e. KGW-
Pool, ITS-Pool, EXP-Pool), we use identical hyper-
parameter settings as the corresponding baselines.
Other details are presented in Appendix D.

4.1 Main Results
We here only present and discuss results of OPT-
1.3b in this section. Results of OPT-6.7b and more
analysis experiments are presented in Appendix E.
Notably, results across different LLMs on different
tasks exhibit consistent trends and patterns.

Most baselines have achieved high efficacy (over
90% TPR@FPR=1%), but they all make trade-offs
between imperceptibility and robustness. Consis-
tent with our theoretical analysis in Section 3.2, Un-
igram, EXP, and ITS limit the key space Ξ, thereby
reducing the independence of keys across different
generations. This is reflected in their weaker per-
formance on the Distinct-N metric. Specifically,
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w/o Attack Lexical-Attack Dipper-Attack Translation-Attack
value↑ ∆ value↑ ∆ value↑ ∆ value↑ ∆

Open-Ended Text Generation
Gamma 96.94±0.05 - 17.91±0.28 - 2.26±0.04 - 3.25±0.10 -
Delta 75.37±0.34 - 8.58±0.27 - 2.07±0.08 - 2.91±0.11 -
Unigram 93.98±1.32 - 89.69±3.67 - 19.99±7.44 - 35.35±8.74 -
KGW 98.43±0.08 - 88.88±0.13 - 15.05±0.32 - 29.53±0.23 -
KGW-Pool 98.29±0.01 -0.15±0.08 95.29±1.04 6.41±1.17 24.62±2.01 9.57±2.32 42.26±1.70 12.73±1.73

EXP 97.19±0.08 - 93.48±0.09 - 18.32±0.36 - 31.14±0.33 -
EXP-Pool 98.43±0.01 1.24±0.09 96.67±0.07 3.19±0.15 26.17±0.86 7.85±0.62 51.41±0.42 20.27±0.64

ITS 73.43±0.10 - 26.23±0.19 - 2.16±0.08 - 3.56±0.08 -
ITS-Pool 92.56±0.14 19.12±0.11 68.50±0.46 42.27±0.40 4.05±0.15 1.89±0.11 10.83±0.31 7.27±0.39

Long-Form Question Answering
Gamma 98.68±0.05 - 21.20±0.36 - 2.31±0.05 - 5.18±0.21 -
Delta 90.19±0.13 - 12.17±0.10 - 2.21±0.08 - 4.96±0.02 -
Unigram 96.93±1.99 - 92.47±3.77 - 26.38±5.88 - 43.17±6.98 -
KGW 99.51±0.01 - 94.12±0.06 - 19.21±0.17 - 46.62±0.43 -
KGW-Pool 99.51±0.00 -0.01±0.01 97.97±0.04 3.85±0.08 29.92±1.04 10.71±1.20 50.14±0.24 3.52±0.37

EXP 99.17±0.06 - 97.56±0.08 - 27.92±0.56 - 54.99±0.37 -
EXP-Pool 99.56±0.04 0.40±0.08 98.81±0.07 1.25±0.05 36.24±0.82 8.32±1.37 72.61±0.29 17.62±0.56

ITS 86.40±0.51 - 38.23±0.46 - 3.02±0.19 - 8.19±0.17 -
ITS-Pool 97.56±0.05 11.16±0.46 81.73±0.34 43.51±0.21 6.25±0.15 3.23±0.05 24.26±0.43 16.07±0.27

Table 2: Efficacy and robustness of different watermarking methods on OPT-1.3B evaluated with TPR@FPR=1%. ∆
is the performance boost brought by WaterPool. The best and second-best results are shown in bold and underline.

Unigram suffers from degradation in both Distinct-
N and perplexity. While EXP and ITS perform
well in perplexity, they exhibit the worst Distinct-
N results with more than 10% degradation. On
the contrary, Gamma and Delta achieve optimal
imperceptibility but at the cost of both efficacy and
robustness. During detection, the alternative hy-
pothesis distribution required by their likelihood
ratio test is often inaccurate due to missing original
prompts. Thus, their TPR@FPR=1% is signifi-
cantly weaker compared to other methods.

WaterPool effectively mitigates these trade-offs.
It markedly improves the original watermarking
techniques across all tasks and all three aspects.
It elevates the imperceptibility of original water-
marks to near-optimal levels, as evidenced by the
minimal difference from non-watermarked texts.
Moreover, it consistently enhances the robustness
of the original watermarks, as shown by substan-
tial improvements in the TPR@FPR=1% metric
(e.g. KGW-Pool outperforms KGW by 12.73%,
EXP-Pool outperforms EXP by 20.27%, ITS-Pool
outperforms ITS by 7.27%).

4.2 Real-world Challenges for WaterPool

As stated in Section 3.4, WaterPool only requires
to retrieve golden private key if it exists. This asser-
tion holds intuitively, as a watermarked text, even
under attacks, should remain semantically closer to
the original watermarked text stored in the database
than other texts. Otherwise, it should not be consid-

ered a modified version of the original watermarked
text. To empirically demonstrate this, we conduct
various experiments to demonstrate the stability of
WaterPool under two real-world challenges.

Performance with Diverse Negative Samples.
We test the performance of WaterPool across vari-
ous distributions of non-watermarked text, includ-
ing human-written outputs (Human, 3K samples)
and outputs from other non-watermarked models8

(Other Models, 1.8M samples) with respect to the
same prompts. Results shown in Table 3 indicate
that all WaterPool methods exhibit stable perfor-
mance regardless of the number and types of neg-
ative samples, which aligns with our theoretical
analysis. This stability also highlights the advan-
tages of WaterPool over retrieval watermarking,
further substantiating the claims in Section 3.4.

Scalability with Large Vector Databases. An-
other real-world challenge for WaterPool is the in-
creasing scale of possible key space Ξ with increas-
ing calls to watermarked LLMs. This raises the
question of whether the key module can accurately
retrieve the correct key from a large-scale database.
To this end, we conduct experiments by scaling
up the vector database size to simulate this sce-
nario. Specifically, we augment the database with
noisy entries by incorporating 50-token fragments
sampled from the C4 dataset, constructing a noisy

8Models include Gemma-2b, Gemma-7b, Llama2-7b,
Llama2-13b, Vicuna-7b and Vicuna-13b.
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Original Human Other Models

w/o Attack 98.43 98.35 98.45
Lexical-Attack 96.67 96.50 96.72
Dipper-Attack 26.17 24.49 25.65

Translation-Attack 51.41 50.23 51.60

Table 3: TPR@FPR=1% of EXP-Pool with different
non-watermarked texts listed in the first row. WaterPool
remains stable across different non-watermarked text
sources. Full results are presented in Appendix E.3.
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Figure 3: TPR@FPR=1% of WaterPool with different
database size. WaterPool maintains stable performance
as the scale increases to 100M items exponentially.

database of more than 100 million items. During
detection, if WaterPool retrieves a noisy item from
the fake database, representing a failed key recon-
struction, a random key is used for the per-token
statistic calculation, thereby affecting its efficacy
and robustness. This setting is particularly chal-
lenging for open-ended text generation task since
the noisy database shares a similar distribution with
the watermarked texts stored in real database, both
sampled from C4 dataset. Results on open-ended
text generation and long-form question answering
are presented in Figure 3. The results demonstrate
that WaterPool maintains robust performance even
as the database size increases exponentially, indi-
cating its feasibility in real-world applications.

4.3 Analysis of Space and Time

The price for breaking the trade-off issues with
WaterPool lies in its space usage. The space com-
plexity of WaterPool is O(N), growing linearly
with the number of generations. However, this is
still practical in real-world scenarios. In our ex-
periments, we use sentence embeddings in form of
128-dimensional bfloat16 arrays and a private key
of one int32 number9. Given ChatGPT’s monthly

9In practice, we can only sample a number as seed to ini-
tialize a pseudo-random number generator, thereby generating
the whole private key vector k ∈ RL for all tokens.

visits are about 2B per month10, it takes 260 bytes
of space per item, resulting in about 520 GB of
storage per month, which is certainly manageable
nowadays. Regarding time complexity, WaterPool
requires less than 0.001 sec per item to retrieve
from a database of 100M items with 10 RTX3090
GPUs, which is sufficient since watermark detec-
tion is not a time-intensive application.

5 Related Work
Watermarking is a specific form of steganography.
Steganography requires that, without the knowl-
edge about private keys, distributions of original
texts and texts with steganography must be indis-
tinguishable (Simmons, 1984; Katzenbeisser and
Petitcolas, 1999; Hopper et al., 2009; Dedić et al.,
2008; Fang et al., 2017), which leads to impercep-
tibility objective of watermarking in Section 2.

LLM watermarking has recently gained many at-
tention (Christ et al., 2023; Kuditipudi et al., 2023;
Hu et al., 2023; Pri, 2023; Zhao et al., 2024; Christ
and Gunn, 2024; Fairoze et al., 2023; He et al.,
2024), which can be seamlessly integrated into all
LLMs without further training. KGW (Kirchen-
bauer et al., 2023a) is the pioneering work, us-
ing context windows as private keys to increase
probabilities of a specific partition of vocabulary.
Building on KGW, follow-ups made many improve-
ments, such as proposing different hash functions
(Kirchenbauer et al., 2023b; Hou et al., 2023; Liu
et al., 2023a; Ren et al., 2023), heuristic partition
strategies (Li et al., 2023; Chen et al., 2023), em-
bedding multi-bit messages (Wang et al., 2023; Qu
et al., 2024), and robust hypothesis testing tech-
niques (Fernandez et al., 2023). Despite these
advancements, the trade-off among imperceptibil-
ity, efficacy, and robustness has been widely rec-
ognized and remains unresolved. A concurrent
work (Giboulot and Teddy, 2024) also tries to break
the trade-off by resampling until observing signifi-
cant watermarking signals. Although this approach
maintains imperceptibility in a single turn, it sig-
nificantly alters the N -shot output distribution.

6 Conclusion

In this paper, we focus on the trade-off challenges
among imperceptibility, efficacy and robustness
in LLM watermarking. Through a key-centered
scheme, we have identified that the trade-offs arise

10https://explodingtopics.com/blog/
chatgpt-users
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from the conflict between the scale of the key sam-
pling space during generation and the complexity
of key restoration during detection. This insight
motivates the design of WaterPool, a key module
utilizing semantic search to alleviate this conflict.
WaterPool integrates seamlessly with most exist-
ing watermarking methods, significantly enhancing
their performance across all three dimensions. We
hope this work offers valuable insights to future
research for better solutions to this challenge.
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Limitations

While WaterPool is both simple and easy to de-
ploy, it does not entirely resolve the trade-offs be-
tween imperceptibility, efficacy, and robustness.
The mark module is also a pivotal component in
achieving these goals. We have defined the unbi-
ased condition and statistical differences to outline
the requirements for mark modules. However, the
specific design and optimization of mark modules
are not discussed in this paper. Future research
could explore advanced mark module designs, ad-
vancing towards fully resolving the trade-off chal-
lenges in LLM watermarking.
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Name Reweight Function F (ki, Pi) Statistic S(k̂i, ŷi) Used in

logits-add
∀t ∈ Σ, L̂i(t) = Li(t) + τ · 1t∈Gki

F (ki, Pi) = Softmax(L̂i)
S(k̂i, ŷi) =

1ŷi∈G
k̂i

−γ

√
len(y)γ(1−γ)

KGW(Kirchenbauer et al., 2023a),
Unigram(Zhao et al., 2023)

inverse-sample

uki ∼ U([0, 1])
∀t ∈ Σ, P perm

i (t) = Pi(π
−1
ki

(t))

z∗ = min{z ∈ Z :
∑

ord(t)≤z P
perm
i (t) > uki}

t∗ = π−1
ki

◦ ord−1(z∗)
F (ki, Pi) = δ(t∗)

S(k̂i, ŷi) = (uk̂i
− 1

2
) · (

ord(π
k̂i

(ŷi))−1

|Σ|−1
− 1

2
) ITS(Kuditipudi et al., 2023)

gumbel-sample
gki ∈ R|Σ|,gki,j

iid∼ Gumbel(0,1)
t∗ = argmaxt∈Σ logPi(t) + gki,ord(t)
F (ki, Pi) = δ(t∗)

S(k̂i, ŷi) = − exp(−gki,ord(ŷi)) EXP(Kuditipudi et al., 2023)

prob-scale

∀t ∈ Σ, P perm
i (t) = Pi(π

−1
ki

(t))

∀t ∈ Σ, Cperm
i (t) =

∑
ord(t′)<ord(t) P

perm
i (t′)

∀t ∈ Σ, Ĉi(t) = min(2Cperm
i (t), 1)

∀t ∈ Σ, P̂ perm
i (t) = Ĉi(t)−Ĉi(ord−1(ord(t)−1))

∀t ∈ Σ, P̂i(t) = P̂ perm
i (πki(t))

F (ki, Pi) = P̂i

∀t ∈ Σ, P perm
i (t) = Pi(π

−1

k̂i
(t))

∀t ∈ Σ, Cperm
i (t) =

∑
ord(t′)<ord(t) P

perm
i (t′)

∀t ∈ Σ, Ĉi(t) = min(2Cperm
i (t), 1)

∀t ∈ Σ, P̂ perm
i (t) = Ĉi(t)−Ĉi(ord−1(ord(t)−1))

∀t ∈ Σ, P̂i(t) = P̂ perm
i (πk̂i

(t))

S(k̂i, ŷi) = log P̂i(ŷi)− logPi(ŷi)

Gamma(Kuditipudi et al., 2023)

Table 4: Mark modules of typical watermarks. Pi(·), Ci(·) and Li(·) are probability distribution function, cumulative
distribution function and logit function of the i-th step generation. ord : Σ→ {1, ..., |Σ|} is a function mapping each
token to its order in the vocabulary. δ(t) represents a degeneration distribution taking only one value t. Subscript
"ki" indicates a random variable seeded by ki. For example, Gki

is a random γ ratio partition of vocabulary,
πki

: Σ → Σ represents a random permutation over the vocabulary. Superscript "perm" indicates a distribution
function after vocabulary permutation, such as P perm. Other notations like γ, τ are fixed hyper-parameters.

Name Key Sampling ki Key Restoration k̂i Used in

greedy-search Ξ = {ξ1, ..., ξK} i.i.d∼ U(RL)
k ∼ U(Ξ)

k̂ = argmax
ξ∈Ξ

dedit(ξ, ŷ), where

dedit(ξ, ŷ) = max{dedit(ξ2:, ŷ2:) + S(ξ1, ŷ1),

dedit(ξ, ŷ2:)− η,

dedit(ξ2:, ŷ)− η}

ITS(Kuditipudi et al., 2023),
EXP(Kuditipudi et al., 2023)

context-hash ki = hash(yi−c:i−1) ki = hash(ŷi−c:i−1)
KGW(Kirchenbauer et al., 2023a),

Gamma(Hu et al., 2023),
Delta(Hu et al., 2023)

fixed-constant k ∼ U(R); ki = k ki = k Unigram(Zhao et al., 2023)

Table 5: Key modules of typical watermarks. Both Ξ and k are initialized once, and then fixed on every generation.
L is the maximum length of LLM. N, c, η are all fixed hyper-parameters.
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A Typical Watermark Designs

Here we list mark and key modules of typical wa-
termarking methods in Table 4 and 5.
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B Algorithms of WaterPool

In this section, we present the pseudo codes for
EXP-Pool, ITS-Pool and KGW-Pool. We high-
light the codes WaterPool invokes in with triangle
comments (▷), while the rest of the code remains
unchanged from the original watermarking tech-
niques. The invocation code of WaterPool is little,
demonstrating the ease of its integration with exist-
ing watermarking methods. The specific implemen-
tation of modification function F and per-token
statistic S used in the pseudo codes can be found
in Table 4.

Algorithm 1 EXP-Pool Generation
Params: language model M , max output length
L, modification function of EXP Fexp(·, ·), embed-
ding model Enc(·).
Input: N rounds queries {xn}Nn=1.
Output: N rounds outputs {yn}Nn=1, vector
database D.

1: D ← {} ▷ Initialize vector database
2: /* Multi-round queries */

3: for n ∈ {1, ..., N} do
4: Input current round prompt xn

5: yn ← empty string
6: kn ∼ U(RL) ▷ Sample key
7: /* Auto-regressive generation */

8: for i ∈ 1, ..., L do
9: Pi ← PM (·|xn,yn

<i)

10: P̂i ← Fexp(k
n
i , Pi)

11: yn
i ∼ P̂i

12: end for
13: D ← D ∪ {(Enc(yn),kn)} ▷ Store key
14: Output current round generation yn

15: end for

Algorithm 2 EXP-Pool Detection
Params: vector database D =
{(Enc(yn),kn)}Nn , embedding model Enc(·),
permutation resample times T , edit penalty η,
per-token statistic of EXP Sexp(·, ·).
Input: candidate text ŷ
Output: p-value of being watermarked p̂

1: /* Aggregation of per-token statistic si with

edit distance trick */

2: procedure dedit(k,y):
3: if len(k) = 0 then
4: return −η · len(y)
5: else if len(y) = 0 then
6: return −η · len(k)
7: else
8: si ← Sexp(k1,y2)
9: return max{dedit(k2:,y2:) +

si, dedit(k2:,y)− η, dedit(k,y2:)− η}
10: end if
11: end procedure

12: n∗ ← argmaxn sim(Enc(yn), Enc(ŷ)) ▷
Retrieve key from vector database

13: k̂← kn∗

14: V̂ ← dedit(k̂, ŷ)
15: /* Permutation test */

16: for t ∈ 1, ..., T do
17: kt ∼ U(RL)
18: V t ← dedit(k

t, ŷ)
19: end for
20: /* Calculate p-value */

21: p̂← 1
T+1

(
1 +

∑
t 1V̂ >V t

)
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Algorithm 3 ITS-Pool Generation
Params: language model M , max output length L,
modification function of ITS Fits(·, ·), embedding
model Enc(·).
Input: N rounds queries {xn}Nn=1.
Output: N rounds outputs {yn}Nn=1, vector
database D.

1: D ← {} ▷ Initialize vector database
2: /* Multi-round queries */

3: for n ∈ {1, ..., N} do
4: Input current round prompt xn

5: yn ← empty string
6: kn ∼ U(RL) ▷ Sample key
7: /* Auto-regressive generation */

8: for i ∈ 1, ..., L do
9: Pi ← PM (·|xn,yn

<i)

10: P̂i ← Fits(k
n
i , Pi)

11: yn
i ∼ P̂i

12: end for
13: D ← D ∪ {(Enc(yn),kn)} ▷ Store key
14: Output current round generation yn

15: end for

Algorithm 4 ITS-Pool Detection
Params: vector database D =
{(Enc(yn),kn)}Nn , embedding model Enc(·),
permutation resample times T , edit penalty η,
per-token statistic of ITS Sits(·, ·).
Input: candidate text ŷ
Output: p-value of being watermarked p̂

1: /* Aggregation of per-token statistic si with

edit distance trick */

2: procedure dedit(k,y):
3: if len(k) = 0 then
4: return −η · len(y)
5: else if len(y) = 0 then
6: return −η · len(k)
7: else
8: si ← Sits(k1,y2)
9: return max{dedit(k2:,y2:) +

si, dedit(k2:,y)− η, dedit(k,y2:)− η}
10: end if
11: end procedure

12: n∗ ← argmaxn sim(Enc(yn), Enc(ŷ)) ▷
Retrieve key from vector database

13: k̂← kn∗

14: V̂ ← dedit(k̂, ŷ)
15: /* Permutation test */

16: for t ∈ 1, ..., T do
17: kt ∼ U(RL)
18: V t ← dedit(k

t, ŷ)
19: end for
20: /* Calculate p-value */

21: p̂← 1
T+1

(
1 +

∑
t 1V̂ >V t

)
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Algorithm 5 KGW-Pool Generation
Params: language model M , max output length L,
modification function of KGW Fkgw(·, ·), embed-
ding model Enc(·).
Input: N rounds queries {xn}Nn=1.
Output: N rounds outputs {yn}Nn=1, vector
database D.

1: D ← {} ▷ Initialize vector database
2: /* Multi-round queries */

3: for n ∈ {1, ..., N} do
4: Input current round prompt xn

5: yn ← empty string
6: kn ∼ U(R) ▷ Sample key
7: /* Auto-regressive generation */

8: for i ∈ 1, ..., L do
9: Pi ← PM (·|xn,yn

<i)

10: P̂i ← Fkgw(k
n, Pi)

11: yn
i ∼ P̂i

12: end for
13: D ← D + {(Enc(yn), kn)} ▷ Store key
14: Output current round generation yn

15: end for

Algorithm 6 KGW-Pool Detection
Params: vector database D = {(Enc(yn), kn)},
embedding model Enc(·), per-token statistic of
KGW Skgw(·, ·)
Input: candidate text ŷ
Output: p-value of being watermarked p̂

1: n∗ ← argmaxn sim(Enc(yn), Enc(ŷ)) ▷
Retrieve key from vector database

2: k̂ ← kn
∗

3: /* Aggregation of per-token statistic si via

summation */

4: for i ∈ 1, ..., len(ŷ) do
5: si ← Skgw(k̂, ŷi)
6: end for
7: /* Calculation of z-score */

8: z ←∑
i si

9: /* Calculation of p-value */

10: p← 1− Φ(z)
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C Theoretical Proofs

C.1 Proof of Proposition 3.1
Proof. Recall that the imperceptibility is defined
as
∏

i,n

PM (yn
i |xn,yn

<i) = Ek1,...,kN [
∏

i,n

F (kn
i , P

n
i )(yn

i )]

Given that (1) k1, ...,kN i.i.d∼ U(RL); (2)
PM (·|xn,yn

<i) = Eki∼U(R)[F (ki, Pi)]. We have,

RHS = Ek1∼U(RL)...EkN∼U(RL)[
∏

i,n

F (kn
i , P

n
i )(yn

i )]

=
∏

n

Ekn∼U(RL)[
∏

i

F (kn
i , P

n
i )(yn

i )]

=
∏

n

(Ekn
1 ∼U(R)...Ekn

L
∼U(R)[

∏

i

F (kn
i , P

n
i )(yn

i )])

=
∏

n

(
∏

i

Ekn
i ∼U(R)[F (kn

i , P
n
i )(yn

i )])

=
∏

n,i

PM (yn
i |xn,yn

<i) = LHS

C.2 Proof of Proposition 3.2 (EXP-Pool’s
Imperceptibility)

We first recall the distribution modification process
of EXP-Pool. Given a private key ki as seed, a
standard Gumbel vector gki

∈ R|Σ| is sampled.
Gumbel-max sampling process on the next token
distribution Pi(·) := PM (·|xn,yn

<i) via gki
sam-

ples an output token t∗. The degenerate distribution
of t∗ is then returned.
Lemma C.1. The mark module of EXP-Pool satis-
fies the unbiased condition, i.e.

PM (·|xn,yn
<i) = Eki∼U(R)[Fexp(ki, Pi)]

Proof. For simplicity, we denote PM (t|xn,yn
<i) as

Pi(t) and gt as the Gumbel variable in gki
corre-

sponding to the token t. Since The lemma holds if
and only if for any token t ∈ Σ,

PM (t|xn,yn
<i) = E

gki,j
i.i.d∼ Gumbel(0,1)

[1logPi(t)+gt

≥ logPi(t
′) + gt′ , ∀t′ ∈ Σ]

This equation follows as

RHS=P (logPi(t)+gt≥logPi(t
′)+gt′ ,∀t′∈Σ)

=P (exp(−exp(−gt′))≤exp(−exp(−gt))
Pi(t

′)/Pi(t),

∀t′∈Σ)

=

∫ 1

0

P (ut′≤u
Pi(t

′)/Pi(t)
t ,∀t′∈Σ|ut)p(ut)dut

=

∫ 1

0

∏

t′∈Σ

P (ut′≤u
Pi(t

′)/Pi(t)
t |ut)p(ut)dut

=

∫ 1

0

u
∑

t′Pi(t
′)/Pi(t)

t dut

=Pi(t)=LHS

,where ut := exp(− exp(−gt)). We have ut ∼
U(0, 1), since gt ∼ Gumbel(0, 1).

From the unbiased condition and the indepen-
dent condition of WaterPool, the imperceptibility of
EXP-Pool immediately follows according to Propo-
sition 3.1.

C.3 Proof of Proposition 3.2 (ITS-Pool’s
Imperceptibility)

We first recall the distribution modification process
of ITS-Pool. Given a private key ki as the random
seed, a random permutation πki

: Σ → Σ and a
uniform variable uki

∼ U([0, 1]) are sampled. ITS
conducts an inverse transform sampling on the per-
muted distribution P perm via u. The sampled token
t is transformed back to t∗ via inverse permuta-
tion π−1

ki
. The degenerate distribution of t∗ is then

returned.

Lemma C.2. The mark module of ITS satisfies the
unbiased condition, i.e.

PM (·|xn,yn
<i) = Eki∼U(R)[Fits(ki, Pi)]

Proof. The lemma follows if that given any permu-
tation π and any output token t∗,

PM (π(t∗)|xn,yn
<i) = Euki

∼U([0,1])[

1π(t∗) is sampled via inverse transform sampling]

This equation certainly holds because of the defi-
nition of inverse transform sampling, i.e.

RHS=P (uki∈[PM ({t′:ord(t′)<ord ◦ π(t∗)}|xn,yn
<i),

PM ({t′:ord(t′)≤ord ◦ π(t∗)}|xn,yn
<i) ] )

=PM (π(t∗)|xn,yn
<i)=LHS

,where ord : Σ → |Σ| is a function maps each
token to its order in vocabulary.

From the unbiased condition and the indepen-
dent condition of WaterPool, the imperceptibility of
ITS-Pool immediately follows according to Propo-
sition 3.1.

C.4 Proof of Proposition 3.3 (EXP-Pool’s
Efficacy)

We first recall the mark module of EXP-Pool
(gumbel-sample in Table 4). During generation,
the modification function Fexp(ki, Pi) takes a pri-
vate key ki as seed to sample a standard Gum-
bel vector. A Gumbel-max sampling is then con-
duct to sample an output token, of which the de-
generate distribution is returned. During detec-
tion, the mark module takes in a restored pri-
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vate key k̂i to generate a restored Gumbel vec-
tor gk̂i

∈ R|Σ|,gk̂i,j
∼ Gumbel(0, 1). The per-

token statistic Sexp(k̂i,yi) = − exp(−gk̂i,ord(yi)
)

is then calculated, where ord : Σ→ {1, ..., |Σ|} is
a function maps each token to the its order in the
vocabulary.

For simplicity, we denote gt as the Gumbel vari-
able gki,ord(t) corresponding to the token t.

We begin by proving that given a candidate token
yi, the expectation of per-token statistic only relies
on the original distribution Pi(yi) if yi is sampled
from the modified distribution seeded by ki. It can
be formalized as the following lemma.

Lemma C.3. Given a prefix y<i and a to-
ken yi, for a private key ki ∼ U(R), if
yi is sampled from Fexp(ki, PM (·|y<i)), then
Eki∼R[Sexp(ki,yi)|yi,y<i] = −Pi(yi).

Proof. The randomness of ki affects the statistic
via the Gumbel vector gki

= [gt]t∈Σ. For simplic-
ity, we only consider the randomness of gki

instead
of ki.

We first calculate the cumulative distribution
function of Sexp(ki,yi)|yi,y<i.

P (Sexp(ki,yi) ≤ v|yi,y<i)

= P (gyi ≤ − log(−v)|yi,y<i)

(1)
= P (

⋂

t∈Σ

gt + logPi(t) ≤ gyi + logPi(yi)

≤ − log(−v) + logPi(yi) |yi,y<i)

(2)
=

∏

t∈Σ

exp(−v
Pi(t)

Pi(yi)
)

= exp(−v/Pi(yi))

, where the equation (1) follows from the
definition of Gumbel max sampling; (2) fol-
lows from gt ∼ Gumbel(0, 1). Therefore,
−Sexp(ki,yi)|yi,y<i ∼ Exp(1/Pi(yi)). The
lemma follows immediately by calculating the ex-
pectation.

On the contrary, if yi is not sampled from modi-
fied distribution seeded by ki,

P (Sexp(ki,yi)≤v|yi,y<i)=P (gyi≤−log(−v))=exp(v)

from which we have

−Sexp(ki,yi)|yi,y<i ∼ Exp(1)

Eki∼U(R)[Sexp(ki,yi)|yi,y<i] = −1

Eventually, we can guaranteed the statistical differ-

ence of EXP-Pool given the prefix y<i,

E[Sexp(ki,yi)|y<i,H1]−E[Sexp(ki,yi)|y<i,H0]

=Eyi,ki [Sexp(k̂i,yi)|y<i,H1,k̂i=ki]·precall
+Eyi,ki [Sexp(k̂i,yi)|y<i,H1,k̂i ̸=ki]·(1−precall)+1

=Eyi [−Pi(yi)|y<i]·precall−(1−precall)+1

=
∑

yi∈Σ

(1−Pi(yi))Pi(yi)·precall :=ϕexp(p
i)·precall

, where ϕexp(p
i) is only relevant to probability

vector pi of PM (·|y<i), representing watermarking
potentials, and precall is the recall of the retriever
in EXP-Pool.

C.5 Proof of Proposition 3.3 (ITS-Pool’s
Efficacy)

We first recall the mark module of ITS-Pool
(inverse-sample in Table 4). During generation,
the modification function Fits(ki, Pi) takes a pri-
vate key ki as seed to sample a standard uni-
form variable and a random permutation. An in-
verse transform sampling is then conduct on the
permuted distribution to sample an output token,
of which the degenerate distribution is returned.
During detection, the mark module takes in a re-
stored private key k̂i to restore a standard uni-
form variable uk̂i

∼ U(0, 1) and a random per-
mutation πk̂i

: Σ → Σ. The per-token statistic

Sits(k̂i,yi) = (uk̂i
− 1

2)(
ord(πk̂i

(yi))−1

|Σ|−1 − 1
2) is

then calculated, where ord : Σ → {1, ..., |Σ|} is
a function maps each token to the its order in the
vocabulary.

We begin by proving that given a candidate token
yi, the expectation of per-token statistic only relies
on the original distribution Pi(yi) if yi is sampled
from the modified distribution seeded by ki (i.e. the
alternative hypothesis H1). It can be formalized as
the following lemma11.

Lemma C.4. Given a prefix y<i and a to-
ken yi, for a private key ki ∼ U(R), if
yi is sampled from Fits(ki, PM (·|y<i)), then
Eki∼U(R)[Sits(ki,yi)|yi,y<i] = C0 ·(1−Pi(yi)),
where C0 is a constant relevant to vocabulary size
|Σ|.

Proof. The randomness of ki affects the statistic
via the uniform variable uki

and the permutation
πki

. For simplicity, we omit the subscript ki and
only consider the randomness of u and π.

11It is based on Lemma B.1 in (Kuditipudi et al., 2023)
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We show that π|yi,y<i is a uniform random
variable over the permutation space.

P (π|yi,y<i) =
P (yi|π,y<i)P (π)

P (yi|y<i)
= P (π)

, where the second equation follows from that per-
mutation won’t affect the inverse transform sam-
pling (see AppendixC.3)

We also prove that u|π,yi,y<i is a uniform ran-
dom variable. We define the interval of yi given π
in inverse transform sampling during ITS genera-
tion,

I(yi,π)=[Pi({t′ :ord(t′)<ord◦π(yi)}),
Pi({t′ :ord(t′)≤ord◦π(yi)})]

It is evident that |I(yi, π) = Pi(yi)|. Then for any
interval I ⊂ [0, 1] we have

P (u ∈ I|yi, π,y<i) =
P (yi, u ∈ I|π,y<i)

P (yi|π,y<i)
=

|I ∩ I(yi, π)|
|I(yi, π)|

So u|π,yi,y<i ∼ U(I(yi, π)). Then we have,

E[u|yi,π(yi),y<i]

=E
[
Pi({t′ :ord(t′)<ord◦π(yi)})+ |I(yi,π)|

2

∣∣∣∣yi,π(yi),y<i

]

=
(π(yi)−1)

|Σ|−1
·(1−Pi(yi))+

Pi(yi)

2

=
1

2
+(

(π(yi)−1)

|Σ|−1
− 1

2
)(1−Pi(yi))

It is evident that E[u] = 1
2 and E[ (π(yi)−1)

|Σ|−1 ] = 1
2 ,

since they are both uniform standard variables.
Therefore, Sits(ki,yi) essentially calculates the co-
variance between u and π(yi)−1

|Σ|−1 , which is tractable
as following,

Eki [Sits(ki,yi)|yi,y<i]

=Cov
(

u,
π(yi)−1

|Σ|−1

∣∣∣∣yi,y<i

)

=(u− 1

2
)(
π(yi)−1

|Σ|−1
− 1

2
)·P (u,π(yi)|yi,y<i)

=E[u− 1

2
|yi,π(yi),y<i]·(π(yi)−1

|Σ|−1
− 1

2
)·P (π(yi)|yi,y<i)

=(1−Pi(yi))·(π(yi)−1

|Σ|−1
− 1

2
)2 ·P (π(yi)|yi,y<i)

=(1−Pi(yi))·Var
(

π(yi)−1

|Σ|−1

∣∣∣∣yi,y<i

)

=C0 ·(1−Pi(yi))

,where C0 = Var
(

π(yi)−1
|Σ|−1

∣∣∣yi,y<i

)
is a constant

since π|yi,y<i is uniform over the space of vocab-
ulary permutation.

On the contrary, if yi is not sampled
from modified distribution seeded by ki,

Eki
[Sits(ki,yi)|yi,y<i] =Cov(u, π(yi)−1

|Σ|−1 |yi,y<i)
still holds. Now that ki and yi are independent,
Eki

[Sits(ki,yi)|yi,y<i] = 0 trivially. There-
fore, Eyi,ki

[Sits(k̂i,yi)|y<i, H0] = 0 follows
immediately.

Under the alternative hypothesis H1, the lemma
above provides that

Eyi,ki [Sits(k̂i,yi)|y<i, H1]

= Eyi,ki [Sits(k̂i,yi)|y<i, H1, k̂i = ki] · precall
+ Eyi,ki [Sits(k̂i,yi)|y<i, H1, k̂i ̸= ki] · (1− precall)

= Eyi [C0 · (1− Pi(yi))|y<i] · precall
= C0 · precall ·

∑

yi∈Σ

(1− Pi(yi))Pi(yi)

, where precall represents the recall performance
of the retriever in ITS-Pool.

Finally, we can guarantee the statistical differ-
ence of ITS-Pool,

E[Sits(ki,yi)|y<i, H1]− E[Sits(ki,yi)|y<i, H0]

= C0·
∑

yi∈Σ

(1−Pi(yi))Pi(yi)·precall := ϕits(p
i)·precall

, where ϕits(p
i) is only relevant to probability

vector pi of PM (·|y<i), representing watermarking
potentials.

C.6 Proof of Proposition 3.3 (KGW-Pool’s
Efficacy)

We first recall the mark module of KGW-Pool
(logits-add in Table 4). During generation, the
mark module will randomly sample a green list Gki

of γ|Σ| tokens from vocabulary, which is seeded
by ki. Logits of these green tokens are increased
by a constant δ to form the modified distribution
Fkgw(ki, Pi(yi)). During detection, the mark mod-
ule takes in a restored private key k̂i, generates a
green list Gk̂i

seeded by k̂i, and then calculates the

per-token statistic Skgw(k̂i,yi) =
1yi∈G

k̂i
−γ

√
len(y)γ(1−γ)

.

For simplicity, we omit the subscript ki in Gki
.

We also denote the size of vocabulary and green
list as N = |Σ| and NG = γ|Σ| respectively.

Since the denominator is a constant under both
hypotheses, we only need to focus on S′(ki,yi) :=
1yi∈Gki

. Under the alternative hypothesis, the ex-
pectation of S′ is essentially the probability of sam-
pling a token from the green list during KGW-Pool
generation. We show that the probability can be
bounded from below, as formalized in the follow-
ing lemma12.

12It is based on Lemma F.1 in (Kirchenbauer et al., 2023a)
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Lemma C.5. Given a prefix y<i, for a pri-
vate key ki ∼ U(R) and a token yi, if
yi is sampled from Fkgw(ki, PM (·|y<i)),
then Eki,yi

[S′(ki,yi)|y<i] ≥ C1 ·
Spike(pi, (1−γ)(α−1)

1+(α−1)γ ), where C1 is a con-
stant and Spike(pi, c) is the spike entropy defined
in (Kirchenbauer et al., 2023a).

Proof. Trivially, we have Eki,yi
[S′(ki,yi)|y<i] =

P (yi ∈ G,yi,G|y<i). We consider the following
process of sampling yi and G. We first randomly
choose a token t as output token yi, and then ran-
domly sample the remaining tokens to construct
the green list. Therefore, the expected probability
of a token from the green list being sampled can be
written as,

Eyi∈ΣEG s.t.yi∈G
αPi(yi)∑

t∈Σ Pi(t) + α
∑

t∈G Pi(t)

, where α = exp(δ).
Define the inner expectation as fyi(p

i), where
pi is the probability vector of Pi(·). Trivially,
fyi(p

i) = fyi(Πp
i) for any permutation Π over

the vocabulary except yi. Also, fyi is convex in
pi
−yi

. Therefore, we have,

fyi(p
i) = EΠfyi(Πpi)

(1)

≥ fyi(EΠΠpi)

(2)

≥ αPi(yi)/((1− Pi(yi))(N −NG)/(N − 1)

+ α(1− Pi(yi))(NG − 1)/(N − 1) + αPi(yi))

= Pi(yi)
αN − α

N −NG + αNG + (α− 1)(N −NG)Pi(yi)− α

≥ Pi(yi)
αN

N −NG + αNG + (α− 1)(N −NG)Pi(yi)

=
αPi(yi)

(1− γ) + αγ + (α− 1)(1− γ)Pi(yi)

, where (1) follows from Jensen’s inequality; (2)
follows from EΠΠp

i
t =

1−Pi(yi)
N−1 , ∀t ̸= yi. Then

we have,

Ekiyi [S
′(ki,yi)|y<i]

= P (yi ∈ G,yi,G|y<i)

= NG · Eyi∈ΣEG s.t.yi∈G
αPi(yi)∑

t∈Σ Pi(t) + α
∑

t∈G Pi(t)

= NG · Eyi∈Σfyi(p
i)

≥ γα

1 + (α− 1)γ
Spike(pi,

(1− γ)(α− 1)

1 + (α− 1)γ
)

:= C1 · Spike(pi,
(1− γ)(α− 1)

1 + (α− 1)γ
)

, where Spike(pi, c) =
∑

t∈Σ
Pi(t)

1+cPi(t)
. And the

lower bound is strictly larger than γ.

On the contrary, under the null hypothesis, triv-
ially we have E[S′(ki,yi)|y<i, H0] = γ, since ki

and yi are independent. Combining all above, we
eventually have,

E[S(k̂i,yi)|y<i,H1]−E[S(k̂i,yi)|y<i,H0]

=Eki,yi [S(k̂i,yi)|y<i,H1,k̂i=ki]·prec
+Eki,yi [S(k̂i,yi)|y<i,H1,k̂i̸=ki]·(1−prec)

=(Eki,yi [S
′(ki,yi)|y<i,H1]−γ)/

√
len(y)γ(1−γ)·prec

≥(C1·Spike(pi,
(1−γ)(α−1)
1+(α−1)γ )−γ)/

√
len(y)γ(1−γ)·prec

:=ϕkgw(p
i)·prec

, where ϕkgw(p
i) is only relevant to probability

vector pi of PM (·|y<i), representing watermark-
ing potentials at this step, and prec is the recall
performance of the retriever in KGW-Pool.

D Experimental Details

Datasets. Following previous works (Kirchen-
bauer et al., 2023a,b), we include two common
used datasets for our experiments, the Colossal
Common Crawl Cleaned corpus (C4) and "Explain
Like I’m Five" (ELI5) (Fan et al., 2019). C4 is a
colossal, cleaned version of Common Crawl’s web
crawl corpus13, which has been commonly adopted
as pretraining corpus of LLMs. We randomly se-
lect 3000 texts of length 50 from C4 as prompts for
open-ended generation task. ELI5 is a dataset of
questions and answers gathered from three topics of
reddits, where users ask factual questions requiring
paragraph-length or longer answers. Specifically,
we use the version curated by (Krishna et al., 2023)
including 2758 samples. The human-written ques-
tions are used as prompts for long-form question
answering.

Metrics. We generate 20 watermarked outputs
for each prompt, while considering outputs of the
original LLM as non-watermarked. Subsequently,
a total of about 120,000 samples are used to eval-
uate each watermarking technique. For both effi-
cacy and robustness, we report true positive rate
(watermarked texts being successfully detected) at
1% false positive rate (non-watermarked texts be-
ing falsely detected) denoted as TPR@FPR=1%.
To comprehensively evaluate the robustness of wa-
termarking techniques, we include three different
kinds of attacks, namely Lexical-Attack, Dipper-
Attack and Translation-Attack. Lexical-attack is
a baseline attack by randomly add/delete/replace
a small portion of texts. Specifically, we ran-
domly modify 10% tokens of the original wa-

13https://commoncrawl.org
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termarked text. Dipper is a paraphrasing model
proposed by (Krishna et al., 2023) aiming at
corrupting watermark patterns within texts. We
set its hyper-parameters lex=40,div=40 following
(Kirchenbauer et al., 2023b). Translation-attack
represents roundtrip-translation, which is a widely
used paraphrasing method. Following (Kuditipudi
et al., 2023), we translate texts to Russian and then
translate them back to English. For the evaluation
of imperceptibility, we split the criteria into two
aspects: (1) the distribution bias within each output
(2) the independence among different outputs. The
former can be evaluated with perplexity while the
latter can be roughly evaluated with n-gram distinc-
tion (Kirchenbauer et al., 2023b). Specifically, we
consider the distinction across all outputs (Glob-
distinct-N ) and within outputs in response to one
single prompt (Group-distinct-N ).

Baselines. We include several typical meth-
ods as baselines. In addition to EXP(Kuditipudi
et al., 2023), ITS(Kuditipudi et al., 2023) and
KGW(Kirchenbauer et al., 2023a), we also include
Gamma(Hu et al., 2023), Delta(Hu et al., 2023)
and Unigram(Zhao et al., 2023). Both Gamma and
Delta propose unbiased modification functions to-
wards optimal imperceptibility during generation,
and conduct likelihood ratio test for detection. Un-
igram is similar to KGW, fixing the private key
during generation, leading to a fixed green list par-
tition in sequence level.

Implementation details. We conduct main ex-
periments on two LLMs of different scales, OPT-
1.3b and OPT-6.7b, following (Krishna et al., 2023).
OPT-1.3b is used by default except in main ex-
periments. On both open-ended generation and
long-form question answering, we conduct multi-
nomial sampling to generate sequences within the
range of [50, 70] tokens. We use a 128 dimen-
sion sentence embedding model (Nussbaum et al.,
2024) as the retriever in WaterPool. As for imple-
mentation of mark modules in different WaterPool
(i.e. KGW-Pool, ITS-Pool, EXP-Pool), we use
identical hyper-parameter settings as the original
watermarking technique. All baselines are repro-
duced based on source codes provided by original
paper. For KGW, we set δ = 2.0, γ = 0.25 as
suggested in (Kirchenbauer et al., 2023a). For Un-
igram, we set δ = 2.0, γ = 0.5 as suggested in
(Zhao et al., 2023). For Gamma and Delta, we use
the context length of 5 and search the perturbation
strength d over the set{0, 0.1, ..., 1.0} following
(Christ et al., 2023). For EXP and ITS, we set

the key length n = 80, large enough to generate
at most 70 tokens in our main experiments. We
set the edit-distance penalty γ = 0.0 and 0.4 re-
spectively following (Kuditipudi et al., 2023). For
KGW-Pool, we observed high variance of perfor-
mance. It is because of the random partition in a
sequence level. The logits-add mark module is sen-
sitive to this partition, which is similar to Unigram.
To this end, we resample the key for three times
and use the best one as watermarked output during
generation in practice. This trick only leads to ad-
ditional time complexity of generation and won’t
affect any other analysis in this paper. EXP, ITS,
EXP-Pool and ITS-Pool all leverage permutation
tests to calculate p-value (e.g. /* Permutation test

*/ in Algorithm 2). We conduct the permutations
with 5000 resamples. Following (Kuditipudi et al.,
2023), we only pre-compute the permutation dis-
tribution once instead of recomputing it for each
candidate text. This trick reduces the high time
complexity of permutation tests and doesn’t cause
much performance degradation.

E Additional Experiments

E.1 Full Results of WaterPool

In this section, we present full results of WaterPool
under different settings (e.g. OPT-1.3b/OPT-6.7b,
open-ended generation / long-form question an-
swering) in Table 6, 7, 8 and 9.

E.2 Problem of Retrieval Watermark

In this section, we conduct an experiment to empir-
ically demonstrate the statements in Section 3.4
about the semantic collision problem of the re-
trieval watermark (Krishna et al., 2023) in real-
world scenarios. We hypothesize that retrieval
watermark may suffer from severe degradation
when facing different non-watermarked text dis-
tributions. Therefore, in addition to OPT-1.3b
and OPT-6.7b used in main experiments, we in-
clude another eight prominent LLMs: Gemma-
2b(Team et al., 2024), Gemma-7b(Team et al.,
2024), Llama2-7b(Touvron et al., 2023), Llama2-
13b(Touvron et al., 2023), Vicuna-7b(Chiang et al.,
2023), Vicuna-13b(Chiang et al., 2023), generating
outputs for both open-ended generation and long-
form question answering tasks. We employ a cross-
testing experimental setup, where each time one
model is treated as the watermarked model, while
the others are considered as non-watermarked mod-
els. This setup reflects a common real-world sce-
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w/o Attack Lexical-Attack Dipper-Attack Translation-Attack

value↑ ∆ value↑ ∆ value↑ ∆ value↑ ∆

Open Text Generation

Gamma 99.58±0.01 - 78.69±0.08 - 55.18±0.11 - 58.33±0.18 -
Delta 94.24±0.05 - 62.48±0.29 - 52.47±0.10 - 54.52±0.16 -

Unigram 99.59±0.06 - 99.31±0.22 - 83.60±4.75 - 90.99±2.47 -
KGW 99.87±0.01 - 99.24±0.02 - 77.43±0.48 - 85.88±0.06 -
KGW-Pool 99.90±0.00 0.03±0.01 99.74±0.00 0.50±0.02 84.10±0.89 6.67±1.37 92.15±0.14 6.27±0.19

EXP 99.45±0.02 - 98.97±0.02 - 73.60±0.49 - 80.45±0.05 -
EXP-Pool 99.76±0.01 0.31±0.02 99.57±0.00 0.60±0.02 80.42±0.94 6.83±1.18 90.65±0.04 10.20±0.09

ITS 95.48±0.03 - 83.19±0.11 - 59.24±0.13 - 56.88±0.03 -
ITS-Pool 99.18±0.01 3.70±0.03 96.70±0.00 13.52±0.11 61.68±0.03 2.44±0.15 71.33±0.03 14.45±0.06

Long-Form Question Answering

Gamma 99.85±0.01 - 80.93±0.17 - 55.14±0.02 - 61.69±0.09 -
Delta 97.99±0.06 - 65.72±0.17 - 52.75±0.12 - 57.48±0.12 -

Unigram 99.83±0.10 - 99.63±0.19 - 87.79±1.92 - 94.38±1.05 -
KGW 99.97±0.00 - 99.66±0.00 - 81.05±0.23 - 92.34±0.09 -
KGW-Pool 99.96±0.00 -0.01±0.00 99.75±0.02 0.09±0.02 87.41±0.58 6.36±0.38 94.29±0.09 1.95±0.12

EXP 99.86±0.02 - 99.70±0.04 - 80.55±0.41 - 91.17±0.06 -
EXP-Pool 99.92±0.01 0.06±0.02 99.83±0.01 0.13±0.04 85.87±0.32 5.32±0.69 96.05±0.05 4.88±0.11

ITS 97.96±0.06 - 88.41±0.19 - 63.12±0.10 - 68.02±0.21 -
ITS-Pool 99.75±0.00 1.79±0.06 98.48±0.01 10.07±0.19 66.35±0.13 3.23±0.22 81.99±0.07 13.97±0.27

Table 6: Efficacy and Robustness of different watermarking methods on OPT-1.3B evaluated with ROC-AUC. ∆
is the performance boost brought by WaterPool. The best and second-best results are highlighted in bold and
underline.

nario in watermarking as more and more non-
watermarked LLMs will emerge. Subsequently,
we evaluate the performance of the retrieval wa-
termark across eight groups of watermark detec-
tion experiments. The robustness, evaluated by
TPR@FPR=1% under lexical attack, is presented
in Table 10. The results show that even under lexi-
cal attack, the weakest attack, the retrieval water-
mark experiences significant performance degra-
dation of more than 40%, while most other water-
marking techniques maintain high TPR@FPR=1%
(see Table 2). This phenomenon substantiate our
claims in Section 3.4, highlighting the vulnerability
of retrieval watermark compared to other methods
in practical applications.

E.3 Performance with Diverse Negative
Samples

Full results are presented in Table 11.

E.4 Scaling Length of Watermarked Texts

Both (Kirchenbauer et al., 2023a) and (Kirchen-
bauer et al., 2023b) observe that the detection

rate of watermarking is a monotonically increas-
ing function of the watermarked text length. In
this section, we conduct an experiment to investi-
gate the performance of WaterPool with growths
of text length. We generate outputs of different
lengths T ∈ [80, 90, ...200] and calculate the cor-
responding TPR@FPR=1% metrics. The results
are presented in Figure 4. We observe a consistent
increase in the detection rate of WaterPool under
different attack settings, aligning with the findings
reported by (Kirchenbauer et al., 2023b). Moreover,
WaterPool consistently enhance the performance
of original watermarking techniques across all set-
tings, further underscoring its superior capabilities.
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Glob-distinct2 Glob-distinct3 Group-distinct2 Group-distinct3 Perplexity

value↑ ∆↑ value↑ ∆↑ value↑ ∆↑ value↑ ∆↑ value↓ ∆↓
Open-Ended Text Generation

Non-watermark 39.4±0.9 0.0±0.0 75.8±2.0 0.0±0.0 84.3±2.3 0.0±0.0 94.1±2.7 0.0±0.0 6.8±0.0 0.0±0.0

Gamma 39.9±0.0 0.5±0.9 77.0±0.0 1.2±2.0 85.6±0.0 1.3±2.3 95.6±0.0 1.5±2.7 6.8±0.0 0.0±0.0

Delta 39.9±0.0 0.5±0.8 77.0±0.0 1.2±2.0 85.6±0.0 1.3±2.3 95.7±0.0 1.6±2.7 6.8±0.0 0.0±0.0

Unigram 36.5±1.8 -2.9±0.9 72.4±2.4 -3.5±1.2 82.9±2.2 -1.4±1.5 94.8±0.7 0.7±2.3 8.8±0.4 1.9±0.4

KGW 38.2±0.0 -1.2±0.9 74.8±0.0 -1.0±2.0 85.3±0.0 1.0±2.3 95.6±0.0 1.5±2.7 8.4±0.0 1.6±0.0

KGW-Pool 41.9±0.1 2.5±0.8 79.7±0.0 3.8±2.0 87.4±0.0 3.1±2.3 96.7±0.0 2.6±2.7 8.8±0.0 2.0±0.0

EXP 32.0±0.1 -7.4±0.9 61.9±0.4 -13.9±2.3 73.0±0.3 -11.3±2.2 81.9±0.2 -12.2±2.7 6.9±0.0 0.0±0.0

EXP-Pool 39.9±0.0 0.6±0.9 77.0±0.0 1.2±2.0 85.6±0.0 1.3±2.3 95.7±0.0 1.6±2.7 6.8±0.0 0.0±0.0

ITS 35.9±0.0 -3.5±0.9 68.2±0.1 -7.6±2.0 75.9±0.1 -8.4±2.2 84.5±0.1 -9.6±2.6 6.6±0.0 -0.3±0.0

ITS-Pool 39.9±0.0 0.5±0.9 77.0±0.0 1.2±2.0 85.6±0.0 1.3±2.3 95.6±0.0 1.6±2.7 6.8±0.0 0.0±0.0

Long-Form Question Answering

Non-watermark 33.0±0.0 0.0±0.0 71.3±0.0 0.0±0.0 87.1±0.1 0.0±0.0 97.1±0.0 0.0±0.0 8.8±0.0 0.0±0.0

Gamma 32.9±0.0 -0.1±0.0 71.2±0.1 -0.1±0.1 87.1±0.0 -0.1±0.0 97.0±0.0 -0.1±0.0 8.8±0.0 -0.0±0.0

Delta 33.0±0.0 -0.0±0.0 71.2±0.1 -0.1±0.1 87.1±0.0 -0.1±0.1 97.0±0.0 -0.0±0.0 8.8±0.0 -0.0±0.1

Unigram 29.2±2.0 -3.8±2.0 65.1±2.8 -6.2±2.8 82.5±2.2 -4.7±2.2 95.1±0.6 -2.0±0.6 10.4±0.8 1.6±0.8

KGW 31.3±0.1 -1.7±0.1 68.1±0.1 -3.2±0.1 86.0±0.0 -1.1±0.0 96.5±0.0 -0.6±0.0 10.8±0.0 2.0±0.0

KGW-Pool 34.8±0.0 1.8±0.0 73.5±0.0 2.2±0.1 85.2±0.1 -2.0±0.1 95.1±0.0 -2.0±0.0 10.5±0.0 1.6±0.0

EXP 25.2±0.8 -7.8±0.8 54.1±1.8 -17.2±1.8 75.3±0.1 -11.8±0.1 84.7±0.1 -12.4±0.1 8.7±0.2 -0.1±0.2

EXP-Pool 32.9±0.1 -0.1±0.1 71.1±0.3 -0.1±0.2 87.1±0.0 -0.1±0.0 97.1±0.0 -0.0±0.0 8.8±0.0 -0.0±0.0

ITS 29.4±0.0 -3.6±0.1 62.7±0.1 -8.6±0.1 77.4±0.1 -9.8±0.1 85.9±0.1 -11.2±0.1 8.4±0.0 -0.5±0.0

ITS-Pool 32.9±0.0 -0.1±0.0 71.1±0.0 -0.1±0.0 87.1±0.0 -0.1±0.0 97.0±0.0 -0.1±0.0 8.8±0.0 -0.0±0.0

Table 7: Imperceptibility of different watermarking methods on OPT-6.7B. ∆ is the difference between watermarked
and non-watermarked texts. The best and second-best results before rounding are highlighted in bold and underline.

w/o Attack Lexical-Attack Dipper-Attack Translation-Attack

value↑ ∆ value↑ ∆ value↑ ∆ value↑ ∆

Open-Ended Text Generation

Gamma 95.46±0.07 - 16.08±0.44 - 2.40±0.12 - 2.93±0.09 -
Delta 70.85±0.11 - 7.34±0.26 - 2.10±0.04 - 2.60±0.05 -

Unigram 93.68±2.32 - 89.39±4.31 - 23.62±13.20 - 36.52±14.15 -
KGW 97.58±0.08 - 86.17±0.49 - 14.63±0.05 - 25.88±0.16 -
KGW-Pool 96.77±0.11 -0.81±0.03 93.30±0.08 7.13±0.42 23.66±1.03 9.03±1.06 37.91±0.12 12.03±0.10

EXP 94.84±0.35 - 88.97±0.68 - 15.40±1.24 - 27.16±1.28 -
EXP-Pool 96.56±0.96 1.72±1.31 94.19±0.07 5.22±0.66 22.03±0.85 6.63±2.05 43.84±0.52 16.68±0.89

ITS 64.71±0.46 - 21.06±0.59 - 2.14±0.08 - 2.95±0.17 -
ITS-Pool 88.43±0.11 23.72±0.47 60.89±0.34 39.84±0.57 3.77±0.06 1.63±0.13 8.98±0.11 6.03±0.20

Long-Form Question Answering

Gamma 98.33±0.04 - 20.20±0.39 - 2.22±0.05 - 4.34±0.12 -
Delta 89.08±0.16 - 12.08±0.10 - 2.11±0.13 - 4.22±0.15 -

Unigram 96.50±2.59 - 90.67±6.19 - 29.91±13.55 - 42.00±19.57 -
KGW 99.29±0.01 - 92.69±0.30 - 17.59±0.26 - 41.33±0.24 -
KGW-Pool 99.40±0.17 0.11±0.17 97.25±0.17 4.56±0.23 28.17±0.84 10.57±0.83 45.67±2.06 4.33±1.88

EXP 98.66±0.08 - 96.11±0.21 - 22.41±1.82 - 49.18±0.97 -
EXP-Pool 99.27±0.04 0.61±0.06 98.12±0.03 2.01±0.23 32.14±0.08 9.73±1.89 65.61±0.06 16.43±0.92

ITS 81.56±0.37 - 33.43±0.74 - 2.77±0.07 - 6.38±0.19 -
ITS-Pool 96.48±0.08 14.92±0.37 78.37±0.36 44.94±0.66 6.10±0.26 3.33±0.21 20.88±0.36 14.50±0.44

Table 8: Efficacy and Robustness of different watermarking methods on OPT-6.7B evaluated with TPR@FPR=1%.
∆ is the performance boost brought by WaterPool. The best and second-best results before rounding are highlighted
in bold and underline.
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w/o Attack Lexical-Attack Dipper-Attack Translation-Attack

value↑ ∆ value↑ ∆ value↑ ∆ value↑ ∆

Open Text Generation

Gamma 99.33±0.01 - 77.01±0.14 - 55.20±0.17 - 57.47±0.20 -
Delta 92.84±0.05 - 61.06±0.26 - 52.39±0.07 - 53.83±0.04 -

Unigram 99.48±0.19 - 99.12±0.38 - 83.94±5.55 - 89.73±3.35 -
KGW 99.77±0.01 - 98.96±0.03 - 76.73±0.17 - 83.73±0.16 -
KGW-Pool 99.84±0.00 0.06±0.01 99.62±0.00 0.66±0.03 83.88±0.71 7.14±0.76 90.85±0.09 7.13±0.23

EXP 99.12±0.03 - 98.32±0.04 - 71.72±0.49 - 78.93±1.57 -
EXP-Pool 99.46±0.21 0.34±0.18 99.29±0.03 0.96±0.07 77.78±1.12 6.06±1.61 88.22±0.13 9.29±1.45

ITS 93.25±0.06 - 79.89±0.10 - 59.15±0.18 - 55.34±0.19 -
ITS-Pool 98.63±0.01 5.38±0.07 95.40±0.06 15.51±0.07 61.17±0.12 2.02±0.23 69.49±0.10 14.15±0.16

Long-Form Question Answering

Gamma 99.81±0.00 - 80.10±0.11 - 54.91±0.06 - 60.16±0.05 -
Delta 97.74±0.02 - 65.49±0.07 - 52.54±0.12 - 56.29±0.07 -

Unigram 99.80±0.14 - 99.57±0.26 - 88.43±4.17 - 93.74±2.41 -
KGW 99.96±0.00 - 99.57±0.00 - 80.23±0.16 - 91.00±0.08 -
KGW-Pool 99.95±0.01 -0.01±0.01 99.73±0.01 0.17±0.00 86.84±0.62 6.61±0.49 93.32±0.04 2.31±0.10

EXP 99.81±0.01 - 99.54±0.03 - 77.31±1.28 - 89.34±0.34 -
EXP-Pool 99.90±0.00 0.09±0.01 99.77±0.01 0.23±0.02 84.38±0.15 7.07±1.16 94.71±0.02 5.36±0.34

ITS 97.04±0.02 - 86.25±0.04 - 62.49±0.14 - 65.94±0.10 -
ITS-Pool 99.67±0.01 2.63±0.01 98.08±0.01 11.83±0.04 65.85±0.13 3.36±0.28 80.03±0.10 14.10±0.18

Table 9: Efficacy and Robustness of different watermarking methods on OPT-6.7B evaluated with ROC-AUC. ∆
is the performance boost brought by WaterPool. The best and second-best results are highlighted in bold and
underline.

Watermarked Model Vicuna-13b Vicuna-7b Llama2-13b Llama2-7b Gemma-2b Gemma-7b OPT-1.3b OPT-6.7b Avg

Open-Ended Text Generation

Vicuna-13b - 16.36 32.36 40.85 61.23 51.09 49.94 40.02 41.69
Vicuna-7b 14.62 - 39.24 41.41 61.16 53.00 49.63 39.73 42.69

Llama2-13b 23.36 31.65 - 44.56 66.95 58.67 53.12 43.22 45.93
Llama2-7b 29.19 31.63 41.54 - 68.24 60.53 53.10 43.35 46.80
Gemma-2b 47.32 48.20 63.43 65.86 - 67.78 63.05 54.13 58.54
Gemma-7b 37.95 41.03 55.49 58.77 68.70 - 58.30 48.65 52.70
OPT-1.3b 42.29 42.29 53.00 57.93 66.59 62.43 - 53.00 53.93
OPT-6.7b 30.73 30.73 47.83 47.83 62.37 57.79 52.99 - 47.18

Long-Form Question Answering

Vicuna-13b - 0.87 39.39 44.02 68.47 45.95 55.36 46.01 42.87
Vicuna-7b 0.76 - 40.00 42.84 68.19 45.65 54.25 45.01 42.38

Llama2-13b 9.16 9.81 - 44.00 66.52 46.48 50.77 41.62 38.34
Llama2-7b 10.77 10.37 41.94 - 66.40 47.64 53.99 45.15 39.47
Gemma-2b 21.65 21.88 64.71 67.15 - 65.23 69.16 60.29 52.87
Gemma-7b 8.93 9.56 42.78 45.74 63.75 - 54.14 44.80 38.53
OPT-1.3b 17.56 17.56 47.64 47.64 64.59 52.26 - 52.26 42.79
OPT-6.7b 12.83 8.93 41.87 41.87 59.81 41.87 55.68 - 37.55

Table 10: TPR@FPR=1% of retrieval watermark under lexical attacks. The model in the first column is the model
being watermarked. Retrieval watermark is vulnerable even under the weakest lexical attacks.
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w/o Attack Lexical-Attack Dipper-Attack Translation-Attack

EXP-Pool
Original 98.43 / 99.56 96.67 / 98.81 26.17 / 36.24 51.41 / 72.61
Human 98.35 / 99.66 96.50 / 99.04 24.49 / 39.70 50.23 / 75.00

Other Models 98.45 / 99.61 96.72 / 98.88 25.65 / 36.63 51.60 / 72.51

KGW-Pool
Original 98.29 / 99.51 95.29 / 97.97 24.62 / 29.92 42.26 / 50.14
Human 98.96 / 99.98 96.27 / 99.56 27.23 / 46.80 46.22 / 69.24

Other Models 98.96 / 99.71 96.21 / 98.03 26.33 / 30.52 45.42 / 51.66

ITS-Pool
Original 92.56 / 97.56 68.50 / 81.73 4.05 / 6.25 10.83 / 24.26
Human 93.33 / 97.44 71.18 / 80.77 4.61 / 5.82 12.01 / 22.95

Other Models 92.73 / 97.65 69.27 / 82.22 4.15 / 6.62 11.17 / 24.92

Table 11: TPR@FPR=1% of WaterPool with different non-watermarked texts. The results are in form of (C4 Result

/ LFQA Result). The first column lists watermarking methods, and the second column shows non-watermarked
text sources. WaterPool remains stable across different non-watermarked texts.
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Figure 4: TPR@FPR=1% of different watermarking
techniques with the growths of text length. The same
color indicates different methods sharing the same mark
module. Solid lines represent original methods while
dashed lines represent WaterPool methods.
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