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Abstract

The widespread popularity of Large Language
Models (LLMs), partly due to their emerg-
ing in-context learning ability, has highlighted
the importance of ethical and safety consid-
erations for deployment. Motivated by corre-
sponding data protection guidelines, we inves-
tigate machine unlearning for LLMs. In con-
trast to the growing literature on fine-tuning
methods to achieve unlearning, we focus on
a comparatively lightweight alternative called
soft prompting to realize unlearning in LLMs.
With losses designed to enforce forgetting as
well as utility preservation, our framework
Soft Prompting for Unlearning (SPUL) learns
prompt tokens that are prepended to a query
to induce unlearning of specific training exam-
ples at inference time without updating LLM
parameters. We conduct a rigorous evalua-
tion of the proposed method, and results in-
dicate that SPUL can significantly improve
the trade-off between utility and forgetting
for text classification and question-answering.
We further validate our method with LLMs of
varying parameter sizes to highlight its flex-
ibility and provide detailed insights into the
choice of hyperparameters and the influence of
the size of unlearning data. Our implemen-
tation is available at https://github.com/
karuna-bhaila/llm_unlearning.

1 Introduction

With evolving transformer models (Vaswani et al.,
2017) and the availability of massive text corpus,
language models are progressing rapidly. The pre-
train and fine-tune pipeline has garnered wide pop-
ularity, especially since the release of LLMs such
as GPT (OpenAI, 2024) and LLaMA (Touvron
et al., 2023). However, several ethical and secu-
rity concerns have been raised due to the presence
of private, sensitive, or harmful information in the
training data. For example, LLMs can regurgitate
personal information (Nasr et al., 2023), or mimic
harmful and/or hateful behavior as a consequence

of such content being prevalent in the data (Wen
et al., 2023). The non-consented and unwarranted
use of copyrighted content for LLM training has
also raised significant concerns (Eldan and Russi-
novich, 2023; Grynbaum and Mac, 2023).

Current policies governing the use and distri-
bution of such models do not encompass all ethi-
cal avenues; nonetheless, certain regulations such
as California Consumer Privacy Act (CCPA) and
GDPR’s Right to be Forgotten (RTBF) serve as
guidelines for organizations to ensure that their op-
erations do not infringe upon user privacy. Specif-
ically, these regulations stipulate that businesses
and data collectors provide and exercise an opt-
out mechanism essentially allowing individuals to
request the deletion of their data on reasonable
grounds. In machine learning literature, these reg-
ulations have been conceptualized as machine un-
learning (Cao and Yang, 2015; Bourtoule et al.,
2021), which aims to eliminate the influence of un-
wanted data points on a model’s behavior as if they
had never been observed during training. Naturally,
machine unlearning should be integrated into the
LLM pipeline to address previously outlined issues
resulting from the presence of sensitive or harm-
ful data in pre-training. However, unlearning in
LLMs faces unique challenges due to the inaccessi-
bility of model and pre-training data, and the sheer
size of the pre-trained LLMs making re-training
practically infeasible. Much of the research in this
direction therefore focuses on the fine-tuning ap-
proach which involves training all or a subset of
LLM parameters to enforce unlearning (Jang et al.,
2023; Chen and Yang, 2023; Yao et al., 2024b;
Maini et al., 2024; Yao et al., 2024a).

In contrast, we present a resource-efficient ap-
proach to unlearning in LLMs via soft prompting.
Soft prompting optimizes a set of task-specific to-
ken embeddings that learn contextual information
from a corresponding dataset and instruct a frozen
LLM during inference (Lester et al., 2021; Li and
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Liang, 2021). We leverage this ability to mod-
ulate LLM outputs using learnable prompts and
formulate Soft Prompting for Unlearning (SPUL),
a resource-efficient mechanism to achieve LLM un-
learning in text classification and multiple-choice
question answering (MCQA) tasks. SPUL opti-
mizes soft prompts so that they learn to encode
underlying information in the data relevant for un-
learning. When prepended to the input tokens of
an LLM during inference, the soft prompts guide
the LLM towards a generic response. We imple-
ment a multi-objective loss aligned with specific
unlearning goals to facilitate soft prompt learning.
SPUL unlearns undesirable outcomes without up-
dating large-scale LLM parameters and can fully
capitalize on the language understanding capability
offered by the pre-trained LLMs. Consequently,
the same pre-trained LLM can be utilized for differ-
ent unlearning tasks and datasets during inference.

We formulate LLM unlearning as the forget-
ting of a training data subset composed of bench-
mark NLP datasets for sentiment classification or
MCQA (Pawelczyk et al., 2024; Li et al., 2024;
Chen and Yang, 2023). The unlearning subset
could contain data corresponding to entities or sen-
sitive and potentially harmful information. To eval-
uate whether SPUL can achieve unlearning, we
focus on quantifying the predictive performance
on the unlearning subset as well as a general retain
subset and consider the trade-off between them. In
this setting, SPUL can effectively induce forgetting
during inference while preserving the pre-trained
utility with performance comparable to or signifi-
cantly better than multiple baselines that implement
fine-tuning. We conduct experiments to analyze
the influence of SPUL hyperparameters including
the contribution of loss components and the size
of the soft prompts. We further validate SPUL on
multiple pre-trained LLMs with different parameter
sizes and using varied sizes of unlearning sets.

2 Related Work

2.1 Soft prompting

Soft prompting or prompt tuning emerged as a
lightweight alternative to fine-tuning while keeping
pre-trained LLM parameters frozen. Motivated by
discrete prompts that guide pre-trained LLMs via
task-specific instructions or demonstration exam-
ples, soft prompting makes prompt design more
efficient by employing trainable prompt parame-
ters. Lester et al. (2021) added trainable embed-

dings to the encoder input sequence of an LLM and
achieved performance comparable to fine-tuning on
NLP classification tasks with models having over
10B parameters. Simultaneously, Li and Liang
(2021) developed the notion of prefix tuning which
prepends task-specific prefixes to the input embed-
dings along with the encoder and decoder inputs
of an autoregressive LM and obtained comparable
performance for text generation tasks. Liu et al.
(2023) concatenated trainable continuous prompts
with discrete prompts along with a prompt encoder
that maps prompts to model inputs to improve per-
formance on supervised and few-shot tasks. Sub-
sequent research showed that deep prompt tuning
achieves comparable performance to fine-tuning
across several tasks on models of varying scales by
inserting prompts at all layers (Liu et al., 2022).

2.2 Unlearning in LLMs

Machine unlearning addresses data protection
guidelines by efficiently forgetting training sam-
ples corresponding to unlearning requests in place
of costly retraining (Bourtoule et al., 2021; Cao
and Yang, 2015; Guo et al., 2020; Sekhari et al.,
2021) and is also gaining prominence in LLMs due
to concerns regarding bias, toxicity, and privacy (Si
et al., 2023; Liu et al., 2024). Some works in this
direction emphasize model parameter optimization
via gradient ascent (Jang et al., 2023; Chen and
Yang, 2023; Yao et al., 2024b; Maini et al., 2024;
Yao et al., 2024a) to unlearn unwanted responses
for specific examples or datasets. They also fine-
tune the model with various knowledge alignment
objectives to maintain model utility. Other works
leverage parameter optimization via relabeling of
unlearning data. For instance, Eldan and Russi-
novich (2023) unlearn Harry Potter content by fine-
tuning the model via gradient descent to replace the
model’s response with outputs containing generic
translations. Jia et al. (2024) utilize similar fine-
tuning objectives with a focus on optimizer se-
lection and propose a framework that performs
influence-based model updates via second-order
optimization. Additionally, some works propose
localization-based objectives that aim to identify a
subset of model units that represent unlearning data
and effectively delete them (Meng et al., 2022; Yu
et al., 2023; Wu et al., 2023). A few works also fo-
cus on modifying LLM input sequences to promote
unlearning for black-box LLMs but are limited in
the size of unlearning data. For instance, Pawel-
czyk et al. (2024) formulate in-context unlearning
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by crafting inputs comprising unlearning samples
paired with flipped labels. Thaker et al. (2024) in-
vestigate guardrail techniques for unlearning by in-
structing models to withhold unwanted knowledge
or filtering undesirable LLM outputs. Unlike most
fine-tuning-based approaches, our goal in this work
is to develop a soft prompting strategy to facilitate
unlearning in LLMs. We aim to modulate LLM be-
havior using prompts similar to input modification
strategies. However, instead of specifying manual
instructions or providing demonstration samples as
context, we leverage soft prompting to automate
prompt optimization while adhering to unlearning
objectives through loss specifications.

3 Soft Prompting for Unlearning

3.1 Soft Prompting
Let D = {si, yi}Ni=1 denote a dataset containing
N input-output pairs where si is a text sequence
containing ni tokens and yi is the corresponding
output. Also, let hθ represent a pre-trained LLM
with parameters θ; hθ can be prompted with si to
obtain an output ŷi. Assume xi ∈ Rni×d denotes
the token embeddings obtained for an arbitrary text
sample si from the embedding module of hθ where
d is the dimension of the embedding space. We
first define p prompt tokens as ϕ = {ϕ1, · · · , ϕp}
where ϕi ∈ Rd. To adapt hθ over D using soft
prompts, ϕ is appended to xi to form the sequence
{ϕ,xi} ∈ R(p+ni)×d as input to the encoder or
decoder in hθ. During backpropagation, the pre-
trained parameters θ are frozen and gradient up-
dates are applied only to ϕ when maximizing the
likelihood of the output yi as

argmax
ϕ

log hθ({ϕ,xi}). (1)

The size of the learnable prompts ϕ is very small
compared to that of the pre-trained parameters θ.
Nonetheless, soft prompting has shown consider-
able performance over various language tasks with
results comparable to fine-tuning. This motivates
us to consider whether we can achieve unlearning
in LLMs by optimizing continuous prompt tokens.

3.2 Problem Formulation
Given a training dataset Dtr that was observed
during pre-training of hθ, we assume a forget
set, Dtr

f ⊂ Dtr, as the data intended for forget-
ting/removal from hθ. Simultaneously, we define
a retain set Dtr

r = Dtr \ Dtr
f comprising the re-

maining samples. Then, the goal of unlearning is

to forget the token sequences in Dtr
f while main-

taining inference utility on Dtr
r . For our work, we

focus on the task of text classification and question
answering and interpret unlearning as the forgetting
of the predictive output token sequences yi ∈ Dtr

f .
Essentially, we de-correlate text features and their
corresponding labels for the relevant forget sam-
ples but preserve the predictive performance on the
retain samples. To this end, we aim to design a soft
prompting framework to obtain optimized prompt
tokens that can guide the base model toward the
forget and retain objectives. With our framework,
we aim to address the following research questions.
RQ1: How can soft prompting be utilized to effec-
tively unlearn subsets of training data in the text
classification/QA domain?
RQ2: How can soft prompting be implemented to
achieve utility preservation with forgetting?
RQ3: How efficient is soft prompting-based un-
learning compared to fine-tuning?

3.3 Method
As soft prompts can be trained to encode signals
from a dataset with the purpose of adapting a pre-
trained LLM to a specific downstream task, we
anticipate that the strategy can also be utilized to
encode relevant information from an unlearning
dataset containing forget and retain samples. Here,
we propose the framework SPUL that leverages
soft prompting to obtain effective prompt tokens
ϕ from an unlearning dataset Dtr. Since one of
the unlearning objectives in our framework is to
promote feature and text de-correlation for forget
samples, we design a loss attuned to enforcing in-
correct predictions for the respective text inputs.
Specifically, we force the model to associate each
input forget text sequence with a generic output to-
ken instead of its true label. We construct a generic
label set Ȳ that is disjoint from the task labels and
contains tokens such as neutral, unknown, or none
and define a loss over the forget inputs,

Lf =
∑

(xi,.)∈Dtr
f

l(ŷi|{ϕ,xi}, ȳi), (2)

where ȳi denotes a uniform random sample drawn
from the pre-defined generic label set Ȳ , and l(·)
refers to the standard cross-entropy loss. Ideally,
Lf allows the prompt tokens ϕ to capture specific
nuances from the samples in Dtr

f and consequently
guide the LLM to change its predictive sequence
for an arbitrary example containing the learned dis-
tinctions. Simultaneously, unlearning also aims
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to preserve the predictive performance for sam-
ples not included in the forget set. In SPUL, the
prepended prompt tokens ϕ should not change the
predictive sequences for xj ∈ Dtr

r . Therefore, to
preserve inference utility on the retain set, we de-
fine a loss using their true labels as

Lr =
∑

(xj ,yj)∈Dtr
r

l(ŷj |{ϕ,xj}, yj), (3)

where l(·) again represents the cross-entropy loss.
Lr ensures that the model’s utility on the retain
set does not degrade with the addition of prompt
tokens. In addition to maintaining performance on
the retain set, the model after unlearning should
closely resemble the model before unlearning. In
our framework, we constrain the predictive distri-
bution of the model such that hθ({ϕ,xj}) reflects
hθ(xj) for any xj ∈ Dtr

r . We quantify this differ-
ence using KL divergence as

Lkl =
∑

(xj ,.)∈Dtr
r

KL(hθ({ϕ,xj})||hθ(xj)), (4)

where KL(·) denotes the KL divergence term.
hθ({ϕ,xj}) represents the base model’s predic-
tive distribution conditioned on inputs prepended
with the learnable prompt tokens and hθ(xj) refers
to the output distribution conditioned only on the
input text sequence. We utilize Lkl in addition to
Lr to avoid large deviations in the base model’s
output due to the influence from Lf . Finally, at
each time step t during training, we update ϕ by
optimizing the overall loss obtained as

L = Lf + α · Lr + β · Lkl, (5)

where α and β are hyperparameters that specify the
contribution of the respective loss components.

4 Experiments

4.1 Experimental Setup
Datasets We evaluate SPUL on standard NLP
datasets SST-2 (Socher et al., 2013) and Yelp polar-
ity (Zhang et al., 2015) for sentiment classification
task. SST-2 and Yelp contain reviews with each
text sequence being labeled as a positive or negative
sentiment. To build a realistic unlearning scenario
where unlearning requests from each user would
likely include multiple related training samples, we
preprocess the classification datasets to construct
the forget and retain sets such that the forget sam-
ples are semantically similar to each other (Yelp)

Table 1: Dataset Statistics

Dataset Dtr
f Dtr

r Dte
f Dte

r

SST-2 1425 46331 610 19855
Yelp polarity 5081 95012 885 18089
WMDP+SciQ 900 12679 373 1000

or refer to common entities (SST-2). For SST-2,
we perform Named Entity Recognition to identify
named personalities, select a specific set of entities,
and sample all related reviews to form the forget
set Dtr

f . The remaining reviews are consequently
assigned to the retain set Dtr

r . We perform a sim-
ilar partitioning using the selected entities on the
test set to obtain Dte

f and Dte
r . For Yelp, we per-

form k-means clustering with cosine distance on
the training data to divide the reviews into semanti-
cally similar groups. We randomly select a subset
of the clusters and group them to form the Dtr

f and
the rest as Dtr

r . We utilize the same cluster centers
to infer cluster identities for the test data and form
the sets Dte

f and Dte
r accordingly.

We also evaluate SPUL for multiple-choice ques-
tion answering using a combination of WMDP (Li
et al., 2024) and SciQ (Welbl et al., 2017) datasets.
SciQ consists of exam questions about Physics,
Chemistry, and Biology, among others in a four-
way multiple-choice format where each answer
choice is associated with symbols such as “A”,
“B”, etc. and WMDP contains questions about
hazardous knowledge in biosecurity, cybersecurity,
and chemical security in the same format. In this
MCQA task, we construct forget sets to unlearn po-
tentially harmful information while retaining gen-
eral science knowledge, i.e.: we obtain the forget
sets from WMDP containing questions about haz-
ardous knowledge in biosecurity and the retain sets
from SciQ with general science questions. We refer
to this dataset as WMDP+SciQ. Table 1 includes
the sizes of the constructed forget and retain sets.

Baselines We assess the effectiveness of SPUL
by comparing its performance against multiple
SOTA parameter-tuning baselines. Gradient As-
cent (GA) optimizes pre-trained LLM parameters
by maximizing the cross-entropy loss defined only
on the forget set Dtr

f in place of standard mini-
mization (Jang et al., 2023). Fine-tuning with Ran-
dom Labels (RL) similarly optimizes the LLM on
Dtr

f but by enforcing convergence on random vo-
cabulary terms (Golatkar et al., 2020; Yao et al.,
2024a). We use the generic label set discussed
in Section 3.3 as the random labels for RL. Gradient
Ascent + KL Divergence (GA+KL) and Gradient
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Ascent + Descent (GA+GD) incorporate parame-
ter optimization on the retain set Dtr

r in addition
to the GA loss to balance forgetting effectiveness
with utility (Yao et al., 2024a). GA+KL defines
a KL-divergence constraint on the LLM’s output
distribution for Dtr

r and GA+GD minimizes the
standard cross-entropy loss on Dtr

r . Negative Pref-
erence Optimization (NPO) achieves unlearning
via alignment by maximizing the difference in pre-
dictive probabilities for forget samples between
the unlearned model and a reference model trained
on the entire dataset (Zhang et al., 2024). We im-
plement the NPO+RT variant which additionally
incorporates a loss on the retain set and was shown
to achieve a better trade-off. We fully fine-tune the
LLM for all baselines following prior works based
on their publicly available implementations.

Settings We use LLaMA-2-7B (Touvron et al.,
2023) as the base LLM to evaluate SPUL and fur-
ther validate its unlearning effectiveness with OPT-
1.3B (Zhang et al., 2022) and LLaMA-2-13B (Tou-
vron et al., 2023). To ensure familiarization with
the unlearning dataset, we fine-tune the base LLMs
on the full training dataset Dtr = Dtr

f ∪ Dtr
r

for 10 epochs on SST-2, 2 epochs on Yelp, and
5 epochs on WMDP+SciQ with a learning rate
set to 0.0001 and context length set to 1024 us-
ing QLoRA (Dettmers et al., 2023). We treat this
fine-tuned version of the LLM as the base model
for unlearning. For SPUL, we fix the learning
rate at 0.0001 across all LLMs and datasets. We
vary prompt token length p among {10, 20, 30, 40,
50} and the regularization parameters α as {0.1,
0.5, 1.0} and β as {0.0, 0.1, 0.5, 1.0}. We train
our unlearning framework for a total of 10 epochs.
For baselines except NPO+RT, we follow earlier
works and perform training over 1 epoch as it has
been observed that training over multiple epochs
quickly deteriorates model performance on the re-
tain set (Yao et al., 2024a). For NPO+RT, we un-
learn over 10 epochs and use the best-performing
hyperparameters reported in its paper (Zhang et al.,
2024). We also conduct a parameter search for the
best learning rates. All experiments are conducted
on NVIDIA A100 GPUs with 40GB RAM and we
report the evaluation metrics over a single run due
to the resource-intensive nature of the experiments.

Evaluation We demonstrate the efficacy of the
unlearning methods by evaluating them based on
the research questions posed in Section 3.2. To
quantify how well SPUL addresses RQ1, we report

the accuracy and weighted F1 on the forget set, Dtr
f ,

which signifies whether the learned soft prompts
can de-correlate the text features and labels. As
Dte

f is composed of text sequences semantically or
lexically similar to Dtr

f , the prompt tokens should
result in a comparable performance decline on Dte

f .
To evaluate SPUL on RQ2, we report performance
on Dtr

r and consequently Dte
r . We require the dif-

ferences in the accuracy and F1 scores of the base
model before and after unlearning to be minimal
for utility preservation. On the whole, we consider
the tradeoff between forget and retain metrics to
evaluate unlearning. To answer RQ3, we compare
the number of training parameters and required
GPU hours. We conduct further experiments to
evaluate the influence of different loss objectives
and choice of hyperparameters.

4.2 Experimental Results

Main Results We include our main results with
LLaMA-2-7B in Table 2. We report performance
for the original pre-trained LLM as Vanilla and the
fine-tuned base model as QLoRA. We notice that
the Vanilla results are considerably poorer for SST-
2 than Yelp. We attribute the difference in utility to
the longer and more descriptive text sequences in
Yelp that can provide more contextual information.
Nonetheless, after fine-tuning with QLoRA, the
LLM’s performance increases to similar margins
for both sentiment classification datasets. QLoRA
fine-tuning similarly improves LLM’s predictions
for the WMDP+SciQ dataset. This indicates that
the LLM has memorized relevant contextual infor-
mation about the task and training data.

From Table 2, we observe for SST-2 that SPUL
significantly reduces accuracy and F1 on Dtr

f com-
pared to QLoRA demonstrating forget efficiency.
Also, the performance gap for Dtr

r between them
is minimal showing that SPUL can promote un-
learning while preserving inference utility. More-
over, the metrics for Dte

f and Dte
r reflect those re-

ported for Dtr
f and Dtr

r showing that soft prompts
effectively impose unlearning constraints on un-
seen samples. We observe similar trends for Yelp.
Although the performance drop for Dtr

f and Dte
f

in Yelp are not equally as large as SST-2, the for-
get utility with the learned tokens is significantly
lesser than that of the base model, QLoRA, and
also lower than the Vanilla model which has not
been fine-tuned on the dataset. We conjecture
that the additional context provided by descriptive
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Table 2: SPUL unlearning performance compared to baselines with LLaMA-2-7B

Dataset Method Train Retain (Dtr
r ) Train Forget (Dtr

f ) Test Retain (Dte
r ) Test Forget (Dte

f )

ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓ ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓

SST-2

Vanilla 37.50 44.66 31.79 38.34 37.51 44.67 29.67 36.85
QLoRA 99.89 99.89 99.72 99.72 95.57 95.57 96.07 96.07

GA 55.66 39.80 53.93 37.83 55.96 40.16 56.89 41.25
RL 33.31 48.08 13.82 22.97 31.00 45.56 14.26 24.18

GA+KL 55.64 39.87 53.96 38.07 55.94 40.24 56.89 41.47
GA+GD 97.17 97.50 13.75 20.58 94.43 94.76 11.31 17.18
NPO+RT 99.98 99.98 1.83 3.58 95.47 95.48 2.95 5.70

SPUL 99.15 99.39 12.98 22.94 94.93 95.24 16.07 27.42

Yelp

Vanilla 89.55 89.88 89.29 89.62 90.03 90.33 86.89 87.37
QLoRA 99.31 99.31 99.49 99.49 98.42 98.41 98.76 98.76

GA 66.11 63.48 67.90 64.62 65.13 62.37 67.91 64.24
RL 53.00 67.75 52.84 66.78 52.75 67.40 49.94 65.01

GA+KL 46.85 32.90 50.32 35.57 46.27 32.26 51.19 35.97
GA+GD 99.23 99.42 79.69 86.98 97.76 98.00 80.90 88.19
NPO+RT 99.23 99.50 44.79 58.94 96.37 97.06 61.13 73.88

SPUL 89.74 93.43 55.03 70.48 89.63 93.29 60.23 74.69

WMDP

Vanilla 47.75 46.85 26.78 17.46 46.20 46.11 23.59 14.86

+

QLoRA 99.74 99.74 98.11 98.11 91.80 91.80 62.73 62.83

SciQ

GA 99.35 99.35 86.89 87.44 90.70 90.71 57.64 58.66
RL 99.32 99.32 84.11 89.57 90.40 90.40 53.35 59.54

GA+KL 98.84 98.85 67.44 68.91 90.20 90.24 49.33 50.26
GA+GD 99.42 99.42 27.22 13.38 90.00 90.02 22.25 8.84
NPO+RT 100.00 100.00 0.00 0.00 84.00 83.99 0.80 1.59

SPUL 99.38 99.45 5.44 10.20 89.70 89.75 3.22 6.07

Table 3: Generalized performance evaluation; unlearn
on WMDP+SciQ and test on ARC-Challenge

Method ACC(%)↑ F1(%)↑
QLoRA 61.69 61.62

GA 61.60 61.84
RL 60.50 60.49

GA+KL 60.07 60.56
GA+GD 41.72 40.56
NPO+RT 29.18 35.84

SPUL 61.95 61.82

Yelp reviews restricts the forgetting capacity of
the LLM. Nonetheless, the utility loss in retain
sets is much smaller than in forget sets indicat-
ing effective unlearning. We also note that SPUL
performs exceedingly well for the MCQA task on
the WMDP+SciQ with the highest differences ob-
served between the retain and forget metrics among
the evaluated datasets. Therefore, SPUL can effec-
tively unlearn unwanted or harmful training exam-
ples in sentiment classification and MCQA tasks.

Comparison with Baselines SPUL outperforms
most baselines by a large margin despite optimizing
fewer parameters. Compared to GA and RL which
utilize only Dtr

f , SPUL consistently preserves re-
tain utility with lower or comparable forget met-
rics. For WMDP+SciQ, both GA and RL underper-
form on forget sets. GA+KL and GA+GD optimize

model parameters based on Dtr
f and Dtr

r , however,
GA+KL performs poorly on all datasets. GA+GD
performs well on SST-2 and WMDP+SciQ but
fails to enhance forget quality on Yelp which has
more descriptive reviews than SST-2. In contrast,
NPO+RT shows improved forget quality while
maintaining model utility as it avoids catastrophic
forgetting. For Yelp and WMDP+SciQ, SPUL ob-
tains significantly better trade-offs than GA, RL,
GA+KL, and GA+GD methods and approximates
forget and retain metrics of NPO+RT. For SST-2
dataset, SPUL surpasses GA, RL, and GA+KL, and
is comparable with GA+GD and NPO+RT. Note
that all baselines require full fine-tuning whereas
SPUL only updates the soft prompt parameters.
Therefore, soft prompting can improve or approx-
imate the unlearning performance of fine-tuning
baselines while updating fewer parameters for con-
trasting performance degradation and utility preser-
vation objectives.

General Downstream Performance We addi-
tionally evaluate the unlearning methods for the
generalization ability of LLM after unlearning by
conducting inference with unlearned models on a
downstream task. We utilize models unlearned on
WMDP+SciQ and report performances on ARC-
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Table 4: SPUL performance on SST-2 across varying α and β values at p = 30

α β
Train Retain (Dtr

r ) Train Forget (Dtr
f ) Test Retain (Dte

r ) Test Forget (Dte
f )

ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓ ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓

0.1

0.0 90.84 92.69 9.12 16.55 89.50 91.15 10.33 18.40
0.1 92.59 93.75 6.81 12.62 90.77 91.85 10.16 18.29
0.5 96.77 97.91 8.70 15.98 93.01 94.10 11.15 19.81
1.0 85.19 88.00 8.49 15.47 84.64 87.19 10.66 19.02

0.5

0.0 98.17 98.69 11.86 21.17 94.34 94.87 14.59 25.07
0.1 97.57 97.95 11.09 19.88 94.22 94.58 11.97 21.08
0.5 97.74 98.35 13.82 24.21 93.97 94.57 17.21 29.08
1.0 93.87 94.66 11.51 20.39 91.62 92.36 14.59 25.03

1.0

0.0 97.52 97.91 12.14 21.60 94.22 94.65 15.57 26.50
0.1 98.64 98.96 12.14 21.54 94.63 94.97 16.07 27.41
0.5 99.15 99.39 12.98 22.94 94.93 95.24 16.07 27.42
1.0 95.70 96.19 14.88 25.75 93.05 93.55 17.38 29.18

Figure 1: Embedding visualization results on SST-2
with QLoRA and SPUL

Challenge (Clark et al., 2018) in Table 3. Our
results indicate that SPUL achieves accuracy and
f1 scores similar to the base model, QLoRA. Al-
though GA, RL, and GA+KL also demonstrate sim-
ilar downstream utility, their forget performances
on WMDP+SciQ are less optimal than SPUL.
GA+GD shows lower forget quality and down-
stream utility compared to SPUL. NPO+RT scores
a better forget and retain trade-off than SPUL in
the unlearning task but significantly downgrades
model generalizability, possibly due to over-fitting
the training data as made evident by its results on
the train forget and retain sets. In conclusion, SPUL
effectively unlearns target data without compromis-
ing the LLM’s inference ability.

Visualization We also visualize model outputs to
show the effectiveness of SPUL. We utilize outputs
from the last embedding layer of the LLM and map
them onto a t-SNE diagram as shown in Fig. 1. The
plots represent 500 data points randomly sampled
from the training dataset in SST-2 for each label.
In the plots, we use colors to differentiate the re-
tain and forget examples and shapes to differentiate
the positive and negative examples. We visualize
the embeddings from QLoRA, i.e., the base model
before unlearning and we observe a clear divide

between the positively and negatively labeled sam-
ples in the embedding space. The retain and forget
samples are clustered within the regions defined by
each label. For the t-SNE plot of SPUL, i.e., the
embeddings obtained after prepending the learned
soft prompts, we notice a clear separation between
the retain and forget samples as indicated by the
blue and orange regions in Fig. 1. This shows that
the soft prompts truly capture the differences be-
tween the forget and retain sets. Moreover, the
retain samples are further grouped into clusters per
their labels whereas the forget samples are mixed.
This shows that the soft prompt tokens learned by
SPUL successfully guide the LLM to unlearn text
and label correlation for the forget samples while
preserving predictive utility on the retain set.

Referring back to Table 2, SPUL metrics on Dtr
f

and Dte
f closely resemble each other. We make

mostly similar observations for Dtr
r and Dte

r . Our
visualization results also show that the embeddings
for forget samples are not distinguishable between
labels. Compared to QLoRA visualization, outputs
for positive and negative retain samples are closer
in the embedding space. Consequently, in a black-
box Membership Inference Attack (MIA) (Shokri
et al., 2017) scenario, it would be challenging to in-
fer whether a particular forget sample was observed
during training based only on model outputs.

Ablation Study We investigate the influence of
Lr and Lkl and report the results in Table 4 for
the SST-2 dataset. The hyperparameters α and β
control the influence of the Dtr

r on the learned soft
prompts via losses Lr and Lkl respectively. We fix
the number of prompt tokens p at 30 and vary α
in {0.1, 0.5, 1.0} and β among {0.0, 0.1, 0.5, 1.0}.
From Table 4, we observe that at a fixed α, un-
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Table 5: SPUL performance on SST-2 across varying sizes of forget sets

τ
Train Retain (Dtr

r ) Train Forget (Dtr
f ) Test Retain (Dte

r ) Test Forget (Dte
f )

ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓ ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓
25% 99.37 99.60 26.69 42.07 95.10 95.38 39.84 56.22
50% 97.66 98.47 18.96 31.78 93.80 94.62 23.61 37.60

100% 95.70 96.19 14.88 25.75 93.05 93.55 17.38 29.18

Figure 2: SPUL performance on SST-2 across varying
p at α = 1 and β = 1

learning efficacy is fairly unaffected by the change
in the value of β. Model utility on the retain set,
however, slightly increases as β increases from 0.0
to 0.5 as Lkl gets more significance in the overall
loss. Generally, the best retain performance is at β
= 0.5. α, however, influences both forget and retain
performance; higher α values benefit retain perfor-
mance by prioritizing utility preservation whereas
lower α values improve unlearning efficacy.

Hyperparameter Study We study the effect of p,
the number of prompt tokens, on the effectiveness
of SPUL. We fix both α and β at 1 and report results
for p ranging from 10 to 50 on SST-2 in Fig. 2.
We find that inference utility on retain sets Dtr

r

and Dte
r is largely unaffected by the choice of p.

However, we observe the most competitive forget
performance at p = 30 with increasing accuracy and
F1 as p increases/decreases. We speculate that the
soft prompts mostly encode information from the
forget set, for instance, the forget entities in SST-
2, and ultimately instruct the LLM to misclassify
examples with similar encodings. Accordingly, a
larger p generally benefits SPUL as shown by the
decline in forget metrics but may require longer
training for optimal performance.

Forget Set Size To demonstrate SPUL’s stability
w.r.t. the size of forget data, we evaluate it on vary-
ing sizes of the train forget set Dtr

f by sub-sampling
τ = {25%, 50%, 100%} of the original forget set
constructed for SST-2. For the remaining splits
Dts

r , Dte
f , and Dte

r , we use the same sets from Sec-
tion 4.1 for all three configurations of Dtr

f to facili-
tate comparison. The results presented in Table 5
indicate that SPUL can achieve utility preservation

across differing numbers of forget samples with
minimal loss as more forget samples are added
to Dtr

f . In contrast to the retain metrics, SPUL
performs better for the forget metrics when more
forget samples are present in the data for SST-2.
Experimental results on Yelp presented in Table 2
also highlight the robustness of SPUL against large
forget sets as we assign more than 5000 samples
to Dtr

f . As the training data contains fewer forget
samples than retain samples, having a larger Dtr

f

allows the framework to emphasize the forgetting
objective thus improving the unlearning efficacy.

Results on LLaMA-2-13B and OPT-1.3B We
also evaluate SPUL on OPT-1.3B and LLaMA-2-
13B, with respectively fewer and almost double the
parameters than LLaMA-2-7B. We fix both α and
β at 1 and p at 30 and report the results for SST-2
in Table 6. We first observe that the Vanilla infer-
ence with OPT-1.3B model performs noticeably
poorer than LLaMA-2-7B whereas LLaMA-2-13B
improves over LLaMA-2-7B. This gap is attributed
to the respective LLM’s complexity which affects
its generalization ability. For both OPT-1.3B and
LLaMA-2-13B, SPUL can effectively achieve the
forget and retain unlearning objectives as shown by
the low forget accuracy and F1 compared to the re-
tain metrics that closely resemble the base model’s
performance. The results also indicate larger LLMs
better adapt to the unlearning task in the SPUL
framework. With OPT-1.3B, SPUL notably out-
performs most baseline methods and achieves a
trade-off comparable to NPO+RT. We could not
run experiments on baselines with LLaMA-2-13B
due to limited GPU as they require full fine-tuning.
This further highlights the advantage of SPUL over
baselines for parameter efficiency.

Efficiency Retraining LLMs from scratch is prac-
tically infeasible due to computational costs. Fine-
tuning incurs fewer resources but is expensive
nonetheless. For instance, the LLM architectures
used in our experiments require gradient updates
for 1.42B, 6.74B, and 13B parameters for OPT-
1.3B, LLaMA-2-7B, and LLaMA-2-13B respec-
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Table 6: SPUL performance on SST-2 dataset using OPT-1.3B and LLaMA-2-13B

LLM Method Train Retain (Dtr
r ) Train Forget (Dtr

f ) Test Retain (Dte
r ) Test Forget (Dte

f )

ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓ ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓

OPT-1.3B
Vanilla 3.05 5.68 1.68 3.20 3.24 6.03 3.28 6.08
QLoRA 99.47 99.47 99.16 99.16 95.39 95.39 95.25 95.25

GA 79.50 78.01 70.67 67.02 78.70 77.05 71.97 67.99
RL 55.66 39.80 53.96 37.83 55.96 40.16 56.89 41.25

GA+KL 81.30 80.15 60.49 50.94 79.08 77.60 64.75 56.74
GA+GD 87.56 87.59 50.53 49.07 86.47 86.50 55.25 54.59
NPO+RT 99.97 99.97 7.05 13.74 94.82 94.84 7.54 13.72

SPUL 94.87 96.89 16.84 28.74 91.65 93.51 17.87 29.84

LLaMA-2-13B
Vanilla 61.04 70.96 59.65 69.51 60.32 70.38 59.18 68.79
QLoRA 99.48 99.48 99.30 99.30 96.02 96.02 95.90 95.90
SPUL 98.87 98.93 5.97 11.25 95.50 95.60 7.38 13.54

tively for fine-tuning. When p = 30, our SPUL
reduces the computation cost by only optimizing
604K, 1.19M, and 1.49M parameters respectively
while freezing LLM parameters. Further increasing
p only linearly scales the number of training param-
eters. We also look at the running time of SPUL
on the SST-2 compared against baseline methods
and find the execution time required by each model
of SPUL, GA+KL, GA+GD, and NPO+RT for one
training epoch is fairly similar, around 1020 GPU
seconds, as SPUL also accesses LLM parameters
during backpropagation. GA and RL methods are
much quicker with approximately 40 GPU seconds
per epoch training time as these methods only con-
sider the forget set. Nonetheless, SPUL avoids the
overhead associated with updating LLM parame-
ters, making it more resource-efficient.

5 Conclusion

We investigate unlearning in LLMs to remove the
influence of unwanted/harmful training examples
during text classification and MCQA. We present a
soft prompting strategy to unlearn subsets of train-
ing data while keeping pre-trained LLM parame-
ters frozen to maintain the model’s generalizability.
The proposed SPUL framework optimizes a small
number of prompt tokens using a multi-objective
loss function defined on disjoint training data sub-
sets representing the forget data subjected to re-
moval and the retain data that aims to preserve
model utility. Experimental evaluation on senti-
ment classification and MCQA datasets demon-
strates the efficiency of SPUL over fine-tuning-
based baselines for trade-offs between forget qual-
ity, retain utility, and generalizability. We also
empirically show that SPUL can adapt to multiple
LLMs and is robust to large unlearning requests.
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Limitations

We address the limitations of this work in the fol-
lowing. Our experiments primarily focus on open-
source LLMs as the soft prompting framework
requires access to frozen pre-trained parameters
to compute gradients for the soft prompts. Al-
though, the framework avoids the overhead of up-
dating LLM parameters. Furthermore, this work fo-
cuses on text classification and question-answering
datasets for formulating and evaluating the unlearn-
ing framework. Future research could explore the
efficiency of soft prompting to achieve unlearning
in the context of other NLP tasks such as text gener-
ation and summarization. We further note the lack
of an extensive evaluation pipeline for LLM un-
learning in the current literature. Further research is
needed to evaluate the robustness of LLM unlearn-
ing frameworks subject to model-stealing attacks,
MIAs, and jailbreaking attempts.

Broader Impacts

In this study, our focus is to achieve LLM unlearn-
ing in a resource-efficient manner. We aim to en-
able forgetting of unwanted or harmful knowledge
in a pre-trained LLM while maintaining model ef-
ficiency to avoid exploitation of sensitive informa-
tion. The datasets used for evaluation are publicly
available and implemented within their intended
use. Our usage of publicly available pre-trained
LLMs also adheres to the associated licenses. We
hope our study can further the research and litera-
ture on resource-efficient LLM unlearning.
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