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Abstract
Language models (LMs) are increasingly used
as simulacra for people, yet their ability to
match the distribution of views of a specific
demographic group and be distributionally
aligned remains uncertain. This notion of dis-
tributional alignment is complex, as there is
significant variation in the types of attributes
that are simulated. Prior works have underex-
plored the role of three critical variables—the
question domain, steering method, and distribu-
tion expression method—which motivates our
contribution of a benchmark explicitly address-
ing these dimensions. We construct a dataset
expanding beyond political values, create hu-
man baselines for this task, and evaluate the ex-
tent to which an LM can align with a particular
group’s opinion distribution to inform design
choices of such simulation systems. Our analy-
sis reveals open problems regarding if, and how,
LMs can be used to simulate humans, and that
LLMs can more accurately describe the opinion
distribution than simulate such distributions.

1 Introduction

It would be unusual to ask a person to accurately
simulate a demographic group to which they do not
belong. However, LMs are increasingly being used
in this way to simulate human behavior in applica-
tions ranging from agent-based simulations (Park
et al., 2023a) to piloting survey design (Hwang
et al., 2023; Zhou et al., 2024; Aher et al., 2023;
Ziems et al., 2024; Argyle et al., 2023). When sim-
ulating survey responses, there is no single “correct”
answer, and it is important to evaluate if the distri-
bution of model outputs is truly aligned with the
intended human distribution. There has been con-
siderable debate as to whether or not models can do
this—some argue that the extensive training corpus
of LLMs enables them to faithfully simulate de-
mographic groups (Grossmann et al., 2023), while
others show such simulations are inaccurate and
stereotypical (Liu et al., 2024; Wang et al., 2024a).

One reason for these conflicting views is the het-
erogeneity in how one can measure distributional
alignment, resulting in a lack of clarity around best
practices. For example, current approaches have
measured the model’s opinion distribution with
zero-shot, log-probability based evaluations, yet
recent work in uncertainty quantification suggests
verbalized distributions can outperform model log-
probabilities (Tian et al., 2023). This raises the
question of whether the model’s distribution ex-
pression method is truly optimal and demonstrates
a need for carefully controlled evaluations.

In this work, we acknowledge the sensitivity of
distributional alignment metrics and build a bench-
mark that studies several key variations in the dis-
tributional alignment task. Our benchmarks and
dataset measure how the distributional alignment
of LLMs vary under (1) the distribution expression
method, (2) the steering method, and (3) design
choices in the dataset (Fig. 1).

Our analyses reveal several open problems for
distributional alignment. First, we find that exist-
ing measurement methods such as log-probabilities
have systematically underestimated the distribu-
tional alignment of LLMs, and other simple base-
lines result in better alignment. Second, we find
that LMs can more accurately estimate opinion dis-
tributions in text-based forms (e.g., ‘return the dis-
tribution in a JSON’), compared to generating sam-
ples from the opinion distribution. This highlights
a substantial opportunity to improve distributional
alignment by closing the gap between a model’s
knowledge of human opinions and its ability to
simulate them. Finally, we find significant gaps in
both alignment and steerability when simulating
non-cultural opinions, such as book preferences,
when compared to evaluations of stronger opinions
(i.e., political and cultural values).

We summarize our key contributions as follows:

1. We identify three key sources of variation
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Q: In the US, do you think discrimination against people based on their race or ethnicity is a
A. Not a problem at all B. Not too serious problem  C. Somewhat serious problem D. Very serious problem

Persona

Few Shot

 Verbalize: “A: 1%, B: 5%, C: 27%, D: 67%”

 Sequence: “BCDCDCDDDBBDBDCDDD”

3 Distribution Expression Methods (    ) Eval: Distributional Alignment

 Model Log-Probs: “C”

Humans (Y) Model (Ŷ  ,    )

A: 9%
B: 43% 
C: 35% 
D: 12%  

Total Variation (Y, Ŷ  ,   )

yRepublican
A: 0.5%
B: 2% 
C: 26% 
D: 71%  

yDemocrat

LLM w/ 
Steering (    )

ŷDemocrat

Figure 1: Our work studies how variations in the dataset (yellow), steering method (green), and distributional
expression method (purple) affect the quality of distributional alignment. We rank models and humans in their
ability to align with the opinion distribution of demographic groups and find existing metrics for distributional
alignment (i.e., model log-probabilities) systematically underestimate LM performance. While LMs may ‘know’
about distributional alignment, they struggle to sample from their own distribution.

in distributional alignment (the question,
steering method, and distribution estimation
method) and construct a benchmark systemat-
ically varying these dimensions.

2. We collect a new dataset, NYT Book Opin-
ions, that expands measurements beyond po-
litical and cultural values.

3. Our analysis reveals several open problems
for the field: (1) LMs may ‘know’ a distribu-
tion, but are unable to sample from it (2) Log-
probability-based metrics for distributional
alignment may systematically underestimate
LM performance (3) Distributional alignment
and steering beyond political and cultural val-
ues remains challenging.

2 Problem Statement

We propose a benchmark that systematically eval-
uates the extent to which a language model can
be aligned to the distribution of a particular de-
mographic group’s opinions, a task we term the
distributional alignment problem. To begin, we
formalize this task and visualize it in Fig. 1.

Let q ∈ Q be a survey question to which respon-
dents from group g ∈ G have an opinion distri-
bution across multiple choices answers yg,q. The
goal is to understand how a language model can
represent a group g through a steering method S,
one that shifts an LM’s opinion distribution to that
of a particular group. Concretely, the model will
express a distribution ŷg,q with a distribution ex-
pression method O (e.g., model log-probabilities).

We are interested in the distributional difference
between the reference distribution, yg,q, and the
model’s estimate, ŷg,q. To evaluate this, we con-
struct a set1 Y of ground truth human opinion dis-
tributions, where Y = {yg,q | 1 ≤ g ≤ G, 1 ≤
q ≤ Q}, and a corresponding set ŶS,O of a model’s
predicted distributions, where ŶS,O = {ŷg,q | 1 ≤
g ≤ G, 1 ≤ q ≤ Q}. We define distributional
alignment as

A(Y, ŶS,O) =
1

|G|
∑

g∈G

1

|Q|
∑

q∈Q

1

2
||yg,q − ŷg,q||1.

(1)
This metric is the average total variation between
these two distributions, with a smaller number rep-
resenting a higher performance on the task.

3 Benchmark Construction

Having formalized the notation for distributional
alignment, we explore how it can be improved by
focusing on three understudied sources of variation:
the distributional expression method (O), steering
method (S), and dataset (Y ). In this section, we
explain how these elements are used to construct
the benchmark and describe the human baseline.

3.1 Distributional Estimation Method (O)

In this section, we describe three distributional ex-
pression methods and demonstrate how distribu-
tional alignment is highly sensitive to the distribu-

1This is not a matrix as each question q can have a different
number of answer choices. Thus, the dimensionality of yg,q
depends on q.
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Verbalize KnowledgeSequenceModel Log Probabilities 

Figure 2: Biased Coin Flip: We find that when the probability of heads is measured via model log-probabilities
(left), the results are highly uncalibrated (this behavior is mitigated with temperature scaling (TS), shown in green).
However, when the distribution is expressed through emitting a 30-token sequence of H or T (Sequence) or directly
verbalizing the distributional knowledge (Verbalize Knowledge), we do not observe the same mis-calibration.

tion estimation method.2

1. Model Log-probabilities: A model’s next
token log probabilities assigned to each of the an-
swer choices (e.g., ‘A’, ‘B’...) provide a sampling
distribution by directly sampling from the model.
This is the canonical distribution estimation method
(Santurkar et al., 2023; Durmus et al., 2024); how-
ever, prior work has found that these model log-
probabilities have a concentrated probability mass
on a few answer choices rather than more dispersed
answers as seen in their corresponding human dis-
tributions (Durmus et al., 2024), especially in mod-
els trained with Reinforcement Learning from Hu-
man Feedback (RLHF) (Christiano et al., 2017).

2. Sequence of Tokens: While model log-
probabilities represent drawing samples from a LM,
a model can also express its distributions by behav-
ing as a sampler. We instruct a model to emit a
sequence of 30 samples from the distribution (e.g.,
ABBBAABDDBACBDB). This method is advantageous
when practitioners want to generate samples from
an opinion distribution for simulation purposes.3

This distribution is limited by the number of tokens
emitted in the sequence, as we are trying to esti-
mate a continuous distribution from a finite number
of tokens. Thus, we report a discretization error—
the error incurred when drawing 30 samples from
the ground truth distribution and computing the
total variation based on those samples.

3. Verbalize Distributional Knowledge:
Lastly, we can remove the requirement that models

2Full prompts in github.com/nicolemeister/benchmarking-
distributional-alignment.

3This is inspired by a common synthetic data generation
prompting technique that instructs LLMs to emit a sequence
or batch of answers to generate diverse samples (Wang et al.,
2023; Dubois et al., 2023; Si et al., 2024).

must sample from simulated humans and instruct
a model to directly verbalize the distribution in
the output text, without an estimation procedure
or post-processing applied (e.g., text in a JSON
format {A: 25%, B: 20%, C: 45%, D: 10%}).4

This differs from the aforementioned methods in
that it separates distributional knowledge from the
LM’s ability to also generate samples.

These three estimation methods reveal sur-
prising performance gaps. Consider a toy experi-
ment in which the model has full knowledge of the
ground truth distribution. In this experiment, an
LLM is instructed to simulate a flip of a biased coin
which has P (H) = p and P (T ) = 1 − p. Natu-
rally, we would expect the model log-probabilities
for the token ‘H’ to be p and ‘T’ to be 1 − p. In
reality, we see that the model log-probabilities are
highly un-calibrated. They provide a misleading
picture of the ground truth distribution, despite the
fact that the ground truth distribution is shared in
the input prompt (Fig. 2). Moreover, we find that
two other distributional estimation methods do not
suffer the same mis-calibration issue: both verbal-
izing the distribution and emitting a sequence of
30 samples of the biased coin flip are much more
calibrated than the model’s log-probabilities.5

Results from this biased coin flip experiment sug-

4While this verbalized knowledge can be fed into an exter-
nal random sampler, it is not a sufficient output for downstream
applications (e.g., piloting surveys) and existing approaches
to simulating humans do not take this approach (Park et al.,
2023a; Samuel et al., 2024). Our later results suggest this
approach may be fruitful as a distributional alignment method.

5This performance gap is not unexpected; it has been
shown that while models excel in text and image generation
tasks (knowledge), they fall short when asked to validate if
the generated answer is correct (Li et al., 2024b; West et al.,
2024).
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gest two things: (1) prior distributional alignment
work using model log-probabilities may not be see-
ing the full picture and (2) there exists a significant
performance gap, one that we term knowledge-to-
simulation gap. This gap refers to instances where
models may have alignment in knowledge (i.e., ver-
balizing the distribution in the output text), but not
in sampling behavior (i.e., as measured via model
log-probabilities or emitting a sequence of tokens).

We define the knowledge-to-simulation gap as
the percent error between the alignment when emit-
ting a sequence of answer choices and verbalizing
the distribution.6 More formally, this gap is:

KSS =
A(Y, ŶS,Sequence)

A(Y, ŶS,Verbalize)
− 1. (2)

3.2 Steering Method (S)
Steerability in the context of this work refers to
a LM’s ability to adapt to represent the opinion
of a target demographic group. We evaluate two
steering methods, persona and few-shot steering,
by prepending additional context to the prompt
describing the group we want the model to emu-
late. We chose to study this few-shot setting, as
it is known that persona steering can be inaccu-
rate, leading to undesirable side effects including
stereotyping, exacerbating polarization, and creat-
ing echo chambers (Perez et al., 2023; Cheng et al.,
2023a; Wang et al., 2024a).

Persona Steering: Cheng et al. (2023a) define
a persona as a “natural language portrayal of an
imagined individual belonging to some (intersec-
tional) demographic group.” In persona steering,
we append a persona to the prompt and ask the LM
to emulate behavior from this group. Concretely,
we follow a version of persona steering from San-
turkar et al. (2023); Kambhatla et al. (2022) where
the LM is instructed to pretend to be a member of
the target demographic group (e.g. “Please simu-
late an answer from a group of Democrats.”).

Few Shot Steering: Inspired by the success
of few-shot prompting in language understanding
tasks (Brown et al., 2020), we construct a few shot
setting in which in-context examples of ground
truth group opinion distributions are provided in
addition to the persona. Specifically, LMs are given
the top five most similar questions and their corre-
sponding ground truth distribution from a group,

6The gap can also defined as the difference in performance
between verbalize and model log-probabilities, yet our later
results show model log-probabilities to not be competitive.

and instructed to simulate an answer from that
group (see Appendix A.8 for more details). This
setting is representative of when practitioners have
access to existing survey data for similar questions.

No Steering: We can directly contrast steered
models to models that are prompted with a question
without any demographic or identity markers.

3.3 Dataset (Y )
In this section, we describe three datasets for quan-
tifying distributional alignment – OpinionQA (San-
turkar et al., 2023), GlobalOpinionQA (Durmus
et al., 2024), and a new non-political subjective
opinion dataset, NYT Book Opinions.

OpinionQA: We use the OpinionQA dataset
from Santurkar et al. (2023) to leverage public opin-
ion surveys to compare the distribution of LLM
responses to those of US citizens. In their steerabil-
ity analysis, they create a smaller set of 500 con-
tentious questions where the subgroups frequently
disagree. We follow suit and randomly sample 100
questions from this set to obtain questions span-
ning topics such as science, politics, and personal
relationships. We obtain the ground truth human
opinion distributions of PEW survey respondents
belonging to six demographic groups: Democrat,
Republican, Male, Female, Black, and White.

GlobalOpinionQA: GlobalOpinionQA consists
of questions and answers from two cross-national
surveys, World Values Survey and PEW Global
Attitudes Survey. It is aimed at capturing diverse
perspectives on global issues across various coun-
tries and is inspired by Santurkar et al. (2023). We
filter this dataset for the top 100 questions with the
highest disagreement between pairs of countries
as measured by the distance between the text em-
bedding (Gao et al., 2021) of the questions. See
Sec. A.3 for more details.

NYT Book Opinions: Several works study
how LMs respond to political opinions or cultural
values (Santurkar et al., 2023; Durmus et al., 2024),
but it is less understood how LMs respond to non-
political, yet still subjective values. How do our
findings extend to other domains of personaliza-
tion? Are LMs still suitable in this use case?

This motivates the construction of a new dataset,
NYT Book Opinions, that gathers opinions on in-
terest in the top books from the past two decades as
judged by The New York Times (2024). The pur-
pose is to capture subjective values that less directly
measure cultural values and political leanings.

Annotation setup: We collected 235 books and
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their corresponding author, book summary, and
genre. 346 annotators provided a 4-point Likert
rating to the question, “Given the summary of this
book, how likely are you to read it?” for 26 books.
See Sec. A.4 for additional details.
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Figure 3: Top 4 books with the largest difference be-
tween Republican and Democrat ratings (left) and the
top 4 books with the largest difference between Demo-
crat and Republican ratings (right), with a 95% confi-
dence interval from bootstrapping.

From these human annotations, we find disagree-
ment in book interest. In Fig. 3, we plot the top
4 books that have the largest difference in Demo-
crat and Republican annotator ratings. Books that
Republican annotators preferred over Democrat
annotators include works such as Redeployment
by Phil Klay (twelve stories by a former Marine
who served in Iraq) and Washington’s Crossing by
David Hackett Fischer (a story from the American
Revolutionary War). Books that Democrat annota-
tors preferred over Republican annotators include
works such as A Promised Land by Barack Obama
and A Short History Of Women by Kate Walbert.

3.4 Human Baseline Annotations

Inspired by Yudkin et al. (2019) who study the
Perception Gap, or the percentage difference be-
tween a respondent’s estimate of how many peo-
ple hold a certain view and the actual percentage
of people who hold that view, we recruit crowd
workers to complete the distributional alignment
task. Annotators receive the same questions from
OpinionQA and NYT Book Opinions that we eval-
uated models on, allowing us to compare human
performance against the suite of LMs we evaluate.
Due to challenges in accurately capturing cultur-
ally specific perspectives, we do not collect human
annotations on GlobalOpinionQA. Estimating the
opinions of respondents from different countries
would require annotators with deep, contextually
relevant knowledge of each country’s sociocultural
landscape and it is well established that annotations
from Western populations do not accurately reflect

non-western views (Apicella et al., 2020; Arnett,
2008). This decision was made to ensure that con-
clusions drawn are not confounded by culturally
mismatched interpretations. As with the models,
the human annotators are shown three prompts in-
cluding no steering, persona steering, and few-shot
steering. Each survey question receives four anno-
tations, or human estimates of opinion distributions
over answer choices.

4 Experiments

We rank GPT-4, GPT-3.5, Anthropic Haiku, An-
thropic Opus, Llama-3 70B Instruct,7 based on dis-
tributional alignment (Eq. 1) and the knowledge-to-
simulation gap (Eq. 2), and average across groups,
steering methods, and datasets. We start by de-
scribing the performance on the distributional align-
ment task. Then, we dive into the implications that
emerge from varying the distribution expression
method, dataset, and steering method.

4.1 Distributional Alignment Performance
In Tab. 1a, we report the results of our distribu-
tional alignment leaderboard where we rank mod-
els on their ability to be steered towards a demo-
graphic group, averaged over persona steering and
few shot steering, and all three datasets. In this
leaderboard, where lower numbers represent higher
distributional alignment, we find that verbalizing
the distribution results in higher performance, with
Anthropic Opus and GPT-4 being the most steer-
able amongst our models. These numbers can be
directly compared to the performance of the uni-
form baseline, where each answer option is equally
likely to occur in the sequence (0.363), a majority
vote baseline, where the ground truth distribution is
compared to a distribution in which all the probabil-
ity mass is placed on the highest likelihood ground
truth answer choice (0.707).

4.2 Implications for Distributional Alignment
In this section, we organize our analyses into im-
plications for the field and conclude each section
with actionable suggestions for practitioners who
use LLMs for simulating human subjects.

A large knowledge-to-simulation gap exists.
As observed in Sec. 3.1, even when a model knows
as distribution, sometimes it cannot sample it. To
this end, we measure these gaps between knowl-
edge and simulation in our second leaderboard

7Smaller models struggled to follow the sequence distribu-
tion expression method, thus restricting our model selection.
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Model A(Y, ŶS,O)

Anthropic Opus (V) 0.226 ± 0.006
GPT-4 (V) 0.229 ± 0.006
Llama 3 70B (V) 0.244 ± 0.006
Anthropic Haiku (V) 0.254 ± 0.007
GPT-4 (TS-Log-p) 0.273 ± 0.006
GPT-4 (Seq) 0.278 ± 0.008
GPT-3.5-Turbo (V) 0.291 ± 0.007
GPT-3.5-Turbo (TS-Log-p) 0.296 ± 0.006
Anthropic Haiku (Seq) 0.309 ± 0.006
GPT-3.5-Turbo (Seq) 0.318 ± 0.007
Anthropic Opus (Seq) 0.325 ± 0.007
Llama 3 70B (Seq) 0.328 ± 0.008
GPT-3.5-Turbo (Log-p) 0.455 ± 0.008
Llama 3 70B (TS-Log-p) 0.469 ± 0.009
Llama 3 70B (Log-p) 0.495 ± 0.008
GPT-4 (Log-p) 0.550 ± 0.008

Discretization Error (Seq) 0.115 ± 0.004
Uniform 0.363 ± 0.007
Majority Vote 0.712 ± 0.013

(a) Distributional Alignment Task. Models ranked based
on mean total variation distance. Models highlighted in
gray and with (V) have a distribution expression method
of directly verbalizing the distribution in a JSON format
(O = Verbalize). Models not highlighted represent sam-
plers, where (Seq) represents the 30-token sequential distri-
bution output (O = Sequence), (Log-p) represents O =
Model Log-probabilities, and (TS-Log-p) represents
O = Temperature Scaled Model Log-probabilities.

Model Simulation Penalty

GPT-3.5 Turbo 9.17%
GPT-4 21.35%
Anthropic: Haiku 21.49%
Llama 3 70B Instruct 34.65%
Anthropic: Opus 43.63%

(b) Knowledge-to-Simulation Gap (Eq. 2). The simulation
penalty measures the percent error increase in total variation
between the 30-token sequential distribution output and the
verbalization of knowledge.

Table 1: Model Performance. In both tables, we and
rank models from highest to lowest performance on the
task and average over all three datasets, persona and few
shot steering, and all demographic groups. We report
the 95% confidence interval from bootstrapping with
1000 samples.

(Tab. 1b). We observe that some models, particu-
larly those from the Llama-3 and Anthropic suite
have a larger knowledge-to-simulation gap, espe-
cially when directly compared to the OpenAI mod-
els. This highlights room for improvement, as the

Figure 4: Steering Method and Dataset: We plot
the average total variation for each dataset and steering
method, averaged across demographic groups for the 30-
token sequential distribution output. We find it is harder
to steer models toward the dataset where opinions are
hidden under a layer of abstraction (NYT). Additionally,
few shot steering improves distributional alignment for
humans and all models except for GPT-3.5.

language model is capable of returning more accu-
rate estimates of human opinions when expressing
the distribution through verbalizing the distribu-
tion, but not when simulating samples from this
distribution. Implication: If practitioners are us-
ing models with a high knowledge-to-simulation
gap, they should prompt the model to verbalize the
knowledge directly and use an alternative sampler
for simulation purposes.

Model log-probabilities can be mislead-
ing. Next, we highlight a larger knowledge-to-
simulation gap between model log-probabilities
and the verbalization of knowledge (Tab. 1a). Us-
ing model log-probabilities to measure distribu-
tional alignment results in worse performance
than even uniform distribution on the distribu-
tional alignment task. We find that this perfor-
mance gap can be in part attributed to log prob-
abilities having a highly concentrated probabil-
ity mass on one or two answer choices, as ob-
served in Durmus et al. (2024) and our biased
coin flip experiment from Sec. 3.1. While prior
work (Santurkar et al., 2023; Durmus et al., 2024)
has used model log-probabilities for steering and
alignment applications, this distribution expression
method underestimates LLM capabilities in emu-
lating demographic groups. Furthermore, we find
that temperature-scaled model log-probabilities
improve GPT-3.5 and GPT-4 results, but not for
Llama-3-70B (Sec. A.2). Implication: We en-
courage practitioners to use alternative distribution
estimation methods, such as emitting a sequence or
verbalizing the distributional knowledge.

Steering is more challenging in non-cultural
and non-political settings. The goal of the NYT
Book Opinions dataset is to capture subjective val-
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Figure 5: Models assume Democrats read more than
Republicans. In this plot, we show the marginal distri-
bution of Likert Rating (1-4) in responses to the follow-
ing question: “How likely are you to read this book?” A
Likert rating of 1 refers to “Very unlikely” and a Likert
rating of 4 refers to “Very likely”. We averaged over
235 questions from NYT Book Opinions and 5 models
steered towards Democrats and Republicans with per-
sona steering (orange) and few shot steering (green). In
blue, we plot the reference human reference for Demo-
crat and Republican annotators. We find that persona
steering produces more stereotypical results.

ues from demographic groups that less directly
measure cultural values and political leanings, un-
like OpinionQA questions which directly ask value-
laden survey questions. We find that all models and
humans are more easily steered towards questions
in the OpinionQA dataset than the NYT Book Opin-
ions dataset, as the total variation decreases from
no steering to persona and few shot steering. In
Fig. 4, we plot the average total variation for each
dataset and steering method, averaged across de-
mographic groups, for the output type of sequence.
This suggests that when the values are hidden un-
der a layer of abstraction (i.e., book interest) it may
be harder to steer models towards the opinions of
demographic groups. Implication: When practi-
tioners use LLMs to pilot survey questions that less
directly allude to cultural values, they need to con-
sider the nature of their questions and if LLMs are
suitable for their use case.

Few shot steering improves persona steering.
For humans and all models except GPT-3.5, we
observe statistically significant improvements in
few shot steering over persona steering (Fig. 4).
As expected, when models have access to five ex-
amples of distributional data, they improve their
distributional estimation capabilities. Implication:
Practitioners should use prior distributional data as
few shot examples over just personas, if possible.

Persona-steered LLMs are susceptible to
stereotyping. Consistent with prior work studying
persona steering and LLMs emulating human be-
havior (Gupta et al., 2024; Cheng et al., 2023a,b;

Wan et al., 2023), we find that the LLMs produce
stereotypical outputs. For example, when analyz-
ing the marginal distribution of the answer ratings
in the NYT Book Opinions dataset (Fig. 5), we find
that models prompted with a Democrat persona
tend to simulate humans that are more likely to read
books—the average simulated human has a 13%
chance of responding with “very unlikely to read”
when our human annotators had a 33% chance.
Furthermore, the simulated Democrat has a 25%
chance of responding with “very likely to read”,
when our human annotators had a 12% chance.
This gap is significantly reduced when using few-
shot steering. Implication: It is important to col-
lect disaggregated evaluation metrics to understand
potential discrepancies between groups (Barocas
et al., 2021). These findings support using prior
distributional data as a few shot examples.

5 Discussion

5.1 Human Performance

Model A(Y, ŶS,O)

GPT-4 (V) 0.204 ± 0.003
Anthropic Opus (V) 0.219 ± 0.004
Llama 3 70B (V) 0.225 ± 0.004
Anthropic Haiku (V) 0.235 ± 0.004
GPT-4 (Seq) 0.237 ± 0.004
Humans (V) 0.250 ± 0.004
GPT-3.5-Turbo (V) 0.259 ± 0.005

Table 2: Distributional Alignment Task with Human
Performance (OQA, NYT). Models with a distribution
expression method of directly verbalizing the distribu-
tion (V) are ranked based on mean total variation. We
average over the OQA and NYT, persona and few shot
steering, and all demographic groups, and report the
95% CI from bootstrapping with 1000 samples. For
humans, we compute the average over annotators per
question and report the 95% CI from bootstrapping with
1000 samples over questions.

In Tab. 2, we contextualize the performance of
LMs with human annotators who attempt to guess
the opinions of others. Although the best LMs with
the most effective distribution methods (verbalize)
perform close to this human baseline, this is not
particularly promising for the field of distributional
alignment given that humans are known to be poor
predictors of opinions of the opposite party (Yudkin
et al., 2019; Levendusky and Malhotra, 2015). It
would be highly questionable to base the result
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of social science surveys on participants guessing
others’ opinions, and our findings indicate that LMs
offer little improvement over this baseline.

5.2 Open Problems

Our analyses reveal unique challenges for the com-
munity to make progress on. In this section, we lay
out those open problems.

Knowledge-to-Simulation Gap. First, we find
in the biased coin flip experiment, and then more
rigorously with survey data (Tab. 1b), that while
LMs may ‘know’ a distribution, they struggle to
sample from their own distribution. Future work
should address the sampling capabilities of models
and why they struggle with randomness and repre-
senting distributions (e.g., Requeima et al. (2024)
and Paruchuri et al. (2024)).

Misleading Model Log-probabilities. Exist-
ing research has considered distributional align-
ment through model log-probabilities; however,
our benchmark reveals this method’s shortcom-
ings, as models evaluated by log-probabilities fail
to rank among the top ten in our distributional align-
ment leaderboard. Future work should address why
model log-probabilities are mis-calibrated in distri-
butional alignment settings and pivot to improving
sampling through emitting a sequence of tokens.

Limitations of Persona Steering. Few shot
steering improves the performance of persona steer-
ing, suggesting that models lack key information
about the opinions that a few examples can provide.
We find this is often due to persona-steered models
conceptualizing humans as less nuanced and more
polarized. This reveals a clear challenge in build-
ing models that can capture the idiosyncracies of a
person and avoid extremized stereotypes.

6 Related Work

Distributionally Pluralistic Alignment. LLMs
often learn an averaged human preference and
struggle to model diverse preferences across groups.
Recent works advocate for distributionally plural-
istic models that are well-calibrated to a group’s
distribution of responses (Sorensen et al., 2024;
Feng et al., 2024; Kirk et al., 2024; Chen et al.,
2024). However, Sorensen et al. (2024) acknowl-
edge there is limited knowledge of explicit align-
ment procedures to increase distributional calibra-
tion, highlighting the importance of our work in
characterizing key sources of variation and how
they affect distributional alignment.

LLMs for Simulating Human Behavior. With
the proliferation of LLMs, recent work has inte-
grated LLMs into computational social science
to simulate social psychology experiments (Aher
et al., 2023; Dillion et al., 2023), create human-
like agents (Park et al., 2023a; Samuel et al., 2024;
Horton, 2023), and annotate data (He et al., 2024;
Mellon et al., 2024) to name a few. We focus on
a popular use case of LLMs simulating humans to
generate survey samples (Hwang et al., 2023; Zhou
et al., 2024; Aher et al., 2023; Argyle et al., 2023).

Several works urge caution when relying on the
survey responses of LLMs to elicit synthetic re-
sponses, citing concerns such as group stereotyping
and misrepresentation (Wang et al., 2024a; Abdu-
rahman et al., 2024; Geng et al., 2024), preference
for socially desirable responses (Ai et al., 2024),
lower entropy in model responses (Dominguez-
Olmedo et al., 2024; Park et al., 2023b), and answer
inconsistencies from prompt brittleness (Ceron
et al., 2024). While these works provide important
context, they focus on zero-shot and political or cul-
tural values, leaving several sources of variation un-
examined. The closest work to ours is Dominguez-
Olmedo et al. (2024) who study answer choice
order bias and find that model responses have dif-
ferent variation than that of humans. Our work is
distinct in that we look beyond stability to prompt
variation, and focus on higher-level design choices
such as the steering method (e.g. few shot) and
distribution estimation method, which have a sig-
nificant impact on alignment measurements.

Next, we describe existing research on these vari-
ables and how our work makes new contributions.

Dataset. Santurkar et al. (2023) quantify align-
ment through responses to PEW surveys, inspiring
numerous works (Durmus et al., 2024; Naous et al.,
2024; Wang et al., 2024b; Pistilli et al., 2024; Ko-
vač et al., 2023; Masoud et al., 2024; Zhao et al.,
2024; Stammbach et al., 2024; Röttger et al., 2024).
However, there is no publicly available dataset on
distributional preferences to non-political yet sub-
jective values (e.g., product preferences) motivat-
ing our NYT Book Opinions dataset.

Steering Method. The literature has studied a
variety of methods to steer the generation of LLMs
toward specific opinions. A popular method of
steering is persona steering, achieved by prepend-
ing demographic information to prompts (San-
turkar et al., 2023; Simmons, 2023; Perez et al.,
2023; Cheng et al., 2023a), prepending past opin-
ions (Hwang et al., 2023), or fine-tuning (Jiang
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et al., 2022; Namikoshi et al., 2024). Prior works
have also explored steering with in-context exam-
ples (Kim and Yang, 2024; Zhao et al., 2023),
prefix-tuning with persona grounded in collabo-
rative filtering (Li et al., 2024a), modifying acti-
vations in the forward pass (Turner et al., 2023),
and creating human belief networks (Chuang et al.,
2024), yet none have studied the differences be-
tween persona and few shot steering as we do. Clos-
est to our work is Santurkar et al. (2023) and Liu
et al. (2024), who evaluate persona steering, yet we
are unique in that we compare persona steering to
instances where practitioners have access to prior
survey data and can use it as few shot examples.

Distribution Expression Method. Prior work
has found that prompting LMs for statement proba-
bilities (e.g., verbalize) and model log-probabilities
can sometimes lead to different results (Hu and
Levy, 2023; Liu et al., 2023). When evaluating
LLMs on the basis of survey questions, Santurkar
et al. (2023), and all the works that have followed,
study models’ log-probability distribution over var-
ious answer choices. Recent work has begun to
explore randomness in coin flips (Koevering and
Kleinberg, 2024; Mondal et al., 2024), improved
sampling from LMs (Zhu et al., 2024; Requeima
et al., 2024) and using LMs for probabilistic rea-
soning (Paruchuri et al., 2024), but do not apply
it to the simulating opinion distributions. We ex-
plore differences in distribution expression and
take inspiration from work that suggests verbal-
ized uncertainty can be competitive with model
log-probabilities (Tian et al., 2023; Mondal et al.,
2024).

7 Conclusion

LLMs perform surprisingly well on knowledge-
intensive tasks, excelling on coding benchmarks
and question-answer tasks to name a few. Their
success in these tasks has led to an increase in ap-
plying LLMs to simulate human behavior, yet their
ability to accurately reflect specific demographic
groups remains controversial. To study this prob-
lem, we construct a benchmark to rank humans and
models by performance on the distributional align-
ment task. Our findings reveal many unresolved
challenges in distributional alignment, notably the
model’s sensitivity to output formats, misleading
log-probabilities, and the inability to significantly
outperform weak human baselines.
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8 Limitations

Our benchmark reveals key design choices in LM
distributional alignment; however, we acknowledge
and discuss three limitations of this approach.

Scope of surveys topics. Our benchmark and
dataset rely on distributions from subjective opin-
ion surveys to capture distributional alignment;
however, opinions continuously evolve, surveys
may not fully capture diversity and complexity of
thought or represent all individuals in that group
(Durmus et al., 2024), and survey answers may be
sensitive to question specificity (Berinsky, 2017)
and social desirability bias (Yan, 2021). While this
is an open problem, surveys remain an effective
tool in social science for gauging public opinion.

Scope of multiple-choice format. Our analyses
are restricted to opinions expressed in multiple-
choice format, which can collapse the nuances of
opinions and alter the opinion expressed, as LLMs
have also been shown to express different opinions
when prompted to respond with open-ended text
(Wang et al., 2024c; Lyu et al., 2024). While elic-
iting opinions via long-form responses may offer
greater ecological validity, we have found complex
challenges in studying long-form opinions, such
as (1) strict refusal policies that limit an LLM’s
ability to generate long-form responses to poten-
tially harmful or generally controversial questions
(Ouyang et al., 2022; Arditi et al., 2024), (2) chal-
lenges in defining the input distribution (e.g., how
do users naturally elicit long-form opinions from
LMs?) which lead to issues with construct valid-
ity, and (3) long-form measurement of opinions
encounters the same challenges as the automated
evaluation of open-ended text generation, includ-
ing cost, construct validity, and bias (Koo et al.,
2024). This prevents us from properly benchmark-
ing and making direct comparisons between mod-
els. Instead, we focus on a high-precision setting
of closed-ended survey questions which has sev-
eral advantages: (1) leveraging established datasets
and prior work in this field (e.g., OpinionQA) (2)
enabling a more precise, scalable, and reproducible
evaluation of LLM performance (3) allowing us to
apply existing model calibration techniques.

Scope of groups and annotators demograph-
ics. Beyond evaluating six demographic groups for
OpinionQA and four demographic groups for NYT-
Books, there are many other demographic groups
that we have not yet explored. Furthermore, we de-
scribe the demographics of our human annotators

as described in Sec. 3.4, which have been limited
to the demographic groups we study to enable in-
group vs out-group analysis. This slightly limits
the representation range in the demographics of our
human annotators.

Harms of model steerability. Studying model
steerability towards specific demographic groups
can have extreme negative downstream effects, par-
ticularly if used to systematically generate misin-
formation, persuade users to adopt certain opinions,
or perpetuate harmful stereotypes. Thus, it is im-
portant to acknowledge the risks of model steer-
ability and ensure that model-generated responses
are closely monitored in real-world deployments
or field studies.

Finally, we do not provide a metric, numeri-
cal threshold, or provable statistical test that de-
termines when a system is safe to deploy. It is
clear this distributional alignment task is highly
context-dependent and socially nuanced, suggest-
ing a one-size-fits-all metric may be more harmful
than helpful.

9 Ethical Considerations

While our benchmark (Tab. 1a) optimizes for steer-
ability, we caution against blindly optimizing for
this metric without considering the harms and lim-
itations of doing so. We advise practitioners to
identify when their models misrepresent specific
groups and uphold stereotypes as we did in Sec.
4.2, either by collecting disaggregated evaluation
metrics to explicitly account for potential discrep-
ancies between groups (Barocas et al., 2021), or
other metrics that measure LLM simulations’ sus-
ceptibility to caricature (Cheng et al., 2023b; Liu
et al., 2024).

A potential risk of our benchmark is that by sim-
ulating the distributional opinions of demographic
groups, we may inadvertently encourage the use
of LLMs to simulate humans. Thus, we empha-
size that our benchmark is used only as a discovery
mechanism to quantify model capabilities and limi-
tations in distributional alignment. Our objective
is to facilitate a deeper understanding of the capa-
bilities and limits of LLMs in emulating human
behavior and to ultimately determine if and how
we develop such technologies.
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A Appendix

A.1 Significance of Distributional Alignment

LLM outputs that align with human preferences
are becoming increasingly popular (e.g., RLHF).
Typically, when researchers evaluate which group
a model best aligns with, they compare average
responses. However, this only measures alignment
to the preference of the majority group. In many
subjective tasks, it’s crucial for a model to represent
the entire spectrum of opinions.

For example, consider the following survey ques-
tion in the PEW (question ID: GODMORALIMP_W92).

Question

Regardless of your own religious beliefs,
how important, if at all, do you think it is
for a person to believe in God in order to be
considered good and moral?

A. Important.

B. Not Important.

The PEW survey respondents responded with
{A : 54.8%, B : 45.2%}. If we query the language
model and receive a response of “A. Important” (the
highest likelihood answer choice), the model may
appear to be highly aligned if our evaluation only
considers the most likely human response. How-
ever, this ignores the 45% of people responding
with the minority choice, “B. Not Important.” A
clearer assessment of this task would be if the lan-
guage model can represent the 54.8%, and 45.2%
split, as this would show the model understands
the underlying heterogeneity of views on this topic.
Evaluating in this way provides a clearer and more
precise measure of the model’s alignment with hu-
man preferences.

A.2 Temperature Scaling

Temperature scaling is a post-processing technique
to make neural networks calibrated (Guo et al.,
2017). To implement temperature scaling for our
work, we find the minimum temperature value
that results in the smallest total variation between
the reference probabilities and model probabilities.
In this setting, the temperature-scaled scaled log-
probabilities have access to the ground truth opin-
ion distribution and aim to find τ that minimizes
the total variation. We calculate a new value of τ
per dataset and steering method using the following

formula.

min
τ

1

2

∥∥∥∥yg,q − ŷ
1
τ
g,q,norm

∥∥∥∥
1

. (3)

Our model log-probabilities are sampled with
a temperature of 1.0, and after applying temper-
ature scaling to the biased coin flip, the model
log-probabilities performance improves. When
extended to opinion surveys, we see much fewer
improvements in the temperature-scaled model log-
probabilities for Llama-3-70B Instruct, but im-
provements for GPT-3.5 and GPT-4. We report the
distributional alignment performance in Tab. 1a,
plot calibration curves in Fig. 6, and report ECE in
Tab. 3).

Model TS-Log-p Log-p
Llama3-70B 0.11 0.13
GPT-4 0.07 0.28
GPT-3.5 0.06 0.20

Table 3: ECE (Expected Calibration Error) values for
temperature scaled log probabilities (TS-Log-p) and log-
probabilities (Log-p) Llama 3 70B, GPT-4, and GPT-
3.5.

A.3 GlobalOpinionQA

In this section, we share additional question exam-
ples, preprocessing steps, and results for GlobalOp-
inionQA. For example, consider this survey ques-
tion that demonstrates how countries can highly
differ in their distributional responses to these sur-
vey questions.

Question

Do you personally believe that drinking al-
cohol is morally acceptable, morally unac-
ceptable, or is it not a moral issue?

A. Morally acceptable

B. Morally unacceptable

C. Not a moral issue

D. Depends on the situation
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Llama 3 70BGPT-4GPT-3.5

Figure 6: Temperature Scaling calibration curves for the survey setting. We find that temperature scaling
improves results for GPT models, but not for Llama3-70b. Results are averaged across the OpinionQA, NYTimes,
and GlobalOpinionQA Datasets.

Answer: Pakistan

A. Morally acceptable: 0.01

B. Morally unacceptable: 0.95

C. Not a moral issue: 0.02

D. Depends on the situation: 0.02

Answer: Japan

A. Morally acceptable: 0.67

B. Morally unacceptable: 0.06

C. Not a moral issue: 0.25

D. Depends on the situation: 0.02

Answer: Britain

A. Morally acceptable: 0.39

B. Morally unacceptable: 0.09

C. Not a moral issue: 0.47

D. Depends on the situation: 0.05

Preprocessing. To filter out the top 100 con-
tentious questions, we start by only considering
survey responses from countries that have at least
600 other responses to ensure a large enough pool
of questions to pull few shot examples from, re-
ducing the total number of countries in the dataset
from 138 to 19. Then we calculate disagreement
by the largest total variation distance.

Results. The results are consistent with those in
our paper: (1) verbalize remains the optimal dis-
tribution estimation method (Tab. 4) and (2) there

exists a knowledge-to-simulation gap between ver-
balize and sequence in all 5 models (Tab. 5).

Model A(Y, ŶS,O)

Anthropic Opus (V) 0.241 ± 0.015
GPT-4 (V) 0.279 ± 0.016
Llama 3 70B (V) 0.281 ± 0.016
Anthropic Haiku (V) 0.293 ± 0.016
Anthropic Opus (Seq) 0.301 ± 0.020
GPT-4 (TS-Log-p) 0.303 ± 0.016
Llama 3 70B (Seq) 0.346 ± 0.020
Anthropic Haiku (Seq) 0.351 ± 0.016
GPT-3.5 (V) 0.356 ± 0.019
GPT-4 (Seq) 0.359 ± 0.021
GPT-3.5 (TS-Log-p) 0.381 ± 0.015
GPT-3.5 (Seq) 0.399 ± 0.018
GPT-3.5 (Log-p) 0.442 ± 0.022
Llama 3 70B (Log-p) 0.455 ± 0.021
GPT-4 (Log-p) 0.484 ± 0.023
Llama 3 70B (TS-Log-p) 0.491 ± 0.024

Discretization Error (Seq) 0.092 ± 0.004
Uniform 0.486 ± 0.019
Majority Vote 0.692 ± 0.035

Table 4: Distributional Alignment Task on Glob-
alOpinionQA. Models ranked based on mean
total variation. Models highlighted in gray and
with (V) have a distribution expression method
of directly verbalizing the distribution in a JSON
format (O = Verbalize). Models not highlighted
represent samplers, where (Seq) represents the 30-token
sequential distribution output (O = Sequence), (Log-
p) represents O = Model Log-probabilities,
and (TS-Log-p) represents O =
Temperature Scaled Model Log-probabilities.
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Model Percent Error (%)

GPT-3.5 Turbo 12.15%
Anthropic: Haiku 19.86%
Llama 3 70B Instruct 22.95%
Anthropic: Opus 24.88%
GPT-4 28.68%

Table 5: Knowledge-to-Simulation Gap of GlobalOp-
inionQA (Eq. 2). The simulation penalty measures
the percent error increase in total variation between the
30-token sequential distribution output and the verbal-
ization of knowledge.

A.4 NYT Books Dataset Construction

Annotators. From this data collection process, we
surveyed 131 Male, 206 Female, 165 Democrat,
and 172 Republican annotators, resulting in 18 an-
notations per book per demographic group. In Fig
7, we show an example annotation question. In this
example, annotators are given a book title and its
corresponding author, book summary, and genre.
Then they provide a 4-point Likert rating to the
question, “Given the summary of this book, how
likely are you to read it?" From these annotations,

Figure 7: NYT Books Annotation Example Task.

we calculated an opinion distribution over the 4
Likert ratings for each book. All crowd workers
are sourced on Prolific, filtered for English fluency,
selected from a pool of annotators who pass an
attention check 93% of the time and are paid $12
per hour (this amount is well over the federal mini-
mum wage of $7.25). The consent form shown to
annotators is shown in Fig 8.

It should be noted that articles from the New

Figure 8: NYT Books Annotator Consent Form.

York Times are in English and protected under
copyright, but this research is performed in the
public interest under GDPR and the excerpts are
collected under fair use exemption. When releasing
our dataset, we include all links to the exact New
York Times paragraph highlight to respect copy-
rights. Furthermore, the annotation data we collect
is not personally identifiable as it consists only of
opinion ratings of books.

In addition to the disagreement analysis we con-
duct in Sec. 3.3, we calculate the Cohen’s kappa
of opinions between demographic groups. We find
that Cohen’s kappa between Democrats and Re-
publicans is 0.05, indicating little to no agreement.
The Cohen’s kappa between Men and Women is
0.15, indicating a small amount of agreement.

A.5 OpinionQA
We used the OpinionQA Santurkar et al. (2023)
accessed via the CC-BY 4.0 license, written in
English, as they survey US participants. In their
steerability analysis, they create a smaller set of
500 contentious questions where the subgroups fre-
quently disagree. We follow suit and randomly
sample 100 questions from this set to obtain ques-
tions spanning topics such as science, politics, and
personal relationships.

A.6 Human Baseline Annotations
Using the Prolific platform, we crowdsource hu-
man annotations for the distributional alignment
task. We restrict the demographics of annotators to
match the groups that we study as it provided us
an opportunity to do an in-group vs out-group anal-
ysis. Our OQA annotators are Democrat (73%),
Republican (27%), Male (33%), Female (67%),
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White (84%), and Black (16%). For the NYT an-
notations, our annotators are Democrat (69%), Re-
publican (31%), Male (37%), and Female (63%).
Each question from the OQA and NYT datasets
is annotated four times. Across the persona and
few shot steering, we have 246 annotators for OQA
and 374 annotators for NYT. We compensate the
workers at a rate of $12 per hour. The consent form
shown to annotators is similar to that shown for the
NYT Books annotation collection (Fig. 8)—the
only difference is the “description”.

Next, we show the instructions given to partici-
pants and a demo of how the distributional align-
ment task is completed. In Fig. 9, we show the
instructions for no steering. In this example, an-
notators are instructed to estimate the distribution
of multiple choice responses from Americans as
a whole. In Fig. 10, we show the instructions for

Figure 9: Distributional Alignment Instructions and
Example Task: No Steering.

persona steering. In this specific example, anno-
tators are instructed to simulate a Democrat, but
this group can be any demographic group of inter-
est. Finally, in Fig. 11, we show the instructions
and an example annotation for few shot steering.
In this specific example, humans are tasked with
simulating the views of Gen Z and given examples
of how this group has responded to similar ques-
tions on driverless vehicles (participants are given
5 examples, but only 3 are shown in this figure).

Quality control. To ensure annotation qual-
ity, we limit the task to workers with English flu-
ency and ask survey participants to answer a read-

Figure 10: Distributional Alignment Instructions and
Example Task: Persona Steering.

ing attention check question which our annotators
achieved 93% on.

Prior work has found that in-group representa-
tions and out-group imitations from human partici-
pants are different and that there exists a mispercep-
tion of partisan polarization (Wang et al., 2024a;
Levendusky and Malhotra, 2015). Thus, we com-
pared in-group and out-group representations in
opinion distribution estimation. In this context, “in-
group” refers to Democrats simulating Democrats,
and “out-group” refers to Democrats simulating Re-
publicans. “In-group” can also refer to a group of
men simulating other men and “out-group” refers
to a group of men simulating a group of women.
While there is more difference on average over all
subgroups in persona steering between the in-group
and out-group, these differences are not statistically
significant (Tab. 6).

A.7 Model Log Probabilties of each Token in
the Sequence of Biased Coin Flips

In this section, we provide additional analysis on
the Biased Coin Flip experiment, specifically re-
garding the sequence of biased coin flips. We
tested the OpenAI gpt-4 model, access on March
2024, which points to gpt-4-0613, a snapshot of
gpt-4 from June 13th 2023. In Fig. 12, we plot
the model log probabilities of each token in the
sequence to better understand the conditional prob-
abilities and find that these probabilities are not
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Figure 11: Distributional Alignment Instructions and
Example Task: Few Shot Steering.

consistent across each token in the sequence (e.g.,
the next-token probability for ‘H’ varies based on
the position in the sequence).

A.8 Few Shot Steering

To perform few shot steering, for each question, we
calculate the top 10 most similar questions or books

Dataset Steering In/Out TV

OQA Persona In 0.297 ± 0.013
OQA Persona Out 0.322 ± 0.014

NYT Persona In 0.281 ± 0.010
NYT Persona Out 0.273 ± 0.010

OQA Few Shot In 0.283 ± 0.014
OQA Few Shot Out 0.278 ± 0.013

NYT Few Shot In 0.236 ± 0.008
NYT Few Shot Out 0.237 ± 0.009

Table 6: In-group vs. Out-group performance in human
annotators, averaged over all demographic groups.

Figure 12: Model Probability of Each Token in 30
Flip Sequence (Heads).

as identified from their text embeddings (Gao et al.,
2021). We found that some of these questions may
be near-duplicates, especially in opinionQA where
a survey may include many variants of the same
question. Thus, we filter for the hardest similar ex-
amples, namely the top 5 questions most distinct in
output distribution. This ensures we provide topi-
cally coherent and similar examples while avoiding
cases where the model simply copies the distribu-
tion from the few shot examples. We pass these 5
examples in as contextual distributional informa-
tion to aid in the distribution estimation.

A.9 Additional Model Information
In this section, we discuss each model and how
it was accessed. All GPT models and their log-
probabilities were accessed using the OpenAI API,
namely GPT-3.5-Turbo-0125 and gpt-4-0613.
Both Anthropic Haiku and Anthropic Opus were
accessed using the Anthropic API which does not
provide log-probabilities to users. Finally, Meta’s
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Meta-Llama-3-70B-Instruct was accessed via
Huggingface. Since most models were accessed via
API, the GPU hours accrewed come from running
inference on Meta’s Llama-3-70B-Instruct—this
amounted to less than 1 hour.

While we tested additional models listed in
Tab. 7, we found that they struggled to follow the
distribution estimation method prompt, particularly
for that of sequence and verbalize.

Model Seq Verbalize

Llama-3-8B 45% 40%
Llama-2-70B 3% 97%
Llama-2-13B 11% 83%
Llama-2-7B 10% 52%
Deepseek-coder-1.3B 0% 2%
Deepseek-coder-6.7B 0% 0%

Table 7: Open models struggle to follow the prompt
for the distribution expression methods, sequence,
and verbalize. In this table, we report the success
rate that additional open models had in following the
prompt instructions. There was limited success with
these smaller models; thus, we opted for the 5 models
included in the main paper.

A.10 Persona-steered LLMs and humans are
susceptible to stereotyping.

We supplement Fig. 5 which depicts the marginal
distribution of the answer ratings in the NYT
Books dataset with average human ratings (Fig. 13).
While previously, we demonstrated that models
prompted with a Democrat persona tend to simu-
late humans that are more likely to read books, we
see that humans have a similar stereotypical effect,
although smaller than that of models.

A.11 Additional Distribution Estimation
Method Related Works

In this section, we engage more substantially with
prior work relating to the distribution estimation
method (Sec. 3.1). Prior work has found that lan-
guage models can either be queried for statement
probabilities (e.g., verbalize or other prompt-based
techniques) or probed for internal representations
of truthfulness (i.e., model log-probabilities). Past
work has found that these two representations can
sometimes disagree (Hu and Levy, 2023; Mondal
et al., 2024; Liu et al., 2023). Earlier work by
Hu and Levy (2023) finds that direct probability
measurements generally field better or similar per-

formance when compared to prompting techniques
on tasks such as word prediction, semantic plausi-
bility, and syntax completion in a zero-shot setting.
Our work differs in that our tasks involve scenarios
with uncertainty, we evaluate RLHF-ed LMs, and
we provide few shot examples of the task. This is
valuable as LMs with RLHF have been shown to
produce conditional probabilities that are poorly
calibrated (Kadavath et al., 2022).

Furthermore, the estimated distribution of the
model’s opinion has been shown to be sensi-
tive to other factors including rewording (Bis-
bee et al., 2024) or negating questions (Ceron
et al., 2024), shuffling the answer choice order
(Dominguez-Olmedo et al., 2024), and when con-
verting multiple-choice surveys to free text (Röttger
et al., 2024; Lyu et al., 2024; Wang et al., 2024c).

A.12 Distributional Distance Metric: Total
Variation

Equ. 1 represents the total variation distance, a
measure for comparing the distance between two
probability distributions (see Prop 4.2 in Levin et al.
(2006)). While KL divergence can be used to com-
pare distributions’ differences, we selected total
variation distance for its interpretability and rele-
vance to our setting. One notable reason why KL
divergence is unsuitable for comparing survey re-
sponses from people with those from the model
is that KL divergence becomes infinite when one
distribution has zero probability events while the
other does not. This naturally occurs in survey sam-
ples when no respondents select a particular answer
choice, or in our distribution estimation methods,
sequence and verbalize, which can generate zero
estimated probabilities for certain answer choices.

Consider two probability distributions P and Q
over the discrete space of multiple-choice options
{A,B,C}, where

P (A) = 0.6, P (B) = 0.35, P (C) = 0.05

Q(A) = 0.6, Q(B) = 0.40, Q(C) = 0.

DKL(P ||Q) =
3∑

i=1

P (i) log

(
P (i)

Q(i)

)

The final term (i = 3) contains 0.05 log
(
0.05
0

)

which goes to infinity (log(0) = −∞).

TV(P,Q) =
1

2

3∑

i=1

||P (i)−Q(i)||1 = 0.05.
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Figure 13: Persona-steered LLMs and humans produce stereotypical results. We plot the marginal distribution
for each Likert Rating (1-4) corresponding to the answer to the following question: “How likely are you to read this
book?” A Likert rating of 1 refers to “Very unlikely” and a Likert rating of 4 refers to “Very likely”. We report the
average marginal distribution over 5 models and humans steered towards Democrats and Republicans with persona
steering (orange) and few shot steering (green). In blue, we plot the reference human reference for Democrat and
Republican annotators. All of the data is averaged over 235 books in the NYT Books dataset. In purple we plot the
persona steered humans, and in pink we plot the few shot steered humans. We observe that persona steered humans
see a similar stereotypical effect, although smaller.

Here total variation distance is a small value,
reflecting that these distributions are very similar.

A.13 Full Results of Each Steering Method
In Tab. 10 we report the results of each steering
method (No Steering, Persona Steering, and Few
Shot Steering) for OpinionQA and NYTBooks. We
also separate the results of persona steering and
few shot steering in the GlobalOpinionQA dataset
and report them in Tab. 8 and Tab. 9, respectively.
When comparing the persona steered and few shot
steered results, we see considerable improvement
with few shot steering, corroborating our implica-
tions regarding the implications of persona steer-
ing and using few shot examples when possible
(Sec. 4.2, Sec. 5).

Model A(Y, ŶS,O)

Anthropic Opus (V) 0.275 ± 0.021
GPT-4 (V) 0.319 ± 0.022
GPT-4 (TS-Log-p) 0.325 ± 0.022
Llama 3 70B (V) 0.327 ± 0.024
Anthropic Haiku (V) 0.333 ± 0.022
Anthropic Opus (Seq) 0.338 ± 0.028
Anthropic Haiku (Seq) 0.374 ± 0.021
Llama 3 70B (Seq) 0.377 ± 0.028
GPT-4 (Seq) 0.378 ± 0.029
GPT-3.5 (V) 0.397 ± 0.024
GPT-3.5 (TS-Log-p) 0.428 ± 0.018
GPT-3.5 (Seq) 0.432 ± 0.020
GPT-3.5 (Log-p) 0.446 ± 0.027
Llama 3 70B (Log-p) 0.462 ± 0.028
GPT-4 (Log-p) 0.508 ± 0.033
Llama 3 70B (TS-Log-p) 0.546 ± 0.036

Discretization Error (Seq) 0.092 ± 0.004
Uniform 0.486 ± 0.019

Table 8: Distributional Alignment Task on GlobalOp-
inionQA: Persona Steering. Models ranked based
on mean total variation. Models highlighted in gray
and with (V) have a distribution expression method
of directly verbalizing the distribution in a JSON
format (O = Verbalize). Models not highlighted
represent samplers, where (Seq) represents the 30-token
sequential distribution output (O = Sequence), (Log-
p) represents O = Model Log-probabilities,
and (TS-Log-p) represents O =
Temperature Scaled Model Log-probabilities.
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Model A(Y, ŶS,O)

Anthropic Opus (V) 0.208 ± 0.020
Llama 3 70B (V) 0.234 ± 0.022
GPT-4 (V) 0.237 ± 0.023
Anthropic Haiku (V) 0.252 ± 0.023
Anthropic Opus (Seq) 0.265 ± 0.025
GPT-4 (TS-Log-p) 0.280 ± 0.024
Llama 3 70B (Seq) 0.312 ± 0.026
GPT-3.5 (V) 0.314 ± 0.026
Anthropic Haiku (Seq) 0.327 ± 0.024
GPT-3.5 (TS-Log-p) 0.334 ± 0.023
GPT-4 (Seq) 0.341 ± 0.032
GPT-3.5 (Seq) 0.366 ± 0.027
GPT-3.5 (Log-p) 0.440 ± 0.032
Llama 3 70B (Log-p) 0.449 ± 0.031
GPT-4 (Log-p) 0.461 ± 0.033
Llama 3 70B (TS-Log-p) 0.437 ± 0.031

Discretization Error (Seq) 0.092 ± 0.004
Uniform 0.486 ± 0.019

Table 9: Distributional Alignment Task on GlobalOp-
inionQA: Few Shot Steering. Models ranked based
on mean total variation. Models highlighted in gray
and with (V) have a distribution expression method
of directly verbalizing the distribution in a JSON
format (O = Verbalize). Models not highlighted
represent samplers, where (Seq) represents the 30-token
sequential distribution output (O = Sequence), (Log-
p) represents O = Model Log-probabilities,
and (TS-Logp) represents O =
Temperature Scaled Model Log-probabilities.
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OQA NYT
Model A(Y, ŶS,O) Model A(Y, ŶS,O)
Anthropic: Haiku (Seq) 0.372 ± 0.013 Anthropic Opus (V) 0.210 ± 0.006
GPT-4 (Seq) 0.389 ± 0.015 GPT-3.5 (Seq) 0.215 ± 0.006
GPT-3.5 (V) 0.394 ± 0.014 GPT-3.5 (V) 0.219 ± 0.006
Llama 3 70B (V) 0.396 ± 0.013 GPT-4 (Seq) 0.220 ± 0.006
GPT-3.5 (Seq) 0.398 ± 0.013 Anthropic Haiku (Seq) 0.226 ± 0.007
GPT-3.5 (TS-Log-p) 0.398 ± 0.013 GPT-4 (V) 0.230 ± 0.006
GPT-4 (V) 0.400 ± 0.015 Llama 3 70B (V) 0.237 ± 0.007
Anthropic: Haiku (V) 0.427 ± 0.015 Llama 3 70B (Seq) 0.257 ± 0.009
GPT-4 (TS-Log-p) 0.451 ± 0.015 Anthropic Haiku (V) 0.265 ± 0.007
Anthropic: Opus (V) 0.452 ± 0.014 GPT-3.5 (TS-Log-p) 0.303 ± 0.007
Anthropic: Opus (Seq) 0.485 ± 0.019 Anthropic Opus (Seq) 0.316 ± 0.011
Llama 3 70B (Seq) 0.501 ± 0.020 GPT-4 (TS-Log-p) 0.323 ± 0.008
GPT-3.5 (Log-p) 0.540 ± 0.017 Llama 3 70B (TS-Log-p) 0.606 ± 0.011
Llama 3 70B (TS-Log-p) 0.661 ± 0.019 Llama 3 70B (Log-p) 0.638 ± 0.010
Llama 3 70B (Log-p) 0.688 ± 0.018 GPT-4 (Log-p) 0.689 ± 0.010
GPT-4 (Log-p) 0.714 ± 0.018 GPT-3.5 (Log-p) 0.745 ± 0.009

Pe
rs

on
a

St
ee

ri
ng

OQA NYT
GPT-4 (V) 0.181 ± 0.007 GPT-3.5 (Seq) 0.226 ± 0.007
Anthropic: Haiku (V) 0.222 ± 0.011 GPT-3.5 (V) 0.239 ± 0.007
GPT-4 (TS-Log-p) 0.224 ± 0.012 GPT-3.5 (TS-Log-p) 0.295 ± 0.008
Llama 3 70B (V) 0.226 ± 0.009 GPT-4 (V) 0.248 ± 0.007
Anthropic: Opus (V) 0.238 ± 0.012 Llama 3 70B (V) 0.257 ± 0.008
GPT-4 (Seq) 0.238 ± 0.009 GPT-4 (Seq) 0.264 ± 0.009
Anthropic: Opus (Seq) 0.282 ± 0.012 Anthropic Opus (V) 0.285 ± 0.010
Anthropic: Haiku (Seq) 0.284 ± 0.012 Anthropic Haiku (V) 0.297 ± 0.010
GPT-3.5 Turbo (V) 0.292 ± 0.012 GPT-4 (TS-Log-p) 0.330 ± 0.010
GPT-3.5 Turbo (TS-Log-p) 0.298 ± 0.009 Anthropic Haiku (Seq) 0.355 ± 0.013
GPT-3.5 Turbo (Seq) 0.317 ± 0.012 Llama 3 70B (Seq) 0.359 ± 0.011
Llama 3 70B (Seq) 0.316 ± 0.013 Llama 3 70B (TS-Log-p) 0.430 ± 0.012
GPT-3.5 Turbo (Log-p) 0.339 ± 0.013 GPT-3.5 (Log-p) 0.473 ± 0.012
Llama 3 70B (TS-Log-p) 0.417 ± 0.014 Anthropic Opus (Seq) 0.483 ± 0.010
Llama 3 70B (Log-p) 0.460 ± 0.014 Llama 3 70B (Log-p) 0.525 ± 0.011
GPT-4 (Log-p) 0.507 ± 0.015 GPT-4 (Log-p) 0.682 ± 0.010

Fe
w

Sh
ot

St
ee

ri
ng

OQA NYT
Anthropic Opus (V) 0.146 ± 0.007 Anthropic Opus (V) 0.207 ± 0.006
GPT-4 (V) 0.179 ± 0.008 Llama 3 70B (V) 0.208 ± 0.006
GPT-4 (TS-Log-p) 0.200 ± 0.007 GPT-4 (V) 0.208 ± 0.006
Anthropic Haiku (V) 0.200 ± 0.010 GPT-3.5 (TS-Log-p) 0.209 ± 0.005
GPT-4 (Seq) 0.204 ± 0.009 Anthropic Haiku (V) 0.221 ± 0.005
Llama 3 70B (V) 0.211 ± 0.011 GPT-3.5 (V) 0.226 ± 0.005
Anthropic Opus (Seq) 0.248 ± 0.010 GPT-3.5 (Seq) 0.228 ± 0.005
Anthropic Haiku (Seq) 0.262 ± 0.012 GPT-4 (Seq) 0.243 ± 0.006
GPT-3.5 (TS-Log-p) 0.274 ± 0.011 Anthropic Haiku (Seq) 0.248 ± 0.007
GPT-3.5 (V) 0.280 ± 0.013 GPT-4 (TS-Log-p) 0.285 ± 0.008
Llama 3 70B (Seq) 0.300 ± 0.012 Llama 3 70B (Seq) 0.305 ± 0.008
GPT-3.5 (Seq) 0.339 ± 0.015 Anthropic Opus (Seq) 0.334 ± 0.009
Llama 3 70B (TS-Log-p) 0.394 ± 0.015 GPT-3.5 (Log-p) 0.517 ± 0.010
Llama 3 70B (Log-p) 0.444 ± 0.014 Llama 3 70B (TS-Log-p) 0.593 ± 0.013
GPT-4 (Log-p) 0.491 ± 0.014 Llama 3 70B (Log-p) 0.629 ± 0.011
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GPT-3.5 (Log-p) 0.519 ± 0.016 GPT-4 (Log-p) 0.650 ± 0.010
OQA NYT

Model A(Y, ŶS,O) Model A(Y, ŶS,O)
Discretization Error (Seq) 0.136 ± 0.012 Discretization Error (Seq) 0.115 ± 0.001
Uniform 0.381 ± 0.009 Uniform 0.223 ± 0.006
Majority Vote 0.731 ± 0.017 Majority Vote 0.700 ± 0.008

Table 10: Comparing model performance across OQA and NYT datasets and steering methods. Mod-
els are ranked based on mean total variation and highlighted in gray and with (V) have a distribution
expression method of directly verbalizing the distribution in a JSON format (O = Verbalize). Mod-
els not highlighted represent samplers, where (Seq) represents the 30-token sequential distribution output
(O = Sequence), (Log-p) represents O = Model Log-probabilities, and (TS-Log-p) represents O =
Temperature Scaled Model Log-probabilities.
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