
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 3956–3974

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Design2Code: Benchmarking Multimodal Code Generation for Automated
Front-End Engineering

Chenglei Si*1, Yanzhe Zhang∗2, Ryan Li1, Zhengyuan Yang3, Ruibo Liu4, Diyi Yang1

1Stanford University, 2Georgia Tech, 3Microsoft, 4Google DeepMind
clsi@stanford.edu, z_yanzhe@gatech.edu

Abstract

Generative AI has made rapid advancements
in recent years, achieving unprecedented capa-
bilities in multimodal understanding and code
generation. This can enable a new paradigm
of front-end development in which multimodal
large language models (MLLMs) directly con-
vert visual designs into code implementations.
In this work, we construct Design2Code – the
first real-world benchmark for this task. Specif-
ically, we manually curate 484 diverse real-
world webpages as test cases and develop a set
of automatic evaluation metrics to assess how
well current multimodal LLMs can generate the
code implementations that directly render into
the given reference webpages, given the screen-
shots as input. We also complement automatic
metrics with comprehensive human evaluations
to validate the performance ranking. To rigor-
ously benchmark MLLMs, we test various mul-
timodal prompting methods on frontier models
such as GPT-4o, GPT-4V, Gemini, and Claude.
Our fine-grained break-down metrics indicate
that models mostly lag in recalling visual ele-
ments from the input webpages and generating
correct layout designs.

1 Introduction

Implementing visual designs of websites into func-
tional code is a challenging task as it requires un-
derstanding visual elements and their layouts and
then translating them into structured code. Such de-
pendencies on sophisticated skills have prevented
many laypeople from building their own web ap-
plications, even when they have concrete ideas for
what to build. Furthermore, the requirement for
domain expertise complicates the whole webpage
production pipeline, requiring collaboration among
people with different skill sets and potentially caus-
ing discrepancies between the intended design and
actual implementation. Effective automatic gener-
ation of functional code from visual designs has

* Equal contribution.

the potential to democratize the development of
front-end web applications (Nguyen and Csallner,
2015), allowing non-experts to build applications
easily and quickly.

While code generation from natural language
instructions has advanced rapidly in recent years
(Yin and Neubig, 2017; Le et al., 2020; Li et al.,
2023), generating code implementation from user
interface (UI) design has not received much at-
tention due to a wide range of challenges, such
as diversity in visual and text signals on the user
interface and the vast search space in the result-
ing code. Beltramelli (2018) made a notable at-
tempt back in 2017 with CNN and RNN models
on a narrow set of simplistic UI designs. Over the
years, despite many follow-up attempts along this
quest (Robinson, 2019; Soselia et al., 2023), they
are all constrained to simplistic or synthetic exam-
ples with a narrow set of layout designs, hardly
useful for real-world front-end development appli-
cations. Until recently, the development of multi-
modal LLMs has entered a new era where large-
scale pretrained models can process both visual and
text input and generate text output for various visu-
ally grounded tasks, with representative examples
like Flamingo (Alayrac et al., 2022), GPT-4V (Ope-
nAI, 2023), and Gemini (Google, 2023). Such ad-
vancement has unlocked a brand new paradigm for
this long-standing unsolved task: give the user’s
website design as an image input to the system to
obtain the full code implementation that can render
into the desired webpage in an end-to-end man-
ner. To systematically and rigorously benchmark
current MLLMs on this task, we construct the first-
ever real-world benchmark Design2Code.

To best reflect realistic use cases, we use real-
world webpages (examples in Figure 1) in the wild
as our test examples rather than synthetically gen-
erated ones as in prior works (Soselia et al., 2023;
Laurençon et al., 2024). We scrape webpages in
the C4 (Raffel et al., 2019) validation set and per-

3956

Figure 1: Examples from the prior WebSight v0.1 dataset (first row) and our new Design2Code benchmark (last
two rows). We use real-world webpages for benchmarking to ensure they are realistic, diverse, and complex, while
WebSight uses synthetically generated simple webpages for scalability.

form careful manual curation to obtain a set of 484
high-quality, challenging, and diverse webpages
representing a wide variety of real-world use cases
with different levels of complexities. We show both
quantitatively and qualitatively that our benchmark
covers a wide spectrum of HTML tag uses, do-
mains, and complexity levels. To facilitate efficient
evaluation and model development, we also de-
velop automatic metrics for this task that measure
the visual design similarity between the generated
webpage’s screenshot and the given screenshot in-
put. Our metrics consider a comprehensive set of
dimensions, including bounding box matches, text
content, position, and color of all matched visual
elements on the webpages, which we later show
highly correlate with human judgment.

We then investigate how current MLLMs per-
form on this task, by testing a variety of prompting
methods, including our text-augmented prompt-
ing that complements visual input with extracted
text elements from the webpage to reduce the
load on OCR, as well as a self-revision prompt-
ing method that asks the model to compare its
previous generation and the input webpage for
self-improvement. We see significant improvement

from text-augmented prompting on most models,
while few can self-revise their generation. Addi-
tionally, we also construct Design2Code-HARD, a
separate set of 80 hard examples, to compare state-
of-the-art commercial models (GPT-4o, Claude 3.5
Sonnet) on these challenging cases.

2 The Design2Code Benchmark

In this section, we describe the curation and pro-
cessing of our benchmark data. We first scrape all
website links in the C4 (Raffel et al., 2019) vali-
dation set. We then embed all CSS code into the
HTML file to obtain one single code implementa-
tion file for each webpage. This results in a total
of 127.9k webpages, which we perform further
filtering and processing as described below.

2.1 Test Set Curation
Our overall goal is to obtain a set of well-formed
webpages that represent diverse real-world use
cases. We follow the following steps for automatic
processing and manual filtering: First, we auto-
matically filter out webpages that are too long or
too simple (only contain images or texts) and run
deduplication, which results in 14k webpages re-

3957

product

4.8%

blog
25.3%

company/org

27.7%

homepage
13.3%

news

4.8%

forum

3.6%

information

10.8%

others

9.6%

Figure 2: Main topics of the webpages in the De-
sign2Code benchmark.

maining. We then remove external dependencies
and replace multimedia content with placeholders.
Finally, the first two authors conduct manual cura-
tion to check the independence from external files,
the absence of sensitive content, and proper for-
matting. This quality filtering narrows down the
samples to 484 high-quality webpages, which are
used for our benchmark. More data processing
details are described in Appendix Sec B.

2.2 Data Statistics and Diversity

Quantitative Metrics To provide an estimate of
the difficulty levels of the test examples, we pro-
vide some quantitative measures. (1) Length: We
tokenize the scraped code files with the GPT-2 to-
kenizer. The average number of tokens per file is
31216 (min=784, max=98637, std=23903). This
is much longer than the typical max output length
of modern language models, posing a unique chal-
lenge. (2) Total number of tags: We count the to-
tal number of HTML tags involved, which is 158 on
average (min=12, max=528, std=100). The exam-
ples in our benchmark cover 84 types of standard
HTML5 tags. We present a chart of the most fre-
quently used tags in Appendix Table 5. (3) DOM
tree depth: We measure the depth of the Docu-
ment Object Model (DOM) tree as another measure
of complexity. The average depth is 13 (min=4,
max=32, std=5). (4) Number of unique tags:
Lastly, we compute the number of unique HTML
tags in each example, and the mean is 22 (min=8,
max=45, std=6), suggesting that our benchmark
covers a wide range of HTML tags. We compare
these metrics with the most recent and most simi-
lar existing dataset – WebSight (Laurençon et al.,
2024) in Appendix Table 4. Overall, the examples

in our benchmark are much more challenging and
cover a wider spectrum of complexities than prior
efforts like WebSight.
Domain Distribution To get a sense of the range
of domains covered in our benchmark, we ran-
domly sample 25% examples (N=120) from the
benchmark and manually annotate what type of
webpages they are based on their functions. We
present the pie chart of the most frequent domains
in Figure 2. The most prominent genres are web-
sites of companies or organizations, personal blogs
(including technical blogs), and personal home-
pages. Other genres include information-sharing
sites (e.g., Wikipedia pages, FAQ pages, tax policy
pages, online dictionaries), online forums, news
article pages, and product description pages. Sam-
pled examples are shown in Figure 1.

2.3 Automatic Metrics

Previously, auto-generated HTML code is usually
evaluated by text-based similarity metrics, such as
Normalized Edit Distance (Lv et al., 2023) and
htmlBLEU (Soselia et al., 2023). However, such
metrics cannot directly assess whether the visual
design of the original screenshot is correctly gener-
ated as there can be many different ways of imple-
menting the same webpage, and minor differences
in generated code could result in major visual dif-
ferences in the rendered output. To this end, we
propose to automatically evaluate generated web-
pages by calculating the similarity between the
screenshots of reference webpages IR and the ren-
dered screenshots of generated webpages IG. We
break down the evaluation into both high-level vi-
sual similarity and low-level element matching.
High-level Visual Similarity To evaluate the vi-
sual similarity of IR and IG, we use the similarity
of their CLIP (Radford et al., 2021) embedding, de-
noted as CLIP(IR, IG). Specifically, we extract
features by CLIP-ViT-B/32 after resizing screen-
shots to squares. To rule out the texts in the screen-
shots, we use the inpainting algorithm from Telea
(2004) to mask all detected text boxes using their
bounding box coordinates. 1

Low-level Element Matching Metrics like CLIP
similarity only capture the similarity of the overall
images rather than the matching of all the details
like text. Moreover, the metric itself does not of-
fer any fine-grained breakdown to help diagnose

1https://docs.opencv.org/4.3.0/df/d3d/
tutorial_py_inpainting.html

3958

https://docs.opencv.org/4.3.0/df/d3d/tutorial_py_inpainting.html
https://docs.opencv.org/4.3.0/df/d3d/tutorial_py_inpainting.html

model weaknesses. To complement that, we intro-
duce a suite of element-matching metrics. Specifi-
cally, we consider whether the generated webpages
manage to recall all visual elements, and whether
the corresponding visual elements in the reference
and generated webpages have aligned text content,
position, and color (Cao, 2015; Still, 2018).

Given a reference webpage screenshot IR and
a generated webpage screenshot IG, we use a text
detection module to output a set of detected visual
element blocks for each: R = {r1, r2, ..., rm} and
G = {g1, g2, ..., gn}, where each block contains
its textual content and bounding box coordinates.
See Appendix C for the details of implementing
the block detection module. Based on the two sets
of detected blocks, we use the Jonker-Volgenant
algorithm (Crouse, 2016) to get the optimal match-
ing M between R and G based on text similarity,
where (p, q) ∈ M indicates rp is matched with gq.
Given R, G, and matched pairs in M , we evaluate
similarity along the following aspects:
∗ Block-Match: The first desideratum of the task is
that all visual elements from the reference webpage
should be reproduced in the generated webpage,
and the generated webpage should not hallucinate
non-existent new elements. We measure this by
computing the total sizes of all matched blocks
divided by the total sizes of all blocks (Equation
(1)(2) in Figure 3), including unmatched ones (ei-
ther because the generated webpages missed them
or because the generated webpages contain halluci-
nated blocks). S(·) returns the size of the blocks,
UR and UG denotes the unmatched blocks in R
and G. The intuition is that unmatched blocks will
lower the score as they indicate missing original
blocks or generating hallucinated blocks; the larger
the unmatched blocks are, the lower this score is.
∗ Text: Given two strings from two matched blocks
rp and gq, the text similarity simtext(rp, gq) is cal-
culated as twice the number of overlapping char-
acters divided by the total number of characters
in the two strings (character-level Sørensen-Dice
similarity). The overall score is averaged across all
matched pairs.
∗ Position: The position of the blocks largely
impacts the overall layout. For each matched
pair (p, q), we calculate the position similar-
ity simpos(rp, gq) = 1 − max(abs(xq −
xp), abs(yq−yp)), where (xp, yp) and (xq, yq) are
normalized coordinates (in [0, 1]) of rp and gq’s
centers. The overall score is averaged across all
matched pairs.

∗ Color: We use the CIEDE2000 color difference
formula (Luo et al., 2001) to assess the percep-
tual difference between the colors of the generated
text in block gq and the reference text in block rp,
denoted as simcolor(rp, gq)), where the formula
considers the complexities of human color vision.
The overall score is averaged across all matched
pairs.

These low-level matching scores are designed as
fine-grained diagnostic scores to complement the
CLIP score. Ideally, models and methods should
score well along all these dimensions.

3 Benchmarking: Prompting and
Finetuning

We benchmark a variety of models and methods
to compare their performance on our benchmark,
including commercial API models, open-source
models, and finetuned models.

3.1 Prompting Methods

We test a suite of multimodal prompting methods
for our benchmark. We assume access to a model
that can take both image input and text prompts
and produce code as output.
Direct Prompting We provide the reference web-
page screenshot, along with the instruction to gen-
erate the HTML and CSS code (full prompt in
Appendix D).
Text-Augmented Prompting Direct prompting
asks the model to do everything at once: recognize
all the text and layout elements and generate the
corresponding code. In reality, users often know
what content they want to put on their webpage.
Instead, they only seek expertise in converting the
design into code implementation. To reflect such a
setting, we also explore a text-augmented prompt-
ing method, where we extract all text elements
from the original webpage first and append these
texts after the instruction prompt along with the
screenshot input. In this setting, we mitigate the
difficulty of performing OCR and instead allow the
model to focus more on layout design, where the
model could copy text content from the prompt and
insert it into the correct positions.
Self-Revision Prompting To test whether the mod-
els can visually contrast the websites rendered by
their generated code and the reference websites to
further improve the code generation, we develop a
self-revision prompt where we provide the follow-
ing as input: (1) the screenshot of the input web-

3959

matchblock(rp, gq) =
S(rp) + S(gq)∑

(i,j)∈M (S(ri) + S(gj)) + (
∑

i∈UR
S(ri) +

∑
j∈UG

S(gj))
, (1)

matchblock(R,G) =
∑

(p,q)∈M
matchblock(rp, gq). (2)

Figure 3: Equations to calculate the Block-Match metric.

page, (2) the screenshot of the generated webpage
from text-augmented prompting, (3) the generated
code from text-augmented prompting as the initial
solution; then we ask the model to improve the gen-
erated implementation code so that the result can
look closer to the reference webpage (full prompt
is in Appendix D).

3.2 Model Setup

We test the three prompting methods on the fol-
lowing commercial models: GPT-4o , GPT-4V
(OpenAI, 2023), Claude 3 Opus (Anthropic, 2024),
Gemini 1.0 Pro Vision , as well as the following
open models: LLaVA-V1.6-Mixtral-7B (Liu et al.,
2024), DeepSeek-VL-7B (Lu et al., 2024), Idefics2-
8B (Laurenccon et al., 2024). For finetuned mod-
els, we test WebSight VLM-8B, which is fine-
tuned from Idefics2-8B on the full WebSight v0.1
dataset (Laurençon et al., 2024), and our own fine-
tuned Design2Code-18B, a finetuned CogAgent-
18B (Hong et al., 2023) on a random subset (20%)
of the WebSight (technical finetuning details are in
Appendix Sec E).

4 Results and Analysis

4.1 Automatic Evaluation

We present all automatic evaluation results in Ta-
ble 1. Note that the comparisons here are not
apple-to-apple comparisons, given the differences
in model sizes and training data. We compare
them as they are the most relevant and accessi-
ble baselines for our benchmark. We observe that
(1) GPT-4o is the best on all dimensions, while
LLaVA 1.6-7B leads open-source models without
specific finetuning. With specific finetuning, the
performance of open-source models can approach
that of commercial models like Gemini 1.0 Pro Vi-
sion. (2) Text-augmented prompting successfully
increases the block-match score and text similarity
score on most tested models, especially those that
are suboptimal in terms of text recognition, indicat-
ing the usefulness of providing extracted text ele-

ments. (3) Self-revision has some minor improve-
ment on block-match and position similarity for
GPT-4V and Claude 3, but brings no improvement
on Gemini Pro Vision and all other open-source
models, potentially due to the limited capabilities
of LLMs to do self-revision (Huang et al., 2023).
We provide an in-depth analysis of the learning
process of our finetuned model in Section H.

4.2 Human Evaluation

While the above automatic metrics provide a fine-
grained breakdown of model performance, it is also
crucial to ask what users, the ultimate audience of
these webpages, think of the generated webpages.
By recruiting human annotators (paid at the rate
of $16/hour) from Prolific, we conducted a series
of human evaluations to compare across models
and methods, as well as to assess the quality of
AI-generated webpages directly. We sample 100
examples from our benchmark for the human eval-
uations. In all human evaluations, each question
is annotated by 5 human annotators, and we de-
rive the results by majority voting. We provide
all instructions that we provided to annotators in
Appendix F and we outline the main protocols and
results below.
Pairwise Model Comparison Following the
conventional practice of evaluating instruction-
following LLMs (e.g., (Zhou et al., 2023; Dubois
et al., 2023)), we ask human annotators to rank a
pair of generated webpages (one from the baseline,
the other from the tested method) to decide which
one is more similar to the reference. We use Gem-
ini Pro Vision Direct Prompting as the baseline
and collect the other seven methods’ Win/Tie/Lose
rates against this baseline (we randomly shuffle
the ordering to avoid position biases). Each pair
will count as Win (Lose) only when Win (Lose)
receives the majority vote (≥ 3). All other cases
are considered Tie.

Based on the human evaluation in Figure 4,
we find that: (1) GPT-4o is substantially better

3960

Block Text Position Color CLIP

GPT-4o

Direct 93.0 98.2 85.5 84.1 90.4
Text-Augmented 92.4 98.6 84.5 83.1 89.9
Self-Revision 92.7 98.6 84.9 83.3 90.1

GPT-4V

Direct 85.8 97.4 80.5 73.3 86.9
Text-Augmented 87.6 98.2 80.2 73.0 87.2
Self-Revision 88.8 98.1 81.1 72.9 87.2

Claude 3 Opus

Direct 90.2 97.5 77.9 71.4 87.0
Text-Augmented 89.8 98.0 75.9 69.3 86.6
Self-Revision 90.3 98.1 78.1 69.7 86.6

Gemini 1.0 Pro Vision

Direct 80.2 94.6 72.3 66.2 84.4
Text-Augmented 84.8 96.9 70.4 66.3 84.4
Self-Revision 84.1 96.6 70.1 66.2 84.3

LLaVA 1.6-7B

Direct 50.4 87.9 69.1 63.4 84.6
Text-Augmented 68.4 93.0 68.7 64.0 84.5
Self-Revision 62.6 91.0 64.7 62.6 83.8

DeepSeek-VL-7B

Direct 39.7 77.0 64.6 63.8 84.5
Text-Augmented 66.1 93.4 69.2 67.9 84.3
Self-Revision 30.1 38.9 28.9 28.1 79.9

Idefics2-8B

Direct 46.7 80.3 55.9 58.9 81.7
Text-Augmented 23.6 55.6 35.7 36.3 78.7
Self-Revision 12.3 22.6 13.2 14.5 78.4

Finetuned Models

WebSight VLM-8B 55.9 86.6 77.3 79.4 87.6
Design2Code-18B 78.5 96.4 74.3 67.0 85.8

Table 1: Automatic evaluation results of the four fine-grained
similarity measures and the high-level visual similarity with
CLIP. The best result per dimension is highlighted in bold.

than other baselines, while neither text-augmented
prompting nor self-revision prompting brings sub-
stantial improvement, probably due to the fact
that direct prompting already correctly generates
most of the text content and layout. (2) GPT-4V
is the second strongest model, while both text-
augmented prompting and self-revision prompting
can further improve over direct prompting. (3)
Text-augmented prompting can slightly improve
the Gemini direct prompting baseline, but further
adding self-revision is not helpful. Intuitively, self-
revision needs the model to understand the differ-
ences between the two given images (the reference
screenshot and the screenshot of the initial model
generation) and reflect them correspondingly in the
modified HTML code, which is harder than lever-

aging text augmentation and thus might require
more advanced model capabilities. (4) WebSight
VLM-8B and our model Design2Code-18B match
Gemini direct prompting, suggesting that finetun-
ing on a large amount of data can match commer-
cial models in specific domains.
Direct Assessment While the automatic and hu-
man evaluation offer a comparison among different
models and methods, readers might still wonder
how good are the best-performing models on this
task. To offer a more intuitive answer to this ques-
tion, we further ask human annotators to compare
each reference webpage with the AI-generated web-
page (using GPT-4V self-revision prompting) and
directly assess the quality of the generated web-
page. Concretely, we perform direct assessment
from two perspectives (all examples are annotated
by 5 annotators, and we take the majority vote; full
instructions given to the annotators can be found
in Appendix F): (I) Can the AI-generated webpage
replace the original webpage? We shuffle the or-
dering of all examples and ask annotators to judge
whether the two webpages are similar enough in
terms of appearance and content so that they can
be deployed interchangeably. We find that 49%
of the AI-generated webpages are considered ex-
changeable with the reference webpages. (II) Is
the reference webpage or AI generation better? We
then ask a different question, where we shuffle the
example ordering and ask annotators which web-
page is better designed (annotators do not know
which one is the reference and which one is AI-
generated). Perhaps surprisingly, webpages gener-
ated by GPT-4V are preferred in 64% cases, i.e.,
they are considered better designed than even the
original reference webpages. We hypothesize it is
possible that the model has more access to modern
and popular webpage design principles (Ivory and
Megraw, 2005; Beaird et al., 2020), such that it can
automatically improve the original design based on
these best practices. This also opens up many new
opportunities for future work on website design
improvement tools. We provide some case study
examples in Appendix I.

4.3 Automatic Evaluation vs Human
Evaluation

It is worth noting that there are some interesting dis-
crepancies between the automatic evaluation results
and human evaluation results. For example, human
evaluation ranks GPT-4V self-revision prompting
better than text-augmented prompting, while the

3961

0 20 40 60 80 100
Percentage (%)

GPT-4o Direct
GPT-4o Text-Augmented

GPT-4o Self-Revision
GPT-4V Direct

GPT-4V Text-Augmented
GPT-4V Self-Revision

Gemini Text-Augmented
Gemini Self-Revision

WebSight VLM-8B
Design2Code-18B

92% 4% 4%
90% 6% 4%
90% 7% 3%

63% 11% 26%
68% 14% 18%

76% 9% 15%
45% 16% 39%

34% 26% 40%
54% 11% 35%

38% 25% 37%

Win Tie Lose

Figure 4: Human pairwise preference evaluation results with Gemini Pro Vision Direct Prompting as the baseline (this method
itself is not shown in the table since it serves as the baseline for pairwise comparison). We sample 100 examples, ask 5 annotators
for each pair of comparisons, and take the majority vote on each example. A higher win rate and lower loss rate suggest better
quality as judged by human annotators.

Reference Webpage Reference WebpageGPT-4o Direct Prompting GPT-4o Direct Prompting

Figure 5: Example of GPT-4o direct prompting.

coef std err p

Block-Match 0.7429 0.142 0.000
Text -0.3541 0.153 0.021
Position 0.7605 0.139 0.000
Color 0.3461 0.107 0.001
CLIP 0.4929 0.134 0.000

Table 2: Results on predicting human annotations (Win/Lose)
via logistic regression using different metrics as features.

automatic metrics show mixed results. Moreover,
even though humans rank WebSight VLM-8B as
better than Design2Code-18B, it has much worse
block-match and text similarity as measured by the
automatic metrics. In this part, we take a closer
look at such discrepancy and discuss why such
discrepancy is a feature rather than a bug.

Human annotation replies only on high-level
features. We study whether we can predict hu-
man pairwise preferences using automatic metrics.
Specifically, we randomly split the 100 annotated
examples into a 50% training set and a 50% test
set, leading to 435 pairwise human annotations (we

only consider Win/Lose) for both training and test-
ing. Given one reference R and two candidates
G1, G2, we use the difference of each dimension
(e.g., matchblock(R,G1)−matchblock(R,G2))
as features and predict Win (1) or Lose (0) by lo-
gistic regression 2. The derived logistic regression
model achieves 79.9% accuracy on the test set, and
the features’ coefficients and significance are in
Table 2. Interestingly, we find that text similar-
ity has a negative and least significant association
with human judgment. In contrast, all other sim-
ilarity measures show positive and significant as-
sociations with human judgment. This suggests
that humans usually pay more attention to high-
level visual effects like layouts, colors, and the ex-
istence of contents rather than the detailed content,
reflecting the top-down processing (Gilbert and Li,
2013) of humans. We argue that human evalua-
tion should not be blindly trusted as the oracle here
due to their cognitive bias to only consider “prin-

2We normalize the feature before calculating the differ-
ences and add a constant term before logistic regression.

3962

Reference Webpage GPT-4V Direct Prompting GPT-4V Text-Augmented Prompting

Figure 6: Example of text-augmented prompting improving over the direct prompting baseline, where missing texts
are successfully generated.

Block Text Position Color CLIP

GPT-4o

Direct 56.6 89.8 78.6 81.9 87.1
Text-Augmented 67.7 95.2 77.5 81.5 87.5
Self-Revision 72.1 96.4 81.1 82.4 88.2

GPT-4o Mini

Direct 57.7 90.7 77.9 77.5 86.3
Text-Augmented 69.5 97.0 77.9 79.1 86.1
Self-Revision 70.3 96.9 77.9 78.6 86.0

Claude 3.5 Sonnet

Direct 61.7 91.1 83.0 84.4 89.5
Text-Augmented 75.1 97.6 83.4 84.9 89.0
Self-Revision 71.9 96.5 82.6 83.0 88.8

Claude 3 Opus

Direct 57.1 88.7 74.2 72.4 85.8
Text-Augmented 73.6 97.0 75.6 72.6 85.7
Self-Revision 73.3 95.9 76.6 70.0 85.6

Gemini 1.5 Pro

Direct 72.3 95.4 80.9 80.5 87.5
Text-Augmented 73.7 95.9 79.8 79.1 88.2
Self-Revision 71.2 96.6 80.9 78.4 87.9

Gemini 1.5 Flash

Direct 69.2 96.6 78.0 80.2 87.3
Text-Augmented 72.7 97.4 79.4 78.2 87.6
Self-Revision 72.2 97.5 79.4 77.9 87.6

Table 3: Evaluation results for Design2Code-HARD. We show
the results for flagship commercial models.

ciple components” of the webpages. Instead, both
high-level similarity (human pairwise preference
and CLIP similarity) and low-level elements (fine-
trained block-wise similarity) should be considered
when evaluating new models and methods.

4.4 Case Study
Figure 5 shows examples from GPT-4o, which
generates similar layouts and color styles without
prompting techniques. For weaker models like
GPT-4V, text-augmented prompting improves re-

call, especially for texts, as seen in Figure 6, where
it raises the block-match score from 0.25 to 0.84.
We then analyze self-revision’s impact on text-
augmented prompting. In Figure 7, self-revision
recovers missing webpage elements, increasing the
block-match score from 0.48 to 1.00 and CLIP sim-
ilarity from 0.87 to 0.91. It also corrects layout
errors, boosting CLIP similarity from 0.85 to 0.91.

4.5 Design2Code-HARD

To understand what makes a webpage difficult to
generate, we compute the correlation between au-
tomatic metrics and various difficulty indicators,
including (1) the total number of tags in the refer-
ence implementation, (2) the number of unique tags
in the reference implementation, and (3) DOM tree
depth of the reference implementation. Appendix
Table 7 shows that the total number of tags is a
strong indicator of difficulty. We also find that non-
English webpages are usually harder to generate,
probably due to the limited pretraining data.

To this end, we introduce a more difficult version
of our benchmark using the same filtering process,
named Design2Code-HARD, containing 80 hard ex-
amples with unique challenges like being extremely
long (26% examples have more than 500 HTML
tags) and non-English content (19% examples). In
table 3, we observe a significant performance drop
on GPT-4o compared to the “easy” version of our
dataset, and state-of-the-art models fail to generate
30% - 40% of the block elements (Block-Match).
Interestingly, GPT-4o can steadily improve perfor-
mance through text augmentation and self-revision,
while Gemini 1.5 Pro cannot.

5 Related Work

UI Automation Nguyen and Csallner (2015) re-
verse engineer mobile UI by identifying elements

3963

Figure 7: Examples of self-revision prompting improving over text-augmented prompting. The self-revision can
either add the missing texts or fix layout errors.

through classic text recognition and computer
vision techniques (OCR, edge detection, etc).
Pix2Code (Beltramelli, 2018) builds an end-to-
end system for UI-to-code transformation based on
CNN and RNN, which cannot deal with complex
visual encoding and long text decoding. Robin-
son (2019); Aşıroğlu et al. (2019) further incor-
porate neural network-based object detection and
semantic segmentation into the pipeline. Recently,
Soselia et al. (2023) utilize more advanced visual
encoders (e.g., ViT, Dosovitskiy et al., 2020) and
language decoders (e.g., LLaMA, Touvron et al.,
2023a,b) and finetune the pipeline using visual sim-
ilarity. Jiang et al. (2024b) use Graph Neural Net-
works to represent UI elements and designers by
autocompleting partially completed GUI designs.
We advance this thread by offering the first UI au-
tomation benchmark with real-world webpages and
benchmarking state-of-the-art MLLMs.

Code LLMs and Programming Support Tools
Our work also connects to code language models
and programming support tools. LLMs trained
on code, such as Codex (Chen et al., 2021), Star-
Coder (Li et al., 2023), InCoder (Fried et al., 2022),
CodeLlama (Rozière et al., 2023), and DeepSeek-
Coder (Guo et al., 2024), enable a wave of pro-

gramming support applications such as automatic
code completion and infilling, and allowing users
to chat with a codebase. This also leads to a
new wave of HCI studies on designing better pro-
gramming tools to facilitate human-AI collabora-
tion (Kalliamvakou, 2022; Vasconcelos et al., 2023;
Liang et al., 2023). Our benchmark offers realis-
tic evaluation for code LLMs and aims to enable
more powerful programming support to front-end
designers who do not have to code by themselves
and can just collaborate with LLMs.

6 Conclusion

This work introduced the Design2Code(-HARD)
benchmark consisting of diverse and challenging
real-world webpages as test examples. We devel-
oped comprehensive automatic metrics and con-
ducted human evaluations to compare various mul-
timodal LLMs. We showed that state-of-the-art
models can generate well-formed websites on some
easy examples but still struggle with more complex
examples, while open-source models are far behind
commercial models, leaving ample room for future
improvement. For future work, a promising direc-
tion is to generate UIs that support dynamic user
interactions.

3964

Limitations

We believe Design2Code can serve as a useful
benchmark to power many future research direc-
tions. We highlight a few current limitations of
Design2Code and how future work could address
them:

1. Better prompting techniques for multimodal
LLMs, especially in handling complex web-
pages, for example, by incrementally generat-
ing different parts of the webpage.

2. Our preliminary experiments showed the dif-
ficulty of directly training on real webpages
since they are too long and noisy, future work
could explore data cleaning pipelines to make
such training stable.

3. Extending beyond screenshot-only inputs, for
example, to collect Figma frames or sketch
designs from front-end designers as the test
input. Such extension also requires careful
re-design of the evaluation paradigm.

4. Extending from static webpages to also in-
clude dynamic webpages. This also requires
the evaluation to consider interactive func-
tions beyond just visual similarity.

Ethical Considerations

Privacy We used the dataset C4 which is released
under ODC-By license, allowing free share, modi-
fication, and use subject to the attribution require-
ments. We release our dataset under the same li-
cense. Moreover, when performing manual filter-
ing, we explicitly filtered out webpages containing
private or sensitive information (e.g., dating web-
site profiles).

Dual Use Despite our intention of democratizing
webpage building, we recognize the potential dual
use danger of Design2Code technologies, such as
automated generation of malicious websites, or
even generating code for licensed websites. We
emphasize is intended for research purposes and
for the community to better understand multimodal
LLM capabilities. We will provide clear ethical use
guidelines for all data, code, and model releases to
define acceptable and unacceptable use cases.

Acknowledgement

We thank Aryaman Arora, Jihyeon Je, Irena Gao,
Will Held, Ryan Louie, Weiyan Shi, Yutong Zhang,

Dora Zhao, Rose Wang, Caleb Ziems, Michael
Ryan, Camille Harris, Harshit Joshi, Yijia Shao, Ji-
aao Chen, Omar Shaikh, Julie Kallini, Lucia Zheng,
Julia Kruk, Yanchen Liu, Tianyu Gao and Tristan
Thrush for their helpful comments and discussion.
This work is supported in part by a grant from
Google and ONR to DY.

References
Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-

toine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katie Millican, Malcolm Reynolds,
Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda
Han, Zhitao Gong, Sina Samangooei, Marianne
Monteiro, Jacob Menick, Sebastian Borgeaud, Andy
Brock, Aida Nematzadeh, Sahand Sharifzadeh, Miko-
laj Binkowski, Ricardo Barreira, Oriol Vinyals,
Andrew Zisserman, and Karen Simonyan. 2022.
Flamingo: a visual language model for few-shot
learning. ArXiv, abs/2204.14198.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

Batuhan Aşıroğlu, Büşta Rümeysa Mete, Eyyüp Yıldız,
Yağız Nalçakan, Alper Sezen, Mustafa Dağtekin, and
Tolga Ensari. 2019. Automatic html code genera-
tion from mock-up images using machine learning
techniques. In 2019 Scientific Meeting on Electrical-
Electronics & Biomedical Engineering and Computer
Science (EBBT), pages 1–4.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile vision-
language model for understanding, localization, text
reading, and beyond. Preprint, arXiv:2308.12966.

Jason Beaird, Alex Walker, and James George. 2020.
The principles of beautiful web design. SitePoint Pty
Ltd.

Tony Beltramelli. 2018. pix2code: Generating code
from a graphical user interface screenshot. In Pro-
ceedings of the ACM SIGCHI Symposium on Engi-
neering Interactive Computing Systems, pages 1–6.

Lukas Blecher, Guillem Cucurull, Thomas Scialom,
and Robert Stojnic. 2023. Nougat: Neural optical
understanding for academic documents. Preprint,
arXiv:2308.13418.

Minwoo Byeon, Beomhee Park, Haecheon Kim,
Sungjun Lee, Woonhyuk Baek, and Saehoon Kim.
2022. Coyo-700m: Image-text pair dataset. https:
//github.com/kakaobrain/coyo-dataset.

J Cao. 2015. The 5 pillars of visual hierarchy in web
design.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,

3965

https://api.semanticscholar.org/CorpusID:248476411
https://api.semanticscholar.org/CorpusID:248476411
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://doi.org/10.1109/EBBT.2019.8741736
https://doi.org/10.1109/EBBT.2019.8741736
https://doi.org/10.1109/EBBT.2019.8741736
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.13418
https://arxiv.org/abs/2308.13418
https://github.com/kakaobrain/coyo-dataset
https://github.com/kakaobrain/coyo-dataset

Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, Suchir Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. ArXiv,
abs/2107.03374.

David F. Crouse. 2016. On implementing 2d rectan-
gular assignment algorithms. IEEE Transactions on
Aerospace and Electronic Systems, 52(4):1679–1696.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2020. An image
is worth 16x16 words: Transformers for image
recognition at scale. Preprint, arXiv:2010.11929.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori Hashimoto. 2023. Alpacafarm:
A simulation framework for methods that learn from
human feedback. ArXiv, abs/2305.14387.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida I.
Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen
tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022.
Incoder: A generative model for code infilling and
synthesis. ArXiv, abs/2204.05999.

Charles D Gilbert and Wu Li. 2013. Top-down influ-
ences on visual processing. Nature Reviews Neuro-
science, 14(5):350–363.

Google. 2023. Gemini: A family of highly capable
multimodal models. ArXiv, abs/2312.11805.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming – the rise of
code intelligence. Preprint, arXiv:2401.14196.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao
Dong, Ming Ding, and Jie Tang. 2023. Cogagent:
A visual language model for gui agents. Preprint,
arXiv:2312.08914.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. ArXiv,
abs/2310.01798.

Melody Y Ivory and Rodrick Megraw. 2005. Evolution
of web site design patterns. ACM Transactions on
Information Systems (TOIS), 23(4):463–497.

Dongfu Jiang, Xuan He, Huaye Zeng, Cong Wei, Max
Ku, Qian Liu, and Wenhu Chen. 2024a. Mantis:
Interleaved multi-image instruction tuning. Preprint,
arXiv:2405.01483.

Yue Jiang, Changkong Zhou, Vikas Garg, and Antti
Oulasvirta. 2024b. Graph4gui: Graph neural net-
works for representing graphical user interfaces. In
International Conference on Human Factors in Com-
puting Systems.

Eirini Kalliamvakou. 2022. Quantifying github copi-
lot’s impact on developer productivity and happiness.

Geewook Kim, Teakgyu Hong, Moonbin Yim,
JeongYeon Nam, Jinyoung Park, Jinyeong Yim, Won-
seok Hwang, Sangdoo Yun, Dongyoon Han, and
Seunghyun Park. 2022. Ocr-free document under-
standing transformer. In European Conference on
Computer Vision, pages 498–517. Springer.

Hugo Laurenccon, Léo Tronchon, Matthieu Cord, and
Victor Sanh. 2024. What matters when building
vision-language models?

Hugo Laurençon, Léo Tronchon, and Victor Sanh. 2024.
Unlocking the conversion of web screenshots into
html code with the websight dataset. Preprint,
arXiv:2403.09029.

Triet HM Le, Hao Chen, and Muhammad Ali Babar.
2020. Deep learning for source code modeling and
generation: Models, applications, and challenges.
ACM Computing Surveys (CSUR), 53(3):1–38.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nourhan Fahmy, Urvashi Bhat-
tacharyya, W. Yu, Swayam Singh, Sasha Luccioni,
Paulo Villegas, Maxim Kunakov, Fedor Zhdanov,
Manuel Romero, Tony Lee, Nadav Timor, Jennifer
Ding, Claire Schlesinger, Hailey Schoelkopf, Jana
Ebert, Tri Dao, Mayank Mishra, Alexander Gu,
Jennifer Robinson, Carolyn Jane Anderson, Bren-
dan Dolan-Gavitt, Danish Contractor, Siva Reddy,
Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Car-
los Muñoz Ferrandis, Sean M. Hughes, Thomas Wolf,

3966

https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1109/TAES.2016.140952
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://api.semanticscholar.org/CorpusID:258865545
https://api.semanticscholar.org/CorpusID:258865545
https://api.semanticscholar.org/CorpusID:258865545
https://api.semanticscholar.org/CorpusID:248157108
https://api.semanticscholar.org/CorpusID:248157108
https://api.semanticscholar.org/CorpusID:266361876
https://api.semanticscholar.org/CorpusID:266361876
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://api.semanticscholar.org/CorpusID:263609132
https://api.semanticscholar.org/CorpusID:263609132
https://arxiv.org/abs/2405.01483
https://arxiv.org/abs/2405.01483
https://api.semanticscholar.org/CorpusID:269293884
https://api.semanticscholar.org/CorpusID:269293884
https://api.semanticscholar.org/CorpusID:269587869
https://api.semanticscholar.org/CorpusID:269587869
https://arxiv.org/abs/2403.09029
https://arxiv.org/abs/2403.09029

Arjun Guha, Leandro von Werra, and Harm de Vries.
2023. Starcoder: may the source be with you! ArXiv,
abs/2305.06161.

Jenny T Liang, Chenyang Yang, and Brad A. Myers.
2023. A large-scale survey on the usability of ai pro-
gramming assistants: Successes and challenges. In
International Conference on Software Engineering.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Llava-
next: Improved reasoning, ocr, and world knowledge.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhu-
oshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng,
Hanwei Xu, Zhenda Xie, and Chong Ruan. 2024.
Deepseek-vl: Towards real-world vision-language
understanding. Preprint, arXiv:2403.05525.

M Ronnier Luo, Guihua Cui, and Bryan Rigg. 2001.
The development of the cie 2000 colour-difference
formula: Ciede2000. Color Research & Applica-
tion: Endorsed by Inter-Society Color Council, The
Colour Group (Great Britain), Canadian Society for
Color, Color Science Association of Japan, Dutch
Society for the Study of Color, The Swedish Colour
Centre Foundation, Colour Society of Australia, Cen-
tre Français de la Couleur, 26(5):340–350.

Tengchao Lv, Yupan Huang, Jingye Chen, Lei Cui,
Shuming Ma, Yaoyao Chang, Shaohan Huang, Wen-
hui Wang, Li Dong, Weiyao Luo, Shaoxiang Wu,
Guoxin Wang, Cha Zhang, and Furu Wei. 2023.
Kosmos-2.5: A multimodal literate model. Preprint,
arXiv:2309.11419.

Shunji Mori, Ching Y Suen, and Kazuhiko Yamamoto.
1992. Historical review of ocr research and develop-
ment. Proceedings of the IEEE, 80(7):1029–1058.

Tuan Anh Nguyen and Christoph Csallner. 2015. Re-
verse engineering mobile application user interfaces
with remaui (t). In 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 248–259. IEEE Computer Society.

OpenAI. 2023. Gpt-4v(ision) system card.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. Preprint, arXiv:2103.00020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Alex Robinson. 2019. Sketch2code: Generating a web-
site from a paper mockup. ArXiv, abs/1905.13750.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, I. Evtimov, Joanna Bitton, Manish P
Bhatt, Cristian Cantón Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre D’efossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code. ArXiv,
abs/2308.12950.

Christoph Schuhmann, Romain Beaumont, Richard
Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton
Mullis, Mitchell Wortsman, Patrick Schramowski,
Srivatsa Kundurthy, Katherine Crowson, Ludwig
Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.
2022. Laion-5b: An open large-scale dataset for
training next generation image-text models. Preprint,
arXiv:2210.08402.

Davit Soselia, Khalid Saifullah, and Tianyi Zhou. 2023.
Learning ui-to-code reverse generator using visual
critic without rendering.

Jeremiah D Still. 2018. Web page visual hierarchy: Ex-
amining faraday’s guidelines for entry points. Com-
puters in Human Behavior, 84:352–359.

Alexandru Telea. 2004. An image inpainting technique
based on the fast marching method. Journal of graph-
ics tools, 9(1):23–34.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Helena Vasconcelos, Gagan Bansal, Adam Fourney,
Qingzi Vera Liao, and Jennifer Wortman Vaughan.
2023. Generation probabilities are not enough:
Exploring the effectiveness of uncertainty high-
lighting in ai-powered code completions. ArXiv,
abs/2302.07248.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less
is more for alignment. Preprint, arXiv:2305.11206.

3967

https://api.semanticscholar.org/CorpusID:258588247
https://api.semanticscholar.org/CorpusID:257833548
https://api.semanticscholar.org/CorpusID:257833548
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2403.05525
https://arxiv.org/abs/2403.05525
https://arxiv.org/abs/2309.11419
https://api.semanticscholar.org/CorpusID:263218031
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://api.semanticscholar.org/CorpusID:173188440
https://api.semanticscholar.org/CorpusID:173188440
https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:261100919
https://arxiv.org/abs/2210.08402
https://arxiv.org/abs/2210.08402
https://api.semanticscholar.org/CorpusID:265302631
https://api.semanticscholar.org/CorpusID:265302631
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://api.semanticscholar.org/CorpusID:256846746
https://api.semanticscholar.org/CorpusID:256846746
https://api.semanticscholar.org/CorpusID:256846746
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2305.11206

A Additional Dataset Statistics

We present the table of most frequent HTML tags
in Table 5.

B Test Set Curation

Our overall goal is to obtain a set of well-formed
webpages that represent diverse real-world use
cases. We follow the following steps for automatic
processing and manual filtering.
Automatic Length and Layout Filtering We first
apply a round of automatic filtering. We strip all
comments from the code files and then apply a
length filter to exclude examples where the source
code file has over 100k tokens (based on the GPT-2
tokenizer), as a way to avoid excessively long web-
pages that current multimodal LLMs cannot pro-
cess as input or cannot decode such long outputs.
Next, we filter all webpages whose layout consists
of only images or only texts, in which cases the
layout designs tend to be too simplistic to be in-
teresting for benchmarking. This results in 14k
webpages after filtering and deduplication.
Making Webpages Stand-alone We assume a set-
ting where we will only provide the screenshot of
the webpage for the model, without providing all
the external dependencies such as multimedia files
(images, audio, videos, etc.). To make this possible,
we strip all such external file dependencies to make
all the webpages stand-alone, this includes: remov-
ing all <script><audio><iframe><map><svg>
tags, removing all <link> tags that link to external
sites, removing all href links in <a> tags, and re-
moving all external files in <object> elements. For
all the image and video files, we replace them with
a placeholder file, and during benchmarking we
will instruct the models to insert this placeholder
file wherever applicable to preserve the original
layout.
Manual Curation After the above processing, we
perform a final round of manual curation to filter
examples based on the following criteria: (1) The
webpage has no external file dependency and can
render in a stand-alone manner from the processed
code file and provided placeholder image file. (2)
The webpage does not contain any private, sensi-
tive, or potentially harmful information (e.g., we
removed profile pages from dating websites). (3)
The rendered webpage is well-formatted (e.g., there
should not be overlaps between different layout el-
ements and the automatic processing above should
not disrupt any part of the webpage design). The

first two authors of this paper performed this cura-
tion step by checking every single example from
the sampled 7k examples. They first annotated 200
examples together to reach an 75% agreement, then
split the annotation work on 7k randomly sampled
examples from the filtered set of 14k examples
above. This entire manual curation process took
approximately one week. We try to keep the se-
lected high-quality webpages as diverse as possible
while adding new ones. In the end, we obtained
484 test examples that we use as our benchmark.

C Text Detection and Merging Details

The common approach to detect the texts in a
given screenshot is to use OCR tools (Mori et al.,
1992), which returns a list of text segments with
their bounding boxes. However, in our case, we
find that open-source OCR tools usually output
noisy outputs, which may affect the stability of
downstream evaluation. Since we already have the
source HTML codes for reference webpage screen-
shots, we apply an alternative approach: we alter
the color differently for different text segments in
the source HTML code and detect text segments in
the webpage by taking two extra screenshots and
tracking pixels with different colors. This helps us
locate text segments from the HTML source code
in the screenshots without text recognition errors.

Based on the two sets of detected blocks, we use
the Jonker-Volgenant algorithm (Crouse, 2016) (im-
plemented in Scipy 3) to get the optimal matching
M between R and G, where (p, q) ∈ M indicates
rp is matched with gq. Specifically, we use the neg-
ative sequence similarity between textual contents
(−simtext(,)) to initialize the cost matrix and ig-
nore the matched pairs with a sequence similarity
lower than 0.5. Since detected text blocks might be
in different granularity, we also enumerate merg-
ing neighbor text blocks to search for matching
with the highest similarity. However, the matching
may still not be perfect, especially when there are
large granularity differences (our search does not
consider merging non-contiguous blocks).

D Prompting details

We use the following prompt for direct prompting:
You are an expert web developer who specializes

in HTML and CSS. A user will provide you with

3https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.linear_sum_assignment.
html

3968

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html

WebSight (Huggingface) Design2Code (Ours) Design2Code-HARD (Ours)

Purpose Training Testing Testing
Source Synthetic (Deepseek-Coder) Real-World (C4) Real-World (GitHub)
Size 823K 484 80
Avg Tag Count 19±8 158±100 251±232
Avg DOM Depth 5±1 13±5 10±4
Avg Unique Tags 10±3 22±6 22±5

Table 4: Comparison of datasets statistics between the WebSight dataset and our new Design2Code benchmark.
WebSight only provides the training set while Design2Code only provides the test set. Examples in our Design2Code
benchmark are much more complex on all measures and have a wider variety of difficulty levels as indicated by the
bigger standard deviations.

Tag Frequency Tag Frequency Tag Frequency

<div> 17790 <style> 1181 <head> 486
<a> 13309 <td> 997 <body> 486
 6883 <input> 995 <tr> 436
 6813 <h3> 759 429
<meta> 4629 <h2> 709 <nav> 416
<p> 3413 595 <i> 400

 2453 <h1> 536 <section> 381
 2078 <button> 525 <label> 339
 1870 <title> 492 <form> 292
<option> 1194 <html> 486 <h4> 289

Table 5: The most frequent HTML tags in the reference implementations of our benchmark examples.

a screenshot of a webpage. You need to return

a single html file that uses HTML and CSS to

reproduce the given website. Include all CSS code

in the HTML file itself. If it involves any images,

use "rick.jpg" as the placeholder. Some images on

the webpage are replaced with a blue rectangle as

the placeholder, use "rick.jpg" for those as well.

Do not hallucinate any dependencies to external

files. You do not need to include JavaScript

scripts for dynamic interactions. Pay attention

to things like size, text, position, and color of

all the elements, as well as the overall layout.

Respond with the content of the HTML+CSS file.

We use the following prompt for self-revision
prompting: You are an expert web developer who

specializes in HTML and CSS. I have an HTML file for

implementing a webpage but it has some missing or

wrong elements that are different from the original

webpage. The current implementation I have is:

[generated code from text-augmented prompting]. I

will provide the reference webpage that I want

to build as well as the rendered webpage of the

current implementation. I also provide you all

the texts that I want to include in the webpage

here: [extracted texts from the original webpage].

Please compare the two webpages and refer to the

provided text elements to be included, and revise

the original HTML implementation to make it look

exactly like the reference webpage. Make sure the

code is syntactically correct and can render into a

well-formed webpage. You can use "rick.jpg" as the

placeholder image file. Pay attention to things

like size, text, position, and color of all the

elements, as well as the overall layout. Respond

directly with the content of the new revised and

improved HTML file without any extra explanations.

Details of tested models: GPT-
4o: gpt-4o-2024-05-13, GPT-4V:
gpt-4-1106-vision-preview, Claude 3 Opus:
claude-3-opus-20240229, Gemini 1.0 Pro
Vision gemini-1.0-pro-vision 4. For all
commercial models, we use greedy decoding and
set maximum new tokens to 4096.

For open-source models, we found that they tend
to generate repetitive content for HTML/CSS in our
preliminary experiments. We use a temperature of

4We keep getting empty responses with unexplained errors
while testing Gemini 1.5.

3969

coef std err p

const 0.5540 0.139 0.000
Block-Match 0.6238 0.131 0.000
Position 0.7504 0.141 0.000
Color 0.3443 0.107 0.001
CLIP 0.4630 0.132 0.000

Table 6: Coefficients for the learned linear regression model to simulate win rate.

Total Num of Tags Num of Unique Tags DOM Tree Depth

Metric Corr Metric Corr Metric Corr

Block-Match -0.28* Block-Match -0.16* Block-Match -0.04
Text -0.13* Text -0.08 Text 0.01
Position -0.19* Position -0.15* Position -0.10*
Color -0.13* Color -0.09 Color -0.04
CLIP -0.12 CLIP -0.02 CLIP 0.03

Table 7: Correlation between automatic metrics and three proxy difficulty indicator variables on GPT-4V self-
revision prompting. The total number of tags is the strongest indicator, where webpages with more tags tend to be
more challenging for the model. * indicates p-value < 0.05.

0.5 and a repetition penalty of 1.1 during sampling,
the same as testing the finetuned models. Note
that other open-source models like Qwen-VL-Chat
(Bai et al., 2023) and Mantis (Jiang et al., 2024a)
fail to generate HTML format in more than 80%
cases, which are not reported here. Since most of
the open-source models only support single-image
input, we concatenate the reference screenshot and
the generated screenshot into one image before
prompting, following Jiang et al. (2024a).

E Finetuning details of Design2Code-18B

We use CogAgent-18B (Hong et al., 2023) as our
base model, which supports high-resolution input
(1120× 1120) and is pretrained on intensive text-
image pairs (Byeon et al., 2022; Schuhmann et al.,
2022), synthetic documents (Kim et al., 2022), La-
TeX papers (Blecher et al., 2023), and a small
amount of website data. We then finetune the base
model with the WebSight dataset. While the origi-
nal WebSight dataset has 823K examples, we only
randomly sample 20% for training due to the lim-
ited computation resources. We also reverse the
order of HTML style and body as we find that it
leads to a lower loss in our preliminary experiment.
Note that we have also experimented with training
on real-world webpage data scraped from the C4
training set. Such training is extremely unstable

and difficult because real-world code implemen-
tation data tend to be extremely long and noisy,
resulting in even lower performance than training
on synthetic data. We thus leave such exploration
to future work. Specifically, We use LoRA (Hu
et al., 2021) to fine-tune the base model, where
the LoRA modules are added to the language de-
coder with LoRA rank 8. Using a batch size of 32
and a learning rate of 1e-5, we fine-tune the model
for 5000 steps with 100 steps warmup. Using 4×
NVIDIA A6000, this takes about 2 days of train-
ing. We use a temperature of 0.5 and a repetition
penalty of 1.1 during inference and select the best
checkpoint based on the average of all automatic
metrics on a small dev set (20 examples).

F Human Annotation Details

We restrict the annotators to people in the U.S. who
have completed 2,500 surveys with a pass rate of
98% or higher. In total, there are 60 participants. In
the instructions, the annotators are asked to check
the pair following the order of priority (content >
layout > style). This priority list is based on two
intuitions: (i) Layout comparison is only mean-
ingful when the content is (almost) complete. (ii)
The style of independent elements is easier to fix
than the layout of multiple elements. The detailed
instructions are below:

3970

Task Overview
In this survey, you will be given a reference
webpage’s screenshot, as well as two candidate
webpages (Example 1 and Example 2) that try
to replicate the reference webpage. Your task is
to judge which of the two candidates is closer to
the reference.
Each (Reference, Example 1, Example 2) is pre-
sented in a row, where the original boundary of
screenshot is marked by black.
Comparison Guide
Initial Step: Content Check

• Text Content: Examine if the text on the
candidate webpages matches the reference.
Pay special attention to missing or extra
content, especially key elements like titles.

• Image Content: Assess the placement of
the blue placeholder blocks (for images).

• Primary Judgment Criterion: If one exam-
ple has significant missing or additional
content compared to the other, it should be
considered less similar to the reference.

Second Step: Layout Check

• Element Arrangement: If the content (text
and images) of both examples is similarly
good or bad, proceed to evaluate the ar-
rangement of these elements. Check if their
organization, order, and hierarchy match
the reference.

• Secondary Judgment Criterion: If differ-
ences in layout are observed, the example
with the layout most similar to the refer-
ence should be rated higher.

Final Step: Style Check

• Style Attributes: Only if Example 1 and
Example 2 are comparable in content and
layout, examine the style elements like font
style, color, and size.

• Tertiary Judgment Criterion: In cases
where content and layout are equally
matched, preference should be given to the
example with style attributes closer to the
reference.

Overall Judgment
Based on the criteria in the order of priority
(Content > Layout > Style), make an overall

judgment on which example (Example 1 or Ex-
ample 2) is more similar to the reference web-
page.
Judgment Options
1. Select "Example 1 better" if Example 1 is
closer to the reference.
2. Select "Example 2 better" if Example 2 is
closer to the reference.
3. Opt for "Tie" only if both examples are simi-
larly accurate or equally distant from the refer-
ence.
Additional Tips
1. Use zoom-in for detailed inspection.
2. Focus on major discrepancies in each step
before moving to the next.
3. Your judgment should be based on a cumula-
tive assessment of content, layout, and style.

We also provide 8 examples after the instruc-
tion. The UI of the annotation question is Figure
8. Fleiss’ kappa for pairwise model comparison is
0.46 (5 annotators).

Furthermore, we provide the instructions for di-
rect assessment (comparing the reference and web-
pages generated by GPT-4V self-revision prompt-
ing). The Fleiss’ kappa is 0.32 (5 annotators) for
the first question and 0.26 (5 annotators) for the
second question.

Can the AI-generated webpage replace the
original webpage?

Task Overview
In each question, you will be given two webpage
screenshots.
By comparing the two webpages, you need to
decide whether they are exchangeable.
Please zoom in to take a closer look at the
screenshots if necessary.
You should answer "Yes", if:
1. They look roughly similar.
2. They have similar content.
3. They can serve the same functions.
(Minor details don’t matter that much)
Otherwise, you should answer "No".

Is the reference webpage or AI generation
better?

Task Overview
In each question, you will be given two webpage

3971

Figure 8: User Interface for pairwise model comparison.

screenshots.
By comparing the two webpages, you need to
decide which one is better.
Please zoom in to take a closer look at the
screenshots if necessary.
To decide which one is better, you might con-
sider the following aspects:
1. More readable
2. Better layout
3. Better style

G Simulated Win Rate

Since we’ve shown that we can predict human judg-
ment based on automatic metrics and achieve rea-
sonable accuracy, we can also provide a simulated
win rate using the learned coefficients and inter-
cept. In practice, we remove the text similarity
dimension and rerun the linear regression model
on the same training examples (details provided in
Appendix Table 6). Using all 484 examples, we
use the learned model to simulate the win rate and
report the result in Table 8. Since the learned model
only predicts win/lose, we compare the simulated

Model Simulated Annotated

GPT-4o Direct 96.1 96.0
GPT-4o Text-Augmented 94.8 96.0
GPT-4o Self-Revision 95.0 97.0
GPT-4V Direct 81.0 74.0
GPT-4V Text-Augmented 81.4 82.0
GPT-4V Self-Revision 85.7 85.0
Gemini Text-Augmented 51.9 61.0
Gemini Self-Revision 50.4 60.0
WebSight VLM-8B 58.3 65.0
Design2Code-18B 58.3 63.0

Table 8: Comparison of simulated win rates (%) and human
annotated “win + tie” rates (%) across models (Pearson r =
0.975, Kendall τ = 0.931). The simulated win rates refer to
the win rate predicted by the learned linear model on all 484
examples. The annotated “win + tie” rates refer to the human
annotation on 100 examples from Figure 4.

win rates with the annotated “win + tie” rates for
fair comparison and observe a strong correlation
between them, suggesting that our automatic met-
rics can also be aggregated into simulated win rates
to facilitate model comparison. For models with-
out annotated “win + tie” rates, we also provide
the simulated win rate in Appendix Table 9 for
reference.

3972

0 1000 2000 3000 4000 5000
Steps

0.4
0.6
0.7
0.8

0.9

1.0
Ra

tio

Block-Match
Text

Position
Color

CLIP

Figure 9: Learning process for different automatic evaluation dimensions, where we plot the performance for the
base model checkpoint and all training checkpoints. For each dimension, the score is re-scaled so that it is 0 before
training (0 steps) and 1 after training (5000 steps). The y-axis is rescaled to highlight the differences for bigger
values.

Figure 10: Comparison of WebSight VLM-8B and Design2Code-18B. WebSight VLM-8B excels at color recogni-
tion but hallucinates text contents.

Model Simulated(%)

Claude 3 Opus Direct 77.5
Claude 3 Opus Text-Augmented 72.9
Claude 3 Opus Self-Revision 76.3
LLaVA 1.6-7B Direct 27.9
LLaVA 1.6-7B Text-Augmented 34.5
LLaVA 1.6-7B Self-Revision 32.9
DeepSeek-VL-7B Direct 25.8
DeepSeek-VL-7B Text-Augmented 37.4
DeepSeek-VL-7B Self-Revision 18.8
Idefics2-8B Direct 19.8
Idefics2-8B Text-Augmented 7.6
Idefics2-8B Self-Revision 3.3

Table 9: Simulated win rates for models that are not annotated
by human, which are predicted by the learned linear model on
all 484 examples.

H What is the Learning Process of
Different Dimensions?

We further plot the learning process of different
automatic evaluation dimensions in Figure 9 to
help us better understand the performance differ-

ences in Table 1. Specifically, we show the normal-
ized performance of each aspect (so that 0 before
training and 1 after training) for the base model
checkpoint and all training checkpoints. On the
one hand, performance on block-match, text, and
position quickly saturate after training for 2000
steps and remain stable afterward, possibly because
these are the most transferable capabilities from the
base model. On the other hand, the color similar-
ity and the CLIP similarity steadily increase until
4000− 5000 steps. We assume that generating the
correct color codes for texts and backgrounds ben-
efits more from the HTML training data than other
aspects and might be further improved by using the
full Websight dataset and fully fine-tuning.

I More Case Study Examples

By comparing WebSight VLM-8B vs
Design2Code-18B, we show a representative
example in Figure 10, where WebSight VLM-8B

3973

is much better in coloring than Design2Code-18B
(color score 0.99 vs 0.66) and overall layout (posi-
tion score 0.91 vs 0.63 and CLIP similarity 0.90
vs 0.83). However, WebSight VLM-8B tends to
hallucinate texts and results in lower block-match
(0.85 vs 0.99) and text similarity scores (0.98 vs
1.0). In general, we find that WebSight VLM-8B
tends to have lower precision and recall than our
model in terms of text matching.

3974

