
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 3921–3955

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Sketch2Code: Evaluating Vision-Language Models for Interactive Web
Design Prototyping

Ryan Li
Stanford University

lansong@stanford.edu

Yanzhe Zhang
Georgia Tech

z_yanzhe@gatech.edu

Diyi Yang
Stanford University

diyiy@stanford.edu

Abstract

Sketches are a natural and accessible medium
for UI designers to conceptualize early-stage
ideas. However, existing research on UI/UX
automation often requires high-fidelity inputs
like Figma designs or detailed screenshots, lim-
iting accessibility and impeding efficient de-
sign iteration. To bridge this gap, we introduce
Sketch2Code, a benchmark that evaluates state-
of-the-art Vision Language Models (VLMs)
on automating the conversion of rudimentary
sketches into webpage prototypes. Beyond end-
to-end benchmarking, Sketch2Code supports
interactive agent evaluation that mimics real-
world design workflows, where a VLM-based
agent iteratively refines its generations by com-
municating with a simulated user, either pas-
sively receiving feedback instructions or proac-
tively asking clarification questions. We com-
prehensively analyze ten commercial and open-
source models, showing that Sketch2Code is
challenging for existing VLMs; even the most
capable models struggle to accurately interpret
sketches and formulate effective questions that
lead to steady improvement. Nevertheless, a
user study with UI/UX experts reveals a signif-
icant preference for proactive question-asking
over passive feedback reception, highlighting
the need to develop more effective paradigms
for multi-turn conversational agents 1.

1 Introduction

Large Language Models (LLMs) have spurred a
variety of applications on automating functional
code implementations from natural language in-
structions (Le et al., 2020; Chen et al., 2021; Li
et al., 2023b; Jimenez et al., 2024). Recent works
such as Si et al. (2024) and Laurençon et al. (2024)
have started to explore possibilities of generating
HTML code directly from full-fidelity web designs
(e.g, mock-up screenshots) using Vision Language

1Code/Data available on project Page: https://
salt-nlp.github.io/Sketch2Code-Project-Page/

Models (VLMs), aiming to democratize frontend
design for researchers, practitioners, and general
users. However, the screenshot-to-code setting is
inconvenient as providing detailed graphical de-
signs for the desired User Interface (UI) is time-
consuming and sometimes requires professional
tools with a steep learning curve. On the other
hand, sketching is a low-fidelity, accessible, and
plentiful tool that is much easier to learn and im-
plement (Sturdee and Lewis, 2024). Despite their
low fidelity, sketches are commonly used to ideate,
communicate, and visualize design concepts, often
serving as the earliest yet vitally important step of
UI designs (Buxton, 2010; Bao et al., 2018; Lewis
and Sturdee, 2023; Sturdee and Lewis, 2024).

Transforming sketches to code used to be imple-
mented in a pipeline fashion that involves pattern
and object recognition (Azure, 2018; Robinson,
2019; Jain et al., 2019; Baulé et al., 2021). How-
ever, recent development of general-purpose VLMs
(Alayrac et al., 2022; Liu et al., 2023; Openai, 2023;
Reid et al., 2024) began to shift this paradigm by
enabling such transformation end-to-end. In this
paper, we present Sketch2Code, a first-of-its-kind
framework to access VLMs’ capability of imple-
menting web UI from user sketches, where we
(1) collected 731 high-quality sketches from 484
real-world webpages through crowd workers based
on Si et al. (2024), (2) assessed VLMs’ perfor-
mance on directly transforming sketches to code,
and (3) designed a multi-turn, interactive frame-
work to benchmark VLMs on Sketch2Code using
LLM simulated users, unlike prior works (Si et al.,
2024; Laurençon et al., 2024) that focused solely
on single-turn generations.

Real-world web design is an iterative process
where initial concepts undergo multiple revisions
based on continuous feedback and clarifications
(Wynn and Eckert, 2017). Especially while using
sketches, which are low-fidelity representations, it
is impossible to figure out specific details, such as

3921

https://salt-nlp.github.io/Sketch2Code-Project-Page/
https://salt-nlp.github.io/Sketch2Code-Project-Page/

I. Input Sketch IV. Revised Design

!

The background of the
webpage should be a light

green color, the form
container should have a blue

backgroud

III. User provides design feedback

II. Initial Design

Sure, here is the revised
design…

 a. Feedback Following

IV. Revised DesignIII. Agent inquires design details

 b. Question Asking

Direct Generation !

Yes, the title should have a
different font color and

bold weight…

Should the title be styled
differently from the main

body?

Figure 1: Benchmark Overview. We provide an example of direct generation on the left. On the right, we show two
examples of user-agent interactions in multi-turn scenarios: feedback following and question answering.

stylistic information, without additional input from
the user. To mirror realistic design workflows and
study how well VLMs can interact with humans,
our framework further introduces two multi-turn
evaluation scenarios between a sketch2code agent
and a simulated user: (1) the sketch2code agent fol-
lows feedback from the simulated user (feedback
following) and (2) the sketch2code agent proac-
tively asks the simulated user questions for design
details and clarification (question asking). To this
end, our framework assesses not only the ability of
models to generate initial implementations based
on abstract inputs but also their capacity to adapt
and evolve these implementations in response to
user feedback. Since these are two of the most
common communication patterns between human
collaborators, our framework allows the simulated
user to be seamlessly replaced by real users in a
real-world deployment. Human annotations reveal
that the simulated user provides faithful and mean-
ingful feedback 83.3% of the time and answers
86.7% of the questions accurately.

We conducted a comprehensive analysis of ten
models: GPT-4o, GPT-4o mini, Gemini 1.5 Pro,
Gemini 1.5 Flash, Claude 3.5 Sonnet, Claude 3
Opus/Sonnet/Haiku, Llava-1.6-8b, and InternVL2-
8b. Results indicate that inferring the correct layout
structures from rudimentary sketch designs is chal-
lenging for VLMs in a single turn (§ 4.3). While
commercial models perform reasonably well in
following user feedback—achieving performance

improvements of up to 7.1% in visual similarity (Si
et al., 2024) and 2.7% in IoU-based (Rezatofighi
et al., 2019) layout similarity within five rounds of
interaction—all VLMs struggle to formulate mean-
ingful questions about the sketches and fail to re-
liably enhance their performance across multiple
rounds in the question-asking scenario (§ 4.4).
To understand the utility of our sketch-based, multi-
turn framework, we conducted a user study involv-
ing eight UI/UX practitioners while all participants
recognized the usefulness of our framework. Fur-
thermore, it reveals that the question-asking mode
is significantly preferred over the more traditional
feedback-following mode despite current subopti-
mal performances. Specifically, users prefer the
agent to proactively undertake more of the cogni-
tive workload and guide the design choices via a
series of targeted questions. Although questions
asked by agents are often found ineffective, re-
placing model-generated questions with questions
asked by human experts leads to a significant im-
provement with each question (§ 5). Our findings
highlight a critical gap between user expectations
and current model capabilities, necessitating fur-
ther research into human-AI collaboration and the
capability of more proactive interactions.

2 Related Work

LLM-Based Code Generation. LLMs designed
explicitly for coding, such as Codex (Chen et al.,
2021), StarCoder (Li et al., 2023b), InCoder (Fried

3922

et al., 2023), CodeLlama (Rozière et al., 2024), and
DeepSeek-Coder (Guo et al., 2024), facilitate pro-
gramming support applications like automatic code
completion and infilling, as well as enabling users
to interact with codebases. For general-purpose
LLMs, adding code into the pretraining data also
improves reasoning (Ma et al., 2023; Zhang et al.,
2024b). However, the trend of evaluating coding
ability on problem-solving benchmarks like Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) leads to overlooking other realistic cod-
ing tasks, such as writing code for solving GitHub
issues (Jimenez et al., 2023) and, in our case, im-
plementing an HTML website.

The introduction of vision modality further poses
challenges to the task of code generation. Most of
the open vision-language data focus on open-ended
visual questions answering, thus essentially limit-
ing the coding capability of open VLMs (Li et al.,
2023a; Liu et al., 2023; Dai et al., 2023), while com-
mercial VLMs, such as GPT-4V (Openai, 2023),
Claude3 (Anthropic, 2024), and Google Gemini
(Reid et al., 2024) achieves remarkable progress
probably due to more diverse and larger scale data
collection. In this work, we find that open VLMs
like InternVL2 (Chen et al., 2024), which achieves
results comparable to commercial models across
popular benchmarks, still lags far behind in terms
of code generation and multi-turn interaction.

Frontend UI Code Generation. Nguyen and
Csallner (2015) pioneered reverse engineering mo-
bile UIs using OCR and computer vision tech-
niques to generate code. Pix2Code (Beltramelli,
2017) introduced an end-to-end UI-to-code system
leveraging CNNs and RNNs, but faced challenges
with complex visual encoding and text decoding.
Aşıroğlu et al. (2019) incorporated neural network-
based object detection and semantic segmentation
into this process. Prior studies have also attempted
automatic UI generation from sketches, such as
Azure (2018); Robinson (2019); Jain et al. (2019);
Baulé et al. (2021), but are limited to simple pattern
matching and object detection, with limited support
in HTML syntax. Recently, Soselia et al. (2023)
utilized advanced visual encoders and language de-
coders, fine-tuning the pipeline with visual similar-
ity signals. However, their examples primarily in-
cluded simple elements. Si et al. (2024); Laurençon
et al. (2024) firstly study whether VLMs can trans-
form real-world screenshots to HTML webpages
in an end2end pattern and demonstrate promising

initial results. However, using screenshots as input
is still unrealistic in the UI coding workflow. Zhang
et al. (2024a) shows one of the first demonstrations
of leveraging VLMs in the sketch-to-code transfor-
mation without comprehensive benchmarking and
framework design.

3 The Sketch2Code Benchmark

3.1 Data Collection

We curated our sketch dataset based on a diverse
set of 484 real-world webpages collected by Si
et al. (2024) under ODC-By license 2. Sketches
are drawn following the standard wireframing con-
ventions3 by annotators recruited on Prolific4. An-
notators are selected based on their self-reported
expertise in UI design and their drawings of three
sample sketches in a qualifier study. We selected 21
annotators from 723 total participants in the quali-
fier run. We then asked each selected annotator to
draw 20-60 sketches of different webpages. Partic-
ipants are compensated for $2 during the qualifier
and $20/hr for the main study.

We have collected a total of 731 sketches for
484 webpage screenshots. To avoid overfitting to a
particular style of sketches, we assigned a subset of
the webpages to multiple annotators with varying
styles and qualities. In particular, 18.0% of the
webpages are sketched by 2 designers, 16.5% of
the webpages are sketched by 3+ designers, and
the remaining webpages are sketched by a sin-
gle designer. Due to budget limits, we could not
assign multiple designers to all webpages in the
source dataset. Appendix Figure 4 contains exam-
ple sketch-screenshot pairs of our dataset.

3.2 Task Definitions

Baseline: Direct Generation In the simplest for-
mat, sketch2code agents are given only the sketch
(or together with the text content) and are asked to
generate an HTML implementation directly. The
agents are allowed to use placeholders if the text
content is not given.

However, such a task has inherent limitations.
Since sketches are low-fidelity abstractions of UI
designs, it is often impossible for the agent, or even
human experts, to perfectly implement a frontend

2We release our dataset under the same license, which is
intended for research use only.

3https://balsamiq.com/learn/articles/
what-are-wireframes/

4www.prolific.com

3923

https://balsamiq.com/learn/articles/what-are-wireframes/
https://balsamiq.com/learn/articles/what-are-wireframes/
www.prolific.com

Figure 2: Multi-turn generation examples using GPT-4o, where we can observe the generated webpages get more
similar to the reference as incorporating more feedback/answers.

UI from sketch alone in a single turn. To success-
fully understand and implement visual designs via
sketches, the agent must communicate effectively
with the user to clarify design requirements and im-
prove their implementations. Therefore, in addition
to direct generation, we present two multi-turn in-
teractive evaluation tasks: feedback following and
question asking. In both scenarios, we follow such
a setup: a (simulated) user has an intended web UI
design that they hope to implement (i.e., the refer-
ence webpage), but they only have a rough sketch
as a starting point. The sketch2code agent will be
required to effectively engage in multi-turn commu-
nication with the user to clarify the requirements
and collectively figure out an implementation of
the intended/desired webpage, while a sketch along
with all texts that should appear on the webpage
initially. Figure 1 shows an example of each multi-
turn evaluation scenario.

Feedback Following At each round, the
sketch2code agent is first asked to generate a
webpage given the currently available information.
An LLM-simulated user will then compare the
screenshot of the current implementation against
the screenshot of the reference webpage and
provide feedback instructions on improving
the implementation. The agent is expected to
incorporate the feedback into its implementation
in the next round of interaction. This task follows
most of the existing conversation AI workflows.

Question Asking At each round, the sketch2code
agent is instructed to proactively look for ambigui-
ties and uncertainties within the sketch design and
ask clarifying questions. The LLM-simulated user
will answer the questions, and the agent will gen-
erate a new webpage at each turn based on the
user’s answer. Unlike most existing conversational
agents, in this task, the agent is required to take on
more cognitive workload and proactively initiate
conversations instead of passively waiting for user
instructions. Human evaluations of the simulated
user’s capabilities are detailed in § 4.5.

Simulated user To automatically simulate and
evaluate multi-turn conversations with sketch2code
agents, we deployed a simulated user for each of
our two multi-turn evaluation tasks. In both tasks,
the simulated user is backed by a GPT-4o model
with temperature=0. In the feedback-following
task, the simulated user is given only a sketch and
a screenshot, as it is supposed to base its feed-
back solely on visual comparisons. In the question-
asking task, the simulated user is given a sketch,
a screenshot, and the HTML code for the screen-
shot to provide the most accurate information for
each question. Considering human users are un-
likely to give detailed, long responses every round,
we prompt the agent to answer all questions with
at most one succinct sentence. In the Appendix,
Listing 2 shows the user prompt for the simulated
user in question asking, and Listing 3 shows the
user prompt for the simulated user in the feedback-

3924

following task.

4 Experiments

4.1 Prompting Methods

We evaluated the agents using two prompting
methods: direct prompting and text-augmented
prompting. In direct prompting, the agent is pro-
vided with a sketch design only and is asked to
generate an HTML prototype without access to ad-
ditional information. In text-augmented prompting,
we augment the agent with all text content extracted
from the reference webpage as part of the initial
user prompt, following Si et al. (2024). The exact
prompts used and additional experiment details are
available in Appendix B.

Preliminary results show that text-augmented
prompting is a more realistic setup and yields
the most stable outputs across multiple interaction
turns. Hence, we use text-augmented prompting as
the starting point for all multi-turn experiments.

4.2 Evaluation Metrics

Visual Similarity Following Si et al. (2024), we
calculate the visual similarity score as the average
of Block Match, Text, Position, Color, and CLIP
scores, which gives a complete assessment of the
generated complete webpages.

However, compared to using screenshots, it is
not meaningful to compare websites generated us-
ing sketches with reference websites since most
textual and stylistic information is not provided.
To this end, we propose an IoU(Intersection over
Union)-based metric that focuses solely on layout
similarities.

Layout Similarity Given a generated and a refer-
ence HTML, we would first extract a list of visual
components from each HTML file. To calculate
the overlap within the same type of components,
we identified seven classes of higher-level visual
component types: text blocks, images, video con-
tainers, navigation bars, forms/tables, and buttons.
Detailed explanations for each visual component
type and their corresponding HTML tag selectors
are available in Appendix A.

For each visual component type c, we define its
layout similarity as the IoU of the total area taken
by all bounding boxes of components with type c
in the reference & generated webpages:

IoU(c) =
A′

c ∩Ac

A′
c ∪Ac

Where Ac and A′
c are the areas taken by com-

ponents with type c in the reference and generated
webpages, respectively.

The overall layout similarity between two web-
pages is the weighted average of IoU scores of all
visual component types c ∈ C.

SimLayout =
∑

c∈C

A′
c +Ac∑

c′∈C (A′
c′ +Ac′)

× IoU(c)

In practice, we evaluate direction generation (sin-
gle turn without textual content input) only using
the layout similarity metric. For all other settings
(Feedback-following and Question-asking), since
agents have access to textual content initially and
are available to collect more information through
multi-turn conversation, we use both visual simi-
larity and layout similarity metrics.

4.3 Result: Direct Generation

We present direct generation results for all 10 eval-
uated models in Table 1. These include 8 commer-
cial models (GPT-4o, GPT-4o mini, Gemini 1.5
Pro, Gemini 1.5 Flash, Claude 3.5 Sonnet, Claude
3 Opus/Sonnet/Haiku), and 2 open-source models
(Llava-1.6-8b and InternVL2-8b). We choose not
to run larger open-source models due to the high
computational cost of generating hundreds of thou-
sands of tokens per run.
First, we observed a considerable gap between
commercial and open-source models on direct
sketch-to-code generations. All commercial mod-
els outperformed open-source models, and the
open-source models rarely achieves a layout sim-
ilarity higher than 10%. While text-augmented
prompting boosts the performance of all commer-
cial models, the additional context can sometimes
be detrimental to the generation qualities of open-
source models. With direct prompting, Llava-1.6
and InternVL2 can generate correctly formatted
HTML outputs 82.4%/98.0% of the time. How-
ever, after giving the textual content on the web-
page, they tend to generate repetitive content with-
out finishing and can only output the correct HTML
format 66.7%/39.2% of the time, respectively.
Among the eight commercial models, Claude 3.5
Sonnet and GPT-4o lead the performance in single-
turn generations, achieving the best layout simi-
larity with direct and text-augmented prompting.
While text-augmented prompting can significantly
boost their performance by 5-7% for smaller, less
capable models (e.g., GPT-4o Mini and Claude

3925

Model Prompting Layout Sim. Text IoU Image IoU Other IoU Human Sat.

GPT-4o Direct 19.20 17.12 16.19 3.03 30.0
Text-Augmented 21.33 22.08 13.23 2.75 -

GPT-4o-Mini Direct 11.49 13.51 2.36 1.27 12.0
Text-Augmented 16.25 20.84 0.72 1.12 -

Claude-3-Opus Direct 12.86 10.43 12.67 0.65 10.0
Text-Augmented 17.11 18.09 8.32 2.97 -

Claude-3.5-Sonnet Direct 21.64 22.51* 10.47 2.94 36.0
Text-Augmented 22.26 25.33* 9.21 3.58 -

Claude-3-Sonnet Direct 11.97 10.61 10.09 0.73 0.0
Text-Augmented 14.22 15.85 6.62 1.72 -

Claude-3-Haiku Direct 10.25 12.61 3.15 1.17 6.0
Text-Augmented 17.52 20.60 2.72 2.22 -

Gemini-1.5-Pro Direct 18.25 16.44 14.69 1.12 22.0
Text-Augmented 18.72 19.46 11.79 0.96 -

Gemini-1.5-Flash Direct 14.15 13.28 8.77 0.03 8.0
Text-Augmented 15.22 13.25 7.81 0.16 -

InternVL2-8b Direct 10.08 11.28 6.13 0.00 2.0
Text-Augmented 4.01 4.89 1.41 0.60 -

Llava-1.6-8b Direct 6.68 6.91 3.43 0.36 0.0
Text-Augmented 8.00 9.26 1.95 0.57 -

Table 1: The performance of eight commercial and two open-source models on the Sketch2Code direct generation
task. The Layout Similarity is computed as the weighted average of the IoU for each visual component. The human
satisfaction rate is the percentage of generation outputs labeled as "Satisfactory/Close Match" by human annotators.
* indicates statistical significance (p<0.05) comparing to the second best performing model.

3 Haiku), such effect dwindles with more capable
models, suggesting that strong models can generate
correct layouts without referencing text content.
Human Evaluation In addition to the automated
metrics, we conducted a human evaluation with
Prolific crowd annotators for the direct prompt-
ing outputs. For each generated result, the anno-
tators are given three options, indicating whether
the generated layout is "Satisfactory/Close Match",
"Loosely Match with Minor Fixes", or "Unsatisfac-
tory". The human satisfaction rate had a r2 value
of 0.87 (p=0.00008), and a Kendall’s Tau score of
0.72 (p=0.004) with the IoU-based layout similar-
ity metric, indicating a strong correlation between
the automated metric and human judgment. More
details in Appendix A.

4.4 Result: Multi-turn Evaluation

Figure 2 shows the example outputs of GPT-4o on
the two multi-turn evaluation tasks. We present the
performance of the largest and smallest models in
each of the three commercial model families (GPT-
4o, Gemini 1.5, and Claude 3) in Figure 3. (I) All
models displayed noticeable improvements in
feedback following. The best commercial mod-
els achieves improvements of up to 7.1% in vi-

sual similarity and 2.7% in IoU-based layout sim-
ilarity within five rounds of interaction. Models
with weaker single-turn performance can some-
times lead to more multi-turn improvements. (II)
Question asking is more challenging as all mod-
els struggled to pose effective questions about the
sketches and showed very few improvements with
statistical significance. Most performance gains
occurred within the first two rounds of interactions,
and performance often plateaued or even deterio-
rated after three to four rounds of interactions. We
provide a more detailed analysis of the types of
effective versus ineffective questions asked in § 5.

Case Study Figure 8 further shows the perfor-
mance of the four models in the Claude model
family. (I) While we observe an apparent scaling-
up effect within the Claude 3 models regarding
visual similarity (Haiku < Sonnet < Opus), such
effect is not observable in layout similarity as Son-
net and Opus sometimes perform worse than Haiku.
Since the visual similarity is heavily based on text
content matching while layout similarity only con-
siders spatial overlap, we assume solely scaling
up model sizes barely helps with the layout under-
standing and generation compared to text-related

3926

Figure 3: The performances of six models on the feedback following benchmark (left) and the question asking
benchmark (right): GPT-4o, GPT-4o Mini, Claude-3-Opus, Claude-3-Haiku, Gemini 1.5 Pro, and Gemini 1.5 Flash.

capabilities. (II) While Claude 3.5 Sonnet excels at
generating webpage layout (layout similarity score
above 22%), it struggles to leverage information
from user interactions. We assume it might be over-
optimized for single-turn generations. Additional
details on direct & multi-turn evaluation results are
available in Appendix C.

4.5 Human Annotation

To ensure the validity of our automated metrics and
the simulated user environment, we conducted a
series of human evaluations on different compo-
nents across our evaluation pipeline. Details on the
recruitment process are available in Appendix D.

Layout Similarity We leveraged pairwise com-
parisons (Zhou et al., 2023; Dubois et al., 2024) to
evaluate how well the automated layout similarity
metrics align with human judgement and prefer-
ences. Each annotator is given pairs of generated
implementations of the same reference webpage
and is asked to select the one that is more similar
in layout to the reference. Our IoU-based layout
similarity metrics agreed with human judgment
69.2% of the time, comparable to the agreement
score between human annotators, 65.8%. The five
annotators achieved a Fleiss Kappa score of 0.47, a

relatively high agreement for subjective tasks (Lan-
dis and Koch, 1977).

Simulated QA To verify the answer quality
of the simulated user during the question-asking
benchmark, participants are presented with a sketch
design and a reference webpage, followed by a sin-
gle round of simulated QA. According to the hu-
man annotators, 93.3% of the generated answers
directly respond to the given question, and 86.7%
of the answers remain faithful to the reference web-
page. Another validity check is whether the gen-
erated answer contains any code leakage or direct
references to HTML elements. We found that the
simulated user exhibits code leakage issues in 8.3%
of the answers. Fleiss Kappa scores and additional
details are available in Appendix D.

Simulated User Feedback Participants are given
a current implementation from a model, a reference
webpage, and feedback generated by the simulated
user and are asked to rate the simulated feedback.
Our annotators found that 86.7% of the simulated
feedback is easy to follow, and 83.3% of the simu-
lated feedback accurately points out the difference
between the current & reference implementations.

3927

5 User Study and Analysis

To better understand the importance of sketching
in the UI/UX development cycle, and the potential
use cases and implications of a sketch2code agent,
we conducted a user study by interviewing eight
UI/UX experts recruited from Upwork5.

All experts agreed that low-fidelity sketches
play a substantial role in modern UI/UX develop-
ment. Furthermore, they found that a sketch2code
agent would significantly benefit their work. A
sketch2code agent can help users quickly flesh out
early-stage ideas and break the communication bar-
rier between clients and designers. More interest-
ingly, seven out of eight participants showed strong
preference towards the question-asking agent. The
interviewees expressed that they needed to spec-
ify every design detail to an agent that passively
follows user instructions. In contrast, a question-
asking agent can take over most of the cognitive
workload, and the user only needs to focus on the
parts being asked. Three of the experts pointed
out that the agent can proactively “guide” the
user through certain design decisions & choices
via a series of targeted questions, so the user
do not have to figure out every single detail them-
selves. Moreover, the participants mentioned that it
is difficult to select visual components and specify
visual information with natural language feedback-
/answers alone. When communicating design ideas
in real life, people can simply point to specific vi-
sual components by mouse or by finger instead of
using words, which is faster, easier, and more reli-
able. Detailed findings are available in Appendix E.

Moreover, we invited 5 UI/UX experts who par-
ticipated in the user studies to (1) provide feedback
on 100 generated designs from three models (GPT-
4o, Claude-3-Opus, and Gemini-1.5-Pro) and (2)
ask questions on 100 sketches. We further compare
the difference between AI-generated and human-
written feedback/questions below 6.

Simulated user feedback achieved compara-
ble performance as feedback from real human
experts: On average, each feedback from the sim-
ulated user improves the agents’ performance in
visual similarity by 1.41% and layout similarity
by 1.05%, whereas each feedback from a human
expert improves the visual similarity by 1.62% and
layout similarity by 0.98%. We developed a taxon-

5https://www.upwork.com/
6We release the collected expert annotations to facilitate

future research.

omy and summarized the user feedback into seven
categories (Detailed taxonomy and statistics are
available in Appendix F.). Interestingly, human ex-
perts provide more feedback on colors and styling,
while simulated users focus more on texts and gen-
eral comments about the webpage. Furthermore,
we evaluated the effectiveness of each type of sim-
ulated feedback in Appendix Table 10, where we
explicitly prompt the simulated user to give differ-
ent types of feedback. We found that feedback on
layout structure is most helpful for all three models,
with the most significant average improvements
in layout and overall visual similarity. This is fol-
lowed by feedback on the styling and layout of
major visual components, where all three models
can again show positive average improvement in
both visual and layout scores.

The effectiveness of questions asked by mod-
els lags far behind that of experts. Initially,
the models’ performance on average decreases
by 1.12% in visual similarity and improves by
0.74% in layout similarity after asking each ques-
tion. However, by replacing the agent-generated
questions with questions written by human experts,
the models were able to improve their visual sim-
ilarity by 0.58% and layout similarity by 1.49%
with each question. Based on a taxonomy of the
nine most common types of questions (The full
taxonomy and further details in Appendix F.), we
found that human experts often ask about the gen-
eral styling and layout of the webpage, whereas the
agents often focus on the specific placements of tex-
tual contents or ask irrelevant questions. As shown
in Appendix Table 10, the most effective type of
questions are questions regarding stylistic choices
of primary visual components, followed by ques-
tions regarding the general layout or the positional
placements of major elements. Appendix F con-
tains a more detailed analysis of the effectiveness
of different questions.

6 Conclusion and Future Work

In this work, we introduced Sketch2Code, a novel
interactive evaluation framework that assesses Vi-
sion Language Models’ (VLMs) capability for
multi-turn front-end UI/UX automation. We pro-
posed two interaction paradigms: feedback follow-
ing and question asking. Our evaluations revealed
that while modern commercial VLMs perform rea-
sonably well in feedback following—improving
visual and layout similarities by 3% and 1.8% over

3928

https://www.upwork.com/

five interaction rounds—they struggle with asking
meaningful questions. However, a user study with
eight UI/UX practitioners showed a user preference
for the question-asking paradigm, as it allows the
agent to take on more cognitive responsibilities,
highlighting a gap between user expectations and
current model capabilities.

We outline future research directions inspired by
Sketch2Code: (i) Training open-source models
for multi-turn UI generations. This can be challeng-
ing due to the long contexts and multi-modality. To
facilitate large-scale training, we present an auto-
mated pipeline for generating realistic synthetic
sketches at scale (see Appendix H). (ii) Develop-
ing agentic frameworks that are more capable of
cognitive reasoning and proactively guiding users
through multi-turn design workflows, instead of
passively following instructions. (iii) Creating
end-to-end UI/UX AI applications to enhance
designer productivity and make UI designs more
accessible to non-experts.

7 Limitations

Despite our efforts, we address the following limi-
tations of our work:

• Due to computational limitations, we evalu-
ated only 8b open-source models, InternVL2-
8b and Llava-1.6-8B. Larger open-source
models were not included in this study due
to the computational cost, which might have
better multi-turn interaction capability.

• Second, the multi-turn evaluation pipeline
with simulated users is computationally ex-
pensive. Running a single example in the feed-
back following/question-asking benchmarks
requires 40,000 to 160,000 input tokens and
approximately 10,000 output tokens, making
large-scale evaluations costly, though manage-
able for specific use cases.

• Moreover, while the sketch2code agent con-
verts natural language inputs to HTML code,
user studies with UI/UX practitioners indicate
a preference for more direct, deterministic
ways (e.g., mouse clicks, drags) to select and
modify visual components, as well as support
for exporting outputs to Figma or other design
software, highlighting the need for additional
input/output modalities.

• Finally, we acknowledge the potential for mis-
use of this technology by malicious actors,
who might generate harmful webpages or at-
tempt to reverse-engineer code from propri-
etary or licensed websites.

Acknowledgments

We thank Yutong Zhang, Chenglei Si, Lin Qiu,
Harshit Joshi, Yicheng Fu, John Yang, Ryan Louie,
Yijia Shao, Aryaman Arora, Michelle Lam, Dora
Zhao, Hao Zhu, Michael Ryan, Raj Shah, Will
Held and other outstanding members in the SALT
lab/Stanford NLP/Stanford HCI for their valuable
feedback on different stages of this work.

References
Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-

toine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katie Millican, Malcolm Reynolds,
Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda
Han, Zhitao Gong, Sina Samangooei, Marianne
Monteiro, Jacob Menick, Sebastian Borgeaud, An-
drew Brock, Aida Nematzadeh, Sahand Sharifzadeh,
Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals,
Andrew Zisserman, and Karen Simonyan. 2022.
Flamingo: a visual language model for few-shot
learning. Preprint, arXiv:2204.14198.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Microsoft Azure. 2018. Turn your whiteboard sketches
to working code in seconds with sketch2code.

Batuhan Aşıroğlu, Büşta Rümeysa Mete, Eyyüp Yıldız,
Yağız Nalçakan, Alper Sezen, Mustafa Dağtekin, and
Tolga Ensari. 2019. Automatic html code genera-
tion from mock-up images using machine learning
techniques. In 2019 Scientific Meeting on Electrical-
Electronics & Biomedical Engineering and Computer
Science (EBBT), pages 1–4.

Qifang Bao, Daniela Faas, and Maria Yang. 2018. In-
terplay of sketching & prototyping in early stage
product design. International Journal of Design Cre-
ativity and Innovation, 6:1–23.

Daniel Baulé, Christiane Gresse von Wangenheim, Aldo
von Wangenheim, Jean C. R. Hauck, and Edson
C. Vargas Júnior. 2021. Automatic code genera-
tion from sketches of mobile applications in end-
user development using deep learning. Preprint,
arXiv:2103.05704.

3929

https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2204.14198
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://azure.microsoft.com/en-us/blog/turn-your-whiteboard-sketches-to-working-code-in-seconds-with-sketch2code/
https://azure.microsoft.com/en-us/blog/turn-your-whiteboard-sketches-to-working-code-in-seconds-with-sketch2code/
https://doi.org/10.1109/EBBT.2019.8741736
https://doi.org/10.1109/EBBT.2019.8741736
https://doi.org/10.1109/EBBT.2019.8741736
https://doi.org/10.1080/21650349.2018.1429318
https://doi.org/10.1080/21650349.2018.1429318
https://doi.org/10.1080/21650349.2018.1429318
https://arxiv.org/abs/2103.05704
https://arxiv.org/abs/2103.05704
https://arxiv.org/abs/2103.05704

Tony Beltramelli. 2017. pix2code: Generating code
from a graphical user interface screenshot. Preprint,
arXiv:1705.07962.

Bill Buxton. 2010. Sketching user experiences: get-
ting the design right and the right design. Morgan
kaufmann.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye,
Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, et al. 2024. How far
are we to gpt-4v? closing the gap to commercial
multimodal models with open-source suites. arXiv
preprint arXiv:2404.16821.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi.
2023. Instructblip: Towards general-purpose vision-
language models with instruction tuning. Preprint,
arXiv:2305.06500.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2024. Alpaca-
farm: A simulation framework for methods that learn
from human feedback. Preprint, arXiv:2305.14387.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder:
A generative model for code infilling and synthesis.
Preprint, arXiv:2204.05999.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming – the rise of
code intelligence. Preprint, arXiv:2401.14196.

Vanita Jain, Piyush Agrawal, Subham Banga, Rishabh
Kapoor, and Shashwat Gulyani. 2019. Sketch2code:

Transformation of sketches to ui in real-time using
deep neural network. Preprint, arXiv:1910.08930.

Carlos E. Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? Preprint,
arXiv:2310.06770.

Carlos E. Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues? Preprint,
arXiv:2310.06770.

J. Richard Landis and Gary G. Koch. 1977. The mea-
surement of observer agreement for categorical data.
Biometrics, 33(1):159–174.

Hugo Laurençon, Léo Tronchon, and Victor Sanh. 2024.
Unlocking the conversion of web screenshots into
html code with the websight dataset. Preprint,
arXiv:2403.09029.

Triet H. M. Le, Hao Chen, and Muhammad Ali Babar.
2020. Deep learning for source code modeling and
generation: Models, applications, and challenges.
ACM Computing Surveys, 53(3):1–38.

Makayla Lewis and Miriam Sturdee. 2023. The joy of
sketch: A hands-on introductory course on sketching
in hci and ux within research, practice, and education.
In Extended Abstracts of the 2023 CHI Conference
on Human Factors in Computing Systems, CHI EA
’23, New York, NY, USA. Association for Computing
Machinery.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023a. Blip-2: bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23.
JMLR.org.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,

3930

https://arxiv.org/abs/1705.07962
https://arxiv.org/abs/1705.07962
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/1910.08930
https://arxiv.org/abs/1910.08930
https://arxiv.org/abs/1910.08930
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2403.09029
https://arxiv.org/abs/2403.09029
https://doi.org/10.1145/3383458
https://doi.org/10.1145/3383458
https://doi.org/10.1145/3544549.3574187
https://doi.org/10.1145/3544549.3574187
https://doi.org/10.1145/3544549.3574187

Sean Hughes, Thomas Wolf, Arjun Guha, Lean-
dro von Werra, and Harm de Vries. 2023b. Star-
coder: may the source be with you! Preprint,
arXiv:2305.06161.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. Preprint,
arXiv:2304.08485.

Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang,
Yu Jiang, Changjian Wang, and Shanshan Li. 2023.
At which training stage does code data help llms
reasoning? Preprint, arXiv:2309.16298.

Tuan Anh Nguyen and Christoph Csallner. 2015. Re-
verse engineering mobile application user interfaces
with remaui (t). In 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 248–259.

Openai. 2023. Gpt-4v(ision) system card.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un-
locking multimodal understanding across millions of
tokens of context. arXiv preprint arXiv:2403.05530.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
Preprint, arXiv:1908.10084.

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak,
Amir Sadeghian, Ian Reid, and Silvio Savarese. 2019.
Generalized intersection over union: A metric and
a loss for bounding box regression. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 658–666.

Alex Robinson. 2019. Sketch2code: Generating
a website from a paper mockup. Preprint,
arXiv:1905.13750.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code. Preprint, arXiv:2308.12950.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo
Liu, and Diyi Yang. 2024. Design2code: How far are
we from automating front-end engineering? Preprint,
arXiv:2403.03163.

Davit Soselia, Khalid Saifullah, and Tianyi Zhou.
2023. Learning ui-to-code reverse generator us-
ing visual critic without rendering. Preprint,
arXiv:2305.14637.

Miriam Sturdee and Makayla Lewis. 2024. To sketch-
ing, and beyond! a course of discovery with pen and
paper. In Extended Abstracts of the 2024 CHI Con-
ference on Human Factors in Computing Systems,
CHI EA ’24, New York, NY, USA. Association for
Computing Machinery.

David C Wynn and Claudia M Eckert. 2017. Perspec-
tives on iteration in design and development. Re-
search in Engineering Design, 28:153–184.

Qinshi Zhang, Latisha Besariani Hendra, Mohan
Chi, and Zijian Ding. 2024a. Frontend diffu-
sion: Exploring intent-based user interfaces through
abstract-to-detailed task transitions. Preprint,
arXiv:2408.00778.

Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang,
Lichang Chen, William Yang Wang, and Linda Ruth
Petzold. 2024b. Unveiling the impact of coding data
instruction fine-tuning on large language models rea-
soning. Preprint, arXiv:2405.20535.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less
is more for alignment. Preprint, arXiv:2305.11206.

Figure 4: Examples of screenshots (left) and human-
drawn sketches (right) of the Sketch2Code dataset.
Sketches are drawn following the wireframing conven-
tions, where boxes with an "X" inside replace images,
and curly lines represent texts.

A Layout Similarity Details

In order to compute visual similarities, we identi-
fied several higher-level visual component types
and extracted a list of common HTML and CSS
tags that are commonly used to represent each type
of visual component. Table 2 shows a list of HTML
& CSS selectors for each type of visual component.
Figure 5 presents example generations under dif-
ferent levels of layout similarity scores.

3931

https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2309.16298
https://arxiv.org/abs/2309.16298
https://doi.org/10.1109/ASE.2015.32
https://doi.org/10.1109/ASE.2015.32
https://doi.org/10.1109/ASE.2015.32
https://api.semanticscholar.org/CorpusID:263218031
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1905.13750
https://arxiv.org/abs/1905.13750
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2403.03163
https://arxiv.org/abs/2403.03163
https://arxiv.org/abs/2305.14637
https://arxiv.org/abs/2305.14637
https://doi.org/10.1145/3613905.3636266
https://doi.org/10.1145/3613905.3636266
https://doi.org/10.1145/3613905.3636266
https://arxiv.org/abs/2408.00778
https://arxiv.org/abs/2408.00778
https://arxiv.org/abs/2408.00778
https://arxiv.org/abs/2405.20535
https://arxiv.org/abs/2405.20535
https://arxiv.org/abs/2405.20535
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2305.11206

Task Overview
In this survey , you will be given a reference webpage 's screenshot , as well as a

model generated webpage that try to replicate the reference webpage 's layout.
Your task is to judge whether the generated webpage matches the layout of the
reference webpage. The borders for each webpage is marked in black.

Note: All images in the original webpages are replaced by blue rectangles as
placeholders. Often times , the generated webpages will use "lorem ipsum ..." as
placeholder texts. Please disregard these placeholders and treat them as normal
texts instead.

Comparison Guide
In this survey , you should base your comparisons solely on the layout similarities

between the example webpages and the reference webpage.

You should pay close attention to:
Visual component matching: a good generated example should contain all visual

components that are present in the reference image and have no extra components.
You should examine if the visual components in the candidate example match with
the ones in the reference image. Visual components include text blocks , images ,
menus/navigation bars , tables , form inputs , etc.

Overall layout arrangement: a good generated example should have its visual
components arranged similarly as the reference image. You should examine how
much the layout arrangement in each candidate overlap with the reference layout.

Size and position of each visual component: you should pay attention to the relative
size and position (w.r.t the webpage 's width and height) of each visual

component w.r.t. the overall width and height of the webpage. Sometimes , the
webpages have different width/height ratios , but their main visual components
have similar relative sizes and positions. When comparing text blocks , it is
important that you consider only the sizes and positions of the text blocks. The
actual text content should be disregarded.

You should ignore/not pay attention to:
Detailed text content: since the survey focuses solely on layout similarities , the

exact details of textual content does not matter and should be factored out from
your judgement. You should never rate a candidate example down if it contains

placeholder texts , as long as text blocks are placed similarly as the reference
image.

Color and Styles: background color , the color of each section/text block , the font/
size/color of the text , or any other color & styling decisions should never
impact your final choice. Your decisions should be based on solely the layout
and placement of each component.

When making your judgement , you have three options:
1. ** Satisfactory/Close Match **: The layout of the generated and reference webpages

matches closely , with only minor differences in details. Major visual components
(such as headers , images , text sections) align closely , and any variations are

insignificant. The two pages can serve similar functions.

2. ** Loosely Match with Minor Fixes **: There are some observable differences between
the generated and reference webpages , but the overall layout of major visual

components roughly matches. The observed differences between the webpage layouts
can be addressed with minor fixes.

3. ** Unsatisfactory **: There are significant differences or mismatches in the layout
between the reference and generated webpages. There are major components

misaligned , missing , or structured differently , resulting in a layout that does
not closely resemble the reference. Significant changes are required to make the
layouts match.

Listing 1: Instructions given to Prolific participants for human evaluation on direct generation outputs

3932

Figure 5: Example reference-generation pairs with different levels of layout similarity scores.

3933

Component Type CSS Selector

Video video

Image img

Text Block p, span, a, strong, h1, h2, h3, h4, h5, h6, li, th, td, label, code,
pre, div

Form/Table form, table, div.form

Button button, input[type="button"], input[type="submit"], [role="button"]

Navigation Bar nav, [role="navigation"], .navbar, [class ="nav"],
[class ="navigation"], [class ="menu"], [class ="navbar"],
[id="menu"], [id="nav"], [id="navigation"], [id="navbar"]

Divider hr, [class*="separator"], [class*="divider"], [id="separator"],
[id="divider"], [role="separator"]

Table 2: HTML and CSS Selectors for Visual Components

Figure 6: Human satisfaction rate v.s. avg layout similarity (left) and aggregated human rating v.s. avg layout
similarity (right) for the ten evaluated models.

Model Close Match Loose Match Unsatisfactory

GPT-4O 30.0 58.0 12.0
GPT-4O Mini 12.0 44.0 44.0

Claude 3 Opus 10.0 12.0 78.0
Claude 3.5 Sonnet 36.0 56.0 8.0
Claude 3 Sonnet 0.0 26.0 73.0
Claude 3 Haiku 6.0 24.0 70.0

Gemini 1.5 Pro 22.0 46.0 32.0
Gemini 1.5 Flash 8.0 42.0 42.0

InternVL2-8b 2.0 42.0 56.0
Llava-1.6-8b 0.0 2.0 98.0

Table 3: Human evaluation breakdown of the ten evaluated models under direct prompting. It shows the percentages
of outputs labeled as "Satisfactory/Close Match", "Loosely Match with Minor Fixes", and "Unsatisfactory" per
model by human annotators.

3934

Human Evaluation to further verify the reliabil-
ity of our automated metric, we conducted human
evaluations on the generated layout qualities for the
ten evaluated model under direct prompting. We
subsampled 50 direct generation outputs from each
model for human evaluation. Prolific crowd anno-
tators are screened based on the following criteria:
1. 2500+ completed studies; 2. 99%+ acceptance
rate; 3. fluency in English; 4. having a Bachelor or
higher education degree. The participants are given
pairs of reference v.s. generated webpages and are
asked to decide if the generated webpage layout is
"Satisfactory/Close Match", "Loosely Match with
Minor Fixes", or "Unsatisfactory". Detailed defini-
tions for each options as well as three examples are
provided to the participants to calibrate the results.
The detailed instructions are available in Listing 1.
Each output example is annotated by three partici-
pants, and we use majority votes to determine the
final label for each generation output.

The percentage of "Satisfactory" generated out-
puts per model linearly correlates with the av-
erage layout similarity scores with r2 value of
0.87 (p=0.0008) and Kendall’s Tau score of 0.72
(p=0.004). In addition, we computed the aver-
age human rating per model by counting each
"Satisfactory/Close Match" as 1 point, "Loosely
Match with Minor Fixes" as 0.5 point, and "Un-
satisfactory" as 0 point. The averaged human rat-
ings achieve a r2 score of 0.86 (p=0.00009) and
Kendall’s Tau score of 0.64 (p=0.009) with the IoU-
based layout similarity metric. Figure 6 shows the
linear correlations of human satisfaction rate v.s.
layout similarity and human rating v.s. layout simi-
larity. Table 3 presents the breakdown percentages
of each human evaluation label per model.

B Experiment Details

We used the same hyperparameter settings for all
eight commercial models, with temperature = 0.0,
max tokens = 4096, top p = 1.0, frequency/repeti-
tion penalty = 0.0, and presence penalty = 0.0.

For the two open-source model, we found that
the models tend to self-repeat and output invalid
HTML format. To improve the generation success
rate, we adjusted the repetition penalty to 1.1, and
temperature to 0.5 (while keeping other hyperpa-
rameters the same), and used best-of-3 sampling
for all experiments.

Listing 4 shows the system and user prompts
used for direct generation tasks. Listing 5

shows the system and user prompts used for text-
augmented prompting.

For the feedback following multi-turn evalua-
tion framework, we used the same text-augmented
prompting to generate the first implementation pro-
totype. Then, in each round of interaction, we will
prompt the simulated user to provide a feedback
for the current prototype, and then append the feed-
back as a user message to the sketch2code agent’s
conversation history to generate the next prototype.

For the question-asking evaluation framework,
we first prompt the sketch2code agent to generate
one or more questions about the given sketch. After
the simulated user has answered each question, we
will augment the agent with the question-answer
pair and prompt it to generate a new implementa-
tion prototype. Listing 6 and Listing 7 shows the
detailed agent prompts used for the question-asking
benchmark.

Conducting multi-turn evaluations is a compu-
tationally expensive task. For example, it takes
around 10 minutes and 50,000 tokens to run the
full feedback following pipeline on a single data
sample with GPT-4o. Given such constraint, we
limited our multi-turn experiments to a randomly
selected subset of 50 data samples from the 731
total sketches in the Sketch2Code dataset.

C Additional Experiment Results

Direct Evaluation With the additional context
from text-augmented prompting, it is frequently
observed that the two open-source models would
either repeat parts of the generated code until max
tokens exceeded, or output the <EOS> token pre-
maturely before the HTML code is complete.

One may notice that the Text IoU scores are gen-
erally higher than Image IoU scores, which are
higher than the IoUs of other tertiary components.
This is because the IoU scores of a certain type
of visual component is usually correlated to the
corresponding area that type of components span
across the webpage. Since text blocks take the
largest areas in many webpages collected in the
Sketch2Code dataset, models generally get the best
scores in Text IoU. Contrarily, tertiary items such
as buttons, search bars, and navigation menus only
take a small area on the UI, it is especially chal-
lenging to achieve a high score on Other IoU.

Multi-turn Evaluation We benchmarked the ten
models on both multi-turn evaluation tasks with a
maximum of five rounds of user interactions for

3935

You have access to two images. One is a sketch layout of a webpage drawn in the
wireframing conventions , and the other one is a screenshot of a reference
implementation. Please note that some images have already been replaced by
placeholders (i.e., "rick.jpg") in the screenshot.

In addition , you also have access to the HTML implementation of the reference
webpage:

```
{HTML_CODE}
```

Now , please answer the agent 's questions based on the information you have. The

agent will ask questions about elements in the sketch , and your answers **MUST**
be ** strictly ** based on the provided images and html code.

Remember , you must answer the questions accurately and succinctly. You should **
NEVER** make things up or provide any information more than what the agent asks
for. The agent is not supposed to know about the reference implementation or its
screenshot , so you should **NEVER** mention the reference implementation or the
screenshot in your response , nor should you ever give out any HTML content to

the agent. For example , if the agent asks for an element , you should answer with
what is visible on the rendered webpage instead of the actual HTML tag or id.

If the user asks for the color of something , you should describe the color in
natural language (e.g., blue) instead of the hexadecimal color code. And if the
user asks for the specific texts within a text block or paragraph , you should
respond with a concise summary of the paragraph instead of reciting the text
verbatim. You may acknowledge the fact that `rick.jpg ` is used as image
placeholders.

Format your answer to each question as a single sentence without omitting important
information.

Agent Question:

Listing 2: User prompt for simulated user in the question asking task

Suppose you are a frontend designer working with a code agent to implement an HTML
webpage. You are provided with two images: the first image is the webpage you
are hoping to produce , and the second one is the current implementation from the
code agent. Note that images have already been replaced with blue rectangles as
the placeholder.

Your job is to carefully compare the code agent 's implementation against the
intended webpage , and provide feedback to help the code agent make its
implementation closer to the indended webpage. Your feedback should be specific
to the differences in layouts and visual components on the two webpages. Please
note that the code agent **DOES NOT** have access to the intended webpage , so
you make sure to describe the intended visual components and where exactly the
agent got wrong , instead of saying something like "refer to the format of the
intended webpage ". You should prioritize making sure that the code agent
understands the correct layout before giving out any styling advice.

Limit your feedback to a single sentence.

You may compare and analyze the two webpages step by step. Once you are ready , your
final feedback using triple quotes:

Feedback: """
{{ YOUR_INSTRUCTIONS_HERE }}
"""

If you think the current implementation is close enough to the intended webpage ,
please output "Generation Complete" as your feedback. I.e.,

Feedback: """
Generation Complete

Listing 3: User prompt for simulated user in the user feedback following task

3936

System Prompt: You are an expert web developer who specializes in HTML and CSS. A
user will provide you with a sketch design of the webpage following the
wireframing conventions , where images are represented as boxes with an "X"
inside , and texts are replaced with curly lines. You need to return a single
html file that uses HTML and CSS to produce a webpage that strictly follows the
sketch layout. Include all CSS code in the HTML file itself. If it involves any
images , use "rick.jpg" as the placeholder name. You should try your best to
figure out what text should be placed in each text block. In you are unsure , you
may use "lorem ipsum ..." as the placeholder text. However , you must make sure

that the positions and sizes of these placeholder text blocks matches those on
the provided sketch.

Do your best to reason out what each element in the sketch represents and write a
HTML file with embedded CSS that implements the design. Do not hallucinate any
dependencies to external files. Pay attention to things like size and position
of all the elements , as well as the overall layout. You may assume that the page
is static and ignore any user interactivity.

User Prompt: Here is a sketch design of a webpage about {topic}. Could you write a
HTML+CSS code of this webpage for me?

Please format your code as
```
{{ HTML_CSS_CODE }}
```
Remember to use "rick.jpg" as the placeholder for any images

Listing 4: Direct generation prompt for sketch2code agents, the topic embedded in user prompt is extracted from
the HTML page title.

System Prompt: You are an expert web developer who specializes in HTML and CSS. A
user will provide you with a sketch design of the webpage following the
wireframing conventions , where images are represented as boxes with an "X"
inside , and texts are replaced with curly lines. You need to return a single
html file that uses HTML and CSS to produce a webpage that strictly follows the
sketch layout. Include all CSS code in the HTML file itself. If it involves any
images , use "rick.jpg" as the placeholder name. You should try your best to
figure out what text should be placed in each text block. In you are unsure , you
may use "lorem ipsum ..." as the placeholder text. However , you must make sure

that the positions and sizes of these placeholder text blocks matches those on
the provided sketch.

Do your best to reason out what each element in the sketch represents and write a
HTML file with embedded CSS that implements the design. Do not hallucinate any
dependencies to external files. Pay attention to things like size and position
of all the elements , as well as the overall layout. You may assume that the page
is static and ignore any user interactivity.

User Prompt: Here is a sketch design of a webpage drawn in the wireframing
conventions. In addition , here is a list of text blocks that I would like to
include in the webpage:

{texts}

Could you write a HTML+CSS code of this webpage for me?

Please format your code as
```
{{ HTML_CSS_CODE }}
```
Remember to use "rick.jpg" as the placeholder for any images

Listing 5: Text-augmented prompting for sketch2code agents.

3937

System Prompt: You are an expert web developer who specializes in HTML and CSS. A
user will provide you with a sketch design of the webpage drawn in the
wireframing conventions , where images are replaced by boxes with an "X" inside
and texts are represented by curly lines. You need to return a single html file
that uses HTML and CSS to produce a webpage that strictly follows the sketch
design. Include all CSS code in the HTML file itself. If it involves any images ,
use "rick.jpg" as the placeholder. Some texts are replaced by curly lines as

placeholders. You should try your best to infer what these texts should be, but
do not hallucinate if you are not sure.

If you are unsure what certain elements are in the provided sketch , you should ask
the user to clarify. Once you are confident , output a single HTML file with
embedded CSS. Do not hallucinate any dependencies to external files. Pay
attention to things like size and position of all the elements , as well as the
overall layout.

User Prompt: Here is a sketch design of a webpage drawn in the wireframing
conventions. In addition , here is a list of text blocks that I would like to
include in the webpage:

{texts}

Could you write a HTML+CSS code of this webpage for me?

Remember , If you are uncertain about something , please ask clarification questions.
Your questions should be thoughtful and specific , and you should ask no more
than five questions in each turn.

If you want to ask a clarification question , format your question as:
Question: """{{ YOUR_QUESTION_HERE }}"""

To ask multiple questions in a single turn , you should list your questions as:
Question: """
1. {{ First_Question }}
2. {{ Second_Question }}
3. {{ Third_Question }}
...
"""

If you are ready to write the final HTML code , format your code as
```
{{ HTML_CSS_CODE }}
```
Remember to use "rick.jpg" as the placeholder for any images

Listing 6: System and user prompts used for question generation in the question-asking evaluation benchmark.

Here is a sketch design of a webpage drawn in the wireframing conventions. Also ,
here is a list of text blocks that I would like to include in the webpage:

{texts}

Could you write a HTML+CSS code of this webpage for me?

Here are some additional information for your reference:
{qa_pairs}

Please format your code as
```
{{ HTML_CSS_CODE }}
```
Remember to use "rick.jpg" as the placeholder for any images

Listing 7: The user prompt used for HTML prototype generation augmented with question-answer pairs.

3938

Metric Model Performance per Turn Improv. per Turn

k=0 k=1 k=2 k=3 k=4 k=5 Avg↑ Std↓
Visual Similarity GPT-4O 82.29 84.28* 85.24* 85.67* 86.10* 86.29 0.80 4.75

Claude 3 Opus 81.75 82.93* 83.87* 84.37 84.60 85.18* 0.63 2.59
Gemini 1.5 Pro 80.87 83.00 83.13* 82.44 82.90 83.43* 0.51 3.43

Block Match GPT-4O 84.74 87.21* 88.07* 88.77* 89.24 89.47 0.95 9.77
Claude 3 Opus 80.83 83.33* 83.89 84.74 85.03 85.74 0.86 6.10
Gemini 1.5 Pro 77.01 80.82* 79.70 78.32 80.71 81.29 0.86 11.01

Text GPT-4O 97.25 97.57* 97.80 97.84 98.05 97.90 0.13 4.15
Claude 3 Opus 96.85 97.25 97.18 97.50 97.44 97.30 0.05 1.87
Gemini 1.5 Pro 94.89 97.78* 97.84 97.80 97.62 97.69 0.56 4.33

Position GPT-4O 76.83 78.82* 79.80* 79.93 80.52* 80.87 0.81 6.75
Claude 3 Opus 75.88 76.70 78.97 79.01 79.53 81.32 1.03 7.11
Gemini 1.5 Pro 75.16 78.35* 79.66 78.69 78.80 79.53 0.88 5.60

Color GPT-4O 65.46 70.00* 72.36* 73.41* 74.03* 74.48 1.80 10.86
Claude 3 Opus 68.66 69.61 71.51 72.16 71.87 72.31 0.66 5.97
Gemini 1.5 Pro 70.61 70.61 71.03 70.13 69.87 70.80 0.04 5.38

CLIP GPT-4O 87.16* 87.80 88.15 88.41 88.68 88.73 0.31 4.47
Claude 3 Opus 86.52 87.78* 87.80 88.46 89.14 89.24 0.52 3.51
Gemini 1.5 Pro 86.70 87.42 87.44 87.27 87.47 87.83 0.23 2.70

Layout Similarity GPT-4O 20.38 20.56 20.57 20.61 20.67 21.21* 0.17 4.89
Claude 3 Opus 17.11 16.97 18.20 18.20 18.47 19.20 0.39 5.40
Gemini 1.5 Pro 18.72 19.38 20.26 20.45 21.00 21.43 0.54 4.86

Text IoU GPT-4O 21.64 21.91 21.75 21.75 21.97 22.44* 0.16 5.20
Claude 3 Opus 18.09 18.95 19.99 19.15 20.46 21.76* 0.70 5.24
Gemini 1.5 Pro 19.46 20.49 21.04 21.42 21.53 21.44 0.40 5.31

Image IoU GPT-4O 13.61 13.26 13.56 13.26 13.17 13.56* -0.01 6.40
Claude 3 Opus 8.32 6.62 6.84 7.08 5.79 5.76 -0.51 5.93
Gemini 1.5 Pro 11.79 11.95 12.57 11.61 13.08* 13.66 0.37 6.59

Other IoU GPT-4O 3.64 3.87 4.04 4.09 3.97 4.16 0.10 5.57
Claude 3 Opus 2.97 4.17 4.29 6.23* 5.77 5.71 0.51 8.67
Gemini 1.5 Pro 0.96 2.63* 3.24 2.40 3.99* 5.29* 0.86 5.80

Table 4: Models’ performance per turn on the user feedback benchmark, where the simulated user compares the
model’s implementation at each turn against a reference implementation and provides feedback instructions. Color
intensity indicates the average improvement over the previous turn, and * indicates statistical significance (p<0.05).

each sketch. The two open-source models fail to
operate under multi-turn interaction. Neither model
could reliably generate correctly formatted ques-
tions, and the additional information provided by
the simulated user often cause the model to degen-
erate. We present two failure case examples of
open-source models in Appendix I.

Tables 4 and 5 present detailed scoring break-
downs of GPT-4o, Claude 3 Opus, and Gemini 1.5
Pro on the two multi-turn benchmarks. We found
that Gemini 1.5 Pro was rather reluctant to ask ques-
tions, often prematurely stopping before reaching
the maximum five-question limit. Figure 7 shows
the performance of the two open-source models
(Llava-1.6-8b and InternVL2-8b) on the multi-turn
evaluation tasks. Figure 8 shows the performances
of the four models in the Claude 3 model family.

Table 6 shows the sensitivity of each model w.r.t.
different variations of sketches. To examine the
sensitivity to sketch variation, we calculated the av-
erage fluctuations a model has on different sketches
drawn for the same webpages. The fluctuation of a
performance metric is calculated as the max score
minus the min score of outputs generated from all
different sketch variations of the same webpage.
For direct generation (with direct prompting), we
computed the average fluctuation of layout scores
per model. For the multi-turn interactive tasks, we
calculated the fluctuation of both layout & layout
scores in the final turn of each generation.

3939

Metric Model Performance per Turn Improv. per Turn

k=0 k=1 k=2 k=3 k=4 k=5 Avg↑ Std↓
Visual Similarity GPT-4O 81.03 81.53 82.82* 82.30 82.55 82.36 0.27 3.31

Claude 3 Opus 81.29 81.69 81.75 81.64 82.50 82.50 0.24 3.63
Gemini 1.5 Pro 80.79 81.11 80.94 81.48 81.48 81.48 0.14 2.93

Block Match GPT-4O 75.10 76.44 79.76* 77.19 78.34 78.48 0.68 9.37
Claude 3 Opus 79.36 81.67 80.42 79.88 82.16 80.74 0.28 14.26
Gemini 1.5 Pro 76.02 76.03 73.36 77.14* 77.14 77.14 0.22 9.21

Text GPT-4O 96.74 97.09 97.61 96.88 97.12 97.21 0.09 2.86
Claude 3 Opus 97.27 96.94 97.05 97.14 97.06 97.81* 0.11 2.93
Gemini 1.5 Pro 96.19 95.81 96.43 95.91 95.91 95.91 -0.06 3.16

Position GPT-4O 76.37 77.28 79.85* 79.13 79.46 78.36 0.40 8.78
Claude 3 Opus 75.62 75.39 75.98 75.37 75.83 76.86 0.25 8.92
Gemini 1.5 Pro 74.44 74.77 76.47 74.91 74.91 74.91 0.09 7.10

Color GPT-4O 69.94 70.16 69.60 71.16 70.47 70.53 0.12 8.25
Claude 3 Opus 68.51 68.74 68.83 69.87 71.87 70.93 0.48 8.05
Gemini 1.5 Pro 70.49 72.00 72.16 72.74 72.74 72.74 0.45 5.87

CLIP GPT-4O 86.99 86.68 87.30 87.17 87.36 87.21 0.04 3.35
Claude 3 Opus 85.68 85.72 86.46 85.94 85.57 86.17 0.10 3.90
Gemini 1.5 Pro 86.80 86.92 86.29 86.69 86.69 86.69 -0.02 2.65

Layout Similarity GPT-4O 21.33 21.68 21.93 21.08 21.58 20.93 -0.08 7.85
Claude 3 Opus 16.46 15.33 19.23* 18.08 18.86 15.33 -0.23 11.57
Gemini 1.5 Pro 18.29 19.22* 18.09 18.59 18.59 18.59 0.06 7.25

Text IoU GPT-4O 22.08 21.57 22.49 21.90 22.45 20.97 -0.22 8.03
Claude 3 Opus 18.02 17.21 19.39 18.14 18.90 17.91 -0.02 9.66
Gemini 1.5 Pro 19.26 21.59* 20.64 20.49 20.49 20.49 0.25 7.10

Image IoU GPT-4O 13.23 14.74 14.25 12.82 13.61 12.88 -0.07 9.93
Claude 3 Opus 9.11 9.06 10.92 12.10 10.22 6.32 -0.56 13.75
Gemini 1.5 Pro 11.19 10.20 9.56 11.46 11.46 11.46 0.05 8.60

Other IoU GPT-4O 2.75 3.10 2.87 4.83 1.67 1.76 -0.20 9.32
Claude 3 Opus 2.22 1.78 2.60 2.48 3.31 2.91 0.14 7.58
Gemini 1.5 Pro 0.74 1.25 1.50 0.67 0.67 0.67 -0.01 3.81

Table 5: Models’ performance per turn on the question asking benchmark, where the model proactively asks a
question about the sketch at each turn, and generate the HTML code based on the answer from the simulated user.
Color intensity indicates the average amount of improvement over the previous turn, and * indicates statistical
significance (p<0.05).

D Additional Details on Human
Annotation

We recruit Prolific crowdworkers with an hourly
rate of $16. Participant are filtered based on their
fluency in English, past Prolific participation (com-
pleted 2500+ surveys), and acceptance rate (98%+).
We recruited three qualified participants for each
study and took the majority vote of the remaining
three participants as the final label. Participants are
asked for consent to share the annotation data and
are given the choice to opt-out from the study. Iden-
tifying code leakage was a more challenging task
that requires familiarity with coding and front-end
engineering. In that regard, the first two authors
conducted annotations on code leakage in 60 data
samples.

For pairwise layout similarity annotation, partici-
pants are also given "Tie" as an option to handle the
cases where making a comparison is difficult. How-
ever, these "Tie" cases are ignored during agree-
ment calculation as it is hard to define a boundary
for "Tie" using the automated metrics. Listing 8
contains the full instructions given to participants
for layout similarity annotation.

When annotating the simulated QA conversa-
tions, participants are presented with a sketch de-
sign and a reference webpage, followed by a sin-
gle round of simulated QA. The participants are
then asked to evaluate the quality of the simulated
user’s answer based on the following two metrics:
1. Does the answer provided by the simulated user
directly respond to the given question? 2. Does

3940

Task Models Avg ∆ Visual Score ↓ Avg ∆ Layout Score ↓

Feedback Following

GPT-4O 0.04227 0.08912
GPT-4O Mini 0.03794 0.05563
Claude 3.5 Sonnet 0.09638 0.08418
Claude 3 Opus 0.05141 0.07544
Claude 3 Sonnet 0.05678 0.13398
Claude 3 Haiku 0.09947 0.08634
Gemini 1.5 Pro 0.04464 0.14815
Gemini 1.5 Flash 0.28172 0.12727
InternVL2-8b 0.28646 0.10428
Llava-1.6-8b 0.56875 0.11680

Question Asking

GPT-4O 0.04470 0.10609
GPT-4O Mini 0.05444 0.11776
Claude 3.5 Sonnet 0.04480 0.11098
Claude 3 Opus 0.04143 0.11039
Claude 3 Sonnet 0.06045 0.10629
Claude 3 Haiku 0.06298 0.13278
Gemini 1.5 Pro 0.04420 0.09528
Gemini 1.5 Flash 0.13824 0.11112
InternVL2-8b* - -
Llava-1.6-8b* - -

Direct Generation

GPT-4O 0.11307 -
GPT-4O Mini 0.07477 -
Claude 3.5 Sonnet 0.10815 -
Claude 3 Opus 0.06886 -
Claude 3 Sonnet 0.12071 -
Claude 3 Haiku 0.06121 -
Gemini 1.5 Pro 0.10561 -
Gemini 1.5 Flash 0.13244 -
InternVL2-8b 0.11371 -
Llava-1.6-8b 0.09335 -

Table 6: Mean delta performance scores across the three evaluation tasks. *Both InternVL2-8b and Llava-1.6-8b
failed to generate valid HTML outputs in the multi-turn question-asking scenario, and thus they are not given the
delta scores.

the answer from the simulated user stay faithful to
the visual appearance of the reference webpage?
When annotating code leakages among simulated
answers, the two authors each independently la-
beled 60 examples. An answer is considered to
have code leakage as long as one of the two authors
responds "yes" to this question. The Fleiss-Kappa
inter-annotator agreement among the prolific anno-
tators for this task is 0.28. Listing 9 shows the exact
instructions given to participants for the simulated
QA annotation.

For the simulated user feedback, participants are
presented with a current implementation from a
model, a reference implementation, and the feed-

back generated by the simulated user. Then, they
are asked to answer the following two questions: 1.
Are the provided instructions readable and easy to
follow? 2. Does the simulated feedback accurately
point out the visual difference between the current
implementation and the reference webpage? The
Fleiss Kappa score among the annotators in this
task is 0.57. Listing 10 shows the instructions used
for simulated feedback annotations.

E User Study Details

The participating UI/UX practitioners are filtered
on their knowledge and past projects with UI/UX
design, familarity with fundamental sketching and

3941

Figure 7: The performances of open-source models on the feedback following benchmark (left) and the question
asking benchmark (right).

wireframing concepts, fluency in English, as well
as user ratings and job completion rates in the Up-
work community. We compensated the intervie-
wees with $40-60 per hour. The exact amount of
compensation was negotiated with each participant.
We asked the participants for consent to record the
interviews and share user study data before offi-
cially starting the contracts.

Among the eight selected participants, seven of
them are based in the United States. Five of them
have worked fulltime in tech companies in addition
to freelancing, and three of them have worked only
as freelancers. All participants have had more than
3 years of industrial UI/UX design experience, and
seven of them have more than 5 years of experi-
ence.

During the user study, we asked each participant
to interact with a demo sketch2code agent (using
GPT-4o as the backbone VLM) and then invited
them to provide feedback on the experience. We
present our main user study findings below:

O1: Low-fidelity sketches play a substantial role
in modern UI/UX development. All eight ex-
perts disclosed that they engaged with low-fidelity
sketches in their past projects and that sketching
plays a non-negligible role in the UI/UX design

loop. The participants claimed various use cases
for sketches, including communicating initial ideas
and requirements with clients, collaborating with
other designers, and working with early-stage ideas
before switching to high-fidelity designs. Some in-
terviewees pointed out that sketching is especially
important in research and large-scale projects,
where the end goal is not clear from the begin-
ning. In these cases, sketches provide a fast and
easy way to explore and iterate on design choices
with little to no cost.

O2: Sketch2code agents can significantly accel-
erate the development cycle and lower commu-
nication barriers. All eight experts unanimously
agreed that a sketch2code agent would significantly
benefit their work. A sketch2code agent can help
users easily flesh out early-stage ideas and brings
down the communication barrier between clients
and designers. One participant mentioned that they
used to first educate the clients on common wire-
framing conventions in order to discuss the design
requirements seamlessly. With sketch2code, the
designer (or the client) can first play around with
the agent to try out their ideas, and then directly
use the generated prototype to communicate with
their work partners.

3942

Figure 8: The performances of the Claude 3 model family on the feedback following benchmark (left) and the
question asking benchmark (right).

Two other participant acknowledged that the
sketch2code agent were able to visualize their ideas
within a couple of minutes, while it would take
hours for the participant to manually implement
them in Figma themselves. Furthermore, faster vi-
sualization leads to faster feedback loop, and thus
enabling researchers & designers to explore more
(initial) designs with lower cost, which is of vi-
tal importance for large-scale projects. Finally, a
UX designer pointed out that "since the agent can
lift the height of UI designs, I can focus more on
studying the user experience."

O3: Proactively asking questions is more help-
ful than passively following instructions. Even
though existing models are more suited for the
feedback-following mode, seven out of eight par-
ticipants showed strong preference towards the
question-asking agent. The interviewees expressed
that they felt the need to specify every design detail
to an agent that passively follows user instructions,
whereas a question-asking agent can take over most
of the cognitive workload, and the user would only
need to focus on the parts that are being asked. Five
participants claimed that the agent can sometimes
catch the details and ambiguities on the sketch that

the user would have otherwise missed. Three of
the experts pointed out that the agent can proac-
tively “guide” the user through certain design
decisions & choices via a series of targeted ques-
tions, so the user do not have to figure out every
single detail themselves.

O4: Specifying Visual Components with Natu-
ral Language Alone is Challenging Like most
existing VLM applications, the sketch2code agent
uses a natural language interface. However, the
participants pointed out that it is difficult to select
visual components and specify visual details with
natural language alone. When communicating de-
sign ideas in real life, people can simply point to
specific visual components by mouse or by finger,
and the communication is never based on language
alone. Six out of the eight interview participants
wished to have faster, easier, and more reliable
ways to control the generated prototype (such as se-
lecting and editing certian visual components with
simple mouse clicks). One of the participants sug-
gested that styles and color schemes can sometimes
be hard to specify in natural language too. It would
be more helpful if the user can upload custom style
or color samples (e.g., a "mood board") for the

3943

Task Overview
In this survey , you will be given a reference webpage 's screenshot , as well as two
candidate webpages (Example 1 and Example 2) that try to replicate the layout

reference
webpage. Your task is to judge which of the two candidates has closer layout to the

reference. Each (Reference , Example 1, Example 2) is presented in a row , where
the original

boundary of screenshot is marked by black.

Note: All images in the original webpages are replaced by blue rectangles as
placeholders. Sometimes , the candidate webpages will use "lorem ipsum ..." as
placeholder texts. Please disregard these placeholders and treat them as normal
texts instead.

Comparison Guide
In this survey , you should base your comparisons solely on the layout similarities

between the example webpages and the reference webpage.

You should pay close attention to:
Visual component matching: a good candidate example should contain all visual

components that are present in the reference image and have no extra components.
You should examine if the visual components in the candidate example match with
the ones in the reference image. Visual components include text blocks , images ,
menus/navigation bars , tables , form inputs , etc.

Overall layout arrangement: a good candidate example should have its visual
components arranged similarly as the reference image. You should examine how
much the layout arrangement in each candidate overlap with the reference layout.

Size and position of each visual component: you should pay attention to the relative
size and position of each visual component w.r.t. the overall width and height

of the webpage.
You should ignore/not pay attention to:
Detailed text content: since the survey focuses solely on layout similarities , the

exact details of textual content does not matter and should be factored out from
your judgement. You should never rate a candidate example down if it contains

placeholder texts , as long as text blocks are placed similarly as the reference
image.

Color and Styles: background color , the color of each section/text block , the font/
size/color of the text , or any other color \& styling decisions should never
impact your final choice. Your decisions should be based on solely the layout
and placement of each component.

Listing 8: Instructions given to Prolific participants for pairwise layout similarity comparison

**Task Overview **

In this survey , you will be given pairs of webpage sketches and actual webpage
screenshots. You will also be given a single turn of AI -generated conversation
regarding the sketch. The conversation will include a question about the sketch
generated by a simulated AI agent , along with an answer to that question
generated by another simulated agent. You will then be asked to rate the quality
of the question and answer.

To evaluate the quality of the generated question , you will be asked to rate its
1. Specificity: whether the question is relevant to specific parts or components of

the sketch design.
2. Effectiveness: whether the question is effective at helping the agent better

understand the intended layout and design of the webpage.
To evaluate the quality of the provided answer , you should focus on rating
1. Relevance: whether the provided answer directly responds to the given question.
2. Accuracy: whether the provided answer is accurate and faithful to the visual

appearance of the reference webpage screenshot.

Listing 9: Instructions given to Prolific participants for simulated question answering annotation

3944

**Task Overview **

In this survey , you will be asked to evaluate the quality of AI-simulated feedback
for webpage implementation. In each question , you will be given a screenshot of
the current implementation of a webpage and a screenshot of the intended (
reference) implementation. You will then be provided with simulated feedback &
instructions to help improve the current implementation. Your job is to evaluate
the provided feedback & instructions via the following criteria:

1. Readability: the provided feedback & instructions should be clear and easy to
follow.

2. Effectiveness: the provided feedback should effectively points out the visual
difference between the current and reference implementations

Listing 10: Instructions given to Prolific participants for simulated user feedback annotation

agent to follow.

F Evaluating the Different Types of
Generated Questions and Feedback

To evaluate the various questions asked and feed-
back given by sketch2code agents. We first per-
formed HAC on the generated questions/feedback
using cosine similarity of SBERT embeddings
(Reimers and Gurevych, 2019) with a similarity
threshold of 0.6. For the ease of viewing, we then
summarized the questions/feedback within each
cluster through a GPT-4o summarizer. We manu-
ally looked through all clusters and extracted out
the most common types of questions/feedback into
a taxonomy. And finally, we classified each indi-
vidual questions/feedback to one of the types in
the taxonomy with GPT-4o. The full taxonomy for
questions is available in Table 7, and the taxonomy
for feedback is available in Table 9. Figures 9 and
10 shows the distribution of different types of ques-
tions and feedback, and Tables 8 and 10 shows the
average improvement in visual and layout scores
per model per question/feedback type. Figure 11
shows the performance of GPT-4o when guided to
prioritize asking different types of questions.

According to Figure 9, Gemini 1.5 Pro seems to
be the worst question asker, with 50% of the ques-
tions asked being either irrelevant or redundant. It
also never asks any questions regarding the styling
of any visual components. GPT-4o and Claude 3
Opus both ask questions in similar patterns. How-
ever, GPT-4o tends to ask more questions about
color & styling, while Claude asks more about the
layout of tertiary components.

For question asking, questions regarding the gen-
eral layout or stylistic choices are the most effec-
tive according to 8. Conversely, questions that are
either too generic or specific to tertiary details, re-
dundant, or irrelevant to understanding the visual
composition are usually less effective and fail to

bring significant improvements. Perhaps counter-
intuitively, questions regarding the styling or lay-
out of specific secondary/tertiary components may
sometimes have detrimental effects to the gener-
ation quality. Qualitative analysis reveals that all
sketch2code agents and the simulated user some-
times struggle to communicate the positions of
smaller visual components, thus leading to mis-
interpretations and worse webpage outputs. Anno-
tated examples of qualitative analysis are available
in Appendix I.

Finally, to further test the effects of different
types of question, we conducted an additional ex-
periment where we guide a GPT-4o agent to priori-
tize asking different types of questions. Shown in
Figure 11, when prompted to prioritize asking
questions about the colors and styling of visual
components, GPT-4o achieves the best perfor-
mance, improving visual similarity by 3.6% and
layout similarity by 1.8% across five rounds of
user interactions.

G Alignment between IoU Layout
Similarity and Human Layout
Judgement

To understand how humans perceive webpage lay-
out. We computed the agreement value between
human layout similarity preferences and the IoU
score of each visual component. We found out
that text blocks achieve the highest agreement of
66.7%, followed by images with agreement 35.9%,
while other tertiary components (such as navigation
menus and buttons) only get an agreement score
of 10.2%. This suggests that the overlaps of text
blocks align the most with human users’ perception
of layout similarity, as they are the dominant visual
component in the majority of web pages. How-
ever, it is important to note that the overall layout
similarity score (the weighted sum of each compo-
nent’s IoU) achieves a higher agreement score of

3945

Question Type Definition

Texts The question is asking about font size, font styles, and exact text content of textual
components.

Layout-Primary The question is asking about the overall webpage layout or the block size and positional
placement of primary visual components.

Layout-Tertiary The question is asking about the block size and positional placement of tertiary visual
components.

Styling-Primary The question is asking about the overall styling of the webpage or the color and styles
of primary visual components

Styling-Tertiary The question is asking about the color schemes, borders, and other stylistic characteris-
tics of tertiary visual components.

Generic The question is too vague or generic.

Irrelevant The question is irrelevant to understanding the layout or design.

Redundant The question is asking about information that has already been given to the agent; e.g.,
boxes with ’X’ inside as placeholders for images and curly/squiggly lines for texts.

Other The question belongs to another category that has not yet been covered.

Table 7: Names and definitions of different types of questions

Figure 9: Types of questions asked by different models and human experts: GPT-4o (top left), Claude 3 Opus (top
right), Gemini 1.5 Pro (bottom left), Human Expert (bottom right). Zoom in for best view.

69.2% than any of the individual types of visual
components alone. This indicates that comparisons

between layouts require holistic evaluations of all
visual components instead of being dominated by

3946

Question Type Model Avg Visual Improv (%) Avg Layout Improv (%)

Layout-Primary GPT-4o 0.65 0.68
Claude-3-Opus 0.72 -0.17
Gemini-1.5-Pro 0.71 3.01

Layout-Tertiary GPT-4o 0.31 -0.15
Claude-3-Opus 0.29 -0.16
Gemini-1.5-Pro 0.11 -0.13

Styling-Primary GPT-4o 1.89 0.80
Claude-3-Opus 0.45 0.75
Gemini-1.5-Pro - -

Styling-Tertiary GPT-4o 1.82 0.97
Claude-3-Opus -0.41 -4.64
Gemini-1.5-Pro - -

Texts GPT-4o 0.28 -0.03
Claude-3-Opus 0.46 0.19
Gemini-1.5-Pro 0.58 -2.62

Generic GPT-4o 0.16 0.03
Claude-3-Opus 0.45 -0.18
Gemini-1.5-Pro -1.75 -0.16

Irrelevant GPT-4o -0.03 0.06
Claude-3-Opus -0.84 -0.31
Gemini-1.5-Pro -0.67 1.20

Redundant GPT-4o -1.11 0.21
Claude-3-Opus -1.37 0.81
Gemini-1.5-Pro -0.69 1.02

Other GPT-4o 0.43 2.52
Claude-3-Opus - -
Gemini-1.5-Pro - -

Table 8: Average Visual and Layout Improvements by Question Type and Model

Feedback Type Definition

Texts Feedback regarding font, size, or alignment of specific texts

Styling-Primary Feedback regarding the color and styling of primary/major elements

Styling-Tertiary Feedback regarding the color and styling of tertiary elements such as logos, buttons,
and footers

Layout-Primary Feedback regarding the position and alignment of primary/major elements

Layout-Tertiary Feedback regarding the position and alignment of tertiary elements such as logos,
buttons, and footers

General Overall comments such as background colors and general layout of elements

Other Other types of feedback that have not been covered by above

Table 9: Names and definitions of different types of feedback

3947

Figure 10: Types of feedback provided by Simulated User (left) v.s. Human User (right). Zoom in for best view.

Feedback Type Model Avg Visual Improv (%) Avg Layout Improv (%)

General GPT-4o 1.98 0.35
Claude-3-Opus 1.43 1.54
Gemini-1.5-Pro 1.81 1.43

Layout-Primary GPT-4o 0.63 0.31
Claude-3-Opus 0.51 0.02
Gemini-1.5-Pro 0.74 0.90

Layout-Tertiary GPT-4o 0.32 -0.16
Claude-3-Opus 0.67 -1.40
Gemini-1.5-Pro -2.38 -3.45

Styling-Primary GPT-4o 1.28 1.32
Claude-3-Opus 0.20 0.30
Gemini-1.5-Pro 0.33 0.96

Styling-Tertiary GPT-4o -0.60 -0.30
Claude-3-Opus - -
Gemini-1.5-Pro -0.32 1.33

Texts GPT-4o 0.48 -0.02
Claude-3-Opus 0.39 0.04
Gemini-1.5-Pro -0.83 -0.38

Other GPT-4o 1.40 0.16
Claude-3-Opus 0.36 -0.35
Gemini-1.5-Pro 0.26 1.63

Table 10: Average Visual and Layout Improvements by Feedback Type and Model

any single element.

In our qualitative analysis, we found that human
annotators sometimes rely on their judgment of the
relative positions of images and the relative sizes
of each component. However, we leave further
research in this area to future studies.

H Synthetic Sketch Generation

To support training and evaluating the Sketch2Code
task at scale, we provide an automated tool that
generates synthetic sketches from real-world web-
pages. In order to convert a high-fidelity webpage
to a low-fidelity wireframe, we first need to convert
the image to grayscale and apply canny edge detec-

3948

Figure 11: Performance of GPT-4o on the question-asking benchmark when guided to prioritize questions about
layout, styling, and text contents.

Figure 12: Examples of synthetic sketches (left), real
human-drawn sketches (middle), and webpage screen-
shots (right). The synthetically generated sketches
closely resembles the ones drawn from human users.

tion, to transform the colored webpage into a sketch
with black strokes on a white background. To con-
vert images into wireframe image placeholders (i.e.,
boxes with a cross inside), we preprocessed each
HTML file to replace the original image with a
placeholder image that transforms into a solid cross
after applying the canny effect. Finally, we need
to replace text blocks with wavy lines. To achieve
this, we first detect and mask out all text blocks
with OCR. Then, we fill out the text boxes with si-

nusoids approximated by De Casteljau’s algorithm
for Bezier curves. Wave length and stroke width
are dynamically configured according to the bound-
ing text box, and random distortions are applied on
the intermediate control points of the Bezier curves
to mimic the hand-drawn curve style. As shown
in Figure 12, the generated sketches closely match
the style of human-drawn sketches, opening the
possibility of scaling with synthetic data.

To further evaluate the usefulness of synthetic
sketches, we randomly sampled 50 generated
sketches, and re-evaluated three models (GPT-4o,
Claude 3 Opus, and Gemini 1.5 Pro) across the two
benchmarks on these generated data. As outlined
in Figure 13, the models show the same perfor-
mance patterns on synthetic data as they did on real
sketches. Similar to the experiments with human-
generated sketches, all three models struggle with
question asking, while performing relatively con-
sistently with feedback following. Models also
tend to show performance decay after the first two
rounds of interactions. This confirms the applica-
bility of synthetic sketch generation on evaluating
the Sketch2Code performance of VLM models at
scale.

We noticed that models tend to output slightly

3949

Figure 13: Overview of models’ performances on synthetic sketches, with question asking on the left, and feedback
following on the right.

better visual similarities when evaluated on syn-
thetic data than real data, but occasionally under
perform on layout similarity. We attribute such
performance differences to the fact that synthetic
sketches are generated more deterministically and
omits fewer visual details, whereas human-drawn
sketches sometimes contain few details but focuses
on the larger layouts, especially when it comes to
long, complicated webpages. Consequently, mod-
els may pick up more visual components from the
synthetic sketches, but having these additional in-
formation can make it harder to match the exact
layouts.

I Qualitative Analysis

Figures 14 and 15 shows two example failure cases
of open-source models in the multi-turn evaluation
benchmarks. It is commonly observed that the
open-source model degenerates by repeating parts
of its output, or simply denies to follow the user
given instructions.

In addition, we conducted qualitative analysis on
the failing cases of question-asking among commer-
cial models. We found that even the sketch2code
agents based on SOTA VLMs often fail to de-
scribe specific visual components accurately, and

sometimes even hallucinate non-existent elements.
The simulated user also sometimes misunderstands
which component(s) the agent is referring to. Qual-
itative examples are shown in Figures 16, 17, 18.

3950

[The agent is prompted to ask questions]

Agent (Llava -1.6-8b): 1. What is the purpose of the webpage?
2. Are there any specific colors or fonts required for the text?
3. How many columns should the main content area have?
4. Should there be any navigation menu or sidebar?
5. Are there any images or icons that need to be included?
6. Is there a specific layout for the footer section?
7. Are there any interactive elements such as buttons or forms?
8. Are there any responsive design requirements?
...
34. Are there any technical requirements such as server specifications or hosting

requirements?
35. Are there any hardware requirements such as device types or screen sizes?
36. Are there any software requirements such as operating systems or programming

languages?
37. Are there any network requirements such as bandwidth or latency?
38. Are there any security requirements such as encryption or authentication?
39. Are there any privacy requirements such as GDPR compliance?
40. Are there any legal requirements such as terms of service or privacy policies?
41. Are there any ethical considerations such as responsible AI practices?
...
299. Are there any olfactory considerations such as smell or odor?
300. Are there any gustatory considerations such as taste or flavor?
301. Are there any tactile considerations such as touch or feel?
302. Are there any kinesthetic considerations such as movement or action?
303. Are there any vestibular considerations such as balance or orientation?
304. Are there any auditory considerations such as hearing or listening?
305. Are there any visual considerations such (Max token exceeded)

Figure 14: Example failure case of open-source models on the question-asking benchmark

3951

Simulated User: 1. Update the background color of the header from blue to black and
remove the "V4 Aerospace LLC" text from the header.

2. Ensure the navigation links ("HOME", "ABOUT", "CONTACT ") are aligned to the right
in the black header with a color change to white.

3. Add a breadcrumb navigation below the header , reading "AlphaBusinessTrends.com >
Florida > Lynn Haven > V4 Aerospace LLC".

4. Place "V4 Aerospace LLC" company name and redacted address in the center of a
blue section just below the breadcrumb navigation.

5. Adjust the layout to have three main sections side by side: "OVERVIEW" (purple),
"CONTACTS" (blue), and "BUSINESS INTEL" (purple), with the "Contact" section in
the middle.

Agent (InternVL2 -8b): I'm sorry , but I am unable to fulfill your request as it
requires modifications beyond the scope of my capabilities. Creating custom
designs and layouts for websites can be complex and time -consuming , especially
when dealing with multiple requests and specifications. It would be more
efficient for you to hire a professional web designer or use a website builder
tool that allows for customization.

Figure 15: Example failure case of open-source models on the feedback-following benchmark

3952

Agent (GPT -4O): What is the content of the four boxes with an "X" inside at the
bottom? Are they images or something else? (Hallucinating visual components ,
there are no boxes with "X" in the sketch design)

Simulated User: The four boxes with an "X" inside at the bottom are not images; they
are headers for different sections: "For Teams ," "Resources ," "About ," and "

Contact ," each containing a list of links.

Figure 16: Qualitative Example 1

3953

Agent (GPT -4O): Could you please clarify the text for the top navigation bar and the
three sections at the bottom , as they are unclear in the sketch?

Simulated User: The top navigation bar contains "Topics", "Blog", and "FAQ"; the
three sections at the bottom are "When Did We Lose Evangelism in Missions?", "
Every Time You Go Out...", and "Reaching the Unreached is Like Playing Hockey ".
(By "three sections", the agent was referring to the three boxes containing
social media links. However , the simulated user misunderstood it as links to
related posts.)

Figure 17: Qualitative Example 2

3954

Agent (GPT -4O): Any specific details about the three sections such as titles or
descriptions? (Lacks specificity and clarify on what "three sections" is
referring to, potential hallucination)

Simulated User: The three sections contain the title "Fog" and the name "Corinna
McClanahan Schroeder ," the descriptive text of the poem starting with "I am
yellow fingers swabbing ...," and an author bio starting with "Corinna McClanahan
Schroeder is the author of the poetry collection Inked ..."

Figure 18: Qualitative Example 3

3955

