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Abstract

Large pre-trained models have achieved out-
standing results in sequence modeling. The
Transformer block and its attention mechanism
have been the main drivers of the success of
these models. Recently, alternative architec-
tures, such as Selective Structured State Space
Models (SSMs), have been proposed to address
the inefficiencies of Transformers. This pa-
per explores the compression of SSM-based
models, particularly Mamba and its hybrids.
We study the sensitivity of these models to
the removal of selected components at differ-
ent granularities to reduce the model size and
computational overhead, thus improving their
efficiency while maintaining accuracy. The
proposed solutions, collectively referred to as
Mamba-Shedder, achieve a speedup of up
to 1.4x during inference, demonstrating that
model efficiency can be improved by eliminat-
ing several redundancies with minimal impact
on the overall model performance.

1 Introduction

We have seen an outstanding increase in the num-
ber of Transformer-based models (Vaswani et al.,
2017) developed to tackle tasks from Natural Lan-
guage Processing (NLP) and other domains (Par-
mar et al., 2018; Dosovitskiy et al., 2021; Arnab
et al., 2021; Gong et al., 2021) due to their effective-
ness at modeling sequences. However, these mod-
els also present critical efficiency challenges. For
example, the cost of training these models scales
quadratically in the sequence length. In the gen-
eration stage, Transformers, in their original form,
require large caches to store the previously seen
tokens. Several variants of Transformers have been
proposed to address these efficiency challenges,
but researchers have also explored alternative post-
Transformer architectures to address these limita-
tions. Structured state space models (SSMs), e.g.,

*Co-first authors.

S4 (Gu et al., 2022), followed by Selective state
space models, e.g., Mamba (Gu and Dao, 2023;
Dao and Gu, 2024) have been proposed as efficient
alternatives that achieve training time with linear
scaling in sequence length, and during generation,
maintain constant state size.

Model compression methods, e.g., pruning and
quantization, have been broadly explored and ap-
plied to Transformer-based models. However,
more must be done to explore compression in their
structured state space counterparts. This paper ex-
plores the pruning of these alternative architectures,
providing insights into potential opportunities to in-
crease their efficiency without sacrificing accuracy.
We discuss the following contributions:

• A pruning solution, Mamba-Shedder, which
targets structures in selective structured state
space models, improving their computational
and memory efficiency.

• Comprehensive experiments to determine the
tolerance of SSM-based models to the re-
moval of their structures.

• Insights on how the differences in the SSM
building blocks and their interaction with
Transformer blocks in hybrid models affect
the trade-off between efficiency and accuracy.

The rest of the paper is organized as follows: §2
provides details of the alternative architectures uti-
lized in our study and popular strategies for element
removal in large models. §3 describes methods to
study network pruning in Mamba and hybrid archi-
tectures. §4 presents the results of our experiments
and ablation studies, and we offer concluding re-
marks in §5. A Related Work section is included
in the Appendix.

2 Preliminaries

2.1 State Space Models
State space models (SSMs) have a long history of
modeling sequences and dynamic systems. Re-
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cently, structured SSMs, e.g., S4 (Gu et al., 2022),
have been proposed as an alternative to Transform-
ers because of their efficient capabilities for map-
ping input to output signals. When dealing with dis-
crete sequences as in Natural Language Processing
(NLP), the parameters A, B and C of these models
are discretized to transform an input sequence, xt,
and hidden state, ht, to obtain the output sequence,
yt. It can be formalized as:

ht = Aht−1 +Bxt, yt = C⊤ht. (1)

Mamba: Selective State Space Models S4 and
other structured SSMs are linear time-invariant
(LTI), i.e., their parameters are fixed, limiting their
effectiveness for sequence modeling. For instance,
structured state space models fail in many content-
and context-based reasoning tasks. These limi-
tations have motivated the development of time-
varying alternatives, e.g., Mamba (Gu and Dao,
2023), which incorporate selection mechanisms
and are suitable for solving tasks previously SSM
generations failed. Specifically, Mamba’s SSM
module, S6, allows its parameters to depend on
the input, thereby modifying the formulation from
time-invariant to time-varying. A second improve-
ment proposed in Mamba compared to previous
SSMs is a hardware-aware algorithm that speeds
up execution while reducing memory IOs.

Furthermore, Mamba-2 (Dao and Gu, 2024) im-
proves the original Mamba architecture by propos-
ing state space duality (SSD), which improves its
efficiency on hardware accelerators compared to
S6. This improvement is achieved by changing
the state matrix, A, which directly controls the
latent state, h. A is modified from being struc-
tured as a diagonal matrix to a formulation that
utilizes a scalar-times-identity structure. Addition-
ally, Mamba-2 introduces the concept of heads in
SSMs inspired by how multi-head attention (MHA)
works and implementing a grouped-value attention
(GVA) head structure. Overall, the Mamba-2 archi-
tecture, with its SSD core component, allows for
improved parallelism of the block’s projections.

Mamba block Mamba models comprise several
blocks stacked after each other. Figure 1 on the left
illustrates a single Mamba block. Each block has
the selective SSM mechanism (S6 for Mamba-1
and SSD for Mamba-2) at its core, placed within
a larger structure that combines a gated multilayer
perceptron (MLP), a convolution, and SILU activa-
tion functions (Elfwing et al., 2018).

For more details about selective structured state
space models, we refer the reader to Gu and Dao
(2023) and Dao and Gu (2024).

2.2 Hybrid Models
Lately, new models achieve the best of both worlds
(Transformers and Selective SSMs) by proposing
architectures with both classes of blocks. Zamba
(Glorioso et al., 2024) is one example of such a hy-
brid model. It combines the strengths of Mamba’s
backbone and the efficiency of selective SSMs with
a shared Transformer block that incorporates Trans-
formers’ powerful in-context learning capabilities.
The shared attention mechanism, in which two
attention blocks are reused and interleaved in an
ABAB pattern throughout the network, is a charac-
teristic innovation of Zamba. This model also ap-
plies LoRA adapters (Hu et al., 2022) to the shared
MLP blocks, achieving specialization when inter-
acting with the affected layers, memory efficiency,
and faster inference with reduced computational
overhead.

Another example of a hybrid model is Hymba
(Dong et al., 2024). This model takes a different
approach than Zamba, proposing an entirely new
hybrid-head module, illustrated in Figure 1 on the
right, in which the SSM and Attention mechanisms
contribute in parallel to the sequence modeling.
Additionally, Hymba benefits from group query
attention, cross-layer KV cache sharing, and learn-
able meta-tokens, resulting in higher throughput,
reduced memory requirements, and competitive
performance compared to models of similar size.

2.3 Model Pruning
A popular model compression technique, pruning
(LeCun et al., 1989), has been effectively used to re-
duce the size of deep learning models and improve
their efficiency. Network pruning operates at two
levels: (1) Unstructured pruning identifies the im-
portance of individual weights that can be masked
to minimize their impact on overall model behavior.
At a different level, (2) structured pruning focuses
on removing more significant structural compo-
nents of the model, such as whole Transformer
blocks (Men et al., 2024), or reducing the granular-
ity to target subcomponents of these layers (Zhong
et al., 2024). Other dimensions for pruning include
groups of channels in the Transformer’s MLPs or
heads from the MHA layer (Muñoz et al., 2025).
In this paper, the focus is solely on structured prun-
ing applied to Mamba-based models. Next, we
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Figure 1: Overview of Mamba-Shedder. This figure illustrates the pruning strategy for three types of Mamba-based
models. The first type includes Mamba models such as Mamba-1 (Gu and Dao, 2023), Mamba-2 (Dao and Gu,
2024), and Falcon-Mamba (Zuo et al., 2024). The second type comprises Mamba + Transformers architectures,
including Zamba (Glorioso et al., 2024). The third type is Hymba (Dong et al., 2024), a novel architecture with
hybrid heads. Red dashed lines indicate potential removal. In Transformers, channel pruning can also be applied to
MLP block (width pruning).

discuss Mamba-Shedder’s methodology to study
redundancies in Mamba and hybrid models.

3 Methodology

Due to the large sizes of current state-of-the-art
sequence models, Mamba-Shedder requires an effi-
cient strategy to identify structures that can be re-
moved without significantly affecting the model’s
accuracy. We approach this problem using a
training-free approach, in which the least essen-
tial elements are considered for removal. Similar
strategies have been explored in Transformer-based
large language models (Ashkboos et al., 2024; Men
et al., 2024; Zhong et al., 2024). However, to
our knowledge, no study explores the removal of
structures in Selective Structured State Space mod-
els. Mamba-Shedder conducts structure removal of
Mamba models and their hybrid variants at differ-
ent granularities. As illustrated in the left of Figure
1, in the case of models with only Mamba blocks,
we explore the iterative removal of entire Mamba
blocks (§2.1), or their SSM subcomponents, either
S6 or SSD modules depending on the version of
Mamba (Figure 1).

The proponents of the Mamba architecture do
not provide a rationale for the number of Mamba
blocks required to build robust models, opening
an opportunity for Mamba-Shedder to investigate
whether some components might be redundant and
hence removed from the model with a minor impact
in accuracy.

In addition to these components, in the case of

hybrid models that also contain Transformer blocks
(middle of Figure 1), we also explore the removal
of entire Transformer blocks or their subblocks:
multilayer perceptrons (MLP) modules and multi-
head attention (MHA) modules. In hybrid models,
Mamba-Shedder also explores the removal of struc-
tures at a finer granularity by targeting groups of
channels in the MLP’s linear layers, i.e., based on
a channel group size, g, Mamba-Shedder explores
the removal of ng channels, where n is the number
of groups that could be removed based on their
impact of the overall model performance.

Algorithm 1 Block / Module Pruning
Input: Set of blocks/modulesM from a model m, Calibration
dataset C, Metric ϕ, Target pruning steps t.
Output: Pruned model m∗

1: for k ← 1 to t do
2: for all Mi ∈M do
3: Si ← Importance(Mi,m, C, ϕ)
4: end for
5: Mmin ← argminMi∈M Si

6: M←M\ {Mmin} ▷ Block/Module Pruning
7: end for
8: return m∗ with the remaining blocks/modules inM

Algorithm 1 details the procedure to remove en-
tire structures, e.g., Mamba or Transformer blocks,
MLPs, MHA, or SSM modules. Given a set M of
structures selected for potential removal, a proxy
data set C and a metric ϕ are used to measure the
importance of an individual structure and the im-
pact of removing it from the model (Zhong et al.,
2024). In addition to entire structures, Mamba-
Shedder follows the same logic to remove channel
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Figure 2: Pruning Mamba blocks. Avg. Accuracy indicates the average accuracy for seven tasks. The model
composed of Mamba 1 blocks (left) can tolerate the removal of entire blocks without significantly increasing its
perplexity or decreasing accuracy compared to Mamba-2 and Zamba-2. In all three models, removing each Mamba
block reduces 0.04B parameters from the model. These are training-free results, and drops in accuracy can be
reduced by a subsequent fine-tuning stage (§4.5).

Model Method Num. of Pruned Ratio Lambada Lambada HellaS PIQA ARC-e ARC-c WinoG OBQA Average
Mamba Blocks PPL (↓)

Mamba-2.8B
Dense 0 / 64 0% 4.23 69.2 66.1 75.2 69.7 36.3 63.5 39.6 59.9

Mamba Block Pruning
7 / 64 10.43% 4.94+0.71 65.8 63.7 73.8 68.0 33.5 62.5 36.8 57.7-2.2

14 / 64 20.86% 7.51+3.28 58.9 57.6 71.0 62.7 32.0 61.1 33.2 53.8-6.1

Mamba2-2.7B
Dense 0 / 64 0% 4.10 69.7 66.6 76.4 69.6 36.4 64.0 38.8 60.2

Mamba Block Pruning
7 / 64 10.42% 8.43+4.33 53.0 63.8 73.9 66.6 36.4 64.5 35.0 56.2-4.0

14 / 64 20.83% 11.53+7.43 47.0 59.4 71.1 60.6 35.6 60.8 35.0 52.8-7.4

Zamba2-2.7B
Dense 0 / 54 0% 4.01 69.7 77.0 79.8 77.5 48.5 72.1 45.8 67.2

Mamba Block Pruning
7 / 54 10.38% 6.80+2.79 58.9 69.7 77.0 69.8 39.6 67.0 41.8 60.5-6.7

14 / 54 20.77% 15.8+11.79 44.3 62.8 72.7 54.3 34.5 64.3 37.2 52.9-14.3

Table 1: Detailed results of Mamba-Shedder with training-free Mamba block pruning. Lambada, HellaS, PIQA,
ARC-e, ARC-c, WinoG, and OBQA represent their respective accuracies. Underlined numbers indicate the smallest
average accuracy gap with the dense model under the same level of pruning.

groups as detailed in Algorithm 2.

Algorithm 2 MLP Channel Pruning
Input: Set of MLP blocksMMLP from a model m, Calibration
dataset C, Metric ϕ, Target pruning steps t, MLP channel
group size g.
Output: Pruned model m∗

1: for k ← 1 to t do
2: for all Mi ∈MMLP do
3: Si ← Importance(Mi[:, :-g],m, C, ϕ)
4: end for
5: Mmin = argminMi∈MMLP Si

6: Mmin = Mmin[:, :-g] ▷ Channel Pruning
7: end for
8: return m∗ with the altered MLP blocks inM

Depending on the pruning objective, Mamba-
Shedder might treat these pruning targets in iso-
lation, but Section 4 also presents the results of
configurations in which Mamba-Shedder sequen-
tially prunes larger structures (e.g., Mamba blocks)
and, at a later stage, smaller components, e.g., SSM
modules in the remaining Mamba blocks. Future
work will explore larger search spaces with more
complex configurations of candidate structures for
removal. For example, the importance of Mamba
blocks and their SSM modules can be assessed in

the same pruning iteration.

4 Experiments

We evaluate Mamba-Shedder and study the re-
moval of structures from SSM-based models utiliz-
ing several open-source models and datasets. We
analyze their absolute and relative drop in accuracy
and quantify the inference speedup obtained by the
pruned models. Next, we discuss the resources uti-
lized for our experiments and details of our setup
and results.

4.1 Models

Our experiments employed the following pre-
trained Mamba and hybrid models: Mamba-
2.8b (Gu and Dao, 2023), consists of 64 S6 blocks1.
Mamba2-2.7b (Dao and Gu, 2024), consists of 64
SSD blocks 2. Both Mamba models were trained on
300B tokens on the Pile dataset (Gao et al., 2020).
For our choice of a hybrid model, we explored
Zamba2-2.7B (Glorioso et al., 2024)3. It has 54

1https://huggingface.co/state-spaces/mamba-2.8b
2https://huggingface.co/state-spaces/mamba2-2.7b
3https://huggingface.co/Zyphra/Zamba2-2.7B
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Figure 3: Pruning SSM (S6 and SSD modules). Mamba-2.8B and Mamba2-2.7B have 64 SSM modules, while
Zamba2-2.7B has 54 SSM (SSD) modules. Avg. Accuracy is for the seven tasks evaluated.

Model Method Num. of Lambada Lambada HellaS PIQA ARC-e ARC-c WinoG OBQA Average
Pruned SSMs PPL (↓)

Mamba-2.8B

Dense 0 / 64 4.23 69.2 66.1 75.2 69.7 36.3 63.5 39.6 59.9

SSM Pruning
16 / 64 9.23+5.00 55.2 52.1 68.1 57.8 28.4 55.6 31.6 49.8-10.1

20 / 64 10.10+5.87 57.1 48.2 65.5 50.9 25.9 56.0 29.4 47.6-12.3

24 / 64 22.55+18.32 44.4 43.2 64.4 47.4 25.8 53.6 29.8 44.1-15.8

Mamba2-2.7B

Dense 0 / 64 4.10 69.7 66.6 76.4 69.6 36.4 64.0 38.8 60.2

SSM Pruning
16 / 64 4.26+0.16 66.9 66.1 76.4 68.6 37.2 64.0 39.2 59.8-0.4

20 / 64 5.89+1.79 59.8 66.0 76.1 68.9 36.7 63.6 39.2 58.6-1.6

24 / 64 14.95+10.85 43.4 65.8 74.8 67.1 36.6 62.9 38.0 55.5-4.7

Zamba2-2.7B

Dense 0 / 54 4.01 69.7 77.0 79.8 77.5 48.5 72.1 45.8 67.2

SSM Pruning
16 / 54 4.14+0.13 69.2 75.8 79.2 75.8 46.5 72.2 45.8 66.4-0.8

20 / 54 5.07+1.06 64.2 75.8 79.3 75.5 46.2 73.2 46.0 65.7-1.5

24 / 54 5.46+1.45 62.3 74.7 79.0 75.4 44.3 70.9 46.4 64.7-2.5

Table 2: Detailed results of Mamba-Shedder with training-free SSM pruning. The remaining tasks represent their
respective accuracy. Here, we do not consider the pruning ratio, as the number of SSM’s parameter weights is small.
Its benefit is the reduction of computational overhead. Underlined numbers indicate the smallest gap with Dense
under the same level of pruning.

layers, including 45 single Mamba-2 Blocks and 9
hybrid layers composed of both Mamba-2 Blocks
and Transformer Blocks. Zamba-2 was trained on
3T tokens from open web datasets, including Zyda
(Tokpanov et al., 2024), and subsequently annealed
with 100B additional tokens. The aforementioned
models are all of the same size and can be com-
pared directly. For Mamba models of different
sizes, we also explored Falcon-Mamba-7B (Zuo
et al., 2024)4, which is based on the Mamba-1 archi-
tecture and is the best-performing Mamba model
at this scale in the literature, as well as Hymba-
1.5B-Base (Dong et al., 2024)5, which features a
hybrid architecture incorporating both Mamba and
Attention heads.

4.2 Datasets

Following the language modeling evaluation of
Mamba (Gu and Dao, 2023; Dao and Gu, 2024),
we utilize lm-eval-harness (Gao et al., 2023) to
assess the zero-shot performance, which includes

4https://huggingface.co/tiiuae/falcon-mamba-7b
5https://huggingface.co/nvidia/Hymba-1.5B-Base

measuring perplexity on Lambada (Paperno et al.,
2016), and accuracy on the following downstream
tasks: HellaSwag (Zellers et al., 2019), Physical In-
teraction Question Answering (PIQA) (Bisk et al.,
2020), AI2 Reasoning Challenges (Arc-e, Arc-c)
(Clark et al., 2018), Large-scale Winograd Schema
Challenge (WinoGrande) (Sakaguchi et al., 2021),
and the Open Book Question Answering (Mihaylov
et al., 2018) dataset.

Regarding the calibration dataset, we follow
BlockPruner (Zhong et al., 2024) in using the Al-
paca dataset 6 as the calibration dataset and employ
perplexity as the metric for calculating importance
scores. All the hyperparameters used in our experi-
ments are detailed in the Appendix.

4.3 Results
4.3.1 Pruning Target: Mamba Block
This section explores the impact of pruning Mamba
blocks on model performance. Figure 2 and Table
1 present the results of applying Mamba-Shedder
to Mamba-2.8B, Mamba2-2.7B, and Zamba2-2.7B

6https://github.com/tatsu-lab/stanford_alpaca
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Pruning Target
Ratio Additional Lambada

Lambada HellaS PIQA ARC-e ARC-c WinoG OBQA Avg.
(Block, Width) Pruned SSMs PPL (↓)

/ 0% 0 / 54 4.01 69.7 77.0 79.8 77.5 48.5 72.1 45.8 67.2

Mamba Block & Transformer Block 10.40% 0 / 54 9.18+5.17 53.5 67.3 76.3 63.5 37.8 64.3 40.6 57.6-9.6

Mamba Block & MLP & MHA 10.33% 0 / 54 5.01+1.00 65.6 73.6 78.5 75.3 43.8 69.3 45.2 64.5-2.7

Mamba Block & MLP & MHA + MLP Channel 10.27% 0 / 54 5.45+1.44 63.4 74.9 80.1 79.0 49.7 70.9 46.0 66.3-0.9

Mamba Block & MLP & MHA + MLP Channel + SSM 10.27% 18 / 54 5.18+.1.17 63.4 73.9 80.0 79.0 48.7 69.5 46.6 65.9-1.3

Mamba Block & Transformer Block 15.89% 0 / 54 10.38+.6.37 51.4 65.6 74.0 61.7 37.7 63.5 39.6 56.2-11.0

Mamba Block & MLP & MHA 15.54% 0 / 54 10.64+.6.63 49.3 69.2 76.9 66.1 38.1 66.0 41.8 58.2-9.0

Mamba Block & MLP & MHA + MLP Channel 15.48% 0 / 54 7.39+.3.38 57.6 70.0 78.5 74.5 43.9 67.5 43.8 62.3-4.9

Mamba Block & MLP & MHA + MLP Channel + SSM 15.48% 18 / 54 7.43+.3.42 56.5 68.9 77.9 73.4 41.8 67.7 42.8 61.3-5.9

Table 3: Results of Zamba2-2.7B were achieved by pruning its Mamba-2 and Transformers blocks at multiple
granularities, including entire Mamba-2 block, MHA block, MLP block, MLP channel, and SSM module. The
remaining tasks represent their respective accuracies. “&” indicates that the pruning targets are considered together
in the same pruning step, while “+” signifies the distinction between pruning stages, with pruning occurring
sequentially. Bold numbers indicate the best performance under the same level of pruning (excluding Dense).

models with a focus on removing redundant entire
Mamba blocks. The model that utilizes the first
version of Mamba blocks (S6) appears to tolerate
a higher number of removed blocks without sig-
nificantly affecting its performance. Specifically,
the Mamba-2.8B model demonstrates robustness,
with its perplexity (PPL) increasing from 4.23 to
7.51 and average accuracy dropping from 59.9 to
53.8 when the pruning ratio reaches 20.86%. In
contrast, the Mamba2-2.7B and Zamba2-2.7B mod-
els exhibit more significant performance degrada-
tion, although they performed better before prun-
ing (Dense). The poorer pruning performance of
Zamba2-2.7B may be attributed to the pruning of
Mamba blocks disrupting a certain balance within
the hybrid layers. Overall, the effects of Mamba
block pruning vary across different models, depend-
ing on the model architecture and the characteris-
tics of the pre-training stage.

4.3.2 Pruning Target: SSM Module

In this section, we delve into assessing the impact
of pruning only the SSM modules within Mamba
blocks on the performance of various models, as
illustrated in Table 2 and Figure 3. When using
the same target in Mamba-2.8B, we observe that
further pruning SSMs results in a noticeable in-
crease in perplexity, soaring to 22.55 and decreas-
ing average accuracy to 44.1. This result indi-
cates a significant sensitivity to SSM pruning for
Mamba-1, where performance degradation is pro-
nounced even at moderate pruning levels. Con-
versely, Mamba2-2.7B and Zamba2-2.7B exhibit
remarkable resilience to SSM pruning. Even with
24 SSMs pruned, the model maintains a relatively

stable performance. This robustness suggests that
Mamba-2 blocks can tolerate higher SSM module
pruning, potentially due to Mamba-2’s optimiza-
tions or different training strategies with Mamba-1.
The Zamba2-2.7B model, with the hybrid archi-
tecture, outperforms both Mamba-1 and Mamba-2.
Pruning 12 out of its 54 SSMs results in a negligible
PPL increase from 4.01 to 4.02, while the average
accuracy slightly decreases from 67.2% to 67.0%.
The hybrid nature of Zamba2-2.7B may contribute
to its ability to maintain performance despite SSM
pruning. Overall, these findings underscore the im-
portance of model architecture and training strate-
gies in determining the impact of SSM pruning.
They offer valuable insights for optimizing model
efficiency without compromising performance.

4.3.3 Pruning Target: Finer-grained removal
of Mamba and Transformer blocks, and
their subcomponents

Table 3 presents the results of pruning various com-
ponents of the Zamba2-2.7B model, including com-
binations of Mamba-2 blocks, entire Transformer
blocks, and their subcomponents, i.e., MHA blocks,
MLP blocks, MLP channels, and SSM modules.
We design four search spaces to study the effec-
tiveness of different granularities and their combi-
nations. “&” indicates that the pruning targets are
considered together in the same pruning step, while
“+” signifies the distinction between pruning stages,
with pruning occurring sequentially:

Mamba Block & Transformer Block Prun-
ing This experiment involves pruning the entire
Mamba-2 blocks and Transformer blocks.
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Mamba Block & MLP & MHA Pruning This
experiment decomposes the transformer block into
sub-blocks, pruning Mamba-2 blocks as well as
MHA and MLP.

Mamba Block & MLP & MHA + MLP Channel
Pruning This experiment prunes the Mamba-2
blocks, MHA, and MLP at the first stage and further
prunes the MLP channels at the next stage.

Mamba Block & MLP & MHA + MLP Channel
Pruning + SSM Add additional SSM pruning
following the previous solution.

The results indicate that pruning Mamba blocks
and Transformer blocks alone leads to signifi-
cant performance degradation. However, more
granular pruning strategies show a more favor-
able trade-off between pruning ratio and per-
formance. Specifically, pruning Mamba blocks,
MLP, MHA (single stage), and MLP channels
subsequently performs the best. Inspired by the
SSM pruning of Mamba-2 in Section 4.3.2, we
further add SSM pruning to the third strategy, and
the results show that removing around 18 SSMs
can maintain accuracy performance while reduc-
ing computational overhead. An interesting finding
is that pruning SSMs can even lower PPL; for in-
stance, at a 10% pruning ratio, PPL decreases from
5.45 to 5.18, suggesting that some SSM modules
are redundant after the second pruning stage. Over-
all, these findings indicate that multi-granularity
pruning methods, particularly those including MLP
channels and SSM modules, can effectively reduce
the complexity of hybrid Mamba models while
maintaining a higher level of performance.

4.3.4 Pruning Mamba Models of Other Sizes
Hymba Table 4 shows the results of Mamba-
Shedder with training-free Hymba Block pruning
for Hymba-1.5B-Base. The dense configuration
achieves an average accuracy of 63.8, which de-
creases as more blocks are pruned, dropping to
60.5 when 8 blocks are pruned, indicating a general
decline in performance across benchmarks. Fur-
ther analysis of inference acceleration and recovery
tuning experiments for Hymba-1.5B-Base will be
discussed in the subsequent sections.

Falcon-Mamba While the previous sections fo-
cused on exploring the pruning of Mamba models
with sizes around 2.7B or 2.8B, we also investi-
gated the impact of Mamba-Shedder on a larger-
scale Mamba model, specifically Falcon-Mamba-
7B (Table 5). Pruning SSM modules in the Falcon-

Mamba-7B model shows better tolerance in terms
of perplexity, suggesting that SSM pruning is more
effective in maintaining lower perplexity. Regard-
ing average accuracy, pruning entire Mamba blocks
is more beneficial.

Additionally, it is important to note that prun-
ing entire Mamba blocks yields more significant
computational benefits than SSM pruning, suggest-
ing that while SSM pruning is advantageous for
maintaining perplexity, pruning Mamba blocks of-
fers a better trade-off between computational effi-
ciency and accuracy. The choice of pruning strat-
egy should be guided by the specific performance
metric of interest and the desired balance between
computational efficiency and model accuracy.

None of the above results have undergone fine-
tuning to improve the performance of the pruned
models. As in other works, the drop in the accuracy
performance of pruned models can be recovered by
fine-tuning, which will be incorporated in §4.5.

4.4 Inference Acceleration
Through the above analysis, we have gained a
good understanding and insights into the impact of
Mamba-Shedder’s structured pruning on model ac-
curacy and perplexity performance. In this section,
we discuss the impact of pruning on inference ac-
celeration. All the following tests were conducted
on a single Tesla V100 32GB GPU.

Mamba-1 When removing entire Mamba blocks,
as shown in Table 6, Mamba-Shedder speeds up
the decoding stage up to 1.29x when removing 14
blocks, and 1.13x when removing only 7 blocks,
which highlights the potential of Mamba-Shedder
to optimize computational efficiency in Mamba
models. The user’s decision on how aggressively
to prune will impact the average accuracy or the
perplexity as observed in Table 1.

Mamba-2 As detailed in Table 7, removing 24
SSM modules (44% of the total number of mod-
ules) results in up to a 1.20x speedup in the prefill
stage and a 1.18x speedup in the decoding stage
during of inference. A more conservative pruning
ratio achieves 1.11x speedup when removing 16
SSM modules. Based on previous observations, the
impact on performance metrics is minimal (0.4%
for accuracy and 0.16 for PPL). These results under-
score the effectiveness of SSM pruning in enhanc-
ing computational efficiency while barely affecting
model performance, making it a viable strategy for
optimizing Mamba models.
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Model Method Num. of Pruned HellaS PIQA ARC-e ARC-c WinoG Average
Hymba Blocks

Hymba-1.5B-Base

Dense 0 / 32 53.5 77.1 76.6 45.4 66.1 63.8

Hymba Block Pruning
6 / 32 50.5 75.8 76.0 44.9 64.1 62.3
7 / 32 49.9 74.9 74.8 43.9 64.9 61.7
8 / 32 49.2 74.3 74.2 43.2 61.5 60.5

Table 4: Results of Mamba-Shedder with training-free Hymba block pruning for Hymba-1.5B-Base (Dong et al.,
2024). Five commonsense reasoning tasks are used for evaluation.

Model Method Num. of Pruned Lambada Lambada HellaS PIQA ARC-e ARC-c WinoG OBQA Average
Mamba Blocks / SSMs PPL (↓)

Falcon-Mamba-7B

Dense 0 / 64 3.15 74.3 80.3 82.0 84.4 58.9 75.1 49.0 72.0

Mamba Block Pruning

5 / 64 4.01 69.2 78.6 81.9 82.2 54.6 72.5 47.6 69.5
10 / 64 4.97 65.1 75.0 79.5 79.7 51.5 70.2 43.8 66.4
15 / 64 5.63 62.4 71.2 77.8 76.1 49.1 70.2 41.8 64.1
20 / 64 39.31 31.5 65.9 74.3 72.2 42.3 65.2 38.4 55.7

SSM Pruning

5 / 64 3.47 71.6 77.3 81.2 77.8 49.2 73.2 47.2 68.2
10 / 64 4.24 67.2 73.6 79.8 75.3 48.3 70.2 43.0 65.4
15 / 64 5.37 63.3 69.6 78.2 72.4 43.4 68.8 41.8 62.5
20 / 64 14.14 46.3 63.4 74.9 60.7 36.7 65.7 37.8 55.1

Table 5: Results of Mamba-Shedder with training-free Mamba block and SSM pruning for Falcon-Mamba-7B.

Model Method
Num. of Pruned Inference Speedup
Mamba Blocks Prefill Decode

Mamba-2.8B
Dense 0 / 64 1.00× 1.00×

Mamba-Shedder
7 / 64 1.12× 1.13×

14 / 64 1.31× 1.29×

Table 6: Inference benchmark results for Mamba-2.8B.
The batch size is 1. Number of batches is 10. The
prompt length is 512. Number of new tokens is 16.

Model Method
Num. of Inference Speedup

Pruned SSMs Prefill Decode

Mamba2-2.7B

Dense 0 / 64 1.00× 1.00×

Mamba-Shedder
16 / 64 1.13× 1.11×
20 / 64 1.16× 1.14×
24 / 64 1.20× 1.18×

Table 7: Inference benchmark results for Mamba2-2.7B,
with test-related hyperparameters consistent with Table
6.

Model Method
Ratio Additional Inference Speedup

(Block, Width) Pruned SSMs Prefill Decode

Zamba2
Dense 0% 0 / 54 1.00× 1.00×

2.7B Mamba-Shedder
15.48% 0 / 54 1.16× 1.34×
15.48% 18 / 64 1.25× 1.39×

Table 8: Inference benchmark results for Zamba2-2.7B,
with test-related hyperparameters consistent with Ta-
ble 6. The calculation of Ratio includes block pruning
(Mamba Block, MHA, and MLP) and width pruning
(MLP Channel). Refer to Table 3 for more information.

Zamba-2 We observe significant acceleration on
inference after multiple granularities pruning of

Model Method
Num. of Pruned Inference Speedup
Hymba Blocks Prefill Decode

Hymba-1.5B-Base
Dense 0 / 64 1.00× 1.00×
Mamba-Shedder 7 / 64 1.15× 1.24×

Table 9: Inference benchmark results for Hymba-1.5B-
Base, where the test-related hyperparameters consistent
with Table 6, except that number of new tokens is 256.

Model Method
Num. of Lambada Average

Pruned SSMs PPL (↓) Accuracy

Mamba2-2.7B
Dense 0 / 64 4.10 60.2
Mamba-Shedder 20 / 64 5.89 58.6
Mamba-Shedder w/ tune 20 / 64 4.44-1.45 59.6+1.0

Table 10: Results of the compressed Mamba2-2.7B
model with recovery tuning (post-training).

Model Method
Ratio Additional Lambada Avg.

(Block & Pruned PPL Acc.
Width) SSMs (↓) (↑)

Zamba2

Dense - 0 / 54 4.01 67.2
Mamba-Shedder 10.27% 18 / 54 5.18 65.9

2.7B
Mamba-Shedder w/ tune 10.27% 18 / 54 4.58-0.60 67.0+1.1

Mamba-Shedder 15.48% 18 / 54 7.43 61.3
Mamba-Shedder w/ tune 15.48% 18 / 54 5.88-1.55 64.4+3.1

Table 11: Results of the compressed Mamba2-2.7B and
Zamba2-2.7B models with recovery tuning.

Zamba-2 (Table 8). Specifically, pruning Mamba
blocks, MLP, and MHA blocks along with MLP
channels results in a 1.34x speedup in the decod-
ing stage. When SSM pruning is included, the
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Model Method
Num. of Pruned Average
Hymba Blocks Accuracy

Hymba-1.5B-Base
Dense 0 / 32 63.8
Mamba-Shedder 7 / 32 61.7
Mamba-Shedder w/ tune 7 / 32 63.7+2.0

Table 12: Results of the compressed Hymba-1.5B-Base
model with recovery tuning. Average Accuracy is cal-
culated over HellaSwag, PIQA, ARC-e, ARC-c, and
WinoGrande tasks (Table 4).

speedup increases to 1.39x, indicating that a com-
prehensive pruning strategy that includes multiple
components can significantly enhance inference
speed while maximizing the preservation of model
performance.

Hymba Block pruning of Hymba-1.5B-Base
demonstrates notable improvements in inference
speed (Table 9). By removing 7 out of 64 Hymba
blocks, Mamba-Shedder achieves a 1.15x speedup
in the prefill stage and a 1.24x speedup in the de-
coding stage, suggesting that significant computa-
tional efficiency gains can be realized even with a
relatively modest pruning ratio. The results high-
light the potential of Mamba-Shedder to optimize
the performance of Hymba models, making them
more efficient for real-time applications without
substantial sacrifices in model accuracy.

4.5 Recovery Tuning of the Pruned Model

Following related work (Ma et al., 2023; Zhong
et al., 2024), we performed post-training on the
Mamba-Shedder compressed model using the
cleaned version of Alpaca. The results summarized
in Tables 10, 11, and 12 demonstrate substantial
performance gains after just two epochs of recovery
tuning. For instance, the Mamba-Shedder model
obtained by removing Mamba Blocks & MLPs &
MHAs + MLP Channels + SSM in Zamba-2 (Ta-
ble 3), initially exhibits a perplexity of 5.18 and
an average accuracy of 65.9 when 18 out of 54
SSMs are pruned. However, after recovery tun-
ing, it achieves a significantly reduced PPL of 4.58
and an improved average accuracy of 67.0, which
is almost on par with the Dense model. Simi-
larly, the recovery tuning of the Hymba-1.5B-Base
model also yields significant improvements (Ta-
ble 12). Initially, the pruned model with 7 out
of 32 Hymba blocks removed shows an average
accuracy of 61.7. After recovery tuning, the av-
erage accuracy increases to 63.7, which is nearly
equivalent to the dense model’s accuracy of 63.8.
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Figure 4: Close examination of the impact of remov-
ing Mamba blocks or SSMs from the two versions of
Mamba models reveals distinct differences in their tol-
erance levels. Mamba-1 exhibits a higher tolerance for
removing its blocks, while Mamba-2 exhibits greater
tolerance for removing the SSM subcomponent.

This phase effectively enhances the performance of
the pruned model, bringing it closer to the original
dense model’s performance while maintaining com-
putational efficiency. In summary, recovery tuning
is crucial to optimize pruned models, making them
more viable for practical applications.

4.6 Insights on the Compression Sensitivity of
the Variants of Mamba

The proponents of Mamba modified the original
architecture to restrict the expressivity in Mamba-2
and increase the training efficiency. As illustrated
on the left side of Figure 4, our experiments sug-
gest that these changes make Mamba-2 models less
robust to removing entire blocks than the previous
version of the Mamba block. As soon as we re-
move blocks with the least importance, Mamba-1
exhibits a more robust behavior. However, Mamba-
2 demonstrates a significantly higher tolerance to
removing SSMs, maintaining a stable perplexity
even as more SSMs are pruned, suggesting that
while Mamba-2’s architectural improvements have
made it more sensitive to the removal of Mamba
blocks, they have also enhanced its robustness to
SSM pruning.

5 Conclusion

Selective structure state space models have become
an efficient alternative to Transformer-based mod-
els. In this paper, we propose Mamba-Shedder
and investigate structured pruning strategies to re-
move elements from Mamba and hybrid models
and reduce model size, accelerating inference. The
results demonstrate that selective structured state
space architectures have several redundancies that
can be removed without significantly affecting the
model’s performance.
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Limitations

Despite their outstanding results, large sequence
models are still under investigation to better under-
stand their capabilities and limitations. Mamba-
Shedder is, to the best of our knowledge, the
first work to investigate the removal of structures
in Mamba-based models, including hybrids with
Transformer blocks. Our goal is to motivate the
research community to better understand this class
of models to identify opportunities for future im-
provements in the model architecture and applica-
ble compression techniques. The results indicate
that these models contain redundant elements that
might be removed to improve their efficiency. How-
ever, future work must explore and attempt to better
understand the trade-offs between efficiency and ac-
curacy when removing these models’ components.
Even more research questions can be entertained
when considering Transformer blocks and hybrid
models, as in the case of Zamba. For instance, there
is much to understand about the right mix of the
SSM- and Transformer-based elements.

Ethics Statement

Due to the well-known flaws in modern sequence
models, e.g., hallucinations, many guard rails must
be in place when considering deploying them in
production. Our research focuses on improving the
efficiency of these models in existing downstream
tasks and datasets. However, further experimenta-
tion and analysis are needed when considering de-
ploying these compressed models in environments
where their output might affect people’s well-being.
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Supplementary Material

A Related Work

Transformers (Vaswani et al., 2017) and its vari-
ants are the primary building block of successful
deep learning architectures, e.g., Llama (Touvron
et al., 2023) and GPT (Brown et al., 2020), that
have revolutionized Natural Language Processing
(NLP) (Devlin et al., 2019; Gao et al., 2023), Com-
puter Vision (CV) (Parmar et al., 2018; Radford
et al., 2021; Zhang et al., 2023), and many other
domains. Due to the Transformer’s popularity, re-
searchers have proposed variants to improve their
computational and memory efficiency further and
tackle issues like their quadratic complexity in se-
quence length during training (Correia et al., 2019;
Beltagy et al., 2020; Dai et al., 2020; Choroman-
ski et al., 2021; Katharopoulos et al., 2020; Zheng
et al., 2022).

A parallel research effort investigates alterna-
tives to Transformers in the form of structured state
space models (SSMs) that can power the next gen-
eration of sequence models. The initial proposals
of structured SSMs were linear time-invariant, e.g.,
LSSL (Gu et al., 2024), S4 (Gu et al., 2022), H3
(Fu et al., 2023). Recent improvements to the state
space model formulation have resulted in the pro-
posal of time-varying selective SSMs, e.g., Mamba
(Gu and Dao, 2023; Dao and Gu, 2024).

To our knowledge, Mamba-Shedder is the first
study on pruning selective structured state space
models (Mamba) and their hybrids. On the other
hand, many works have proposed pruning tech-
niques for Transformer-based models (Hoefler
et al., 2021). Several of these works focus on
unstructured pruning (Sun et al., 2023; Xu et al.,
2024; Frantar et al., 2022), which can achieve
higher sparsity levels. However, it requires highly
optimized runtimes to realize the benefits of spar-
sity. Sophisticated solutions have been proposed
to fine-tune sparse models and recover any accu-
racy drop from the pruning stage (Muñoz et al.,
2024). Recently, training-free approaches have
been proposed for structured pruning of Transform-
ers. These approaches cannot achieve high spar-
sity levels as the unstructured pruning approaches.
However, they are very convenient because their
compressed models do not require specialized run-
times and exhibit beneficial inference acceleration.
In this line of research, LLMPruner (Ma et al.,
2023), ShortGPT (Men et al., 2024), BlockPruner
(Lagunas et al., 2021), SliceGPT (Ashkboos et al.,

Hyper-parameter Value

Pruning Stage:
Calibration Dataset tatsu-lab/alpaca
Importance Metric Perplexity (PPL)
Number of Calibration Samples 256
MLP Channel Group Size (Zamba2) 1024
Steps of MLP Channel Pruning (Zamba2) 20

Table 13: Hyper-parameters used in the experiments.

2024), and MultiPruner (Muñoz et al., 2025) have
demonstrated efficient methods for Transformer
pruning. BlockPruner improved over many previ-
ous approaches by proposing a global metric that
can be used to determine the importance of a se-
lected network structure. MultiPruner extended
this approach to pruning the width dimension, as
well. Mamba-Shedder builds on these works and
the rest of the extensive literature on structured
block pruning to explore opportunities for remov-
ing redundancies in models with Mamba blocks.

B Hyperparameters

Table 13 offers a detailed summary of the hyperpa-
rameters employed in our experiments, promoting
both reproducibility and clarity.
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