
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 3830–3850

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

CRMArena: Understanding the Capacity of LLM Agents to
Perform Professional CRM Tasks in Realistic Environments

Kung-Hsiang Huang Akshara Prabhakar Sidharth Dhawan Yixin Mao
Huan Wang Silvio Savarese Caiming Xiong Philippe Laban Chien-Sheng Wu

Salesforce AI Research
{kh.huang, akshara.prabhakar, sidharth, y.mao,

huan.wang, ssavarese, cxiong, wu.jason}@salesforce.com

Abstract

Customer Relationship Management (CRM)
systems are vital for modern enterprises,
providing a foundation for managing customer
interactions and data. Integrating AI agents
into CRM systems can automate routine
processes and enhance personalized service.
However, deploying and evaluating these
agents is challenging due to the lack of realistic
benchmarks that reflect the complexity of
real-world CRM tasks. To address this issue,
we introduce CRMArena, a novel benchmark
designed to evaluate AI agents on realistic tasks
grounded on professional work environments.
We worked with CRM experts to design nine
customer service tasks distributed across three
personas: service agent, analyst, and manager.
We synthesize a large-scale simulated organiza-
tion, populating 16 commonly-used industrial
objects (e.g., account, order, knowledge
article, case) with high interconnectivity,
and uploading it into a real Salesforce CRM
organization. UI and API access to the CRM
is provided to systems that attempt to complete
the tasks in CRMArena. Experimental results
reveal that state-of-the-art LLM agents succeed
in less than 58% of the tasks with ReAct
prompting, and less than 65% even when
provided manually-crafted function-calling
tools. Our findings highlight the need for
enhanced agent capabilities in function-calling
and rule-following to be deployed in real-world
work environment. CRMArena is an open
challenge to the community: systems that
can reliably complete tasks showcase direct
business value in a popular work environment.1

1 Introduction

Customer Relationship Management (CRM) sys-
tems are pivotal in modern enterprises, serving as
the backbone for managing interactions with cur-
rent and potential customers (Winer, 2001; Payne

1Our code and benchmark have been released at https:
//github.com/SalesforceAIResearch/CRMArena.

and Frow, 2005). The integration of intelligent
agents based on large language models (LLMs)
into CRM systems promises to automate routine
tasks, enhance operational efficiency, and revolu-
tionize customer experiences. However, evaluating
LLM agents in real-world professional environ-
ments remains a challenge, due to the absence of
robust benchmarks that faithfully capture the com-
plexity of tasks encountered in real-world CRM
environments, largely due to data privacy concerns
within enterprises.

Prior benchmarks on evaluating LLM agents on
work-related tasks, such as WorkArena (Drouin
et al., 2024), Workbench (Styles et al., 2024),
and Tau (Yao et al., 2024) tend to focus on basic
functionality, and fall short in two key areas.
First, the complexity of the objects (e.g., tables
in databases) and dependencies (e.g., foreign
keys) between these objects is often overly simple,
lacking the complexity of real-world scenarios.
Second, the tasks included in the benchmarks,
such as navigating web pages and filtering lists, are
typically too straightforward and do not represent
real-world work tasks.

To address these limitations, we introduce
CRMArena, a comprehensive benchmark tailored to
evaluate LLM agents on performing realistic CRM
tasks in real-world work environments. CRMArena
features a realistic sandbox environment modeled
after Salesforce’s schema, developed using an ex-
tensible data generation pipeline powered by LLMs
(top left of Figure 1). Specifically, the pipeline
tackles two key challenges: (1) Object connectivity:
reflecting the complex relationships between data
objects (e.g., ACCOUNT associated with CASE and
ORDER) by mirroring Salesforce’s Service Cloud
schema2. (2) Introducing latent variables to better
simulate realistic data dynamics, such as influenc-

2
https://architect.salesforce.com/diagrams/

data-models/service-cloud/service-cloud-overview

3830

https://github.com/SalesforceAIResearch/CRMArena
https://github.com/SalesforceAIResearch/CRMArena
https://architect.salesforce.com/diagrams/data-models/service-cloud/service-cloud-overview
https://architect.salesforce.com/diagrams/data-models/service-cloud/service-cloud-overview

CRM Data Generation

Large language model

Prompting

Format verifierContent verifierDeduplicator

Diversity & Quality Assurance

Salesforce Org Population

Salesforce Service
Cloud schema

Database Schema

Latent variables

During the last [TIME_PERIOD], which agent had ...

Seed query

CRMArena
9 Tasks

1,170 Instances

paraphrase

Query Instance Generation

Answer computation

Agent Benchmarking

3 months

Randomly sampled variable

During the last 3 months, which agent had ...

Filled-in query

Large Language Models Agentic Frameworks

Act

ReAct

Function Calling

Expert Study

Account Executive Technical SupportCustomer Support Agent

Domain Experts

005Ws000001xYl3IAE

Ground-truth answer

Generated
Database

Figure 1: An overview of the contribution of this work. We begin by generating realistic CRM data based on the
Salesforce Service Cloud schema, ensuring both quality and diversity through rigorous verification processes. This
verified data is then stored locally and uploaded to a Salesforce organization (Org). An expert study, conducted with
domain experts, validated the data’s realism. Using this Org as a sandbox environment, we create query instances
and benchmark various LLMs across different agentic frameworks.

ing case-filing behavior and modeling deviations
from company guidelines.

Moreover, CRMArena defines tasks based on
actual customer service personas. By consulting
CRM experts experienced with Salesforce, we
identified nine tasks representative of CRM use
cases (§2.1). These tasks span three personas: Ser-
vice Manager, Service Agent, and Service Analyst.
For example, Service Managers focus on agent per-
formance and strategic resource allocation. Table 1
compares CRMArena with previous datasets.
CRMArena seamlessly integrates with Sales-

force,3 enabling interaction via both the user inter-
face and API access (see bottom of Figure 1). This
integration facilitated an expert study with CRM
professionals to assess the quality of our synthe-
sized organization (§2.5). Study findings revealed
that 90% of domain experts found the test envi-
ronment to be Realistic or better, underscoring
the benchmark’s fidelity to real-world CRM sce-
narios. Upon verifying the realism of CRMArena,
we then assess various agentic systems through

3
https://www.salesforce.com/crm/

API access. We develop two sets of tools general-
purpose vs. task-specific tools, combine them with
three agentic frameworks and various LLMs. Find-
ings indicate that all LLM agents struggle to reli-
ably complete tasks when using general-purpose
tools, with top performing systems completing less
than 40% of the tasks. Incorporating manually de-
signed tools can enhance performance, with top
LLM agents solving up to 55% of the tasks. How-
ever, we discover that weaker LLMs often do not
benefit from manually-crafted tools due to their
weaker function calling capabilities.

In summary, our main contributions are:

• Introducing CRMArena, a realistic CRM agent
benchmark with tasks validated by domain
experts to evaluate LLM agents in real-world
business scenarios.

• Developing a data generation strategy anchored
in a real-world CRM schema, incorporating
latent variables, deduplication, and rigorous data
validation to ensure diversity and quality.

• Demonstrating through experiments that even
state-of-the-art LLM agents do not reliably

3831

https://www.salesforce.com/crm/

Datasets # Objects # Dependencies/ Object Real-world Environment Realistic Work Tasks Expert Validation

WorkBench (Styles et al., 2024) 5 0 ✗ ✗ ✗
Tau-Bench (Yao et al., 2024) 3 0.67 ✗ ✗ ✗
WorkArena (Drouin et al., 2024) 7 0.86 ✓ ✗ ✗

CRMArena (Ours) 16 1.31 ✓ ✓ ✓

Table 1: A comparison between our benchmark with prior datasets. CRMArena is the most complex benchmark
given the highest number of objects and object dependencies involved. Furthermore, CRMArena is the only expert-
validated benchmark that encompasses both a real-world environment and realistic work tasks.

complete CRMArena tasks, emphasizing the
benchmark’s value and challenges.

2 CRMArena

Motivated by tasks commonly addressed by CRM
personas: service manager, service agent, and ser-
vice analyst, CRMArena comprises nine tasks that
reflect real-world CRM scenarios. Verified by do-
main experts as common occurrences in CRM, an
overview of these tasks is presented in Figure 2. Be-
low, we provide detailed illustrations of each task.

2.1 Tasks
The tasks in CRMArena are designed to accurately
reflect the variety of challenges encountered in
real-world CRM environments. They span the
responsibilities of three key personas: the Service
Manager, who focuses on strategic resource
allocation; the Service Agent, who addresses
customer inquiries; and the Service Analyst, who
analyzes data trends and performance metrics to
improve service operations.

New Case Routing (NCR) The goal of this task
is to assign the best human agent to an incoming
case, aiming to optimize various performance met-
rics. The input consists of a case subject and de-
scription, and the output is the ID of the recom-
mended human agent. This task assesses LLM
agent’s ability to match cases to the most suitable
human agent based on case histories and the skills
and availability of these agents.
Handle Time Understanding (HTU) This task
involves identifying the agent with the short-
est/longest average handle time. Given the case
history data, the objective is to determine the hu-
man agent who handled the previous cases the
fastest/slowest.
Transfer Count Understanding (TCU) In this
task, the LLM agent must find out which human
agent transferred cases to others the least/most
given a period of case history. Both HTU and TCU
evaluate LLM agent’s capacity to analyze perfor-
mance based on predefined metrics accurately.

Name Entity Disambiguation (NED) The LLM
agent must disambiguate named entities related to
customer transactions. Here, we focus on disam-
biguating product names. Given the query shown
in Figure 2, the agent needs to identify the specific
order corresponding to running shoes bought by the
mentioned customer within the given time frame.
This tests the understanding of product names and
customer order histories.

Policy Violation Identification (PVI) In this
task, the LLM agent is given a case with interaction
between a customer and an agent and must deter-
mine if any company policies have been breached.
This involves analyzing the case details and com-
paring them against policy rules outlined in knowl-
edge articles to identify violations.

Knowledge Question Answering (KQA) The
goal here is for the LLM agent to answer a
specific question based on knowledge articles.
This evaluates the agent’s capacity to look for
accurate and relevant information from the CRM
knowledge repository.

Top Issue Identification (TII) This task requires
the LLM agent to identify the most reported issue
for a particular product. Given case history, the
agent must determine which issue has the highest
frequency. This tests the ability to analyze issue
reports for trend analysis.

Monthly Trend Analysis (MTA) The LLM
agent must determine which months have the high-
est number of cases for a given product and a given
time period. By analyzing the case history in a
given period of time, the LLM agent identifies the
month with the most cases, demonstrating its abil-
ity to recognize trends and patterns over time.

Best Region Identification (BRI) In this task,
the LLM agent’s objective is to identify the regions
where cases are closed the fastest. The agent must
analyze case closure times across various regions
and indicate which regions perform best.

3832

Service Manager

Which agent has the shortest handle
time last 6 months?

Handle Time Understanding

What is the best agent to assign to
for this case?

New Case Routing

Service Agent

Which agent transfer case to other
agent the least handle time over the

past 3 years?

Transfer Count Understanding

Show me the running shoes I
purchased last year.

Named Entity Disambiguation

[CASE_HISTORY] Did this agent
breach company policies?

Policy Violation Identif ication

How many days do I have to return
product X?

Knowledge Question Answering

Service Analyst

What was the most reported issue for
product X?

Top Issue Identif ication

What is the month that product Y
receives the most cases over the

past year?

Monthly Trend Analysis

In which states do we close cases
the fastest?

Best Region Identif ication

Figure 2: An overview of the nine distinct tasks introduced in CRMArena.

2.2 Sandbox Environment

Creating a sandbox environment for CRMArena
poses unique challenges, particularly related to
privacy concerns and the need for realistic data
without using real enterprise data. To this end, we
develop a scalable data generation pipeline capable
of producing diverse and realistic CRM data across
various domains. In our setup, we model 16 busi-
ness objects. The complete list of objects and their
descriptions can be found in Appendix D. There are
two major challenges for building such a pipeline:
object connectivity and hidden casual relationship.
In the following subsections, we illustrate how we
address these challenges.

Object Connectivity Real-world company data
is characterized by complex interconnections be-
tween objects like CASE and ACCOUNT. Our data
generation approach, based on Salesforce’s Service
Cloud schema, ensures high connectivity. For in-
stance, the CASE object is connected to objects like
ACCOUNT, CONTACT, and USER. Figure 7 dis-
plays these interdependencies, creating meaningful
data environments. Table 1 highlights our bench-
mark’s much higher object connectivity compared
to existing work.

Hidden Causal Relationship Replicating the im-
plicit causal relationships found in real-world data
presents a significant challenge. To address this,
we introduce latent variables that simulate various
underlying factors, creating data that mirrors the
subtle dependencies and patterns in authentic CRM
databases. These latent variables are crucial for
facilitating certain tasks and generating desired sce-
narios. As shown in the example in Figure 3, the
SHOPPINGHABIT variable allows us to more real-
istically simulate a customer’s purchasing patterns
based on time periods or holiday seasons. Similarly,

the SKILL latent variable for the USER (Agent) ob-
ject enables our simulations of EMAILMESSAGE

and LIVECHATTRANSCRIPT to include situations
where an agent is unable to resolve an issue and
must transfer it to another agent. Without this la-
tent variable, we would lack scenarios essential for
our Transfer Count Understanding task. The full
data generation flow is shown in Figure 8.

Quality and Diversity Assurance We generate
data in JSON format, with each JSON object rep-
resenting one entry of an object, to ensure higher
controllability (Huang et al., 2024; Laban et al.,
2024). Due to the large volume of objects (e.g., 500
PRODUCT entries paired with 40+ PRICEBOOK en-
tries resulting in over 20,000 PRICEBOOKENTRY

items) and the limited maximum output tokens of
LLMs, directly prompting LLMs to generate all
entries of an object is infeasible. To address this,
we employ mini-batch prompting with a batch size
of 10. However, this approach can lead to dupli-
cated or highly similar content across batches. To
mitigate this issue, we implement a two-phase de-
duplication strategy. First, for all objects, we in-
clude all previously generated entries in the prompt
during mini-batch prompting and instruct the LLM
not to generate the same content. After data gen-
eration, we use string exact matching to remove
duplicate entries for fields and objects crucial to
certain tasks (e.g., the email of USER).

Additionally, we subject the data to a rigorous
quality assurance process involving a dual-layer
verification. The format verifier ensures all data
entries conform to predefined schemas by checking
whether each entry in the generated mini-batch con-
tains all required fields for the object. Mini-batches
that fail this verification are discarded and regener-
ated. The content verifier checks for feasibility for

3833

ShoppingHabit

Contact Order

ProductCategory HolidaySales

(a)

Skill ResponseTime

User Case

EmailMessage LiveChatTranscript

(b)

Figure 3: Examples of latent variables (gray) influenc-
ing object (blue) generation. (a) The SHOPPINGHABIT
variable affects when and what type of products a cus-
tomer buys. (b) The SKILL variable determines if an
agent can handle a case or needs to transfer it.

tasks, focusing on objects crucial for specific tasks.
For example, in the Named Entity Disambiguation
task, we verify that the paraphrased ambiguous
product name (1) does not deviate too much from
its original name and (2) is not too similar to other
products the customer has purchased. In this sce-
nario, the content verifier provides an LLM with
a list of products the customer has purchased and
the paraphrased product name. If the LLM cor-
rectly identifies the product, we retain the entry;
otherwise, it is discarded.4

Upload to Org Once the data is generated, we
populate it into a clean Simple Demo Org (SDO)5

on Salesforce without latent variables. This exclu-
sion serves two purposes: it mirrors the typical
scenario where companies do not have access to
such information, thus providing a more realistic
testing environment, and it adds an extra layer of
challenge compared to testing on the generated
databases. Moreover, utilizing Salesforce’s SDO as
the sandbox eliminates the necessity and complex-
ity for local environment setup, which is required
in many related work (Styles et al., 2024; Drouin
et al., 2024; Yao et al., 2024; Zhou et al., 2024).
This approach not only facilitates testing but also
encourages scientific rigor and future research on
our benchmark. The details of the sandbox envi-
ronment can be found in Appendix D.

Environment Specification The input to our
data generation pipeline are company name, com-
pany description, database schema, and the scale
of the objects (e.g., number of cases and products).
We choose to create an Org for a fictional shoe
company due to the diverse product range and cus-
tomer service scenarios typical in the footwear in-
dustry. The scale of our generated data is designed
to reflect a mid-sized enterprise, with thousands

4We utilize gpt-4o as the LLM for data synthesis and
content verification for its cost efficiency.

5
https://partners.salesforce.com/s/education/

general/Salesforce_Orgs

of orders and hundreds of products and support
cases spanning a 4-year period. The total number
of entries per object is shown in Appendix D.
Extensibility Our data generation pipeline is de-
signed for flexibility and can be easily adapted to
other industries through changes in user-specified
input parameters. For instance, by specifying the
industry in the company description, our pipeline
can automatically generate realistic CRM data tai-
lored to that specific industry, such as finance. Fur-
thermore, to accommodate other use cases beyond
customer service, such as sales, users would only
need to provide the corresponding schema (e.g.,
Salesforce Sales Cloud schema for sales). This
flexibility ensures that the pipeline can be extended
to meet a wide range of business needs and LLM
agent benchmarking purposes.

Note that our current setup reflects a simplified
version of CRM scenarios, where each CASE is
linked to both an ISSUE and a PRODUCT. This sim-
plification helps manage the complexity of tasks
like Top Issue Identification, which would other-
wise require LLM agents to individually analyze
every case, making the tasks too infeasible for the
current state of LLMs. Our benchmark can be ad-
justed to create more complex settings by removing
such dependencies as LLM capabilities advance.

2.3 Query Instance Generation
Following the creation of the sandbox environ-
ment, we generate natural language query instances
and their ground-truth answers to benchmark our
tasks. For the Knowledge QA tasks, queries can be
naively constructed by prompting an LLM each
knowledge article to generate question answer
pairs (Laban et al., 2022; Huang et al., 2024). For
the remaining tasks, we construct query instance
through a four-step process: (1) seed query con-
struction, (2) ground-truth computation, (3) ID
mapping, and (4) query paraphrasing.

We manually create 14 seed queries in total with
placeholders for corresponding variables, such as
time period or product name. This facilitates the
development of functions that compute the ground
truth answers on the generated database by leverag-
ing the latent variables that are only visible there.
For example, an agent’s policy violation during
a live chat is verifiable only within the generated
database. Upon obtaining the answers, we map the
IDs in the generated database to their counterparts
in Salesforce Org, thereby establishing the ground
truths for our queries in the sandbox environment.

3834

https://partners.salesforce.com/s/education/general/Salesforce_Orgs
https://partners.salesforce.com/s/education/general/Salesforce_Orgs

Finally, to ensure diversity in the test queries, we
employ an LLM to paraphrase the seed queries,
enhancing the robustness and variety of our bench-
marking process. An example of this process is
shown in the top right of Figure 1.

Additionally, to simulate real-world scenarios
where some questions may be unanswerable, we
construct non-answerable queries. Inspired by the
non-answerable question schema outlined in (Brah-
man et al., 2024), we focus on False Presupposi-
tions queries, which are most relevant in CRM set-
tings. For example, a query may request the identifi-
cation of an agent who transfers the most cases dur-
ing a given period, despite no agents transferring
cases in that period. We include non-answerable
queries in five tasks: Transfer Time Understanding,
Handle Time Understanding, Top Issue Identifica-
tion, Named Entity Disambiguation, and Policy
Violation Identification. For these instances, we
expect models to produce “None” as outputs. In
summary, non-answerable queries account for 30%
of the total queries per corresponding task. Overall,
we produce 130 query instances per task, total-
ing 1,170 queries for CRMArena. Details and seed
queries are provided in Appendix B.

2.4 Tools: APIs and Functions
Salesforce Orgs naturally support a variety of
general-purpose APIs, such as the Apex API,
REST API, and Tooling API, which are designed to
cover a broad set of functionalities within the Sales-
force ecosystem. For the scope of our tasks and
their integration with a Python environment, we
choose to utilize SOQL and SOSL queries6. SOQL
queries are intended for obtaining a specific subset
of objects using exact matches or filtering criteria,
typically formatted as "SELECT Id ...", while
SOSL queries enable fuzzy searching in objects
like knowledge articles and product names, format-
ted as "FIND ...". These two types of queries
can theoretically support a wide range of query
instances, eliminating the necessity to manually
design actions for function calls.

In addition to general-purpose APIs, we also
develop task-specific tools in the form of Python
wrapper functions to facilitate the evaluation of
function-calling agents. These functions optimize
task performance by providing structured and log-
ical operations directly mapped to typical CRM

6
https://developer.salesforce.com/docs/atlas.

en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_
soql_sosl_intro.htm

0 20 40 60 80 100
Percentage

Org 10.0% 70.0% 20.0%

Org Rating

0 20 40 60 80 100
Percentage

Agent

Customer

Case

Product

Order

Knowledge

Email Messages

Chat Transcripts

20.0% 20.0% 30.0% 30.0%

10.0% 70.0% 20.0%

60.0% 40.0%

30.0% 40.0% 30.0%

20.0% 50.0% 30.0%

10.0% 30.0% 30.0% 30.0%

20.0% 50.0% 30.0%

20.0% 50.0% 30.0%

Object Rating

Very Unrealistic Unrealistic Neutral Realistic Very Realistic

Figure 4: Expert study results. The plots illustrate
domain experts’ realism ratings for the overall Org struc-
ture (top) and individual objects we generated (bottom).

tasks. We manually define 27 such Python wrapper
functions on top of SOQL and SOSL (complete
list in Appendix C) to streamline function calls and
target the key components needed for each task.
These task-specific functions are designed to maxi-
mize reusability across various tasks, minimizing
the need for task-specific customizations.

2.5 Expert Study
To ensure the realism and practicality of the sand-
box environment we developed, we conducted a
user study involving ten experts with diverse profes-
sional backgrounds who have experience working
on Salesforce Orgs daily. These experts were re-
cruited via the User Interviews platform7. Details
of the expert study can be found in Appendix F.

Each session of the expert study was structured
into three parts. First, we provided the experts with
an overview of our sandbox, highlighting key ob-
jects such as CASE and CONTACT, and allowing
them access through relevant URLs. This initial
orientation was designed to familiarize them with
the organization. Second, we assigned them five
query instances sampled from CRMArena, each rep-
resenting a different task, to complete. This task
completion phase was aimed at evaluating the prac-
tical application and operational coherence of the
sandbox in executing real-world CRM tasks. Fi-
nally, the experts rated the realism of our Org envi-
ronment compared to the real-world systems they
are accustomed to. They also provided detailed
rationales for their ratings, giving insights into how
our environment aligns with actual CRM scenarios.

The results of our expert study are presented
7
https://www.userinterviews.com/

3835

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://www.userinterviews.com/

in Figure 4. The findings are highly encouraging:
90% of the experts rated our populated Org
as either Realistic or Very Realistic. This posi-
tive assessment extended to the individual objects
within the Org, with more than 77% of experts giv-
ing them similarly high ratings for realism. These
results strongly suggest that our sandbox environ-
ment closely mirrors real-world CRM systems. We
provide the qualitative feedback and rationale from
the experts we interviewed in Table 14.

3 Benchmarking Experiments

3.1 Experimental Settings

Models We evaluate state-of-the-art proprietary
and open-source LLMs, including gpt models
(gpt-4o and gpt-3.5-turbo); claude models
(claude-3.5-sonnet and claude-3-sonnet),
and the llama models (llama-3.1-405b and
llama-3.1-70B (Dubey et al., 2024)).8 Addition-
ally, we tested inference-time scaling models for
enhanced reasoning capabilities, including o1 and
deepseek-r1 (Guo et al., 2025). With these mod-
els, we tested three common agentic frameworks:
Act, ReAct (Yao et al., 2023), and Function Calling
(FC). ReAct is a prompt-based method, with each
step characterized by a thought and action process,
while Act is ReAct without the thought component.
The details of these settings are described in the
following paragraphs and Appendix G.

Action Space Every task can be formulated
as a Partially Observable Markov Decision Pro-
cess (POMDP) (U ,S,A,O, T ,R) with instruc-
tion space U , state space S , action space A, obser-
vation space O, transition function T ∶ S×A → S ,
and reward function R ∶ S × A → {0, 1}. In the
Act and ReAct settings, the action space is rich,
i.e. A = {execute <query>, submit <result>}.
Given a user query u ∈ U in natural language, an
agent can execute <query> to issue a SOQL or
SOSL query to interact with the instance to receive
the observation ot ∈ O of executing the query in
the environment. This continues until the agent
chooses to submit and receives a binary reward
r = R(sT , submit) ∈ {0, 1}. In the Function
Calling setting, the agent interacts with the en-
vironment via API tools implemented as Python
functions. In this case the agent is not directly

8We observed the native function-calling mode to perform
poorly and hence report the prompt mode performance for
Llama 3.1 models.

exposed to the Salesforce environment and the ob-
ject dependencies are kept hidden. Internally the
APIs interact with the environment in a controlled
manner defined by us. An action a is of the form
tool_call{**kwargs}. The system prompts for
these three setups are described in Appendix E.

Observation Space Actions are executed on the
sandbox environment through the Simple Sales-
force package9. If an action succeeds, the envi-
ronment will return the queried data in the CRM
system; otherwise, an error message, such as incor-
rect function calling parameters, is returned.

Evaluation Metrics For the knowledge QA task,
since it is an open-ended text generation task, we
use F1 scores. For the remaining tasks, we only
need to compare the predicted and ground truth
object IDs; therefore, an exact match is used.

3.2 Results

The main results are summarized in Table 2. We
made the following observations. First, real-
world CRM tasks remain challenging for top
LLM agents. Using the ReAct framework, the
best model (o1) only achieves an overall score of
57.7%. Even when equipped with human-crafted
functions, the overall performance is still only
64.3%. These findings highlight the challenges
of our CRMArena. Second, stronger and weaker
LLMs show opposite trend on different agentic
frameworks. In particular, models like gpt-4o
and claude-3.5-sonnet score higher in the FC
setting, while their weaker counterparts performs
worse when equipped with function calling capa-
bilities. This indicate that human-defined functions
may not always help LLM agents, as weaker mod-
els may not be able to properly utilize the functions,
resulting in lower performance. An intriguing ex-
ception is deepseek-r1. Though deepseek-r1 is
recognized as a strong reasoning model, its tool-
calling capabilities seem lacking, primarily due to
its (1) inadequate adherence to user instructions and
(2) poor ability to adjust previous responses based
on external feedback. function calling might be
unnecessary with a sufficiently strong reasoning
model, as evidenced by o1 in the ReAct setting
outperforming all other models in the FC setting.
Nevertheless, integrating human-crafted functions
can still offer performance benefits to strong reason-
ing models like o1. Finally, open-source models

9
https://github.com/simple-salesforce/

simple-salesforce

3836

https://github.com/simple-salesforce/simple-salesforce
https://github.com/simple-salesforce/simple-salesforce

Model NCR HTU TCU NED PVI KQA TII MTA BRI ALL

Act

gpt-4o 43.1 10.0 17.7 30.8 28.5 29.3 68.5 29.2 7.7 29.4
gpt-4o-mini 0.8 38.5 23.8 9.2 0.0 43.1 26.9 3.8 3.8 16.7
claude-3.5-sonnet 78.5 24.6 15.4 51.5 28.5 44.7 45.4 20.8 26.9 37.4
claude-3-sonnet 9.2 26.9 24.6 30.8 23.8 16.6 16.2 1.5 0.0 16.6
llama3.1-405b 46.2 17.7 17.7 13.9 30.0 47.0 15.4 5.4 6.9 22.2
llama3.1-70b 28.5 20.0 24.6 6.2 30.0 47.9 8.5 0.0 1.5 18.6
llama3.1-8b 0.0 3.1 0.0 6.2 4.6 4.5 2.3 0.0 1.5 2.5

ReAct

gpt-4o 70.0 39.2 22.3 30.8 35.4 50.2 64.6 20.9 10.8 38.2
gpt-4o-mini 40.8 36.9 25.4 31.5 24.6 52.8 30.0 6.2 6.2 28.3
claude-3.5-sonnet 62.9 20.0 11.5 52.3 30.0 45.0 43.9 20.8 21.5 34.3
claude-3-sonnet 7.7 24.6 26.9 29.2 28.5 16.0 22.3 0.8 0.0 17.3
llama3.1-405b 81.5 22.3 15.4 33.9 34.6 55.3 34.6 13.9 13.1 33.8
llama3.1-70b 48.5 20.0 13.9 33.1 37.7 48.7 23.9 13.9 10.8 27.8
llama3.1-8b 0.0 0.0 1.5 6.2 15.4 4.0 0.0 0.0 0.8 3.1
o1 70.0 51.5 54.6 34.6 30.0 58.8 81.5 75.4 63.1 57.7
deepseek-r1 53.8 23.1 30.1 40.8 34.6 61.2 46.9 3.1 22.3 35.1

Function Calling

gpt-4o 60.0 47.7 81.5 46.2 39.2 30.4 97.7 27.7 59.2 54.4
gpt-4o-mini 0.8 10.8 10.8 17.7 13.8 39.7 60.0 0.0 21.5 19.5
claude-3.5-sonnet 4.6 33.1 82.3 52.3 30.0 40.5 69.2 26.9 36.9 41.8
claude-3-sonnet 0.8 1.5 30.0 25.4 41.5 23.2 12.3 1.5 0.0 15.1
llama3.1-405b (prompt) 16.2 31.5 64.6 50.0 26.9 47.6 95.4 86.9 42.3 51.3
llama3.1-70b (prompt) 1.5 23.1 44.6 53.8 37.4 42.4 93.8 43.8 29.2 41.1
llama3.1-8b (prompt) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
o1 (prompt) 60.8 68.5 66.9 60.0 24.6 39.2 99.2 84.6 74.8 64.3
deepseek-r1 (prompt) 0.8 0.8 2.3 0.8 24.6 34.6 0.0 13.8 3.1 9.0

Table 2: Overall performance (%) of various LLMs under different agentic frameworks on CRMArena. The evaluation
metric is F1 score for the knowledge question answering (KQA) task and exact match for all other tasks. ALL
represents the average performance across all tasks.

Model # Completion Tokens # Turns Cost ($)

ReAct
gpt-4o 48,568.73 5.4 0.182
claude-3.5-sonnet 70,814.75 6.9 0.228
llama3.1-405b 35,647.29 7.3 0.125

FC gpt-4o 78,305.38 6.8 0.305
claude-3.5-sonnet 105,248.43 8.1 0.371

Table 3: The cost of top-performing agents averaged
across queries and tasks.

are catching up the proprietary LLMs. Across
three settings, we see the llama models score simi-
lar, and sometimes higher, than the gpt and claude
models. This indicate a closing gap between the
open and closed-source models. From Figure 6,
we observe how llama models tend to show higher
scope for error recovery based on execution feed-
back than the closed-source models.

3.3 Discussions

What is the most cost-effective solution? Ex-
cluding the two reasoning models, in two-third
of the agentic frameworks, gpt-4o performs the
best. The efficiency of gpt-4o is also reflected in
Table 3, which shows that gpt-4o has the lowest
cost per instance and requires the least number of
turns to complete a query. Therefore, the most
cost-effective solution is using gpt-4o under the

function calling setting.

How does the type of function affect model per-
formance? In Table 2, we observe that equipping
LLM agents with function calling capabilities does
not necessary results in increased performance. To
better understand this phenomenon, we categorizes
the functions based on two dimensions: functional-
ity and functional dependency. Functionality refers
to whether the function solely queries the CRM sys-
tem via SOSL or SOQL (QUERY) or if it includes
additional operations such as mathematical calcu-
lations or aggregations (CALCULATION). Func-
tional dependency, on the other hand, classifies
functions into those that rely on the outputs of other
functions (DEPENDENT)and those that are indepen-
dent (INDEPENDENT). This is crucial because our
benchmark requires LLM agents to perform a se-
quence of calls, with each call dependent on the
output of the previous ones (Qin et al., 2023; Lu
et al., 2024). Table 15 shows the list of functions
and tasks we tested.

We sampled four function-task pairs from each
category to evaluate the performance of gpt-4o,
gpt-4o-mini, and claude-3-sonnet when spe-
cific functions were removed from the toolset, sub-

3837

Functionality Dependency gpt-4o gpt-4o-mini claude-3-sonnet

QUERY INDEPENDENT -6.6 -6.9 2.3
QUERY DEPENDENT -2.9 3.0 7.5
CALCULATION INDEPENDENT -9.4 4.6 -3.3
CALCULATION DEPENDENT -26.7 4.0 3.3

Table 4: Performance difference (%) when removing
each category of functions. A lower number indicates
more useful functions to the LLM agents.

stituting two generic functions, execute_soql and
execute_sosl, to execute arbitrary queries. The
findings, summarized in Table 4, indicate that while
all function types enhance gpt-4o’s performance,
they do not have the same effect on gpt-4o-mini
or claude-3-sonnet. This suggests that stronger
models are better at utilizing human-crafted func-
tions effectively, whereas weaker models might
struggle. Interestingly, CALCULATION functions,
hypothesized to benefit LLMs weak in mathemati-
cal operations, may actually decrease performance
in weaker models due to their limited function call-
ing capabilities.

How consistent are the agents across multiple
trials? Consistency is important for LLM agents,
especially when deployed in work environments.
We evaluate the consistency of LLM agents
through multiple trials of prompting. Here, we
adapt the pass^k metric proposed by Yao et al.
(2024). pass^k computes the probability that all
k independent and identically distributed task at-
tempts are successful, averaged over all tasks. We
run ten trials across all tasks in CRMArena except
for KQA, as the reward for KQA is not binary. The
results are shown in Figure 5, we found that, sur-
prisingly, pass^k for all three agentic frameworks
we tested drop at the nearly same rate as k increases.
This indicates that the consistency for these three
frameworks are similar and that the top-performing
LLM cannot reliably solve the tasks with any of
the three agentic frameworks we evaluated.

4 Related Work

Agent Benchmark Several benchmarks have
been developed to evaluate LLM-based agents (Yao
et al., 2022; Liu et al., 2024; Jimenez et al., 2024).
Recently, major efforts have focused specifically
on web agents, which challenges LLMs to navi-
gate and perform actions on websites. These web-
sites are often about everyday scenarios, such as e-
commerce, and social discussion form (Deng et al.,
2023; He et al., 2024; Zhou et al., 2024; Lù et al.,
2024; Yoran et al., 2024). Another line of work
focus on evaluating the safety of deploying agents

2 4 6 8 10
Number of Trials (k)

10

20

30

40

50

60

Pa
ss

^k

Act ReAct Function Calling

Figure 5: The consistency of gpt-4o using different
agentic frameworks.

(Ruan et al., 2024; Yuan et al., 2024; Yin et al.,
2024; Qiu et al., 2025).

Work-oriented Datasets A few studies have
developed datasets specifically for work-oriented
tasks. The CRM Benchmark (Salesforce, 2024)
aims to assess LLMs’ text generation and summa-
rization abilities in business applications. Work-
Bench (Styles et al., 2024) consists of five
databases designed to evaluate LLM agents’ per-
formance in simple work tasks, such as sending
emails, creating calendar invites, and counting traf-
fic sources for a website. τ -Bench (Yao et al.,
2024) creates tasks that require interactions with
users to obtain relevant information and authoriza-
tion, achieved by using LLMs to simulate users.
WorkArena (Drouin et al., 2024) builds a web-
based work environment that allows for testing
agents with visual capabilities.

5 Conclusion

This work introduces CRMArena, a novel bench-
mark for evaluating LLM agents in performing
realistic CRM tasks within professional work
environments. By incorporating expert-validated
tasks and modeling intricate data interconnections
typical of CRM systems, CRMArena offers a
comprehensive and realistic challenge for LLM
agents. Our experiments demonstrate that even
state-of-the-art LLMs struggle with these realistic
tasks, achieving limited success rates even with
function-calling capabilities. These findings high-
light the gap between current LLM capabilities
and the requirements of real-world CRM scenarios.
CRMArena serves as a foundational step towards
more sophisticated evaluations of LLM agents in
realistic work environments.

3838

6 Ethical Considerations

This work introduces a benchmark for evaluating
LLM agents within the context of CRM systems.
While the data used is synthetically generated, it is
modeled after real-world CRM data structures and
tasks. Thus, it is important to consider the ethical
implications of this work, particularly regarding
data biases and privacy concerns.

Data Bias Although synthetic, the data is gener-
ated by models trained on real-world data, which
may contain inherent biases. These biases, related
to customer demographics, purchase behavior, or
case resolution, could be inadvertently reflected in
the generated data, potentially perpetuating stereo-
types or discriminatory practices. Thankfully, after
conducting a thorough manual inspection of the
generated data to identify potential biases, we did
not observe such patterns.

Privacy Concerns While our benchmark does
not use any real customer data and therefore does
not have access to personal information, the struc-
ture and nature of CRM data itself can raise privacy
concerns. The tasks in our benchmark involve ac-
cessing sensitive customer information, albeit syn-
thetic. To ensure responsible handling of this data,
even though synthetic, we performed a thorough
manual inspection to verify the absence of any per-
sonally identifiable information and to confirm that
the data cannot be used to infer private information
about individuals. This meticulous review process
reinforces our commitment to ethical data practices
and mitigates potential privacy risks.

7 Limitations

The CRMArena comprises nine tasks that thoroughly
assess the ability of LLM agents to perform du-
ties typically associated with three primary roles
within a realistic environment: Service Manager,
Service Agent, and Service Analyst. Nonetheless,
this study does not encompass other common per-
sonas in CRM, such as sales representatives. We
aim to incorporate these additional roles in our fu-
ture studies.

References
Faeze Brahman, Sachin Kumar, Vidhisha Balachan-

dran, Pradeep Dasigi, Valentina Pyatkin, Abhilasha
Ravichander, Sarah Wiegreffe, Nouha Dziri, Khyathi
Chandu, Jack Hessel, et al. 2024. The art of saying

no: Contextual noncompliance in language models.
arXiv preprint arXiv:2407.12043.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023. Mind2web: Towards a generalist agent for
the web. In Thirty-seventh Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track.

Alexandre Drouin, Maxime Gasse, Massimo Caccia,
Issam H. Laradji, Manuel Del Verme, Tom Marty,
David Vazquez, Nicolas Chapados, and Alexandre
Lacoste. 2024. Workarena: How capable are web
agents at solving common knowledge work tasks?
In Forty-first International Conference on Machine
Learning.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu,
Yong Dai, Hongming Zhang, Zhenzhong Lan, and
Dong Yu. 2024. WebVoyager: Building an end-to-
end web agent with large multimodal models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 6864–6890, Bangkok, Thailand.
Association for Computational Linguistics.

Kung-Hsiang Huang, Philippe Laban, Alexander Fab-
bri, Prafulla Kumar Choubey, Shafiq Joty, Caiming
Xiong, and Chien-Sheng Wu. 2024. Embrace diver-
gence for richer insights: A multi-document summa-
rization benchmark and a case study on summarizing
diverse information from news articles. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), pages 570–593, Mexico City, Mexico.
Association for Computational Linguistics.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. SWE-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

Philippe Laban, Alexander R Fabbri, Caiming Xiong,
and Chien-Sheng Wu. 2024. Summary of a haystack:
A challenge to long-context llms and rag systems. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

3839

https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=BRfqYrikdo
https://openreview.net/forum?id=BRfqYrikdo
https://doi.org/10.18653/v1/2024.acl-long.371
https://doi.org/10.18653/v1/2024.acl-long.371
https://doi.org/10.18653/v1/2024.naacl-long.32
https://doi.org/10.18653/v1/2024.naacl-long.32
https://doi.org/10.18653/v1/2024.naacl-long.32
https://doi.org/10.18653/v1/2024.naacl-long.32
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66

Philippe Laban, Chien-Sheng Wu, Lidiya Mu-
rakhovs’ ka, Xiang’Anthony’ Chen, and Caiming
Xiong. 2022. Discord questions: A computational ap-
proach to diversity analysis in news coverage. arXiv
preprint arXiv:2211.05007.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng
Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie
Huang, Yuxiao Dong, and Jie Tang. 2024. Agent-
bench: Evaluating LLMs as agents. In The Twelfth
International Conference on Learning Representa-
tions.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Au-
mayer, Feng Nan, Felix Bai, Shuang Ma, Shen Ma,
Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming
Pang. 2024. Toolsandbox: A stateful, conversational,
interactive evaluation benchmark for llm tool use
capabilities. Preprint, arXiv:2408.04682.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. 2024.
Weblinx: Real-world website navigation with multi-
turn dialogue. arXiv preprint arXiv:2402.05930.

Adrian Payne and Pennie Frow. 2005. A strategic frame-
work for customer relationship management. Journal
of marketing, 69(4):167–176.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2023. Toolllm: Fa-
cilitating large language models to master 16000+
real-world apis. Preprint, arXiv:2307.16789.

Haoyi Qiu, Alexander R. Fabbri, Divyansh Agarwal,
Kung-Hsiang Huang, Sarah Tan, Nanyun Peng, and
Chien-Sheng Wu. 2025. Evaluating cultural and so-
cial awareness of llm web agents. In Findings of the
Association for Computational Linguistics: NAACL
2025.

Yangjun Ruan, Honghua Dong, Andrew Wang, Sil-
viu Pitis, Yongchao Zhou, Jimmy Ba, Yann Dubois,
Chris J Maddison, and Tatsunori Hashimoto. 2024.
Identifying the risks of lm agents with an lm-
emulated sandbox. In The Twelfth International Con-
ference on Learning Representations.

Salesforce. 2024. Salesforce announces the world’s first
llm benchmark for crm.

Olly Styles, Sam Miller, Patricio Cerda-Mardini, Tanaya
Guha, Victor Sanchez, and Bertie Vidgen. 2024.
Workbench: a benchmark dataset for agents in a re-
alistic workplace setting. In First Conference on
Language Modeling.

Russell S Winer. 2001. A framework for customer re-
lationship management. California management re-
view, 43(4):89–105.

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2024. Intercode: Standardizing and
benchmarking interactive coding with execution feed-
back. Advances in Neural Information Processing
Systems, 36.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
In Advances in Neural Information Processing Sys-
tems, volume 35, pages 20744–20757. Curran Asso-
ciates, Inc.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik
Narasimhan. 2024. Tau-bench: A benchmark for
tool-agent-user interaction in real-world domains.
arXiv preprint arXiv:2406.12045.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Da Yin, Haoyi Qiu, Kung-Hsiang Huang, Kai-Wei
Chang, and Nanyun Peng. 2024. Safeworld: Geo-
diverse safety alignment. In Thirty-eighth Confer-
ence on Neural Information Processing Systems.

Ori Yoran, Samuel Joseph Amouyal, Chaitanya
Malaviya, Ben Bogin, Ofir Press, and Jonathan
Berant. 2024. Assistantbench: Can web agents
solve realistic and time-consuming tasks? Preprint,
arXiv:2407.15711.

Tongxin Yuan, Zhiwei He, Lingzhong Dong, Yiming
Wang, Ruijie Zhao, Tian Xia, Lizhen Xu, Binglin
Zhou, Fangqi Li, Zhuosheng Zhang, et al. 2024. R-
judge: Benchmarking safety risk awareness for llm
agents. arXiv preprint arXiv:2401.10019.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-
ham Neubig. 2024. Webarena: A realistic web en-
vironment for building autonomous agents. In The
Twelfth International Conference on Learning Repre-
sentations.

3840

https://openreview.net/forum?id=zAdUB0aCTQ
https://openreview.net/forum?id=zAdUB0aCTQ
https://arxiv.org/abs/2408.04682
https://arxiv.org/abs/2408.04682
https://arxiv.org/abs/2408.04682
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://www.salesforce.com/uk/news/stories/crm-benchmark/
https://www.salesforce.com/uk/news/stories/crm-benchmark/
https://openreview.net/forum?id=4HNAwZFDcH
https://openreview.net/forum?id=4HNAwZFDcH
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://arxiv.org/abs/2407.15711
https://arxiv.org/abs/2407.15711
https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx

Model HTU TCU NED TII PVI

Act

gpt-4o 15.4 48.7 94.9 87.2 92.3
gpt-4o-mini 94.9 79.5 30.8 79.5 74.4
claude-3.5-sonnet 25.6 28.2 82.1 33.3 84.6
claude-3-sonnet 84.6 79.5 100.0 51.3 74.4
llama3.1-405b 56.4 51.3 46.2 38.5 0.0
llama3.1-70b 46.2 76.9 20.5 20.5 100.0

ReAct

gpt-4o 64.1 48.7 100.0 84.6 74.4
gpt-4o-mini 97.4 82.1 97.4 61.5 71.8
claude-3.5-sonnet 12.8 7.7 87.2 30.8 82.1
claude-3-sonnet 79.5 84.6 94.9 69.2 94.9
llama3.1-405b 53.8 38.5 97.4 41.0 64.1
llama3.1-70b 64.1 41.0 97.4 17.9 17.9

Function Calling

gpt-4o 59.0 84.6 74.4 100.0 35.9
gpt-4o-mini 15.4 7.7 0.0 0.0 0.0
claude-3.5-sonnet 52.6 74.4 100.0 100.0 100.0
claude-3-sonnet 2.6 15.4 59.0 38.5 56.4

Table 5: Performance (%) of various LLMs under different agentic frameworks on CRMArena for the non-answerable
queries.

A Further Discussions

Reward vs number of turns In Figure 6, we
show the distribution of the number of turns it takes
for agents to successfully complete an user query.

Non-answerable query analysis In Table 5, we
present the performance of each LLM agents. Over-
all, LLM agents are good at handling such queries,
compared to standard queries. Interestingly, a trend
shown in Table 2 is observed in this experiment as
well: function calling only benefit stronger LLMs,
while weaker LLMs like claude-3-sonnet and
gpt-4o performs worse when equipped with func-
tion calling capabilities.

B Query Generation Details

Table 6 show the complete list of seed queries used
in our experiments. More examples of how the final
queries are constructed can be found in Table 9.

C Action Space Details

In the text-based agent settings (i.e. ReAct and
Act), the actions include (1) executing SOSL
queries, (2) executing SOQL queries, and (3) sub-
mitting the answer. In the function-calling settings,
the actions are a list of carefully designed functions,
shown in Table 7.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of Interaction Turns

0

20

40

60

80

100

Nu
m

be
r o

f S
uc

ce
ss

fu
l Q

ue
rie

s

claude-3-5-sonnet-20240620
gpt-4o-2024-08-06
gpt-4o-mini-2024-07-18
llama-3.1-405b-instruct
llama3.1-70b-instruct

Figure 6: Distribution of the number of turns it takes for
agents to reach the goal under ReAct.

D Sandbox Environment Details

We show the objects and dependencies in Fig-
ure 7. These objects, except for Knowledge__kav
are densely connected, reflecting the complexity
of real-world work environment. The total number
of entry per objects is shown in Table 8. Our data
generation flow is shown in Figure 8.

D.1 Object Details
Below, we describe the details of each object.

• ProductCategory: Represents the category
that products are organized in.

3841

1. In [YEAR] [MONTH/QUARTER/SEASON], identify the agent who managed more than [NCASES] cases and had the [EXTREMA] handle time.
2. In the past [TIMEPERIOD], find the agent with the [EXTREMA] handle time among those who managed more than [NCASES] cases.
3. During the last [TIMEPERIOD], which agent had the [EXTREMA] average handle time for those handling over [NCASES] cases?
4. In [YEAR] [MONTH/QUARTER/SEASON], identify the agent who managed more than [NCASES] cases and had the [EXTREMA] transfer counts.
5. In the past [TIMEPERIOD], find the agent with the [EXTREMA] transfer counts among those who managed more than [NCASES] cases.
6. During the last [TIMEPERIOD], which agent had the [EXTREMA] average transfer counts for those handling over [NCASES] cases?
7. Which knowledge article did the agent violate policy?
8. Today is [TODAY]. Is there any month in which the cases we received for [PRODUCT] is much more than other months over the past [TIMEPERIOD]?
9. Today is [TODAY]. For [PRODUCT], what is the most common issue in the last [TIMEPERIOD].
10. Today is [TODAY]. In [YEAR] [MONTH/QUARTER/SEASON], what is the most common issue for [PRODUCT].
11. Today is [TODAY]. In which states do we close cases the fastest in the last [TIMEPERIOD]?
12. Today is [TODAY]. In [YEAR] [MONTH/QUARTER/SEASON], which states do we close cases the fastest.
13. What is the best agent to assign to for this case?
14. Today is [TODAY]. Show me the [PRODUCT] that I ordered [PERIOD] ago.

Table 6: The full set of seed queries used for query generation.
Functions Description

get_agents_with_max_cases(subset_cases) Returns a list of agent IDs with the maximum number of cases from the given subset of cases.
get_agents_with_min_cases(subset_cases) Returns a list of agent IDs with the minimum number of cases from the given subset of cases.
calculate_average_handle_time(cases) Calculates the average handle time for each agent based on a list of cases.
get_start_date(end_date, period, interval_count) Calculates the start date based on the end date, period, and interval count.
get_period(period_name, year) Calculates the start and end date based on the period name and year.
get_agent_handled_cases_by_period(start_date, end_date) Retrieves the number of cases handled by each agent within a specified time period.
get_qualified_agent_ids_by_case_count(agent_handled_cases, n_cases) Filters agent IDs based on the number of cases they have handled.
get_cases(start_date, end_date, agent_ids, case_ids, Retrieves cases based on various filtering criteria.
order_item_ids, issue_ids, statuses)

get_non_transferred_case_ids(start_date, end_date) Retrieves the IDs of cases that were not transferred between agents within a specified date range.
get_agent_transferred_cases_by_period(start_date, end_date, Retrieves the number of cases transferred between agents within a specified date range.
qualified_agent_ids)

get_shipping_state(cases) Adds shipping state information to the given cases.
calculate_region_average_closure_times(cases) Calculates the average closure times for cases grouped by region (shipping state).
get_order_item_ids_by_product(product_id) Retrieves the order item IDs associated with a given product.
get_issue_counts(start_date, end_date, order_item_ids) Retrieves the issue counts for a product within a given time period.
find_id_with_max_value(values_by_id) Identifies the ID with the maximum value from a dictionary.
find_id_with_min_value(values_by_id) Identifies the ID with the minimum value from a dictionary.
get_account_id_by_contact_id(contact_id) Retrieves the Account ID associated with a given Contact ID.
get_purchase_history(account_id, purchase_date, related_product_ids) Retrieves the purchase history for a specific account, date, and set of products.
get_month_to_case_count(cases) Counts the number of cases for each month from a list of cases.
search_knowledge_articles(search_term) Searches for knowledge articles based on a given search term.
search_products(search_term) Searches for products based on a given search term.
get_issues() Retrieves a list of issue records.
get_email_messages_by_case_id(case_id) Retrieves the email exchanges for a given case.
get_livechat_transcript_by_case_id(case_id) Retrieves the live chat transcript for a given case.
submit(content) Returns the response content.

Table 7: The complete list of functions for the function calling settings.

Object Number of Entries

USER 100
CONTACT 196
PRODUCTCATEGORY 12
PRODUCT 500
ORDERITEM 71,00
PRICEBOOK 44
PRICEBOOKENTRY 22,000
CASE 977
ORDER 2,071
EMAILMESSAGE 3,234
LIVECHATTRANSCRIPT 387
KNOWLEDGE 45

Table 8: The number of entries per object.

• Product2: Represents a product that your
company sells.

• ProductCategoryProduct: Holds the rela-
tion between product and product category to
assign products to a category.

• Pricebook2: Represents a price book that con-
tains the list of products.

• Pricebook Entry: Represents a product en-
try (an association between a Pricebook2 and
Product2) in a price book.

• Order: Represents an order associated with a
contract or an account.

• Order Item: Represents an order product that

the company sells.

• Knowledge: Documentation or information
articles that are accessible to users or cus-
tomers.

• Contact: Refers to an individual or party re-
lated to an account.

• Issue: Represents a type of problem raised by
a customer.

• Account: An entity, company, or individual
your company does business with. In B2C
setting, an account represents a customer.

• User (agent): System user, often representing
customer support agents.

• Case: A record that describes a customer in-
quiry or issue.

• CaseHistory: A log of the changes and up-
dates made to a case over time.

• EmailMessage: Email communication re-
lated to cases or customer inquiries between
an agent and a customer.

• LiveChatTranscript: A conversation from
a live chat session between an agent and a
customer.

3842

User (Agent)

ID PK

FirstName String

LastName String

Email String

Phone String

Username String

Account (Customer)

ID PK

FirstName String

LastName String

PersonEmail String

Phone String

ShippingCity String

ShippingState String

Contact

ID PK

FirstName String

LastName String

Email String

AccountID FK

OwnerID FK

Case

ID PK

Priority String

Description String

Status String

OrderItemID__c FK

CreatedDate DateTime

ClosedDate DateTime

IssueID__c FK

AccountID FK

ContactID FK

OwnerID FK

Knowledge__kav

ID PK

Title String

FAQ_Answer__c String

Summary String

URLName String

Product2

ID PK

Name String

Description String

IsActive String

External_ID__c FKProductCategoryProduct

ID PK

ProductCategory String

ProductCategoryID FK

ProductID FK

ProductCategory

ID PK

Name String

CatalogID String

Pricebook2

ID PK

Name String

Description String

IsActive String

ValidFrom DateTime

ValidTo DateTime

PriceBookEntry

ID PK

Pricebook2ID FK

Product2ID FK

UnitPrice Integer

Order

ID PK

AccountID FK

Status String

EffectiveDate DateTime

Pricebook2ID FK

OrderItem

ID PK

OrderID FK

Product2ID FK

Quantity String

UnitPrice Float

PricebookEntryID FK

EmailMessage

ID PK

Subject String

TextBody String

ParentID FK

FromAddress String

MessageDate DateTime

LiveChatTranscript

ID PK

CaseID FK

AccountID FK

OwnderID FK

Body String

EndTime DateTime

ContactID FK

LiveChatVisitorID Type

Issue__c

ID PK

Name String

CaseHistory__c

ID PK

OldValue String

NewValue String

Field String

CreatedDate DateTime

Figure 7: The objects and their dependencies in our sandbox environment.

Handle Time Understand

Seed query: In [YEAR] [MONTH/QUARTER/SEASON], identify the agent who managed more than
[NCASES] cases and had the [EXTREMA] handle time.

Filled-in query: In 2021 February, identify the agent who managed more than 2 cases and had the highest
handle time.

Paraphrased query: In February 2021, determine the agent with the longest handle time who managed
more than 2 cases.

Top Issue Identification

Seed query: In [YEAR] [MONTH/QUARTER/SEASON], what is the most common issue for [PROD-
UCT]?

Filled-in Query: In 2023 Q2, what is the most common issue for Flex Yoga Mat?

Paraphrased query: What was the most frequent issue with Flex Yoga Mat in the second quarter of 2021?

Table 9: Examples of the query generation process.

E Prompts

In this section, we display the prompts used in our
experiments. Table 10, Table 11, Table 12 show the
system prompt for the Act, ReAct, and Function
Calling settings, respectively.

F Expert Study Details

As detailed in Table 13, we recruited a diverse
range of domain experts for our study. The par-
ticipants varied in age, gender, and professional
backgrounds.

F.1 Recruitment Criteria

Using the User Interviews platform, we set the job
filter such that the participants of our survey must
have a job title of one of the following:

• Account Manager

• Technical Support Engineer

• Support Engineer

• Technical Support Specialist

• Technical Support Manager

• Technical Support Technician

3843

ProductCategoryCompany Name

Company Description

Object Scale

Holiday Sales

Order

Pricebook

PricebookEntry

Product2

Customer

OrderItem

OrderItemIssue

Solution

Issue__c

IssueSolution

Case

ComplaintHabit

ShoppingHabit

Skill

User (Agent)

ResponseTime

LiveChatTranscript

EmailMessage

Generated Data

Inputs

Knowledge

Figure 8: Data generation overview. The generation of each object is conditioned on the previously generated
objects with arrows pointing to it. Blue boxes represent standard object, while gray boxes denote latent variables
that are not uploaded to the Salesforce Org.

• Technical Support Agent

• Technical Support Expert

• Account Manager/Agent

• Account Manager/Analyst

• Customer Service Advisor/Customer Service
Associate

• Customer Service Associate

• Customer Service Representative

In addition, we have created a screener survey.
The most important question in the survey is “How
often do you use Salesforce CRM?”. The valid
candidate must select the option “Several times a
day” to be able to participate in our study.

F.2 The study
We use Google Form to conduct expert studies due
to its ease to use. The study is broken down into
three parts:

• Part 1: Familiarizing the Org [5 minutes].
This is for a broad overview of some of the
objects in this Org.

• Part 2: Task Completion [45 minutes]. At this
stage, they are be given tasks regarding cus-
tomer service. They should try to accomplish

as many as possible within the 45-minute time
frame.

• Part 3: Quality Rating [10 minutes]. Based
on their experience with the first two parts
of this study, rate the quality of the Org and
objects.

Below, we illustrate how each part is executed.

Part 1 In this part, we provide interviewee the
log in credentials to our created Org (sandbox envi-
ronment). Once they log in, they are instructed to
spend 5 minutes to read the objects in the Org that
are relevant to the tasks they will be completing
later. The instructions and interface for this part
are shown in Figure 9.

Part 2 After familiarizing with our created Org,
participants are then asked to complete the tasks.
They are required to complete 5 query instances
from CRMArena. An example of the query is shown
in Figure 10.

Part 3 Upon completing the first two parts of
the expert study, in the final stage, participants are
asked to rate the realism of our Orgs and data. In
addition to providing ratings, they also need to
provide rationales for their ratings. An example
question is shown in Figure 11.

Below, we provide the rating and descriptions
for participants to choose from.

3844

You are an expert in Salesforce and you have access to a Salesforce instance.
Instructions

- You will be provided a question, the system description, and relevant task context.
- Interact with the Salesforce instance to build Salesforce Object Query Language
(SOQL) or Salesforce Object Search Language (SOSL) queries as appropriate, to help you answer the question.
- Salesforce Object Search Language (SOSL) can be used to construct text-based search queries
against the search index.
- Your generation should always be an Action command and NOTHING ELSE.
Generate only one Action command.
- DO NOT generate ANY system observation, you will receive this based on your Action command.
- If no record is found matching the requirements mentioned, just return ’None’.
Here is a description of how to use these commands:
Action

- Can be ’execute’ or ’submit’.
- execute, to execute SOQL/SOSL that will return the
observation from running the query on the Salesforce instance.
- submit, to return the final answer of the task to the user.
- Format: <execute> a valid SOQL/SOSL query </execute> or <submit> response to user </submit>
Guidelines

- Execute SOQL/SOSL queries to understand the Salesforce instance
that will help you find the answer to the question.
- When you are confident about the answer, submit it.
- Always end with a submit action containing ONLY the answer, NO full sentences or any explanation.
Example 1
Question: What is the total number of opportunities?
Output:
<execute> SELECT COUNT() FROM Opportunity </execute>
(If the observation from the Salesforce instance 100, your next step can be)

<submit> 100 </submit> NOT <submit> The total number of opportunities is 100 </submit>
Example 2

[... Hide details for space...]

Salesforce instance description
The objects available in the Salesforce instance are:
User, Account, Contact, Case, Knowledge__kav, ProductCategory, Product2, ...
The fields available for the objects along with their descriptions and dependencies are:
User
- FirstName: First name of the agent
- LastName: Last name of the agent
- Email: Email address of the agent
[... Hide details for space...]

Additional task context
Handle/Transfer Times Policies
[... Hide details for space...]

Table 10: The system prompt used in the Act setting.

Org ratings:

• Very Unrealistic: The organization structure
and setup felt highly artificial, with no resem-
blance to typical Salesforce setups.

• Unrealistic: The organization had some fa-
miliar elements, but significant parts were not
convincingly structured.

• Neutral: The organization felt somewhat real-
istic, with a mix of plausible and implausible
elements.

• Realistic: The organization largely mirrored

a real-world Salesforce setup, with minor in-
consistencies.

• Very Realistic: The organization felt entirely
authentic, closely resembling a real-world
Salesforce configuration.

Object ratings:

• I don’t know/I’m not familiar with the object.

• Very Unrealistic: The objects seemed funda-
mentally flawed or invented with little regard
for typical Salesforce objects.

3845

You are an expert in Salesforce and you have access to a Salesforce instance.
Instructions

- You will be provided a question, the system description, and relevant task context.
- Think step by step and interact with the Salesforce instance to build Salesforce Object Query Language
(SOQL) or Salesforce Object Search Language (SOSL) queries as appropriate, to help you answer the question.
- Salesforce Object Search Language (SOSL) can be used to construct text-based search queries
against the search index.
- Your generation should always be a Thought followed by an Action command and NOTHING ELSE.
Generate only one Thought and one Action command.
- DO NOT generate ANY system observation, you will receive this based on your Action command.
- If no record is found matching the requirements mentioned, just return ’None’.
Here is a description of how to use these commands:
Thought
- A single line of reasoning to process the context and inform the decision making.
Do not include any extra lines.
- Format: <thought> your thought </thought>
Action

- Can be ’execute’ or ’submit’.
- execute, to execute SOQL/SOSL that will return the
observation from running the query on the Salesforce instance.
- submit, to return the final answer of the task to the user.
- Format: <execute> a valid SOQL/SOSL query </execute> or <submit> response to user </submit>
Guidelines

- Always start with a Thought and then proceed with an Action.
- Generate only one Thought and one Action command at a time.
- Execute SOQL/SOSL queries to understand the Salesforce instance
that will help you find the answer to the question.
- When you are confident about the answer, submit it.
- Always end with a submit action containing ONLY the answer, NO full sentences or any explanation.
Example 1
Question: What is the total number of opportunities?
Output:
<thought> I need to find the total number of opportunities in the system. </thought>
<execute> SELECT COUNT() FROM Opportunity </execute>
(If the observation from the Salesforce instance 100, your next step can be)

<thought> I have found the total number of opportunities. </thought>
<submit> 100 </submit> NOT <submit> The total number of opportunities is 100 </submit>
Example 2

[... Hide details for space...]

Salesforce instance description
The objects available in the Salesforce instance are:
User, Account, Contact, Case, Knowledge__kav, ProductCategory, Product2, ...
The fields available for the objects along with their descriptions and dependencies are:
User
- FirstName: First name of the agent
- LastName: Last name of the agent
- Email: Email address of the agent
[... Hide details for space...]

Additional task context
Handle/Transfer Times Policies
[... Hide details for space...]

Table 11: The system prompt used in the ReAct setting.

• Unrealistic: The objects had recognizable fea-
tures but were generally not representative of
actual Salesforce objects.

• Neutral: The objects were moderately realis-
tic, combining elements of both realistic and
unrealistic features.

• Realistic: The objects were mostly realistic
and aligned well with typical objects used in
Salesforce, with minor issues.

• Very Realistic: The objects felt entirely
authentic and perfectly matched real-world
Salesforce objects.

3846

Instructions
- You are an expert in Salesforce and you have access to a Salesforce instance.
- You will be provided a question, the system description, and relevant task context.
- Interact with the Salesforce instance using the tools provided to help you answer the question.
- You should ALWAYS make ONLY ONE tool call at a time.
If you want to submit your final answer, use the ’submit’ tool.
If not, you should call some other tool. But ALWAYS make a tool call.
- Always end by calling ’submit’ tool containing ONLY the answer, NO full sentence or any explanation.
- If your answer is empty that is there are no records found matching the requirements mentioned,
just return ’None’ to the ’submit’ tool.
Additional task context
Case Routing Policy
The case routing policy determines the best agent to assign the given new case based on the following criteria
- Issue Expertise: The agent who has closed the most cases
associated with the issue most similar to the given case.
- Product Expertise: If there is a tie in issue expertise, the best agent is the one who has solved the most cases
associated with the product most relevant to the given case.
- Workload: If there is still a tie, the best agent is the one that has least cases with Status not ’Closed’.
Domain Details
Quarters of the Year
- Q1: January 1 to March 31 (both inclusive).
- Q2: April 1 to June 30 (both inclusive).
- Q3: July 1 to September 30 (both inclusive).
- Q4: October 1 to December 31 (both inclusive).
Seasons
- Winter: December 1 to February 28/29 (both inclusive).
- Spring: March 1 to May 31 (both inclusive).
- Summer: June 1 to August 31 (both inclusive).
- Autumn/Fall: September 1 to November 30 (both inclusive).
Time Periods
- Past 2 quarters: This refers to any timeframe spanning two quarters back from a specified ‘end_date‘.
That translates to a six-month period retrospectively from the ‘end_date‘.
- Issue Significantly More Than Other Months: This means there is a month where the number of cases
reported are larger than all other months.

Table 12: The system prompt used in the Function Calling setting.

Profession Gender Age

Customer Service Associate Female 23
Customer Service Associate Female 25
Customer Service Agent Male 39
Customer Service Associate Male 29
Customer Service Advisor Male 49
Customer Service Manager Male 39
Account Executive Female 25
Technical Support Female 38
Customer Service Advisor Female 25
Customer Service Agent Female 35

Table 13: The background of the participants in our
expert study.

F.3 Qualitative Feedback

In Table 14, we present qualitative feedback and
rationale from the experts we interviewed, as they
determine whether our Organization and Object are
perceived as Realistic or Unrealistic.

G Implementation Details

We use the OpenAI API for the gpt models; Ama-
zon Bedrock API for the claude models; and the
Together API for the llama3.1 models. Below we

provide the version of the model we tested:

• o1: o1-2024-12-17

• gpt-4o: gpt-4o-2024-08-06

• gpt-3.5-turbo: gpt-3.5-turbo-0125

• deepseek-r1: deepseek-ai/DeepSeek-R1

• claude-3.5-sonnet: anthropic.claude-3-5-
sonnet-20240620-v1:0

• claude-3-sonnet: anthropic.claude-3-
sonnet-20240229-v1:0

• llama3.1-405b: meta-llama/Meta-Llama-
3.1-405B-Instruct-Turbo

• llama3.1-70b: meta-llama/Meta-Llama-3.1-
70B-Instruct-Turbo

• llama3.1-8b: meta-llama/Meta-Llama-3.1-
8B-Instruct-Turbo

3847

Figure 9: The instructions and interface of Part 1 of our expert study.

We choose the ReAct setting over Plan based
approaches that decompose the task into more man-
ageable steps as prior works showed that in SQL
based database querying tasks, planning strategy
is less flexible to altering its plan by adjusting to
execution feedback (Yang et al., 2024). We set the
max actions for each instance to 20, temperature
to 0, and top_p to 1 for all experiments.

3848

Figure 10: An example query instance for the part 2 of expert study.

Figure 11: An example question for the part 3 of our expert study.

3849

Rated Instance Rating Rationale

Org Realistic

1. This is really similar to what a normal Salesforce instance looks like (i.e.
the one we use at our company). However, there are a few missing details in
some of the pages like when you click into a contact or account.
2. It feels like my usual Salesforce Dashboard for my current job, I could
more or less get a feel for the general navigation of the simulation.
3. This is what salesforce looks like for me to find case numbers and informa-
tion about each of the cases that were indentified by customers.
4. Knowing nothing about the org I was able to fumble my way around and
find what I needed to.

Unrealistic 1. The lack of customer data/information filling out the rest of the fields.
There is no semblance of a system that’s been “worked in” and everything
feels very empty and confusing with nothing to fill the interface.

Object Realistic

1. Case management, customer interactions, knowledge base, and the tran-
scripts were what made it realistic.
2. I think the email correspondence wasn’t perfect, but it did feel rather
authentic.
3. I feel like the cases and customers issue are real life issue so I feel like
they are realistic.
4. They have similar details and structures as a typical salesforce deployment
(at least in my company). A lot of those elements have the same fields that
are in their expected places (like Details, additional context on the right side)

Unrealistic 1. The unrealistic ones are finding the agent information. This is unrealistic
because I should be able to filter and find each of the agent transfers and
handle time with the customers.

Table 14: Example rationales provided by domain experts for their ratings of our sandbox environment’s realism.

Functionality Dependency Function Task

QUERY INDEPENDENT

get_order_item_ids_by_product(product_id) MTA
get_order_item_ids_by_product(product_id) NCR

search_products(search_term) NED
get_account_id_by_contact_id(contact_id) NED

QUERY DEPENDENT

get_non_transferred_case_ids(start_date, end_date) HTU
get_cases(start_date, end_date, agent_ids, case_ids, NCR
get_cases(start_date, end_date, agent_ids, case_ids, BRI
get_cases(start_date, end_date, agent_ids, case_ids, HTU

CALCULATION INDEPENDENT

get_start_date(end_date, period, interval_count) TCU
get_start_date(end_date, period, interval_count) BRI
get_start_date(end_date, period, interval_count) TII

get_period(period_name, year) TCU

CALCULATION DEPENDENT

calculate_region_average_closure_times(cases) BRI
get_qualified_agent_ids_by_case_count(agent_handled_cases, n_cases) TCU

calculate_average_handle_time(cases) HTU
get_agents_with_max_cases(subset_cases) NCR

Table 15: The list of functions and tasks tested in Table 4.

3850

