
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 3391–3409

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

When2Call: When (not) to Call Tools

Hayley Ross*†

Harvard University
hayleyross@g.harvard.edu

Ameya Sunil Mahabaleshwarkar∗
NVIDIA

ameyasunilm@nvidia.com

Yoshi Suhara
NVIDIA

ysuhara@nvidia.com

Abstract

Leveraging external tools is a key feature for
modern Language Models (LMs) to expand
their capabilities and integrate them into ex-
isting systems. However, existing benchmarks
primarily focus on the accuracy of tool calling—
whether the correct tool is called with the cor-
rect parameters—and less on evaluating when
LMs should (not) call tools. We develop a new
benchmark, When2Call, which evaluates tool-
calling decision-making: when to generate a
tool call, when to ask follow-up questions and
when to admit the question can’t be answered
with the tools provided. We find that state-of-
the-art tool-calling LMs show significant room
for improvement on When2Call, indicating the
importance of this benchmark. We also develop
a training set for When2Call and leverage the
multiple-choice nature of the benchmark to de-
velop a preference optimization training regime,
which shows considerably more improvement
than traditional fine-tuning. We release the
benchmark and training data as well as eval-
uation scripts.1

1 Introduction

Tool-calling is an increasingly important capability
for modern LMs as it allows them to connect with
existing APIs or tools to use real-time information,
retrieve information from databases, or carry out ac-
tions by integrating with existing systems. This is
especially important given recent advances in small
language models which can be deployed on devices,
as smaller models do not store as much knowledge
as larger models, and thus benefit greatly from ac-
cess to external tools. In a typical setup, the model
is provided with a list of tool or API specifications
in the system prompt. The model can access these
tools by generating one or more tool calls as code

*Equal contribution.
†Work done while at NVIDIA.
1https://github.com/nvidia/When2Call

Figure 1: Example of the type of question in When2Call.
Tool-calling LMs should avoid hallucinating tools or
information when given questions they cannot answer.

(usually JSON) which conforms to the API specifi-
cation. Any tool calls are intercepted and executed,
and the result is returned to the model. In the sec-
ond step, the model generates a text response to the
user based on the tool call result, similar to RAG.

Notably, the tools provided in the system prompt
may differ between train and inference time. If
a model is not deployed with a tool that answers
the question (even if it has seen such tools during
training), such as a customer service LM being
asked about tomorrow’s weather, the LM should
say that it cannot answer the question, not halluci-
nate a previously seen weather tool (or hallucinate
tomorrow’s weather). More subtly, an LM with
access only to a database of student records might
be asked to retrieve their grades instead, as shown
in Figure 1. A further opportunity for hallucination
is that the appropriate tool may be available, but
the user may not provide enough information to
fill its particular required parameters. In this case,
we expect the LM to ask a follow-up question, not
hallucinate the missing parameters.

The primary focus of most current benchmarks,
however, including the current standard, BFCL

3391

https://github.com/nvidia/When2Call

Feature When2Call BFCL ToolSandbox ToolBeHonest Older

Tool(s) provided, one correct ✓ ✓ ✓ ✓ ✓
Tool(s) provided but none correct ✓ ✓ ✓ ✓
No tools provided ✓
Question missing information ✓ ✓ ✓
Tool call validation ✓* ~✓* ✓*
Quantifies answer hallucinations ✓
Quantifies tool hallucinations ✓ ~✓†

Quantifies parameter hallucinations ✓
Quantifies follow-up questions ✓

Table 1: Key characteristics of When2Call compared to BFCL (Yan et al., 2024), ToolSandbox (Lu et al., 2024)
and ToolBeHonest (Zhang et al., 2024b), three recent benchmarks. “Older” summarizes older benchmarks (see
Section 6). * Tool calls are validated implicitly by system state in ToolSandbox, in the multi-turn category of BFCL,
and some older benchmarks. † ToolBeHonest measures tool hallucination implicitly by solvability judgments.

(Yan et al., 2024), is the case where the correct
tool is provided and the user provides enough in-
formation to call this tool. The benchmark then
evaluates whether the correct tool was called with
the correct parameters. While BFCL’s Irrelevance
category and ToolSandbox (Lu et al., 2024) con-
sider the cases when the correct tool is not provided
or not enough information is provided, they only
check if the model generates a tool call or not. Nei-
ther evaluates what the model does instead.

We create a new benchmark, When2Call, which
fills these gaps by explicitly asking the model to
choose in a multiple-choice format between four
types of behavior: generating a tool call, asking for
more information, saying it’s unable to answer, or
answering the question directly (which amounts to
hallucinating the answer, since our questions can-
not be answered without tools). We summarize the
key features of When2Call in Table 1. We provide
both a classical offline multiple-choice evaluation
using log-probabilities as well as an LLM-as-judge
alternative for closed-source models.

We find that modern tool-calling LMs of all sizes
have much room for improvement on When2Call,
which is unsurprising given that most publicly avail-
able training datasets contain many examples of
calling tools when tools are provided in the sys-
tem prompt but a considerably lesser amount of
examples of not calling tools when tools are pro-
vided. To address this, we develop a matching
training dataset for When2Call. We leverage its
multiple-choice format to implement supervised
fine-tuning (SFT) as well as reward-aware prefer-
ence optimization (RPO) training (Nvidia et al.,
2024) and show that RPO training in particular

substantially increases performance on When2Call
benchmark and on BFCL Irrelevance while still
maintaining competitive scores on the portion of
BFCL where a tool should be called.

2 When2Call

2.1 Tool-calling as Multiple-Choice

We formulate When2Call using a multiple-choice
format among behavior types, similar to commonly
used LM benchmarks such as MMLU (Hendrycks
et al., 2020). Specifically, When2Call consists of
questions with the following four types of answers,
as illustrated in Figure 1:

(a) Direct text answer (no tool call)
(b) Tool call
(c) Follow-up question
(d) Unable to answer

We ensure that all questions in When2Call re-
quire tool use to answer (by requiring real-time
information, referring to a database, or similar),
such that the direct answer (a) is always a halluci-
nation. This allows us to evaluate whether an LM
prefers to hallucinate an answer rather than admit
that it can’t answer the question if no appropriate
tool is provided, similar to refusal evaluation (Wen
et al., 2024).

Using multiple-choice lets us focus on the type
of behavior of the model—direct (text) answer, tool
call, follow-up question, or “unable to answer”—
rather than having to parse the tool call or classify
a generated text answer. We explore classifying
generated answers as an alternative in Section 4.
Multiple-choice approaches have the major ben-

3392

efit of being reproducible and being fast to eval-
uate. While LLM-as-judge is becoming increas-
ingly common for benchmarks (e.g., MT-Bench;
Zheng et al., 2024b) so that they can evaluate freely
generated responses, scores can change depend-
ing on the judge used, and costs can scale quickly.
Further, parsing and evaluating the tool call is al-
ready covered by benchmarks like BFCL. We in-
tend When2Call to be complementary to BFCL.

2.2 Data Generation
We synthetically generate the multiple-choice op-
tions and new questions for When2Call by build-
ing off the Simple and Multiple Function cat-
egories of BFCL v2 Live (Mao et al., 2024) for
the When2Call benchmark and the Simple and
Multiple Function categories of APIGen for the
When2Call training set. We choose the Live (v2)
subset of BFCL because it is generated by humans,
rather than synthetic, and is permissively licensed.
This allows us to inherit the correct tool calls for
each question, as well as the diversity of each of
these datasets across a wide variety of subject do-
mains (see Section 2.3).

We synthetically generate the new data for
When2Call in two main steps, using Mixtral 8x22B
(Mistral AI Team, 2024) for all classification and
data generation. Step 1 filters BFCL Live or API-
Gen Simple and Multiple Function by classify-
ing whether the questions require tool-calling to be
answered (such as requiring real-time information
or access to a database), or whether they could in
principle be answered by a sufficiently knowledge-
able pretrained model. We prompt Mixtral 8x22B
for this classification; the full prompt is shown in
Table 9 in Appendix C.

For each filtered BFCL or APIGen question,
Step 2 then generates three questions in When2Call:
one where the question is unchanged and the tool
call from BFCL/APIGen is the correct answer, and
two others where the question is modified such that
either a follow-up question requesting more infor-
mation or “unable to answer” is the correct answer.
For each, we also generate the other three (incor-
rect) multiple-choice answers. Notably, generating
these other answers for the training dataset as well
as the benchmark allows us to implement prefer-
ence optimization training (see Section 3.3.2). The
exact prompts are provided in Appendix C.

Prompts were developed iteratively, with man-
ual quality checking after each iteration. We found
that breaking the problem down into steps wherever

possible (as described below for follow-up ques-
tions) yielded the highest quality results, alongside
providing a detailed list of mistakes to avoid. We
discuss the quality issues associated with synthetic
data generation and the steps we took to avoid them
in more detail in Appendix A.

To generate questions that the model should not
be able to answer, we provide Mixtral 8x22B with
the tool specification, including the tool’s text de-
scription, and ask it for a related question that can-
not be answered by this tool. We ask for a related
question in order to generate close and thus more
difficult mismatches between the question and pro-
vided tool(s) than typical for the BFCL Irrelevance
category – see Section 2.4.

To generate questions that require a follow-up
question, we parse the tool specification corre-
sponding to the correct tool call and select one
required parameter to drop. We then instruct Mix-
tral 8x22B to rewrite the user question to omit the
information corresponding to that parameter and
to write a follow-up question asking for that pa-
rameter. By breaking down the problem, we can
avoid the generation model needing to parse the
tool specification at all and greatly improve the
quality and consistency of the generated data. We
apply this only to tool specifications that have at
least two required parameters in order to avoid
“empty” questions (such as “What is the current
stock price?”, where the only required parameter,
the stock ticker, has been omitted), resulting in
slightly fewer questions of this type.

2.3 Statistics
Table 2 shows the proportions of answer types
in each split of When2Call. As discussed in
more detail in Section 3.3.2, we include a higher
proportion of questions where tool-calling is cor-
rect in the RPO training dataset to avoid over-
conservativeness. Table 2 also shows the propor-
tions of single vs. multiple tool specifications. As
in BFCL, we expect the questions with multiple
tools to be more difficult since the LM has to deter-
mine whether any of the tools answer the question.
Our ratios mirror the ratios between the BFCL Live
and APIGen Simple and Multiple Function cat-
egories, with the addition of the zero tool category.
For questions where a follow-up question is the
correct answer, we filter out samples from BFCL
Live where the correct tool does not have any re-
quired parameters, resulting in fewer samples for
this category. This ensures that the synthetically

3393

Correct answer Tools provided Tool requirement
Dataset split (a) (b) (c) (d) 0 1 2+ real-time database other

When2Call Test 0 1,295 1,062 1,295 258 712 2,682 2,178 534 940
LLM-as-judge subset 0 100 100 100 18 61 221 169 46 85

When2Call Train 0 2,000 2,000 2,000 617 2,934 2,449 2,856 1,211 1,933
Preference training variant 0 4,500 3,000 3,000 918 6,860 2,722 5,092 2,096 3,312

Table 2: Statistics of When2Call by correct answer type and the number of tool specifications provided. Answer
key: (a) direct answer, (b) tool call, (c) follow-up question, and (d) unable to answer.

modified questions for the “follow-up” category
always have a required parameter that is missing.

Finally, Table 2 reports the type of question, aris-
ing from the tool requirement classification in Sec-
tion 2.2: in what way does this question require
a tool? Real-time information forms the largest
single category; other categories include database
access and specialized tools (such as population
modeling), as per the classification in Table 9. We
inherit the diverse set of domains from BFCL Live
and APIGen (database access, food ordering, real-
time weather, etc.).

2.4 Difficulty of Tool Mismatches
In addition to analyzing how LMs should re-
spond to question/tool mismatches in more detail,
When2Call also distinguishes itself from BFCL
Irrelevance by how difficult many of the ques-
tion/tool mismatches are, by design. The provided
tools in BFCL Irrelevance are often largely unre-
lated to the question, making it easy for the LM to
tell that they do not match (Lu et al., 2024). This
reflects some real-world scenarios, such as asking a
customer service LM about the weather, but not oth-
ers: to distinguish the student records from grades
in Figure 1, the LM needs to make a much more
subtle judgment. We address this in When2Call
firstly by constructing the questions with the target
“unable to answer” to be in the same semantic do-
main as the tool. Secondly, questions targeting the
follow-up question answer are necessarily a close
match to the tool, differing only by the absence of
a required parameter.

3 Multiple-Choice Evaluation

We implement the multiple-choice evaluation us-
ing log-probability over the four possible answers
to determine the model’s choice, rather than hav-
ing the model generate the choice number (e.g.,
“Answer: (a)”). For tool-calling, the meta-task of
selecting among answers may be unnatural for the
models, and presentation details such as answer

order (Pezeshkpour and Hruschka, 2024; Zheng
et al., 2024a; Gupta et al., 2024) and the number
of answers (Rodriguez, 2005) can artificially af-
fect accuracy. Log-probabilities allow us to by-
pass all of this. We report accuracy, (byte-)length-
normalized accuracy2 and F1 metrics. We imple-
ment our multiple-choice evaluation as a task in
LM Evaluation Harness (Gao et al., 2024), includ-
ing the preprocessing necessary for evaluating all
models in Table 3 (see Section 3.1), which can
easily be extended to other models.

3.1 Model-Specific Prompt Templates
Since every tool-calling model has their own pre-
ferred tool-calling syntax (Carrigan, 2024), we pro-
vide the tool calls as JSON by default but imple-
ment custom preprocessing for each model, which
provides the system prompt that the model expects
for tool-calling and formats the tool specifications
as well as the tool call option (b) the way the model
expects. This avoids artifacts in the answer log-
probabilities from unexpected tool syntax. An ex-
ample is given in Appendix B. A similar approach
is implemented for BFCL, which has custom model
handlers that parse each model’s tool call output
into the format the evaluation code expects, allow-
ing each model to respond in its preferred way. For
models that do not specify a preferred tool-calling
prompt, such as Llama 3.1 8B Instruct, we pro-
vide a minimal system prompt describing tool use,
shown in Appendix B, and provide the tool call
answer in JSON.

3.2 Results for Community Models
We evaluate a range of community models of vary-
ing sizes with tool-calling capabilities: Llama 3.1
(Dubey et al., 2024), Llama 3.2 (Meta, 2024),
Qwen 2.5 (Qwen Team, 2024) and xLAM (Zhang
et al., 2024a). Scores are shown in Table 3. We
report results on the v2 Live portion of BFCL to
most closely match our dataset, which is generated

2
https://blog.eleuther.ai/multiple-choice-normalization/

3394

https://blog.eleuther.ai/multiple-choice-normalization/

Model When2Call BFCL AST BFCL Irr.
F1 ↑ Acc-Norm ↑ Tool Hall% ↓ Acc ↑ Acc ↑

Llama 3.2 3B Instruct 17.9 46.5% 52% 37.6% 46.6%
Llama 3.1 8B Instruct 16.6 44.2% 67% 51.6% 40.0%
Llama 3.1 70B Instruct 37.8 46.1% 57% 68.3% 36.5%
Qwen 2.5 3B Instruct 29.8 48.9% 23% 54.8% 53.1%
Qwen 2.5 7B Instruct 32.0 50.9% 21% 64.1% 51.4%
Qwen 2.5 72B Instruct 32.8 49.2% 23% 69.3% 61.1%
xLAM 7B FC-R 31.5 42.7% 24% 58.3% 79.8%
xLAM 8x22B R 34.3 48.3% 9.0% 74.7% 75.2%

MNM 4B SFT (baseline) 29.7 47.8% 16% 57.9% 41.1%
MNM 4B When2Call-SFT 48.1 67.8% 4.3% 51.7% 67.5%
MNM 4B When2Call-RPO 51.0 69.1% 1.9% 54.0% 77.4%
MNM 8B SFT (baseline) 31.9 49.1% 19% 62.2% 36.3%
MNM 8B When2Call-SFT 49.4 68.2% 7.0% 57.5% 61.0%
MNM 8B When2Call-RPO 52.4 70.0% 1.2% 62.5% 78.1%

Table 3: Results on When2Call, BFCL v2 Live AST and BFCL v2 Irrelevance for community tool-calling models,
and for our Mistral-NeMo-Minitron models with and without training on When2Call using SFT and RPO. For
When2Call, we show Macro F1, length-normed accuracy, and the tool hallucination rate when no tools are provided
(lower is better ↓; see Appendix E.1 for calculation). Models not trained on When2Call show much room for
improvement; RPO training yields the greatest benefits. The best and second-best scores are bolded and underlined.

from BFCL v2 Live. We find that performance is
far from the ceiling on When2Call and does not
necessarily improve with model size (e.g., Qwen
2.5 3B/7B/72B). More research is needed to under-
stand this interesting result, which may depend on
the training data of each of the model sizes.

In particular, most community models are unwill-
ing to admit they cannot answer the question. This
results in low accuracy on the “unable to answer”
category (see confusion matrices in Appendix E.2),
as well as higher tool hallucination rates. We define
tool hallucination to occur when the model chooses
the tool call answer even though no tool specifi-
cations were provided for that question – in other
words, the model hallucinated the specification for
the tool it chose in its answer (see Appendix E.1 for
more details). Unwanted tool calls also occur for
many of the questions where a follow-up question
would be correct, suggesting an over-eagerness to
call tools. This likely reflects that these models are
too specialized for the case when tool-calling is
the correct choice and do not see enough (or pos-
sibly any) training data involving follow-up ques-
tions or admitting inability to answer, as judged
by the distributions of current publicly available
training datasets (Liu et al., 2024; interstellarninja
and Teknium, 2024; Glaive AI, 2024).

3.3 Training

We fine-tune and align Mistral-NeMo-Minitron 4B
Base and 8B Base3 models (Sreenivas et al., 2024)
using NeMo-Aligner (Shen et al., 2024). Training
was carried out on eight NVIDIA 8xH100 GPU
nodes, taking approximately 3-4 hours per model.
We show results for three cases: (1) supervised fine-
tuning (SFT) on a blend of existing tool-calling
training datasets, (2) SFT on a blend including the
When2Call training dataset, and (3) SFT on exist-
ing tool-calling datasets followed by RPO (Nvidia
et al., 2024) on When2Call, described below. In
each case, the LM is trained on a combination of
generic datasets along with the tool-calling specific
datasets to maintain overall capabilities like instruc-
tion following, chat ability, question-answering,
knowledge-intensive, tasks, etc.

3.3.1 Supervised Fine-Tuning
For tool-calling SFT, we use publicly available
datasets (Liu et al., 2024; Glaive AI, 2024) and
sample them to maintain a balance between exam-
ples containing single tool-call generation, multiple
tool-calls generation and generating answers from
tool responses in a multi-turn conversation. As seen
from the results in Table 3, models trained on these

3
https://huggingface.co/nvidia/Mistral-NeMo-Minitron-8B-Base

3395

https://huggingface.co/nvidia/Mistral-NeMo-Minitron-8B-Base

datasets have significant room for improvement on
the When2Call benchmark.

We apply the pipeline described in 2.2 to the
APIGen dataset to create fine-tuning data by us-
ing the correct answer choice as the target. This
data is combined with the tool-calling SFT data
described above to create the final When2Call-SFT
data blend. A 2:1 ratio of examples involving tool-
calling and examples involving "cannot answer"
or "request for information" gave the best overall
results in our experiments. A constant learning rate
of 5e-6 for the 4B model and 4e-6 for the 8B model
was used with no warm-up.

3.3.2 Preference Optimization
We also leverage the multiple-choice format of
When2Call to create a preference dataset for RPO,
where we provide the correct answer as the cho-
sen response, and one incorrect answer as the re-
jected response. For each type of correct answer,
we uniformly sample the incorrect answer out of
direct answer, tool call, follow-up question, and
“unable to answer” categories. To prevent regres-
sion on tool-calling ability, we also add a subset
where each chosen response is a tool-call, and the
rejected response is created by either (1) removing
required parameters from the correct tool-call, (2)
modifying the tool-call arguments to have incorrect
values, or (3) dropping a subset of tool-calls when
the correct response contains more than one. The
final dataset is created by combining these two sub-
sets in a 1:1 ratio. We find that a low KL-penalty
value (0.05) gives the best results on tool-calling
benchmarks with this dataset. We use a constant
learning rate of 9e-7 and 7e-7 for the 4B and 8B
models, respectively, with a warm-up of 10 steps.

3.4 Results from SFT & RPO

Table 3 shows the results of SFT and RPO on
When2Call compared to a baseline tool-calling SFT
blend. Firstly, we find that a targeted blend of exist-
ing tool-calling datasets that maintains diversity in
tools and balances tool-calling examples with ex-
amples that do not involve tool-calling goes a long
way, with our baseline SFT models already out-
performing community models both in their size
class and beyond on When2Call, as well as per-
forming competitively on BFCL. Secondly, we find
that while adding When2Call to the SFT blend im-
proves results on When2Call, it results in a 6.2%
drop on BFCL Live AST for the 4B model, causing
the model to become a little too conservative. This

is ameliorated by doing RPO training instead of
SFT, which yields a smaller drop on BFCL Live
AST for the 4B model and yields an increase on
all datasets for the 8B model. Collectively, these
results highlight the importance of curating a tar-
geted dataset blend and training regime to ensure
an optimal trade-off between calling tools when
possible and being conservative when not.

4 LLM-as-Judge Evaluation

One limitation of evaluating our multiple-choice
benchmark with log-probabilities is that we cannot
evaluate closed-source tool-calling models. Thus,
we implement a second, alternative LLM-as-judge
metric. By comparing the two metrics, we can also
alleviate concerns that the precise answer phras-
ing chosen by Mixtral 8x22B when generating our
benchmark might affect model performance.

This method prompts the target LM exactly
the same as for multiple-choice but has the LM
generate a free-form answer instead of getting
log-probabilities. We then use an LLM-as-judge,
specifically GPT-4-Turbo-04-09, to classify the tar-
get LM’s generated output into the four multiple-
choice categories: direct answer, tool call, follow-
up question and unable to answer. Since we only
ask the LLM-as-judge to classify the output among
these categories, we are not dependent on the
judge’s own tool-calling (or when-to-call) capabil-
ity. Then, we can calculate the category accuracy
(now direct, not normed by length) and F1 score for
the multiple-choice version. Tool hallucination rate
over the questions where no tool is provided can
be calculated in the same way as before. We use
100 representative examples from each category of
When2Call to keep costs accessible, as shown in
Table 2.

4.1 Comparison with Multiple-Choice Results

Table 5 shows the comparison in F1 scores for
our 4B and 8B models under the multiple-choice
with log-probabilities and LLM-as-judge evalua-
tion methods. The two methods yield similar per-
formance for the baseline models, which are trained
only on open-source datasets, but sometimes under-
estimate performance for our When2Call-trained
SFT and RPO models, which see their own non-
tool-call answer phrasings during training and thus
appear to be more affected by the specific phrasing
of the multiple-choice answers. Thus, we recom-
mend using the LLM-as-judge method where pos-

3396

Model When2Call BFCL AST BFCL Irr.
F1 ↑ Acc ↑ Tool Hall% ↓ Acc ↑ Acc ↑

GPT-4o 61.3 61.3% 26% 79.8% 83.8%
GPT-4o-Mini 52.9 54.2% 41% 76.5% 80.7%
GPT-4-Turbo-04-09 64.6 64.3% 22% 63.8% 35.6%

Table 4: Results on When2Call, BFCL v2 Live AST and BFCL Irrelevance for three closed-source tool-calling
models using LLM-as-judge evaluation. For BFCL, we report the scores using prompting, not native function-
calling, for best comparison. The best scores are bolded; see Table 3 for comparison with community models.

Model MC LLM-as-Judge
F1 F1

MNM 4B baseline 29.7 27.9
MNM 4B SFT 48.1 48.6
MNM 4B RPO 51.0 64.3
MNM 8B baseline 31.9 34.8
MNM 8B SFT 49.4 57.1
MNM 8B RPO 52.4 66.1

Table 5: Results on When2Call for multiple-choice vs.
LLM-as-judge evaluation. F1 scores are comparable
for models trained only on tool-calling datasets, but
multiple-choice sometimes underestimates performance
for models that see specific answer phrasings as part of
the When2Call training set.

sible and affordable for models that are trained on
how to answer when not calling tools, but results
appear to be similar for models primarily trained
on datasets that only evaluate correct tool-calling.

4.2 Results for closed-source models

We evaluate three GPT-4 models using the LLM-
as-judge method since closed-source tool-calling
models are often reported to be better than open-
source variants (Zhang et al., 2024b i.a.). Results
are shown in Table 4. Indeed, we find that the GPT-
4 models outperform the community models in
Table 3, including the 4B and 8B models fine-tuned
on When2Call. Nonetheless, there is still room for
improvement. In particular, their tool hallucination
rates are not better than the community models.

5 Discussion

Improving when-to-call accuracy is not trivial
We find that improving scores on when-not-to-call
benchmarks like BFCL Irrelevance and When2Call
is not as simple as training on negative examples,
as this can make the model over-conservative about
calling tools and cause a dip in performance on

BFCL AST. For example, simply adding negative
examples of tool-calling to the instruction-tuning
blend of our 4B model by randomly pairing tool
specifications with unrelated instruction-following
questions in the SFT blend increases performance
on When2Call but decreases performance on BFCL
AST, as the model becomes too conservative and
does not call tools often enough. A similar is-
sue arises if we simply add the entire When2Call
training set to our instruction-tuning blend: per-
formance improves on When2Call, but the model
becomes too conservative and drops slightly in per-
formance on BFCL (Section 3.3.1).

This issue is compounded if SFT is followed
by a helpfulness training step. Instead, we pro-
pose using an appropriately balanced sample of the
When2Call training set with RPO training (Sec-
tion 3.3.2), which successfully balances these two
competing pressures and enhances the training sig-
nal by providing negative as well as positive exam-
ples.

How does When2Call compare to BFCL Irrele-
vance? As shown in Figure 2, When2Call does
not measure the same question as BFCL Irrele-
vance. Good performance on BFCL Irrelevance,
i.e. not calling a highly mismatching tool, is not
enough to predict good performance on When2Call,
which firstly requires the model to choose the cor-
rect other behavior (asking a follow-up question
or admitting it can’t answer), and secondly has
subtler mismatches between the questions and the
provided tools (Section 2.4). This is a finer-grained
and more difficult task, which is often largely out-
side the models’ training data, even when they are
trained on data mimicking BFCL Irrelevance.

Do models ask follow-up questions when re-
quired to call the tool? A novel contribution
of this dataset is explicitly testing whether models
can ask follow-up questions when the tool matches
the question but the required information is miss-

3397

Figure 2: When2Call measures more complex capabili-
ties than BFCL Irrelevance: a high score on BFCL Irrel-
evance need not yield a high score on When2Call, which
indicates that When2Call offers a more fine-grained and
more challenging task.

ing. As illustrated in the confusion matrices in
Appendix E.2, we find that the Qwen, xLAM, and
fine-tuned Mistral-NeMo-Minitron models are able
to correctly ask follow-up questions over half the
time, though they still often hallucinate a tool call
with the missing parameters instead.

Is performance on When2Call low because mod-
els always call tools? One might expect that per-
formance on When2Call is low because models
trained on data like APIGen (Liu et al., 2024) are
insufficiently conservative and call tools too of-
ten, having rarely seen examples of “unable to an-
swer” or follow-up questions in relation to tools. In
fact, the confusion matrices in Appendix E.2 show
that only the Llama models do this. The Qwen,
xLAM, and Mistral-NeMo-Minitron models each
have their own error pattern, often correctly not
calling a tool in many cases but preferring an incor-
rect answer among the remaining three text options.
Qwen and xLAM models are highly unwilling to
select the (d) “unable to answer” option, selecting
either a direct answer or a request for information
instead. This results in a low macro F1 score since
the F1 score for (d) is so low, even though their
(micro-averaged) accuracy may be relatively high.

When2Call measures tool, answer, and parame-
ter hallucination When2Call allows developers
to measure each type of possible hallucination (tool,
direct answer, missing information) and adjust the
system prompt or training regime depending on
the type of errors the model is making, in comple-

ment with BFCL’s evaluation of the accuracy of
the tool calls. For example, the RPO training blend
or answer pairs (Section 3.3.2) can be adjusted to
demonstrate the correct trade-offs. Answer hallu-
cination and parameter hallucination rates can be
read directly off the confusion matrix, while we
provide a script to calculate tool hallucination – see
Appendix E.1.

6 Related Work

With tool-calling growing in popularity (see Qu
et al. (2024) for a survey), a number of tool-calling
benchmarks have been developed. While some
benchmarks break the tool-calling process into sub-
tasks (Li et al., 2023; Basu et al., 2024; Ye et al.,
2024; Huang et al., 2024), most recent benchmarks
treat tool-calling as a single step, a trend which
our benchmark follows. In this case, the model
must return either a tool call or an appropriate text
response. However, most benchmarks only test the
case where the correct API is provided and focus
either on validating the tool call (Patil et al., 2023;
Xu et al., 2023; Nexusflow, 2023) or evaluating
the final answer or system state, which assumes
a correct tool call (Yang et al., 2023; Tang et al.,
2023; Qin et al., 2023; Zhuang et al., 2023; Guo
et al., 2024; Yao et al., 2024).

Among benchmarks, only BFCL (Yan et al.,
2024) and ToolSandbox (Lu et al., 2024) attempt to
address cases where the correct API is not provided,
or information is missing with their Irrelevance
and Insufficient Information categories respectively,
which provide no correct tool. ToolSandbox and
BFCL’s Multi-Turn category also contain some ex-
amples of follow-up questions. Both of these cate-
gories, however, only evaluate whether a tool call is
made or not, and not what the model does instead.
ToolBeHonest (Zhang et al., 2024b) also consid-
ers these cases but only evaluates the subtask of
whether the task is solvable. For training data, the
Glaive v2 training dataset (Glaive AI, 2024) is the
only publicly available training dataset to include
cases where the correct API is not provided, or in-
formation is missing, but it does not separate such
items from the rest of the training set, or provide
an evaluation metric other than exact match / cross-
entropy loss. Other popular training datasets like
Hermes (interstellarninja and Teknium, 2024) and
APIGen (Liu et al., 2024) do not cover these cases.

Tool hallucinations have only been tackled very
recently. Abdelaziz et al. (2024) report the tool

3398

hallucination rate of their model, Granite. The
ToolBeHonest benchmark (Zhang et al., 2024b)
studies tool hallucination with an indirect measure
by asking models to classify the solvability of tasks
(“solvable” indicates that the model is hallucinating
that the tool can be used). While the hallucination
rate can be calculated manually from the detailed
output of BFCL, no previous benchmark provides
explicit support for calculating tool hallucination
rate, and none study how often the model halluci-
nates a text answer instead.

7 Conclusion

We presented When2Call, a new synthetically gen-
erated dataset to evaluate when tool-calling LMs
should (not) call tools and how they should behave
if they can’t, using a multiple-choice format over
four different types of behavior. We present a tradi-
tional accuracy/F1 metric using log-probabilities as
well as an LLM-as-judge alternative which allows
the evaluation of generated outputs, particularly of
closed-source models. Unlike the main previous
benchmark evaluating when not to call tools, BFCL
Irrelevance, which is already beginning to saturate4,
we find that even large tool-calling models still
struggle on our more difficult task, which requires
not just not calling a tool, but choosing the correct
non-tool-call response, and has a higher similarity
between the question and the nonetheless incorrect
tool calls. Further, we show that achieving the right
degree of conservativeness for tool-calling mod-
els is not trivial, as simple instruction-tuning on
the When2Call training dataset in conjunction with
other instruction-following and helpfulness data
can lead to over-conservative behavior. We propose
an RPO training method that leverages the multiple-
choice nature of the dataset and strikes a balance
between the pressures of when vs. when not to call
tools. Training on When2Call may also lead the
model to overly prefer specific answer phrasings,
however, impacting its score using log-probability
multiple choice method. We recommend using
the LLM-as-judge method, where possible, after
training on When2Call to mitigate this. Finally,
we offer scripts to calculate the confusion matrix
and hallucination rate as part of model evaluation,
allowing model developers to understand the in-
dividual failure patterns of their model beyond a
single accuracy score and develop a targeted train-
ing regime in response.

4
https://gorilla.cs.berkeley.edu/leaderboard.html

Limitations

Quality limitations Since we are using a syn-
thetic data generation pipeline, some dataset quality
issues remain despite multiple iterations of prompt
tuning. In Appendix A, we discuss how we evalu-
ated dataset quality and what issues remain. The
overall quality percentage (manually estimated on
a subset of the data) is 92% for questions and 94%
for question answers.

Assumption that the direct answer is incorrect
In order to have a clear, correct answer, When2Call
is constructed to assume that the direct answer is
always a hallucination and, thus, always wrong.
However, this simplifying assumption only reflects
one kind of real-world tool use. In other cases,
especially for small language models deployed on
devices, the task may be solvable without a tool in
principle, but the LM may wish to avail itself of a
tool anyway in order to improve performance. A
classic example of this is mathematics and calcu-
lation questions, which form a small part of BFCL
Live and which we filter out when generating our
dataset. These tasks present a trade-off between
compute and accuracy: calling a tool will increase
accuracy at the expense of compute and response
time. Any future benchmark that covers such tasks
will need to be flexible enough that users with dif-
ferent preferences for this trade-off can interpret or
adjust the benchmark accordingly.

Evaluation of closed-source models We were
only able to evaluate closed-source models from
the GPT family for this paper. Other closed-source
models also show good performance on BFCL. We
hope to evaluate additional models for a future
edition of the benchmark.

Languages used Like previous tool-calling work,
we focus on English-language questions and an-
swers only. Expanding tool-calling to other lan-
guages is certainly an important research direction;
we hope to see multilingual analogs of BFCL in
the near future.

References
Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal,

Sadhana Kumaravel, Matthew Stallone, Rameswar
Panda, Yara Rizk, G. P. Bhargav, Maxwell Crouse,
Chulaka Gunasekara, Shajith Ikbal, Sachin Joshi,
Hima Karanam, Vineet Kumar, Asim Munawar,
Sumit Neelam, Dinesh Raghu, Udit Sharma,
Adriana Meza Soria, Dheeraj Sreedhar, Praveen

3399

https://gorilla.cs.berkeley.edu/leaderboard.html

Venkateswaran, Merve Unuvar, David Cox, Salim
Roukos, Luis Lastras, and Pavan Kapanipathi. 2024.
Granite-Function Calling Model: Introducing Func-
tion Calling Abilities via Multi-task Learning of
Granular Tasks. arXiv preprint. ArXiv:2407.00121
[cs] version: 1.

Kinjal Basu, Ibrahim Abdelaziz, Subhajit Chaudhury,
Soham Dan, Maxwell Crouse, Asim Munawar, Ver-
non Austel, Sadhana Kumaravel, Vinod Muthusamy,
Pavan Kapanipathi, and Luis Lastras. 2024. API-
BLEND: A comprehensive corpora for training and
benchmarking API LLMs. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12859–12870, Bangkok, Thailand. Association for
Computational Linguistics.

Matthew Carrigan. 2024. Tool Use, Unified.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and et al. 2024. The llama 3 herd of models.
Preprint, arXiv:2407.21783.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Glaive AI. 2024. glaiveai/glaive-function-calling-v2 ·
Datasets at Hugging Face.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang,
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and
Yang Liu. 2024. StableToolBench: Towards Sta-
ble Large-Scale Benchmarking on Tool Learning of
Large Language Models. arXiv preprint.

Vipul Gupta, David Pantoja, Candace Ross, Adina
Williams, and Megan Ung. 2024. Changing an-
swer order can decrease mmlu accuracy. Preprint,
arXiv:2406.19470.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring Massive Multitask Language Un-
derstanding.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqiang Gong, and Lichao Sun. 2024. Meta-
Tool Benchmark for Large Language Models: Decid-
ing Whether to Use Tools and Which to Use. arXiv
preprint.

interstellarninja and Teknium. 2024. Hermes-function-
calling-dataset-v1.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. API-bank: A comprehensive
benchmark for tool-augmented LLMs. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 3102–3116,
Singapore. Association for Computational Linguis-
tics.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu,
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei
Yang, Silvio Savarese, Juan Carlos Niebles, Huan
Wang, Shelby Heinecke, and Caiming Xiong. 2024.
APIGen: Automated Pipeline for Generating Verifi-
able and Diverse Function-Calling Datasets. arXiv
preprint.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Au-
mayer, Feng Nan, Felix Bai, Shuang Ma, Shen Ma,
Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming
Pang. 2024. ToolSandbox: A Stateful, Conversa-
tional, Interactive Evaluation Benchmark for LLM
Tool Use Capabilities. arXiv preprint.

Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Tianjun
Zhang, and Shishir G. Patil. 2024. BFCL V2 • Live
Dataset.

Meta. 2024. Llama 3.2.

Mistral AI Team. 2024. Cheaper, Better, Faster,
Stronger: Mixtral 8x22B.

Nexusflow. 2023. Nexus Function Calling Leaderboard.

Nvidia, :, Bo Adler, Niket Agarwal, Ashwath Aithal,
Dong H. Anh, Pallab Bhattacharya, Annika Brun-
dyn, Jared Casper, Bryan Catanzaro, Sharon Clay,
Jonathan Cohen, Sirshak Das, Ayush Dattagupta,
Olivier Delalleau, Leon Derczynski, Yi Dong, Daniel
Egert, Ellie Evans, Aleksander Ficek, Denys Frid-
man, Shaona Ghosh, Boris Ginsburg, Igor Gitman,
Tomasz Grzegorzek, Robert Hero, Jining Huang,
Vibhu Jawa, Joseph Jennings, Aastha Jhunjhunwala,
John Kamalu, Sadaf Khan, Oleksii Kuchaiev, Patrick
LeGresley, Hui Li, Jiwei Liu, Zihan Liu, Eileen Long,
Ameya Sunil Mahabaleshwarkar, Somshubra Ma-
jumdar, James Maki, Miguel Martinez, Maer Ro-
drigues de Melo, Ivan Moshkov, Deepak Narayanan,
Sean Narenthiran, Jesus Navarro, Phong Nguyen,
Osvald Nitski, Vahid Noroozi, Guruprasad Nutheti,
Christopher Parisien, Jupinder Parmar, Mostofa Pat-
wary, Krzysztof Pawelec, Wei Ping, Shrimai Prabhu-
moye, Rajarshi Roy, Trisha Saar, Vasanth Rao Naik
Sabavat, Sanjeev Satheesh, Jane Polak Scowcroft,
Jason Sewall, Pavel Shamis, Gerald Shen, Moham-
mad Shoeybi, Dave Sizer, Misha Smelyanskiy, Fe-
lipe Soares, Makesh Narsimhan Sreedhar, Dan Su,
Sandeep Subramanian, Shengyang Sun, Shubham
Toshniwal, Hao Wang, Zhilin Wang, Jiaxuan You, Ji-
aqi Zeng, Jimmy Zhang, Jing Zhang, Vivienne Zhang,
Yian Zhang, and Chen Zhu. 2024. Nemotron-4 340b
technical report. Preprint, arXiv:2406.11704.

3400

https://doi.org/10.48550/arXiv.2407.00121
https://doi.org/10.48550/arXiv.2407.00121
https://doi.org/10.48550/arXiv.2407.00121
https://doi.org/10.18653/v1/2024.acl-long.694
https://doi.org/10.18653/v1/2024.acl-long.694
https://doi.org/10.18653/v1/2024.acl-long.694
https://huggingface.co/blog/unified-tool-use
https://arxiv.org/abs/2407.21783
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2
https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2
https://doi.org/10.48550/arXiv.2403.07714
https://doi.org/10.48550/arXiv.2403.07714
https://doi.org/10.48550/arXiv.2403.07714
https://arxiv.org/abs/2406.19470
https://arxiv.org/abs/2406.19470
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://doi.org/10.48550/arXiv.2310.03128
https://doi.org/10.48550/arXiv.2310.03128
https://doi.org/10.48550/arXiv.2310.03128
https://huggingface.co/NousResearch/hermes-function-calling-v1
https://huggingface.co/NousResearch/hermes-function-calling-v1
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://doi.org/10.48550/arXiv.2406.18518
https://doi.org/10.48550/arXiv.2406.18518
https://doi.org/10.48550/arXiv.2408.04682
https://doi.org/10.48550/arXiv.2408.04682
https://doi.org/10.48550/arXiv.2408.04682
https://gorilla.cs.berkeley.edu/blogs/12_bfcl_v2_live.html
https://gorilla.cs.berkeley.edu/blogs/12_bfcl_v2_live.html
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://mistral.ai/news/mixtral-8x22b/
https://mistral.ai/news/mixtral-8x22b/
https://huggingface.co/spaces/Nexusflow/Nexus_Function_Calling_Leaderboard
https://arxiv.org/abs/2406.11704
https://arxiv.org/abs/2406.11704

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large Lan-
guage Model Connected with Massive APIs. arXiv
preprint.

Pouya Pezeshkpour and Estevam Hruschka. 2024.
Large language models sensitivity to the order of op-
tions in multiple-choice questions. In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 2006–2017, Mexico City, Mexico. Asso-
ciation for Computational Linguistics.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2023. ToolLLM: Fa-
cilitating Large Language Models to Master 16000+
Real-world APIs. arXiv preprint.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024. Tool Learning with Large Language
Models: A Survey. arXiv preprint.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Michael C Rodriguez. 2005. Three options are optimal
for multiple-choice items: A meta-analysis of 80
years of research. Educational measurement: issues
and practice, 24(2):3–13.

Gerald Shen, Zhilin Wang, Olivier Delalleau, Jiaqi
Zeng, Yi Dong, Daniel Egert, Shengyang Sun, Jimmy
Zhang, Sahil Jain, Ali Taghibakhshi, Markel Sanz
Ausin, Ashwath Aithal, and Oleksii Kuchaiev. 2024.
NeMo-Aligner: Scalable toolkit for efficient model
alignment. Preprint, arXiv:2405.01481.

Sharath Turuvekere Sreenivas, Saurav Muralidharan,
Raviraj Joshi, Marcin Chochowski, Ameya Sunil Ma-
habaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen,
Yoshi Suhara, Shizhe Diao, Chenhan Yu, Wei-Chun
Chen, Hayley Ross, Oluwatobi Olabiyi, Ashwath
Aithal, Oleksii Kuchaiev, Daniel Korzekwa, Pavlo
Molchanov, Mostofa Patwary, Mohammad Shoeybi,
Jan Kautz, and Bryan Catanzaro. 2024. LLM pruning
and distillation in practice: The Minitron approach.
Preprint, arXiv:2408.11796.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, Boxi Cao, and Le Sun. 2023. ToolAl-
paca: Generalized Tool Learning for Language Mod-
els with 3000 Simulated Cases. arXiv preprint.

Bingbing Wen, Jihan Yao, Shangbin Feng, Chenjun Xu,
Yulia Tsvetkov, Bill Howe, and Lucy Lu Wang. 2024.
The Art of Refusal: A Survey of Abstention in Large
Language Models. arXiv preprint.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023. On the Tool
Manipulation Capability of Open-source Large Lan-
guage Models. arXiv preprint.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Ion
Stoica, Joseph E. Gonzalez, Tianjun Zhang, and
Shishir G. Patil. 2024. Berkeley Function Calling
Leaderboard.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2023. GPT4Tools: Teach-
ing Large Language Model to Use Tools via Self-
instruction. Advances in Neural Information Process-
ing Systems, 36:71995–72007.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik
Narasimhan. 2024. τ-bench: A Benchmark for
Tool-Agent-User Interaction in Real-World Domains.
arXiv preprint.

Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang,
Yilong Wu, Sixian Li, Xiaoran Fan, Shihan Dou,
Qi Zhang, Tao Gui, and Xuanjing Huang. 2024.
ToolEyes: Fine-Grained Evaluation for Tool Learn-
ing Capabilities of Large Language Models in Real-
world Scenarios. arXiv preprint.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai
Hoang, Shirley Kokane, Weiran Yao, Juntao Tan,
Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yi-
hao Feng, Tulika Awalgaonkar, Rithesh Murthy, Eric
Hu, Zeyuan Chen, Ran Xu, Juan Carlos Niebles,
Shelby Heinecke, Huan Wang, Silvio Savarese, and
Caiming Xiong. 2024a. xlam: A family of large ac-
tion models to empower ai agent systems. Preprint,
arXiv:2409.03215.

Yuxiang Zhang, Jing Chen, Junjie Wang, Yaxin Liu,
Cheng Yang, Chufan Shi, Xinyu Zhu, Zihao Lin,
Hanwen Wan, Yujiu Yang, Tetsuya Sakai, Tian Feng,
and Hayato Yamana. 2024b. ToolBeHonest: A Multi-
level Hallucination Diagnostic Benchmark for Tool-
Augmented Large Language Models. arXiv preprint.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and
Minlie Huang. 2024a. Large language models are
not robust multiple choice selectors. In The Twelfth
International Conference on Learning Representa-
tions.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2024b. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Proceedings of the 37th International Conference
on Neural Information Processing Systems, NeurIPS
’23, Red Hook, NY, USA. Curran Associates Inc.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and
Chao Zhang. 2023. ToolQA: A Dataset for LLM
Question Answering with External Tools. Advances
in Neural Information Processing Systems, 36:50117–
50143.

A Quality checklist for synthetic data
generation

Synthetically generated data can be noisy, so hu-
man verification is important. We manually in-

3401

https://doi.org/10.48550/arXiv.2305.15334
https://doi.org/10.48550/arXiv.2305.15334
https://doi.org/10.18653/v1/2024.findings-naacl.130
https://doi.org/10.18653/v1/2024.findings-naacl.130
https://doi.org/10.48550/arXiv.2307.16789
https://doi.org/10.48550/arXiv.2307.16789
https://doi.org/10.48550/arXiv.2307.16789
https://doi.org/10.48550/arXiv.2405.17935
https://doi.org/10.48550/arXiv.2405.17935
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2405.01481
https://arxiv.org/abs/2405.01481
https://arxiv.org/abs/2408.11796
https://arxiv.org/abs/2408.11796
https://doi.org/10.48550/arXiv.2306.05301
https://doi.org/10.48550/arXiv.2306.05301
https://doi.org/10.48550/arXiv.2306.05301
https://doi.org/10.48550/arXiv.2407.18418
https://doi.org/10.48550/arXiv.2407.18418
https://doi.org/10.48550/arXiv.2305.16504
https://doi.org/10.48550/arXiv.2305.16504
https://doi.org/10.48550/arXiv.2305.16504
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/e393677793767624f2821cec8bdd02f1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/e393677793767624f2821cec8bdd02f1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/e393677793767624f2821cec8bdd02f1-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2406.12045
https://doi.org/10.48550/arXiv.2406.12045
https://doi.org/10.48550/arXiv.2401.00741
https://doi.org/10.48550/arXiv.2401.00741
https://doi.org/10.48550/arXiv.2401.00741
https://arxiv.org/abs/2409.03215
https://arxiv.org/abs/2409.03215
https://doi.org/10.48550/arXiv.2406.20015
https://doi.org/10.48550/arXiv.2406.20015
https://doi.org/10.48550/arXiv.2406.20015
https://openreview.net/forum?id=shr9PXz7T0
https://openreview.net/forum?id=shr9PXz7T0
https://proceedings.neurips.cc/paper_files/paper/2023/hash/9cb2a7495900f8b602cb10159246a016-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/9cb2a7495900f8b602cb10159246a016-Abstract-Datasets_and_Benchmarks.html

spected ca. 10% of the generated dataset (50 sam-
ples per type) for quality at each iteration of prompt
tuning, and adjusted the prompt accordingly. Ta-
ble 6 shows the checklist we used and the results on
the final iteration of the dataset. The checklist was
generated by manually inspecting early versions
of the dataset and listing all the errors that were
observed. The overall answer quality percentage
(out of 150 synthetic answers) is 94%. The overall
question quality percentage (out of 100 synthetic
questions) is 82%.

One particular issue is that some questions inher-
ited from BFCL and classified as requiring tool use
do need a tool to be answered properly, but also ad-
mit vague partial answers. (One example asks for
a specific forecast of tree growth in Yellowstone
National Park, which can be partially answered
by replying that the trees will grow a moderate
amount.) Sometimes, our pipeline generates such a
vague answer as its direct answer option (a), mean-
ing that (a) is not entirely incorrect as we assume
it to be. While it is likely still a better answer for
the model to say it can’t answer the exact question
than to be vague, this is now a more subjective
judgment. This error arises in part from the some-
times unusually specific tools (and corresponding
questions) that BFCL employs, which only require
tool use in that exact formulation, and might not all
represent realistic tools in the wild.

Two other issues relate to the “unable to answer”
option. Sometimes, the generating model may gen-
erate an answer intended to be the “unable to an-
swer” option (d), but which also contains a follow-
up question. Further, when we ask the model to
generate a question that cannot be answered with
the given tool (a difficult task), it very occasionally
generates a question that can, in fact, be answered
with the tool, though usually still not with the tool
call we provide as answer (b). While “unable to an-
swer” (d) is still the best choice of the four options,
this may confuse the model as its most preferred
answer would be to generate a valid tool call.

In future work, we plan to implement an addi-
tional LLM-as-judge filtering step which checks
for these issues.

B System prompts in When2Call

Table 7 shows the default system prompt that we
use in When2Call for models that do not come
with a pre-specified system prompt and/or tool-
calling format. Table 8 shows how we incorporate

existing system prompts for models, using Qwen as
an example. The prompt is taken verbatim from the
documentation for Qwen 2.5.5 The placeholders
tool / tools and question indicate where the
provided tools and question are included in the
prompt.

C Prompts for synthetic data generation

The prompt template used for tool use classification
is shown in Table 9. The prompts for synthetic data
generation are shown in Table 10.

D Results for all models

Table 12 the results table with all models included,
including some small and intermediate model sizes
omitted in Table 3.

E Confusion matrices and hallucination
rates

E.1 Calculating hallucination rates
We design When2Call so that we can directly cal-
culate the proportions of each type of hallucina-
tion. Answer hallucination occurs whenever the
model chooses the direct answer (a), and can be
read directly off the confusion matrix. We provide
a script to generate the confusion matrices; see Ap-
pendix E.2 for examples. Tool hallucination can be
evaluated using the questions where no tools are
provided at all. If a model chooses the tool call
answer in this scenario, they are necessarily hallu-
cinating the tool. We provide a script to calculate
this rate directly. Finally, parameter hallucination
can also be read off the confusion matrix by count-
ing the questions where information was missing
(i.e., a follow-up question (c) was correct) where
the model chose the tool call answer (b).

E.2 Confusion matrices on When2Call
We provide the confusion matrices for selected
models to illustrate that models may have differ-
ent error patterns, even while achieving similar
accuracies or similar F1 scores (a combination of
accuracy and F1 partially reflects these differences).
Tables 13, 14, 15 and 16 show the confusion ma-
trices for Llama 3.1 70B Instruct, Qwen 2.5 7B
Instruct, Qwen 2.5 72B Instruct and xLAM 7B
FC-R respectively. Tables 17, 18 and 19 show the
confusion matrices for the three versions of our
Mistral-NeMo-Minitron 8B model.

5https://qwen.readthedocs.io/en/latest/
framework/function_call.html

3402

https://qwen.readthedocs.io/en/latest/framework/function_call.html
https://qwen.readthedocs.io/en/latest/framework/function_call.html

Issue Type Count Percentage

Answer type: follow-up question
Asks about output format 0 0.0%
Asks to confirm already provided values 3 6.0%
Asks for already provided information 0 0.0%
Asks for reason or context 0 0.0%
Asks about additional inputs to pass to the tool 0 0.0%
Asks for something irrelevant 0 0.0%
Hallucinates other information 0 0.0%

Total 3 6.0%

Answer type: direct answer
Contains request for information 0 0.0%

Total 0 0.0%

Answer type: unable to answer
Mentions information not included in question 0 0.0%

Total 0 0.0%

Question type: correct answer is “unable to answer”
Includes explanation referencing tool capabilities 0 0.0%
Answerable with provided tool 0 0.0%
Generic / vague terms (no specific values) 2 4.0%
References things that are not mentioned (using “the”) 4 8.0%
Totally unrelated to tool 0 0.0%
Question doesn’t need a tool call to answer 0 0.0%
Question partially answerable without a tool 3 6.0%

Total 9 18.0%

Question type: correct answer is follow-up question
Does not have any missing information 0 0.0%
Mentions vague parameter values 0 0.0%
Says that a value is not provided 0 0.0%
References existence of tool 0 0.0%

Total 0 0.0%

Table 6: Quality checklist for synthetically generated questions and answers. Overall answer quality percentage (out
of 150 synthetic answers): 94%. Overall question quality percentage (out of 100 synthetic questions): 82%.

3403

You are a helpful AI assistant.
You have access to the tools described in <tool></tool> which you can use to answer the user's questions.
Only use a tool if it directly answers the user's question.

To use a tool, return JSON in the following format:
{"name": "tool_name", "arguments": {"argument1": "value1", "argument2": "value2", ...}}

<tool>{tool}</tool>
<tool>{tool}</tool>
...

{question}

Table 7: Prompt used in When2Call to evaluate models that don’t have their own system prompt. We use a
minimalist prompt since we do not want to give these models an advantage over other models whose pre-specified
system prompt does not include any information about when not to call tools.

<|im_start|>system
You are Qwen, created by Alibaba Cloud. You are a helpful assistant.

Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:
<tools>
{tools}
</tools>

For each function call, return a json object with function name and arguments within
<tool_call></tool_call> XML tags:
<tool_call>
{{"name": <function-name>, "arguments": <args-json-object>}}
</tool_call><|im_end|>
<|im_start|>user
{question}<|im_end|>
<|im_start|>assistant

Table 8: Prompt used in When2Call to evaluate Qwen 2.5 models, which specifies a custom system prompt to use
for tool-calling. We use each model’s preferred prompt in order to match their training/fine-tuning conditions.

3404

Questions can be answered in the following ways:
- Using public data, available from books or internet datasets
- Using a calculator and/or mathematical or physical formulas
- Using a specialized tool, such as statistical software, music software or machine learning libraries
- Using real-time information, such as weather, stock prices or up-to-date ratings
- Using databases (private or public), such as access to player statistics, customer records or lawsuits

Here are some examples:

Question: What is the weather in London tomorrow?
Category: Real-time information

Question: What is the specific heat capacity of water?
Category: Public data

Question: What is the length of the hypotenuse of a right triangle with side lengths 4 and 3?
Category: Calculator

Question: Find all lawsuits in New York State between 2010-2012.
Category: Database

Question: Generate a melody in C major.
Category: Specialized tool

Question: How long does it take to drive from Boston to New York?
Category: Real-time information

Question: Find popular Indian restaurants in Las Vegas.
Category: Real-time information

Question: What is the atomic number of oxygen?
Category: Public data

Question: Get the current level of my character in The Legend of Zelda: Breath of the Wild.
Category: Database

Question: What are the opening hours of Walmart in Santa Clara, CA?
Category: Real-time information

Question: What is the magnetic field strength 1 meter away from a wire with a 2 Ampere current?
Category: Calculator

Question: Perform a Chi-Squared test for independence on a 2x2 contingency table [[1, 2], [3, 4]]
Category: Specialized tool

Now, classify this question into one of "Public data", "Calculator", "Specialized tool",
"Real-time information", or "Database", using the format "Category: <category>":

Question: {question}

Table 9: Prompt template used for tool use classification.

3405

Question generation where the correct answer is (c), follow-up question

You are given a question and a tool specification in json format.
The tool can be used to answer the provided question.
The tool has certain parameters that are required to use it.
The question provides a value for each of these parameters.

- Your task is to re-write the question such that it does not proide any value
for the `{required_param_to_remove}` parameter.
- The re-written question must be consistent with original question in meaning
- All other provided values must remain the same, except the one to be excluded.
- There should not be any mention of the excluded parameter in the question.
- The question should not use phrases like "a specific location" or "a specific date".
It should omit this information entirely.

Respond only with the re-written question and nothing else.
Here is the original question and parameter to remove -
Original question: {original_question}
Parameter to remove from question: {required_param_to_remove}

Question generation where the correct answer is (d), unable to answer

You are an expert at writing technical content.

[tool] {tool} [/tool]

- The tools mentioned above inside [tool] [/tool] can be used to answer certain questions.
- Give one example of a question that none of these tools can be used to answer.
- The question should ask about a specific case and provide all relevant information.
- Give specific numbers and values where applicable.
- The question should be one complete sentence and include a question mark.
- The question should be no more than 10-30 words.
- Specify all the necessary information, but otherwise keep the question short.
- Give one example question and nothing else.
- Do not explain why the question cannot be answered. Do not wrap the question in quotes.

Table 10: Prompt templates used for generating questions in When2Call examples, as discussed in Section 2.2.

3406

Response generation for category (c), where the response is a follow-up question

You are an expert at writing dialogues involving technical content.
Your task is to write a continuation to a conversation between a User and an Assistant.
The Assistant has access to the following tool which can be used to answer User queries:
[tool] {tool} [/tool]

The User will ask a question to the Assistant.
You must write the Assistant's response to this question by following the instructions given below:
- The User's question does not provide `{removed_param}` which is a required parameter to use the tool.
- Assistant requires some additional information to answer the question or to use the provided tool.
- The Assistant should ask for `{removed_param}` from the User.
- The Assistant should not ask to clarify or confirm any information that the User already provided.
- The Assistant's question should not be about the answer format or any other formatting.
- The Assistant's question should be no more than 50 words (shorter is fine).
- Stop after generating the Assistant's query for more information. Do not generate a tool call.
- Do not include a word count or any information regarding word count in your answer.
- Do not provide a note or any other content in your response. Respond only with the Assistant's reply.

Here is the conversation so far -
User: {rewritten_question}
Assistant:

Response generation for category (d), where the response is "unable to answer"

You are an expert at writing dialogues involving technical content.
Your task is to write a continuation to a conversation between a User and an Assistant.

The User will ask a question to the Assistant.
You must write the Assistant's response to this question by following the instructions given below:
- Assume that the Assistant does not know the answer, even if you know the answer.
- The Assistant should explain that it can't answer the question as it cannot perform the requested task.
- The Assistant's answer should be no more than 40 words (shorter is fine).
- Stop after generating the Assistant's answer. Do not generate the User's response.
- Do not include a word count or any information regarding word count in your answer.
- Do not provide a note or any other content in your response. Respond only with the Assistant's reply.

Here is the conversation so far -
User: {question}
Assistant:

Response generation for category (a), where the response is a direct answer without any tool use

You are an expert at writing dialogues involving technical content.
Your task is to write a continuation to a conversation between a User and an Assistant.

The User will ask a question to the Assistant.
You must write the Assistant's response to this question by following the instructions given below:
- Assume that the Assistant knows the correct answer to the question. Do not ask follow-up questions.

If necessary, the Assistant should guess any missing information.
- Keep the answer simple. Do not provide disclaimers about accuracy.
- The Assistant's answer should be no more than 50 words, if possible (shorter is fine

if the answer is simple).
- Stop after generating the Assistant response.
- Do not include a word count or any information regarding word count in your answer.
- Do not provide a note or any other content in your response. Respond only with the Assistant's reply.

Here is the conversation so far -
User: {question}
Assistant:

Table 11: Prompt templates used for generating responses used as choices in When2Call examples, as discussed in
Section 2.2.

3407

Model When2Call BFCL AST BFCL Irr.
F1 ↑ Acc-Norm ↑ Tool Hall% ↓ Acc ↑ Acc ↑

Llama 3.2 1B Instruct 21.7 45.1% 43% 13.2% 52.9%
Llama 3.2 3B Instruct 17.9 46.5% 52% 37.6% 46.6%
Llama 3.1 8B Instruct 16.6 44.2% 67% 51.6% 40.0%
Llama 3.1 70B Instruct 37.8 46.1% 57% 68.3% 36.5%
Qwen 2.5 0.5B Instruct 32.0 53.5% 20% 22.9% 37.7%
Qwen 2.5 1.5B Instruct 29.9 52.6% 23% 36.5% 71.9%
Qwen 2.5 3B Instruct 29.8 48.9% 23% 54.8% 53.1%
Qwen 2.5 7B Instruct 32.0 50.9% 21% 64.1% 51.4%
Qwen 2.5 14B Instruct 36.2 53.3% 21% 61.6% 64.7%
Qwen 2.5 32B Instruct 32.9 49.6% 17% 65.6% 63.2%
Qwen 2.5 72B Instruct 32.8 49.2% 23% 69.3% 61.1%
xLAM 1B FC-R 25.6 45.7% 40% 55.3% 61.3%
xLAM 7B FC-R 31.5 42.7% 24% 58.3% 79.8%
xLAM 8x7B R 32.9 47.3% 13% 67.5% 72.4%
xLAM 8x22B R 34.3 48.3% 9.0% 74.7% 75.2%

MNM 4B SFT (baseline) 29.7 47.8% 16% 57.9% 41.1%
MNM 4B When2Call-SFT 48.1 67.8% 4.3% 51.7% 67.5%
MNM 4B When2Call-RPO 51.0 69.1% 1.9% 54.0% 77.4%
MNM 8B SFT (baseline) 31.9 49.1% 19% 62.2% 36.3%
MNM 8B When2Call-SFT 49.4 68.2% 7.0% 57.5% 61.0%
MNM 8B When2Call-RPO 52.4 70.0% 1.2% 62.5% 78.1%

Table 12: Results on When2Call, BFCL Live AST and BFCL Irrelevance for community tool-calling models,
and for our Mistral-NeMo-Minitron models with and without training on When2Call using SFT and RPO. For
When2Call, we show Macro F1, length-normed accuracy and the tool hallucination rate when no tools are provided
(lower is better ↓; see Appendix E.1 for calculation). Models not trained on When2Call struggle to make the right
choices; RPO training yields the greatest benefits. The best and second-best scores are bolded and underlined.
Additional model sizes in Table 12.

Predicted
True Direct answer Tool call Follow-up question Unable to answer

Direct answer 0 0 0 0
Tool call 0 1287 5 0
Follow-up question 4 1009 44 5
Unable to answer 100 1030 115 50

Table 13: Confusion matrix on When2Call for Llama 3.1 70B Instruct.

Predicted
True Direct answer Tool call Follow-up question Unable to answer

Direct answer 0 0 0 0
Tool call 14 1078 201 2
Follow-up question 16 410 634 2
Unable to answer 119 453 645 78

Table 14: Confusion matrix on When2Call for Qwen 2.5 7B Instruct

3408

Predicted
True Direct answer Tool call Follow-up question Unable to answer

Direct answer 0 0 0 0
Tool call 11 1116 167 1
Follow-up question 12 365 684 1
Unable to answer 162 478 599 56

Table 15: Confusion matrix on When2Call for Qwen 2.5 72B Instruct

Predicted
True Direct answer Tool call Follow-up question Unable to answer

Direct answer 0 0 0 0
Tool call 133 756 393 13
Follow-up question 63 332 640 27
Unable to answer 249 314 568 164

Table 16: Confusion matrix on When2Call for xLAM 7B FC-R

Predicted
True Direct answer Tool call Follow-up question Unable to answer

Direct answer 0 0 0 0
Tool call 7 1261 20 7
Follow-up question 18 738 288 18
Unable to answer 181 537 359 218

Table 17: Confusion matrix on When2Call for Mistral-NeMo-Minitron 8B SFT (baseline)

Predicted
True Direct answer Tool call Follow-up question Unable to answer

Direct answer 0 0 0 0
Tool call 11 1143 132 9
Follow-up question 12 284 752 14
Unable to answer 121 282 372 520

Table 18: Confusion matrix on When2Call for Mistral-NeMo-Minitron 8B SFT with When2Call

Predicted
True Direct answer Tool call Follow-up question Unable to answer

Direct answer 0 0 0 0
Tool call 17 992 148 138
Follow-up question 15 259 681 107
Unable to answer 90 106 249 850

Table 19: Confusion matrix on When2Call for Mistral-NeMo-Minitron 8B RPO with When2Call

3409

