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Abstract

We describe Belief Tree PROPagation
(BTPROP), a probabilistic framework for LLM
hallucination detection. To judge the truth of a
statement, BTPROP generates a belief tree by
recursively expanding the initial statement into
a set of logically related claims, then reasoning
globally about the relationships between these
claims. BTPROP works by constructing a
probabilistic model of the LM itself: it reasons
jointly about logical relationships between
claims and relationships between claim
probabilities and LM factuality judgments via
probabilistic inference in a “hidden Markov
tree”. This method improves over state-of-the-
art baselines by 3%-9% (evaluated by AUROC
and AUC-PR) on multiple hallucination detec-
tion benchmarks. Code is available at https:
//github.com/UCSB-NLP-Chang/BTProp.

1 Introduction

Current large language models (LLMs) often pro-
duce factually incorrect statements (sometimes re-
ferred to as “hallucinations”). One popular ap-
proach to detecting hallucinations is to prompt
LLMs to assign probabilities to the correctness of
their own outputs (sometimes referred to as model
“beliefs"; Mitchell et al., 2022; Hase et al., 2023;
Kassner et al., 2023). However, these beliefs are
themselves frequently incorrect, miscalibrated, or
inconsistent with each other. To improve the ac-
curacy of LM factuality judgments, a large body
of work adjusts the assessed probability of a tar-
get claim by reasoning about sets of related state-
ments (Manakul et al., 2023; Akyürek et al., 2024;
Cao et al., 2023; Mündler et al., 2023). These ap-
proaches typically involve two steps: first, the LLM
is prompted to generate an augmented set of state-
ments that support or contradict the target state-
ment, possibly with probabilities attached (Jung
et al., 2022); second, these claims are combined

*Correspondence to: Bairu Hou <bairu@ucsb.edu>.

① The top of Mount Everest has lower 
atmospheric pressure compared to sea level.
② The freezing point of water can be as low as 
-40°C at the top of Mount Everest.
③ Lower pressure can decrease the boiling 
point of water, not the freezing point
④ The low pressure does not alter the 
fundamental chemical properties of water that 
determine its freezing point.
⑤ The freezing point of water can be as low as 
-2°C at the top of Mount Everest.

⓪ At the top of Mount Everest, where the atmospheric pressure is much 
lower than at sea level, the freezing point of water is as low as -40°C.
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Figure 1: An example constructed belief tree.

via logical or probabilistic inference. As a simple
example, if an LM assigns high probability to a
target statement, but even higher probability to a
contradictory statement, it may be reasonably in-
ferred that the target statement is actually incorrect.

One key limitation of current methods is that
they do not model noise or uncertainty in the LM
generation process itself. LLMs’ “beliefs” are of-
ten poorly calibrated – even statements that models
judge to be true with 100% probability are some-
times false. How can we produce reliable judg-
ments about sets of related statements when even
their assessments of individual statements are unre-
liable?

To do so, we propose Belief Tree PROPagation
(BTPROP), a probabilistic method for improving
the accuracy LLM “beliefs” with applications to
hallucination detection. Specifically, given an ini-
tial statement generated by an LLM, BTPROP

first generates a belief tree of recursively gener-
ated claims that are logically related ot the initial
statement. An example is shown in Figure 1, in
which the root node of the belief tree is one sen-
tence generated by the LLM about the freezing
point of water, and each child node supports or
contradicts its parent. Next, BTPROP interprets
this belief tree as a directed graphical model (a
“hidden Markov tree"; Crouse et al., 1998; Du-
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rand et al., 2004) in which the LLM’s confidence
scores are modeled as observed variables, and the
ground-truth truthfulness of the statements as the
corresponding hidden variables. Thus, the problem
of assigning probabilities to statements can be re-
duced to probabilistic inference in a well-studied
model family. Here, inference makes it possible
to integrate knowledge about the (logical) struc-
ture of related statements, and the (probabilistic)
relationship between statements and noisy LM out-
puts. Experiment results show that our method
achieves state-of-the-art performance, improving
the hallucination detection performance (AUROC
and AUC-PR) by 3%–9% on FELM-Science (Chen
et al., 2023b) and FactCheckGPT (Fadeeva et al.,
2024) datasets relative to state-of-the-art baselines.

2 Related Work

Hallucinations in LLMs. Hallucination has
become a prominent topic in the research of
LLMs (Liu et al., 2022; Dhuliawala et al., 2023;
Azaria and Mitchell, 2023; Li et al., 2023; Zhang
et al., 2023a). Prior work (Ji et al., 2023; Huang
et al., 2023) characterizes hallucination into two
main types: factuality hallucination and faithful-
ness hallucination. Factuality hallucinations re-
fer to outputs that are inconsistent with real-world
facts. In comparison, faithfulness hallucinations
shift to the generated content that deviates from
the user’s instruction or user-provided contextual
information. In this paper, we mainly focuses on
factuality hallucinations and aim to better lever-
age the LLM’s intrinsic capabilities to detect such
nonfactual statements within their generations.

Hallucination detection. To detect hallucina-
tions in LLM generation, the retrieval-based meth-
ods (Shuster et al., 2021; Min et al., 2023; Chern
et al., 2023; Semnani et al., 2023; Huo et al., 2023;
Zhang et al., 2024) compare the LLM’s output with
information from a reliable knowledge base. When
an external knowledge base is inaccessible, another
category of methods rely on the model’s intrinsic
capabilities. Among them, some approaches lever-
age the reasoning ability of LLMs to detect and re-
duce hallucinations (Chen et al., 2023b; Dhuliawala
et al., 2023) via chain-of-thought prompting (Wei
et al., 2022). Uncertainty-based methods perform
token-level or sentence-level uncertainty quantifica-
tion (Varshney et al., 2023; Fadeeva et al., 2024) to
predict the factuality of model’s generation. Prob-
ing the model’s hidden states can also help detect

hallucinations (Azaria and Mitchell, 2023; Chen
et al., 2023a; Su et al., 2024). The sampled-based
methods (or consistency-based methods) (Manakul
et al., 2023; Cao et al., 2023; Mündler et al., 2023)
sample multiple responses and then perform con-
sistency checks between these responses and the
original model generation. Inconsistencies are then
used to detect hallucinations. Our method is closely
related to the consistency-based methods. Instead
of sampling additional responses and performing
unstructured consistency checks, our method gen-
erates logically-related statements organized in a
tree structure. We further propose a probabilistic
framework based on the hidden Markov tree model
to check consistency and detect hallucinations.

Improving factuality via logical consistency. A
growing body of research explores improving
LLMs’ factuality using the logical consistency
across their beliefs (Dalvi et al., 2021; Tafjord et al.,
2022; Mitchell et al., 2022; Jung et al., 2022; Hase
et al., 2023; Kassner et al., 2023; Akyürek et al.,
2024). Starting from an initial text (e.g., a state-
ment requiring truthfulness assessment or a ques-
tion), these methods identify additional texts that
are logically connected to the initial text and orga-
nize them in tree or graph structures. The inconsis-
tencies of model’s beliefs on the factual correctness
of these texts are resolved based on the inferential
relations among these texts. One main limitation
is that they treat the beliefs (LM-generated truth
values or probabilities) as calibrated, which is gen-
erally not the case. Motivated by this, we build a
probabilistic framework to integrate the model’s
beliefs and figure out the most possible and reliable
correctness evaluation of the initial text.

3 Method

Given a statement v from the LLM-generated text,
e.g., A star’s temperature is determined by the
amount of mass and energy it has, and an LLM,
we aim to use the LLM to gauge the correctness
of the statement. Many previous approaches use
simple prompting techniques to directly elicit the
LLM’s “belief”, or assessed probability of the state-
ment, as a confidence score in [0, 1]. For exam-
ple, one approach is to directly query the LLM
for whether this is true. By sampling multiple an-
swers from the LLM, we can obtain the confidence
score as the fraction of answers that say yes (or
some paraphrase thereof). Crucially, these scores
may be wrong in several ways: in addition to be-
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Stars with lower mass will have lower 
temperatures than more massive ones.

External factors such as a surrounding 
nebula determines the temperature.

A star's temperature is determined by 
the amount of mass and energy it has.

Entails

Contradicts

Potential 
Hallucination

0.1

0.9 Confidence: 0.1

Figure 2: Motivating example for the proposed method.

ing factually incorrect, they may be miscalibrated
(reflecting an inappropriate degree of certainty or
uncertainty) or inconsistent (e.g., assigning high
probability to mutually incompatible statements,
or different probabilities to logically equivalent
statements). Below, we describe a method that
addresses both categories of error by reasoning
jointly about relationships between the truth values
of related statements and LLM confidence scores.

3.1 BTPROP: An Intuitive Overview
The basic idea of our approach is to construct a
belief tree, denoted T , in which the root node is
the target statement, each child node is a state-
ment logically related to the parent node, and each
edge represents the logical relationship between
two nodes. We then obtain the confidence scores of
all the nodes and use the logical consistency among
them to correct any potential mistakes in the scores.

Figure 2 shows an example, where the target
statement is A star’s temperature is determined
by the amount of mass and energy it has. This
statement is true but assume that the LLM produces
a low confidence score, 0.1, for the statement. To
correct this error, we can construct a belief tree
T by generating two child nodes from the target
node, where the first, which is true, is entailed by
the target statement and the second, which is false,
contradicts the target statement. Assume that the
LLM correctly assigns a high confidence score to
the former and a low score to the latter. In this
case, we can easily recognize that the belief of the
target node is logically inconsistent with those of
the child nodes, and that increasing the confidence
score of the target node would resolve the logical
inconsistency, thereby correcting the mistake.

The example above shows a simple case in which
LLM beliefs about child nodes are all correct. In
reality, these child nodes’ beliefs may themselves
be incorrect. To mitigate these additional errors, we
can construct a much larger belief tree with greater
depth and many different statements. Assuming
the errors in the confidence scores are sporadic,
we can then expect to correct most of these errors,
in both the target and child nodes, by taking into
account all the confidence scores and their logical
consistency. An example of such a full belief tree

is shown in Figure 3.
As implied by the discussion above, our algo-

rithm consists of two components: ❶ Constructing
the belief tree, and ❷ inferring the truthfulness of
the target statement by integrating the confidence
scores across the belief tree. Section 3.2 will dis-
cuss the former and Sections 3.3-3.5 the latter.

3.2 Belief Tree Construction

Since the belief tree T consists of nodes as state-
ments and edges as the logical relationships be-
tween parent and child statements, the construction
of the belief tree iterates between the following two
steps. Step 1: Given a statement as the parent node,
generate a set of logically connected statements as
the children nodes. Step 2: Determine the logical
connection between the children nodes and parent
node. The iterative process starts with the target
statement as the root node, and terminates when
the maximum tree depth is reached. Each step is
detailed below.

Generating Child Statements As will be de-
scribed below, BTPROP is general, and compatible
with any method for generating belief tree nodes
from parent statements. We explore three specific
strategies for statement generation:

Strategy 1: Statement Decomposition. For state-
ments containing multiple facts/claims, we decom-
pose them into individual sub-statements. Figure 1
shows an example where the target statement (Node
0) contains multiple facts (the atmosphere pressure
level and the freezing point of water on Mound
Everest), It is then decomposed into two statements,
one on the atmosphere pressure level and one on
the freezing point of water. Statement decomposi-
tion can be achieved by prompting the LLM with
in-context examples, as listed in Appendix A.7.

Strategy 2: Supportive and Contradictory
Premises. We prompt the LLM to generate a set of
premises that are supportive or contradictory to the
parent claim. When verifying the truthfulness of
Node 2 in Figure 1 about the freezing point of water,
we can prompt the model to generate contradictory
premises (Node 3 and Node 4) that implies the lim-
ited influence of low pressure on the freezing point
of water. By leveraging these generated premises,
we can indeed correct the model’s wrong belief
on Node 2 since the model’s confidence scores on
these generated premises are high in this example.

Strategy 3: Statement Correction. In this strat-
egy, the LLM is instructed to generate what it be-
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lieves to be corrected versions of the parent state-
ment. The Node 5 in Figure 1 shows one example
of the statement correction process, where the state-
ment is about the freezing point of water. Then the
corrected statements would be almost the same as
the parent statement (Node 2), except that the ac-
tual temperature is replaced with alternatives that
LLM believes may be true. This strategy is imple-
mented via a three-step prompting process. First,
the LLM is prompted to generate a question about
the key information in the statement (e.g., the freez-
ing point in Node 2 in Figure 1). Then, the we
sample answers from the LLM. Finally, the LLM
is prompted to generate a corrected statement from
the original statement if it is wrong according to
each sampled answer. Note that there can be mul-
tiple corrected statements because the LLM may
produce different answers when sampled multiple
times. Also, the corrected statements may include
the parent statement itself if the LLM believes the
parent statement is a likely answer. More details
about this process can be found in Appendix A.7.

Our method select the most appropriate strate-
gies for each parent claim as follows. First, LLM
first attempt the statement decomposition strategy.
If the decomposition returns multiple statements,
which indicates that the decomposition is meaning-
ful, we would use them as the child statements. If
only a single statement is returned, indicating that
the parent statement cannot be further decomposed,
we will prompt the LLM to select between strate-
gies 2 and 3 with a list of rules and examples. The
detailed prompts are in Appendix A.1.

Determining Logical Relationships Given a
pair of parent and child statements, u and v, we
consider the following four logical relationships:
❶ Equivalence, u ⇔ v, if u entails v and v entails
u; ❷ entailment, u ⇒ v, if u entails v but v is
neutral to u; ❸ reverse entailment, u ⇐ v, if u is
neutral to v but v entails u; and ❹ contradiction,
u ⇒ ¬v (or, equivalently, v ⇒ ¬u). Note that we
do not consider the completely neutral relationship
because any statements determined as completely
neutral to their parent statement will be removed.

For the decomposition strategy (strategy 1), the
child node statements are, by construction, jointly
equivalent to the parent statement. Formally, de-
note u as the parent node and C(u) as the set of
its child nodes, then their logical relationship is
determined as u ⇔ ∩v∈C(u)v.

For strategies 2 and 3, since each child state-

ment is independently generated, we only need
to determine their individual relationship to the
parent statement, rather than the joint relationship.
To this end, we leverage an off-the-shelf natural
language inference (NLI) model to infer the en-
tailment, neutrality, or contradiction between the
statements. For each pair of parent statement u
and an individual child statement v, we derive two
NLI relationships, one by setting u as the premise
and v as the hypothesis, and the other with u and v
switched. The two NLI outputs are then mapped to
the aforementioned logical relationships – (entail,
entail) mapped to equivalence; (entail, neutral)
mapped to entailment; (neutral, entail) mapped to
reverse entailment; and any results containing con-
tradict in either direction mapped to contradiction.
If the NLI module returns (neutral, neutral), the
corresponding child statement will be discarded.

Prior Belief Estimation The last step of the be-
lief tree construction is to estimate the model’s
belief (i.e., whether the statement is true) on each
node. Specifically, we directly probe the LLM
with the prompt ‘True or False? {target
statement}’ and use the next token prediction
probabilities of the words ‘True’ and ‘False’ to
compute the model confidence. We normalize the
prediction logits of the two words to get the con-
fidence score of that statement. The only excep-
tion is in the case of statement correction, where
the LLM is already instructed to output alterna-
tive statements it believes to be true. As a result,
we simply set the confidence score of each gener-
ated statement to 1. Our empirical analysis shows
that this would greatly reduce the number of LLM
queries without deteriorating the performance.

3.3 A Hidden Markov Tree Model

After the belief tree is constructed, the next ques-
tion is how to utilize the confidence scores across
the tree to better determine the truthfulness of the
root statement, namely the target statement. To
this end, we introduce a hidden Markov tree model
and frame the truthfulness estimation problem as a
probabilistic inference problem.

Figure 3 shows an example hidden Markov tree
model built upon the belief tree, where there are
two layers of variables. The upper layer consists
of the confidence score of each statement, denoted
{Su}, which is estimated during the belief tree con-
struction process. The lower layer consists of the
binary variables representing the actual correctness
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Figure 3: An example hidden Markov tree model.

of each statement, denoted as {Zu}. Zu = T if state-
ment v is correct and Zu = F otherwise. {Su} are
observed variables while {Zu} are hidden variables.

Given the above hidden Markov tree model, de-
termining the truthfulness of the target statement
can be cast as computing the posterior probability,
i.e., p(Z0 = T | {Su}), which means the truthful-
ness of the root node given the confidence scores
on all the nodes in this belief tree. To computing
p(Z0 = T | {Su}), we need to estimate the following
probabilities.

The first set is the emission probability, p(Su |
Zu), which characterizes the LLM’s confidence
score of the statement given its underlying truthful-
ness. The emission probability captures the quality
of LLM’s original confidence score. If the confi-
dence score is accurate, then p(Su | Zu = T ) will
concentrate its probability mass towards 1, and
p(Su | Zu = F ) will concentrate its probability mass
towards 0. Otherwise, the conditional distributions
will be more spread.

The second set of distribution is the transition
probability, p(ZC(u) | Zu), where ZC(u) represent the
set of truthfulness variables of all the child nodes of
u. The transition probability is the joint probability
of the truthfulness of the child statements given that
of the parent statement, which captures the logical
relationships among these statements.

The third set of distribution is the prior distri-
bution of hidden variables, i.e., p(Zu = z), which
refers to the probability of an arbitrary statement u
generated by the LLM being true or false. We use
uniform prior (both 0.5 for z = T and z = F ) in
this paper.

Therefore, the process of computing the poste-
rior probability contains two steps: ❷ the estima-
tion step, to first estimate these probabilities on a
held-out dataset. ❸ the inference step, to compute
the posterior probability for each testing example.
Section 3.4 will discuss how to determine the emis-

Su ∈ [0.0, 0.2) [0.2, 0.4) [0.4, 0.7) [0.7, 0.9) [0.9, 1.0]

Zu = True 0.12 0.05 0.10 0.08 0.65
Zu = False 0.30 0.10 0.15 0.13 0.32

Table 1: Empirical estimation of the emission probabil-
ity on Wikibio-GPT3 dataset (Manakul et al., 2023).

sion and transition probabilities and Section 3.5
how to infer p(Z0 = T | {Su}).

3.4 Determining Conditional Probabilities

Determining Emission Probabilities The emis-
sion probabilities, p(Su | Zu), can be estimated from
labeled datasets. Specifically, given a dataset of
statements with truthfulness labels, we can run the
LLM to obtain the confidence scores of all the
statements. We can then estimate p(Su | Zu = T )

by obtaining the empirical distribution of the confi-
dence scores within the statements labeled as true,
and p(Su | Zu = F ) within the statements labeled
as false. To obtain the empirical distribution of
the continuous confidence scores, we first quantize
the support [0, 1] into multiple bins, and count the
histogram of the confidence scores falling into each
bin. The boundaries of each bin are listed in Table 1.
Given a particular confidence score on a statement,
we look up the table to get the corresponding emis-
sion probability. For example, a confidence score
0.95 leads to p(Su = 0.95 | Zu = F ) = 0.65.

Determining Transition Probabilities The tran-
sition probability, p(ZC(u) | Zu), is a multivariate
Bernoulli distribution with the support {T, F}m,
where m is the size of C(u). As discussed in Sec-
tion 3.2, different statement generation strategies
have different logical relationship properties. For
the statement decomposition strategy, the child
statements are always jointly equivalent to the par-
ent statement. Therefore, when the parent claim is
true, i.e., Zu = T , we know that all of the child state-
ments must be true, and thus p(ZC(u) = z | Zu = T )

equals one when every element in z is true and
zero otherwise. Conversely, when the parent claim
is false, i.e., Zu = F , we can infer that at least one
child statement is wrong, so p(ZC(u) = z | Zu = F )

is set to zero when every element in z is true and
uniformly set to 1/(2m − 1) otherwise.

For the other two strategies, the child state-
ments of the same parent statement are consid-
ered independent conditional on the parent state-
ment. Therefore, we can decompose the proba-
bility p(ZC(u) | Zu) into

∏
v∈C(u) p(Zv | Zu), where

each p(Zv | Zu) is the transitional probability be-
tween parent statement u and one child statement
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u ⇔ v u ⇒ v u ⇐ v u ⇒ ¬v
u = T u = F u = T u = F u = T u = F u = T u = F

v = T 1.0 0.0 1.0 pt pt 0.0 0.0 pt
v = F 0.0 1.0 0.0 pf pf 1.0 1.0 pf

Table 2: Transition probability given different logical
relationships between two nodes. pt and pf are set to
0.5 in this paper.

v. p(Zv | Zu) is determined based on the four dif-
ferent possible logical relationships between u and
v (recall the discussion in Section 3.2), which is
listed in Table 2.

3.5 Inferring the Posterior Probability of Z0

Inferring the posterior probability p(Z0 = T | {Su})
is a standard inference problem in hidden Markov
tree models and we can apply the standard upward-
downward algorithm (Crouse et al., 1998) to effi-
ciently compute this probability. For brevity, we
only describe the gist of the algorithm here. More
details can be found in Appendix A.4 and previous
work (Crouse et al., 1998; Durand et al., 2004).

The algorithm introduces an auxiliary condi-
tional distribution β(z, u) ≡ p(ST (u) | Zu = z), where
z ∈ {T, F} and ST (u) represents the confidence
scores of all the nodes in the sub-tree whose root
node is u. Note that the posterior probability of our
interest, p(Z0 = T | {ST (0)}), can be computed as

p(Z0 = T | {ST (0)}) =
β(T, 0)p(Z0 = T )∑

z∈{T,F} β(z, 0)p(Z0 = z)
,

where p(Z0 = T ) and p(Z0 = F ) are exactly the prior
probabilities we mentioned in Section 3.3, and both
are set to be 0.5. Therefore, the posterior proba-
bility above can be represented as β(T, 0)/(β(F, 0) +

β(T, 0)). According to the Bayesian rule, we can
derive a recursive relationship between β(z, u) of a
parent node u and those of the child nodes:

β(z, u) = p(Su | Zu = z)·
∑

ZC(u)∈{T,F}m
p(ZC(u) | Zu = z)

∏

v∈C(u)
β(Zv, v), (1)

where m is the size of C(u) (namely the number of
child statements to node u). Note that the first term
on the RHS is the emission probability, and the first
term inside the summation is the transition proba-
bility, which are both already known. Therefore,
Equation 1 provides a way to compute β(z, 0) re-
cursively from the leaf nodes back to the root node.
First, we compute the β(z, u) of the leaf nodes as
β(z, u) = p(Su | Zu = z). Then, we use Equation 1
to recursively compute the β(z, u) of a parent node
u from their child nodes, until the root node is

reached. The entire process is essentially propa-
gating and merging the beliefs in the confidence
scores from sub-trees upward to the parent node.
By the time we reach the root node, we have gath-
ered the information of all the confidence scores.
Hence this process is also referred to as a belief
propagation process.

We summarize the whole algorithm in Ap-
pendix A.5.

4 Experiments

In this section, we conduct empirical evaluations on
widely-used hallucination detection benchmarks.

4.1 Experiment Configurations

Datasets We follow the previous work of
hallucination detection (Manakul et al., 2023;
Chen et al., 2023b) and use the following
datasets for evaluation: Wikibio-GPT3 (Man-
akul et al., 2023), FELM-Science (Chen et al.,
2023b), and FactCheckGPT (Wang et al., 2023).
Wikibio-GPT3 mainly consists of biography arti-
cles generated by LLMs, whereas the other two
datasets cover a broader range of topics such as
physics, chemistry, and computer science.

Evaluation settings and metrics We con-
duct hallucination detection at sentence-level on
Wikibio-GPT3 and FactCheckGPT and segment-
level on FELM-Science following the default set-
tings. Our evaluation metrics include the area un-
der the receiver operator characteristic curve (AU-
ROC), area under the precision-recall curve (AUC-
PR), F1 score, and detection accuracy. As F1 score
and detection accuracy evaluation require a deci-
sion threshold, we search for the optimal threshold
to maximize the F1 score for each method and com-
pute the two metrics. The hallucinated examples
are considered as positive instances following the
default configurations of these datasets. Moreover,
Wikibio-GPT3 and FELM-Science exhibit signifi-
cant class imbalances, so the detection accuracy on
these datasets serve merely as reference points.

Baselines We include the following baselines for
comparison. (1) PRIOR CONFIDENCE , which di-
rectly queries the model’s confidence on the truth-
fulness of each sentence or segment. (2) COT,
which prompts the model to first generate a rea-
soning process before deciding the truthfulness.
We adopt the prompting method from the official
FELM (Chen et al., 2023b) dataset, with slight mod-
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Method Backbone AUROC AUC-PR F1 Acc Backbone AUROC AUC-PR F1 Acc

Wikibio-GPT3

PRIOR CONFIDENCE

gpt-3.5
-turbo

73.1 85.7 84.5 76.3

Llama3-8B
Instruct

71.0 85.7 85.5 75.9
COT 71.3 83.4 85.2 76.4 72.0 84.4 85.3 75.7
SEMANTIC UNCERTAINTY 70.8 86.1 84.3 73.7 60.3 78.7 84.5 73.6
SELFCHECKGPT 82.6 91.3 86.6 80.0 77.0 86.8 86.1 76.8
FOCUS - - - - 73.0 85.1 86.2 77.3
BTPROP 80.7 90.4 87.6 80.4 74.0 86.2 86.1 77.5

FELM-Science

PRIOR CONFIDENCE

gpt-3.5
-turbo

75.5 37.2 42.1 81.6

Llama3-8B
Instruct

76.1 38.2 44.0 80.6
COT 56.3 19.0 28.6 72.5 61.6 25.7 32.6 71.2
SEMANTIC UNCERTAINTY 59.1 25.6 32.6 75.2 52.5 17.2 27.9 79.6
SELFCHECKGPT 77.4 45.7 51.3 84.4 77.8 39.5 49.1 76.5
MAIEUTIC PROMPTING - - 27.2 82.6 - - 22.9 79.2
FOCUS - - - - 69.4 43.5 41.7 76.5
BTPROP 79.1 52.3 56.5 81.6 77.8 48.2 51.3 82.8

FactCheckGPT

PRIOR CONFIDENCE

gpt-3.5
-turbo

76.0 52.6 53.6 71.5

Llama3-8B
Instruct

71.9 47.6 50.8 60.5
COT 66.5 38.9 47.7 66.4 72.5 43.3 53.2 66.1
SEMANTIC UNCERTAINTY 56.3 33.9 40.9 65.9 57.6 34.1 40.8 49.9
SELFCHECKGPT 74.9 49.7 54.4 74.0 72.5 46.4 51.9 65.9
MAIEUTIC PROMPTING - - 35.0 72.2 - - 39.8 66.8
BTPROP 79.4 54.3 60.2 75.3 73.9 49.1 55.3 72.6

Table 3: Hallucination detection performance of different methods. We report AUROC, ROC-PR, F1 score, and
detection accuracy(Acc) for all methods with two backbone models. The best results are highlighted in bold.

ifications for sentence-level and segment-level hal-
lucination detection. (3) SELFCHECKGPT (Man-
akul et al., 2023), which samples additional re-
sponses from the model and use the inconsistency
between each response and the target statement for
hallucination detection. Among the multiple vari-
ants, we choose SELFCHECKGPT-prompt with the
best performance for comparison. (4) MAIEUTIC

PROMPTING (Jung et al., 2022), which builds a
belief tree via backward-chaining and then infers
the truth-value of the original statement that re-
solves the inconsistencies. (5) SEMANTIC UNCER-
TAINTY (Kuhn et al., 2023; Farquhar et al., 2024),
which estimate the model’s predictive uncertainty
on the generation for hallucination detection. (6)
FOCUS (Zhang et al., 2023b), which quantify the
predictive uncertainty of the LLM on given texts
to detect hallucinations. Note that we only include
FOCUS when the backbone is Llama3 since it re-
quires full access to the LLM.

Implementation details We evaluate our meth-
ods and baselines using GPT-3.5-turbo-0125 and
Llama-3-8B-Instruct. For our method, we set
the maximum belief tree depth to 2. We employ
greedy decoding during belief tree construction
and prior belief estimation. The exception is the
statement correction strategy, where we sample 5

corrected statements using temperature 0.7. Addi-
tionally, since each statement in FactCheckGPT is
manually processed to ensure it contains only one
property or fact, we do not apply statement decom-
position when build the belief tree for statements
from FactCheckGPT. We use the first 120 exam-
ples in the Wikibio-GPT3 dataset to estimate the
emission probability in our method, and validate it
on the remaining examples and two other datasets.
More details are in Appendix A.1.

4.2 Experiment Results

Overall comparison We evaluate the effective-
ness of BTPROP with the experiment results in
Table 3. We highlight the following observations.
First, our method achieves the best performance on
FELM-Science and FactCheckGPT datasets across
different backbones, demonstrating the superiority
of our method. BTPROP improves upon the best
baselines by 3% - 9% on AUROC and ROC-PR.
The only exception is the Wikibio-GPT3 dataset,
where the SELFCHECKGPT is more effective for
detection hallucinated outputs in biographies gener-
ated by LLMs. Second, compared to SELFCHECK-
GPT which leverages contradictions between the
target statement and the sampled responses for
hallucination detection, our method is more ef-
fective on detecting hallucinated responses related
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Figure 4: Performance-efficiency comparison.

to scientific knowledge. Both FELM-Science and
FactCheckGPT datasets contain a significant pro-
portion of questions on scientific knowledge, and
our method achieves the best performance on them.
Third, chain-of-thought prompting is less effec-
tive in hallucination detection, especially on the
FELM-Science dataset. This finding aligns with
the experimental results in the original FELM dataset
paper. Our experiments show that the model tends
to regard the input sentence as true most of the time,
leading to sub-optimal performance. The Maieutic-
prompting method, which is originall designed to
verify the correctness of statements related to com-
monsense reasoning, is less effective for halluci-
nation detection. Even on the FELM-Science and
FactCheckGPT datasets which contain many state-
ments about scientific knowledge, it remains less
effective compared to other methods. We also find
that the Semantic Uncertainty method is more ef-
fective on detection hallucinations in biography
generation. However, its effectiveness diminishes
when applied to the other two datasets. In con-
trast, our method consistently delivers competitive
performance across a variety of benchmarks.

Deployment efficiency One concern on our
method is the belief tree construction would be
inefficient. We compare the time cost of our
method with the baselines on the FELM-Science
and FactCheckGPT datasets, where our method
significantly outperform baselines. We use the
gpt-3.5-turbo as the backbone, and eliminate
CoT prompting method on FELM-Science dataset
due to its poor performance. We visualize the trade-
off between hallucination detection performance
and the time cost in Figure 4. The baseline methods,
including SELFCHECKGPT and COT prompting,
samples additional 20 responses for hallucination
detection. We vary the number of samples and
test the corresponding performance to visualize the
trade-off. As depicted in the graph, the baseline
performance shows diminishing returns in perfor-
mance improvement with increased computational

AUROC AUC-PR F1 Acc

BTPROP 79.1 52.3 56.5 81.6
Decomposition only 67.9 31.2 43.3 79.6
Premise only 70.2 30.7 40.4 78.6
Correction only 77.4 47.5 53.0 81.5

PRIOR CONFIDENCE 75.5 37.2 42.1 81.6

Table 4: Performance of BTPROP given different child
node generation strategies.

complexity. As time cost increases, the perfor-
mance growth of the two baseline models gradu-
ally levels off, eventually reaching a point where
additional time does not translate into significantly
better performance. In comparison, our method can
effectively trades off increased time cost for signif-
icantly improved performance. Despite its higher
computational complexity, it achieves a marked im-
provement in performance metrics, underscoring
its efficiency and effectiveness.

Hallucination detection in texts generated by
the backbone model. Since the datasets in the
above experiments consist of text generated by an-
other model for hallucination detection, we also
include texts generated by the backbone model it-
self to to provide a more comprehensive evaluation
of our method’s effectiveness. Detailed results are
available in Appendix A.2, where we show that our
method can also effectively detect the hallucina-
tions in the text generated by the backbone model
itself.

Qualitative results We visualize several exam-
ples of the constructed belief trees to demonstrate
how the inconsistencies in model’s beliefs help de-
tect the hallucination. Due to space limit, we put
these examples and the analyses in Appendix A.3.

Ablation study: belief tree construction We
introduce three strategies to build the belief tree:
statement decomposition, generating supportive
and contradictory premises, and statement correc-
tion. We perform ablation study to demonstrate the
necessity to introduce these different strategies in
Table 4 using gpt-3.5-turbo-0125 as the back-
bone model. Specifically, we evaluate the perfor-
mance of our method when only use one child
node generation strategies on the FELM-Science
dataset. We highlight the following observations.
First, only applying one child node generation strat-
egy is sub-optimal. There exist a significant gap
between using one strategy and using them all. Sec-
ond, statement correction tends to contribute most
to the performance improvement, but when com-
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bining it with other strategies, the performance can
still be further improved.

5 Conclusion

In this paper, we propose BTPROP, a method that
leverages the model’s intrinsic capability for hal-
lucination detection. Given a statement from the
LLM-generated texts, our method organizes the
model’s intrinsic beliefs on neighboring statements
in a belief tree. By introducing the hidden Markov
tree model, we convert the the hallucination detec-
tion into a posterior probability estimation problem
and propose corresponding solutions to solve it.
Experiment results have demonstrate the effective-
ness of our method. The future direction would be
how to further improve the belief tree construction
method to make it more effective and efficient.

6 Societal Impact and limitations

In this paper, our primary goal is to develop an
algorithm that can integrate the model’s internal
beliefs on logically-connected statements to detect
hallucinations in texts generated by the LLM. Our
method is designed to improve the trustworthiness
of LLMs and make fully use of their intrinsic ca-
pabilities. Therefore, our method is less likely to
introduce the unintended risks. We also assess the
experiments to ensure they are devoid of any harm-
ful content or adverse impacts.

While BTPROP improves the hallucination de-
tection performance and enhance the trustworthi-
ness of LLMs, it involves collecting a set of aug-
mented statements (the belief tree) to perform infer-
ence. Therefore, the main limitation of our method
is its high time cost. Constructing a belief tree
necessitates multiple queries to the large language
model, leading to significant delays. Additionally,
the time complexity of generating child nodes in-
creases exponentially as more layers are added to
the tree. A potential solution to this issue could be
to develop a mechanism that selectively expands
nodes within the belief tree, thereby optimizing the
process.
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A Appendix / supplemental material

A.1 Implementation Details

Data preprocessing We preprocess the data
in Wikibio-GPT3 (Manakul et al., 2023) and
FELM-Science (Chen et al., 2023b) before eval-
uating our method and baselines. The data prepro-
cessing includes two steps. First, we perform de-
contextualization since the sentences in a response
generated by the LLM might be context-dependent
and contain pronouns or noun phrases that can-
not be understood without full context. Take the
first data instance from Wikibio-GPT3 for demon-
stration, which is a biography of “John Russell
Reynolds” generated by an LLM. The second sen-
tence within the biography requiring hallucination
detection is “He was born in London, the son of
a barrister, and was educated at Eton College and
Trinity College, Cambridge.” Without the context,
we cannot identify the truthfulness of this sentence
due to the pronoun. Therefore, we first decontextu-
alize the sentences in the two datasets by prompting
gpt-3.5-turbo-0125. The prompt is available in
Figure 9.

Second, we further manually clean up the dataset
by filtering out some sentences that are not check-
worthy but still annotated as “true” in the datasets.
For example, the FELM contains some sentences
such as “Sure!” and “If you have any further ques-
tions or concerns, please let me know.”. These
sentences are annotated as “true” and will be
counted into performance evaluation. Since both
two datasets contains not too many examples, we
manually filter out these sentences to exclude them
in our evaluation. The datasets after our preprocess-
ing and filtering are available in the supplemental
material and will be made open-sourced.

Implementation of our method We use the
vLLM (Kwon et al., 2023) to perform the infer-
ence of Llama-3-8B-Instruct. We use a sin-
gle NVIDIA A100 80GB PCIe GPU to evaluate
the performance and report the time cost in Fig-
ure 4. For the emission probability estimation
(Table 1), we use the first 120 examples in the
Wikibio-GPT3 dataset (50% of it) to compute the
empirical estimation of the emission probability.
The model we use is gpt-3.5-turbo-0125. Then
we transfer the estimated emission probabilities
to the remaining examples in Wikibio-GPT3 and
other datasets for performance evaluation. For
Llama-3-8B-Instruction, we also use the same
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AUROC AUC-PR F1 Acc

Prior Confidence 67.7 63.2 71.6 68.1
MSP 70.5 73.3 69.3 57.4
Perplexity 66.0 63.4 70.0 59.3
CCP 75.8 78.1 72.4 69.5
BTPROP 76.5 75.5 73.3 70.0

Table 5: Performance of BTPROP given different child
node generation strategies.

estimated emission probabilities.
For the emission probability, we use first 120

examples of the Wikibio-GPT3 dataset as the val-
idation set and estimate the emission probability
on it using gpt-3.5-turbo-0125. The estimated
emission probabilities are in Table 1 and will used
on the other testing examples of Wikibio-GPT3
and other two datasets. Additionally, since we set
the model confidence on child nodes generated by
statement correction as 1.0 rather than probe the
model’s confidence, we find setting an individual
set of emission probabilities for those statements
improves the performance. Therefore, we tune
the emission probabilities for child nodes gener-
ated by statement correction on the validation set.
The emission probabilities for those child nodes
we use are p(Su = 1 | Zu = 1) = 0.8 and
p(Su = 1 | Zu = 0) = 0.2. During the belief tree
construction process, we add several constraints to
boost the efficiency. Specifically, we only apply
statement decomposition to the root node, assum-
ing the child nodes generated by the LLM is atomic
statements that only contain one aspect of informa-
tion. Also, we do not expand nodes generated by
statement correction, as they are homogeneous to
their parent node.

Implementation of baselines We follow the
default configuration of each baselines. For
SELFCHECKGPT, we sample 20 additional re-
sponses for hallucination detection. Similarly,
we also sample 20 different answers for chain-
of-thought prompting and aggregate them using
self-consistency (Wang et al., 2022). For Maieutic-
Prompting, we use their prompts for the CREAK
datasets to generate belief trees in our evaluation.
For all methods, we use the scikit-learn pack-
age to compute the evaluation metrics including
AUROC, AUC-PR, and F1 score.

A.2 Additional Results

Since the datasets in the above experiments consist
of text pre-generated by another model for halluci-

0: Adiele Afigbo (1941–2006) was a Nigerian historian and 
professor of African history at the University of Nigeria, Nsukka.

1: Adiele Afigbo was a Nigerian historian

2: Adiele Afigbo was a professor of African 
history at the University of Nigeria, Nsukka

4: Adiele Afigbo lived from 1937 to 2006

5: Adiele Afigbo lived from 1937 to 2009

1.00

1.00

1.00

1.00

1.00

Statement 
decomposition

Statement 
correction

Label: False

3: Adiele Afigbo lived from 1941 to 2006 0.97

5: Adiele Afigbo lived from 1937 to 2003 1.00

Figure 5: Belief tree example.

nation detection, we also include texts generated by
the hallucination detection model itself to further
evaluate the effectiveness of our method. Specifi-
cally, we first generate biographical data using the
prompt from Wikibio-GPT3 dataset with Llama-3-
8b-instruct, following the “claim-level uncertainty
quantification” setup of LM-Polygraph (Fadeeva
et al., 2023). Then we use the same model to de-
tect the hallucinations in its generations, where the
ground-truth label for each claim is determined by
FactScore (Min et al., 2023). We evaluate the per-
formance of our method and additional baselines
including CCP (Fadeeva et al., 2024), maximum
sequence probability (MSP), and Perplexity. The
ground-truth label for each claim is determined by
FactScore. The results are summarized in Table 5.

Similar to the observation in our main experi-
ments, our method performs competitively against
these state-of-the-art uncertainty quantification
techniques. Specifically, our approach achieves the
highest AUROC, F1 scores, and accuracy, demon-
strating its ability to reliably detect hallucinations.
Please note that our method is not originally de-
signed for the “claim-level” hallucination detec-
tion, where the biography data are decomposed
into atomic claims for fact-checking. Nevertheless,
our method still achieves competitive performance.

A.3 Examples of Belief Trees

We visualize several constructed belief trees as
well as how our method leverage the inconsis-
tencies in model’s beliefs for hallucination de-
tection. We start with a simple example from
the Wikibio-GPT3 dataset (Manakul et al., 2023)
shown in Figure 5. Starting from the root node
about Adiele Afigbo, the first layer contains 3
child nodes generated by statement decomposition.
However, despite the statement is wrong, the model
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0: Water can freeze at temperatures slightly below 0°C at 
higher elevations, where the atmospheric pressure is lower.

1: Water can freeze at temperatures slightly 
below 0°C at higher elevations

2: Freezing of water at lower temperatures 
is influenced by lower atmospheric pressur

3: The temperature required for water to freeze 
remains consistent regardless of elevation

4: Scientific experiments have consistently shown 
that water freezes at 0°C under normal conditions.

5: The freezing point of water decreases with increasing 
atmospheric pressure, not lower atmospheric pressure

6: The concept of lower atmospheric pressure causing 
water to freeze at lower temperatures is a misconception.

0.99

0.99

0.10

0.97

0.99

0.19

0.06

Statement 
decomposition

Contradictory 
premises

Contradictory 
premises

Label: False

Figure 6: Belief tree example.

(gpt-3.5-turbo-0125) assign a high confidence
score to both the original statement and the child
nodes decomposed from the root node. Then, our
method further generate child nodes for node 1,2,
and 3. We display the child nodes of node 3 in the
figure, which is generated by statement correction.
With the three different statements about the date of
death of that person, we decrease the model’s con-
fidence on node 3 and finally correct the model’s
belief on the root node. Note that in statement
correction, we directly set the confidence of the
generated child nodes as 1.0. For this example, if
we query the model’s confidence scores on node 4,
5, and 6, we will get confidence scores 0.97, 0.91,
0.88, respectively, which will still contradicts to
their parent node.

Another example of the belief tree is shown in
Figure 6, which mainly consists of child nodes gen-
erated by supportive and contradictory premises.
At the root node, the model assigns a high confi-
dence score to the statement about freezing point
of water from the FELM dataset (Chen et al., 2023b).
After the statement decomposition, the inconsis-
tency is triggered due to model’s low confidence
on node 2. Furthermore, if we continuously gen-
erate premises for node 1, we get two additional
child nodes (node 3 and 4) that are contradictory
to their parent node. However, the model still as-
signs a high confidence to node 3 and 4. Within
the belief propagation framework, the conditional
probability of node 1 being true given the observa-
tions on node 3 and 4 will be decreased. Similarly,
this effect will propagate to the root node and lead
to a low posterior probability of the root node being
true.

We then show one failure case of our method
in Figure 7. The target statements comes from the
FactCheckGPT dataset (Wang et al., 2023). Our

0: Linux adoption has been relatively limited compared to 
other operating systems like Windows and macOS.

1: Linux has a strong presence in server environments, 
powering a significant portion of servers worldwide.

2: Linux is the foundation for Android, which is the 
most widely used operating system for mobile devices

3: Android is built on the Linux kernel, utilizing its open-
source code as the basis for its operating system.

0.37

0.99

0.99

0.99
supportive 
premises

Label: True

supportive 
premises

Figure 7: Belief tree example.

method first generation two supportive premises
with high confidence. These two child nodes are
indeed reasonable and can support the opinion that
“Linux operating system has a widespread adop-
tion.”, thus contradicting to the root statement and
further decreasing the model’s confidence on the
root node. We hypothesize that the original state-
ment, “Linux adoption has limited compared to
other operating systems like Windows and macOS”
lacks sufficient specificity and could be interpreted
from multiple perspectives. For example, it could
refer to market share in personal computing versus
cloud computing domains, making the ground-truth
label nondeterministic.

A.4 Inferring the Posterior Probability of Z0

The posterior probability p(Z0 = T | {Su}) can
be computed by:

p(Z0 = T, {Su})
p(Z0 = T, {Su}) + p(Z0 = F, {Su})

,

where {Su} = {su} refers to the set of all observed
variables in the belief tree.

Therefore, the key of the inference on the be-
lief tree is to compute the two joint probabilities
p(Z0 = T, {Su}) and p(S1 = F, X̄1 = x̄1). Fol-
lowing the conditional independence assumption
in the hidden Markov model, the truthfulness (i.e,,
states of hidden variables) of each node is deter-
mined by its parent node in the tree and the tran-
sition probability. Also, the model’s confidence
(i.e., states of observed variables) on each node is
determined by the state of the corresponding vari-
able and the emission probability. With such an
assumption, they can be decomposed as:

p(Z0 = T, {Su}) = p({Su} | Z0 = T ) ∗ p(Z0 = T ),
(2)

where p(Z0 = T ) is the prior probability of the
statement being true (note that we set it to be
0.5 in this paper). p({Su} | Z0 = T ) is the
conditional probability of all observed variables
(exclude the root node) given the root node be-
ing true. Recall that we introduce a notation
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β(z, u) = p(ST (u)|Zu = z) to represent such con-
ditional probabilities, where ST (u) refers to the
confidence scores (observed variables) of all nodes
on the subtree rooted at node u. Therefore, the con-
ditional probability p({Su} | Z0 = T ) can be de-
noted as β(T, 0) (node 0, hidden variable Z0 = T ).

Without loss of generality, we discuss below how
to compute β(z, u) for an arbitrary node u in the
tree. The computation for β(T, 0) and β(F, 0) can
be performed in exactly the same way. Specifically,
we can further decompose β(z, u) as:

p(ST (u)) | Zu = z) = p(Su | Zu = z)·




∏

v∈C(u)

p(ST (v) | Zu = z)



 .

(3)

The probability p(ST (v) | Zu = z) can be decom-
posed as:

p(ST (v) | Zu = z)

=
∑

k∈{T,F}
p(ST (v) | Zv = k) ∗ p(Zv = k | Zu = z)

=
∑

k∈{T,F}
β(v, k) ∗ p(Zv = k | Zu = z).

(4)

Therefore, the conditional probability β(z, u) =
p(ST (u)) | Zu = z) can be computed in a recursive
manner:

β(z, u) = p(Su | Zu = z)︸ ︷︷ ︸
Emission Probability

·





∏

v∈C(u)

∑

k∈{T,F}
β(v, k) ∗ p(Zv = k | Zu = z)︸ ︷︷ ︸

Transition Probability





.

(5)

There are two types of probabilities in the above
equation. First, p(Su | Zu = z) is the “emission
probability" at node u. Second, p(Zv = k | Zu =
z) is the “transition probability" from node u to
its child node v. The recursive computation in
Equation 5 will starts from the leaf nodes. When
v is the leaf node in the tree, β(v, k) is actually
p(Sv | Zv = k), which is the emission probability
at node v. Such a process propagates from bottom
to up. Finally, we can compute β(t, 0) as well as
the joint probability p(Z0 = T | {Su}) according
to Equation 2.

Beyond conditional independence: transition
probability for statement decomposition. The
above computation of the posterior probability is
based on the assumption of conditional indepen-
dence. Assume the node u have two child nodes,

Algorithm 1 BTPROP Algorithm

1: Input: Statement u0, maximum tree depth dmax

2: Output: The posterior probability p(Z0 = 1 | ST (0)).
3:
4: Initialize the belief tree T with root node u0

5: Initialize the leaf node set N = {u0}
6: while N ≠ ⊘ do ▷ Belief tree construction
7: Pop an element u from N
8: Generate child nodes C(u) for u
9: for Node v ∈ C(u) do

10: Add v to T
11: Add v to N if du < dmax

12: end for
13: end while
14:
15: function GETBETA(u, z) ▷ Compute β(z, u) in Eq. 1
16: if C(u) = ⊘ then
17: return p(su | Zu = z)
18: end if
19: for v ∈ C(u) do
20: β(v, 0) = GETBETA(v, 0)
21: β(v, 1) = GETBETA(v, 1)
22: end for
23: Compute β(u, z) according to Eq. 1
24: return β(u, z)
25: end function
26:
27: β(1, 0) = GETBETA(u = 0, z = 1)
28: β(0, 0) = GETBETA(u = 0, z = 0)
29: p(Z0 = 1 | ST (0)) = β(1, 0)/(β(1, 0) + β(0, 0))

v1 and v2. Then we consider the transition prob-
abilities from u to v1 and from u to v2 indepen-
dently. However, this does not hold for the child
nodes generated by statement decomposition, in
which the truthfulness of the child nodes are in-
fluenced by their parent node simultaneously. If
u is true, then we know that both two child nodes
are also true. In contrast, if u is false, we can
only infer that at least one of the child nodes are
false. To handle such a case, we revise the proba-
bility computation in Equation 3 accordingly. As-
sume node u has m child nodes. The probability
β(z, u) = p(ST (u)) | Zu = z) can be computed
as:

p(ST (u)) | Zu = z) = p(Su | Zu = z)β̃(u, z),where

β̃(u, z) =
∑

ZC(u)∈{T,F}m
p(ZC(u) | Zu = z)

∏

v∈C(u)
β(Zv, v)

which is the Equation 1 in the main paper.

A.5 Summary of the Algorithm

We summarize the pipeline of our method in Al-
gorithm 1. The root node of the belief tree is the
given statement u0. During the belief tree construc-
tion process, we maintain a set N that contains all
current leaf nodes of the belief tree. We recursively
expand each leaf node u ∈ N by its child nodes
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C(u) and add these new child nodes to the belief
tree if they are logically-connected to the current
leaf node. These generated child nodes then be-
come new leaf nodes. They will also be added
to N and be expanded until the maximum depth
is reached. Given the constructed belief tree and
the emission and transition probabilities estimated
from a held-out dataset, the posterior probability
β(Z0 = 1 | ST (0)) can be then computed in a
recursive manner, which will be further used to
predict the truthfulness of the given statement.

A.6 Submission Checklist

FactCheckGPT is under Apache-2.0 license.
FELM is under CC-BY-NC-SA-4.0 license, and
Wikibio-GPT3 is under CC-BY-SA-3.0 license.
We have cited them accordingly in the main pa-
per. All of these datasets are in English. These
datasets are created to evaluate the hallucination
detection performance, and our usages are consis-
tent with their intended use. We also manually
check the datasets and confirm that they do not
contains any information that names or uniquely
identifies individual people or offensive content.

We leverage ChatGPT to help develop some of
the prompt we use in the experiments and improve
the writing.

A.7 Prompt

In this section, we list all the prompt used in this
paper, including belief tree construction, prior con-
fidence estimation, and data preprocessing.

Belief tree construction Given a statement from
the LLM output, we use the following prompt
gpt-3.5-turbo-0125 to perform statement de-
composition, which is shown in Figure 10. In
the instruction, we specify the requirements to ex-
tract check-worthy claims and provide the model
with several examples. We also include an addi-
tional special example, where the given sentence
is actually a subjective opinion, to prevent the
model from decomposing sentences that are actu-
ally not check-worthy. We use a similar prompt for
Llama-3-8b-Instruction as shown in Figure 11.

To generate supportive and contradictory
premises, we prompt the model as follows: If the
model judge the given statement as true, then it
needs to generate several explanations to its judg-
ment, which form the supportive premises. In con-
trast, if the model believes the given statement is
false, then it will generate explanations to its judg-

ment, which form the contradictory premises. The
prompts we used are listed in Figure 12 and Fig-
ure 13. We first prompt the model with the prompt
in Figure 12. If the model judges the statement
as true and generates supportive premises, then
these premises will be returned and contradictory
premises will not be generated. If the model judges
the statement as false, then we prompt the model
with the prompt in Figure 13 for contradictory
premises. Although there might be better prompt-
ing strategies to generate such premises, finding the
optimal prompts and prompting strategies is out of
the scope of this paper. Therefore, we leave it for
future work.

Finally, to generate child nodes via statement
correction, we adopt the following pipeline. First,
we prompt the model using prompts listed in Fig-
ure 14 and Figure 15 to generate a question about
the key pieces of information in the statement. Af-
ter that, we feed the generated question to the LLM
again without any other prompt to get its answer. Fi-
nally, we ask the model to revise the original state-
ment according to the “background knowledge",
which is the answer generated by itself. By doing
this, we expect to better utilize the inconsistency
across model’s beliefs for child node generation.
The prompt for the last step is shown in Figure 16

To select the most appropriate strategies for each
node, we use the following prompts to ask the LLM
to output the most suitable strategies, which is dis-
played in Figure 17 and Figure 18.

Prior confidence estimation When prompt
gpt-3.5-turbo-0125 for the confidence score
on the truthfulness of a statement, we use
the following prompt: True or False?
{target_statement}. For Llama-3 model, we
find it sometimes refuse to judge the truthfulness
and simply output it requires additional context. To
enforce the model to output the confidence score,
we change the prompt accordingly:
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Are the following statements true or false? For each of the following statements ,
determine whether it is true or false. Provide a response of 'True ' if the statement is
correct , or 'False ' if the statement is incorrect.

Remember:
- You **do not** have access to additional information or external data.
- If verifying the statement requires such external data or context , regard it as

false.
- Directly output "True" or "False" without adding any markers.

Figure 8: Prompt for confidence estimation (Llama-3-8B-Instruct).

** Rewrite Texts for Clarity **

In this task , you will receive one paragraph and one target statement extracted from it.
The target statement is context -dependent , which makes the statement hard for us to

understand without context and check its truthfulness. Therefore , your task is to
rewrite the statement to reduce context dependency. Specifically ,

- Pronoun resolution: Replacing pronouns like "this ," "the ," "that ," "he ," "she ," and
"they" with specific nouns or names they refer to in the original paragraph. You should
always use the full names.

- If the target statement only use the first/last name to refer to the main entity ,
replace the first/last name with the full name of the entity if available.

Note: do not modify the semantics of the sentence. Do not add new information or your
own descriptions into the statement.

** Input/Output Format **
The input will be provided with the format as below:
Original paragraph: <the original text >

Target statement: <the target statement needing rewrite >

Format your output as:
Output: <the target statement after rewrite >

Figure 9: Prompt for data preprocessing.
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**Fact -Checking Claims Extraction :**

** Objective :** Analyze the provided statement to extract and list all distinct factual
claims that require verification. Each listed claim should be verifiable and not overlap
in content with other claims listed.

** Instructions :**
1. ** Identify Factual Claims **:

- Identify parts of the statement that assert specific , verifiable facts , including:
- Statistical data and measurements.
- Historical dates and events or other information.
- Direct assertions about real -world phenomena , entities , events , statistics
- Conceptual understandings and theories.

- In every claim , alway use the **full names** when referring to any concept , person ,
or entity. ** Avoiding the use of pronouns or indirect references ** that require

contextual understanding.

2. List each verifiable claim separately. Ensure that each claim is distinct and there
is no overlap in the factual content between any two claims.

- If a single claim is repeated in different words , list it only once to avoid
redundancy.

3. ** Output :**
- If there are multiple check -worthy claims , list each one clearly and separately.
- If there is only one check -worthy claim , output just that one claim.
- If no part of the statement contains verifiable facts (e.g., purely subjective

opinions , hypothetical scenarios), output the following message: "Claim 1: No check -
worthy claims available ."

** Output Format **:
Your output should be organized as follows:
Claim 1: <the first claim >
Claim 2: <the second claim >
Claim 3: <the third claim (if necessary)>
...

** Examples :**
Statement: According to recent data , China has surpassed the United States in terms of
GDP when measured using Purchasing Power Parity (PPP), and India is projected to
overtake China by 2030.
Claim 1: China has surpassed the United States in terms of GDP when measured using
Purchasing Power Parity (PPP).
Claim 2: India is projected to overtake China in terms of GDP by 2030."

Statement: The world 's largest desert is Antarctica , and it is larger than the Sahara.
Claim 1: The world 's largest desert is Antarctica.
Claim 2: Antarctica is larger than the Sahara.

Statement: I think pizza is the best food ever!
Claim 1: No check -worthy claims available.

Statement: The software 'Photoshop ' was released by Adobe Systems in 1988.
Claim 1: The software 'Photoshop ' was released by Adobe Systems in 1988.

Figure 10: The prompt for statement decomposition using gpt-3.5-turbo-0125.
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**Fact -Checking Claims Extraction :**

** Objective :** Analyze the provided statement to extract and list all distinct factual
claims that require verification. Each listed claim should be verifiable and not overlap
in content with other claims listed.

** Instructions :**
1. Identify parts of the statement that assert specific , verifiable facts. In every
claim , alway use the **full names** when referring to any concept , person , or entity. **
Avoiding the use of pronouns or indirect references ** that require contextual
understanding.

2. List each verifiable claim separately. Ensure that each claim is distinct and there
is no overlap in the factual content between any two claims.

3. Exclude any statements that are purely hypothetical , assume theoretical scenarios , or
are speculative in nature. These do not contain verifiable factual claims. For example ,
statements involving assumptions ("Let 's assume ..."), theoretical discussions ("

consider whether ..."), or purely speculative scenarios should not be considered as
containing verifiable claims.

4. If the statement does not contain any verifiable facts , output the following message:
"Claim 1: No check -worthy claims available ."

** Output Format **:
Your output should be organized as follows:
Claim 1: <the first claim >
Claim 2: <the second claim >
Claim 3: <the third claim (if necessary)>
...

** Examples :**
Statement: According to recent data , China has surpassed the United States in terms of
GDP when measured using Purchasing Power Parity (PPP), and India is projected to
overtake China by 2030.
Claim 1: China has surpassed the United States in terms of GDP when measured using
Purchasing Power Parity (PPP).
Claim 2: India is projected to overtake China in terms of GDP by 2030."

Statement: The world 's largest desert is Antarctica , and it is larger than the Sahara.
Claim 1: The world 's largest desert is Antarctica.
Claim 2: Antarctica is larger than the Sahara.

Statement: I think pizza is the best food ever!
Claim 1: No check -worthy claims available.

Statement: Let 's assume there is a highest prime number and consider its implications on
number theory.

Claim 1: No check -worthy claims available.

Figure 11: The prompt for statement decomposition using Llama-3-8b-Instruct.
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** Finding Supportive Premises **

Is the following statement true or false? If it is true , list several supportive
premises for it.

** Important Rules :**
1. Each premise should be clearly stated and directly relevant to the target statement.
Avoid ambiguity and ensure that the connection to the target statement is evident
2. Do not use pronouns in generated premises. Ensure each premise can be understood
clearly without any context. For each generated premise , you should always use the full
name of each person , event , object , etc.

** Input/Output Format **:
Your output should be organized as follows.
Judgement: <True or False >
Premise 1: <the first premise >
Premise 2: <the second premise >
...

In contrast , if the statement is false , you simly output:
Judgement: False
Premise 1: No supportive premises applicable.

** Examples :**
Target statement: Renewable energy sources will lead to a decrease in global greenhouse
gas emissions.
Judgement: True
Premise 1: Renewable energy sources produce electricity without emitting carbon dioxide.
Premise 2: Increasing the adoption of renewable energy reduces reliance on fossil fuels ,
which are the primary source of industrial carbon dioxide emissions.

Target statement: Eating carrots improves night vision.
Judgement: False
Premise 1: No supportive premises applicable.

Statement: Historical literacy enhances a society 's ability to make informed decisions.
Judgement: True
Premise 1: Understanding historical events provides context for current issues , enabling
citizens to make decisions that consider past outcomes and lessons.

Premise 2: Historical literacy fosters critical thinking skills , which are crucial in
analyzing information and making reasoned decisions.
Premise 3: Societies with high levels of historical awareness can recognize and avoid
the repetition of past mistakes.

Figure 12: The prompt for generation of supportive premises.
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** Finding Contradictory Premises **

Is the following statement true or false? If it is false , list several contradictory
premises for it.

** Important Rules :**
1. Each premise should be clearly stated and directly relevant to the target statement.
Avoid ambiguity and ensure that the connection to the target statement is evident
2. Do not use pronouns in generated premises. Ensure each premise can be understood
clearly without any context. For each generated premise , you should always use the full
name of each person , event , object , etc.

** Input/Output Format **:
Your output should be organized as follows.
Judgement: <True or False >
Premise 1: <the first premise >
Premise 2: <the second premise >
...

In contrast , if the statement is false , you simply output:
Judgement: True
Premise 1: No contradictory premises applicable.

** Examples :**
Target statement: Renewable energy sources will lead to a decrease in global greenhouse
gas emissions.
Judgement: True
Premise 1: No contradictory premises applicable.

Target statement: Eating carrots improves night vision.
Judgement: False
Premise 1: The belief that eating carrots improves night vision stems from World War II
propaganda , not from scientific evidence.
Premise 2: While carrots are rich in vitamin A, which is necessary for maintaining
healthy vision , they do not enhance night vision beyond normal levels.

Statement: The introduction of invasive species does not impact native biodiversity.
Judgement: False
Premise 1: Invasive species often compete with native species for resources , leading to
a decline in native populations.
Premise 2: Studies show that invasive species can alter the natural habitats of native
species , negatively affecting their survival rates.
Premise 3: The introduction of the invasive zebra mussel in North American waterways has
led to significant declines in the populations of native mussels.

Figure 13: The prompt for generation of contradictory premises.
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Given the following claim , your tasks include:
1. Identify the key pieces of information critical for fact -checking to determine

its truthfulness.
2. Create a masked version of the claim by masking these key pieces of information
3. Generate a question asking for the key pieces of information

Rules:
1. Do not mask the grammatical subject of the sentence -- the actor , entity , or object
that performs the action in the sentence 's main clause. Also , following the format of
the below examples in your output.

** Examples :**
Statement: Bitcoin was created in 2009 by an anonymous entity known as Satoshi Nakamoto.
Masked statement: Bitcoin was created in 2009 by an anonymous entity known as [which
person ].
Question: Who created Bitcoin in 2009?

Statement: The iPhone was first released by Apple in 2007.
Masked statement: The iPhone was first released by Apple in [what year].
Question: Was the iPhone first released by Apple in 2007?

Statement: The speed of light in a vacuum is approximately 299 ,792 kilometers per second
.
Masked statement: 'Romeo and Juliet ' was written by Shakespeare in [what time period ].
Question: What is the speed of light in a certain medium?

Statement: "Attention Is All You Need" is a paper written by Ashish Vaswani , Noam
Shazeer , Niki Parmar , Jakob Uszkoreit , Llion Jones , Aidan N. Gomez , Lukasz Kaiser , Illia
Polosukhin.

Masked statement: "Attention Is All You Need" is a paper written by [whom]
Question: Who was/were the authors of the paper "Attention Is All You Need"?

Statement: The Great Wall of China is visible from space.
Masked statement: The Great Wall of China is [visible or invisible] from space.
Question: Is the Great Wall of China visible from space?

Statement: The headquarters of the United Nations is located in New York City
Masked statement: The headquarters of the United Nations is located in [which city].
Question: Where is the headquarters of the United Nations located?

Figure 14: Step 1 in statement correction: question generation. This prompt is used for gpt-3.5-turbo-0125.
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Given a statement , your task is to identify a general question that can be used to check
the truthfulness of the statement. The question should directly address the claim to

confirm or refute it without seeking additional detailed information.

** Examples :**
Statement: Bitcoin was created in 2009 by an anonymous entity known as Satoshi Nakamoto.
Question: Who created Bitcoin in 2009?

Statement: The iPhone was first released by Apple in 2007.
Question: When was iPhone first relased by Apple?

Statement: 'Romeo and Juliet ' was written by Shakespeare in the late 16th century.
Question: When was 'Romeo and Juliet ' was written by Shakespeare?

Statement: "Attention Is All You Need" is a paper written by Ashish Vaswani , Noam
Shazeer , Niki Parmar , Jakob Uszkoreit , Llion Jones , Aidan N. Gomez , Lukasz Kaiser , Illia
Polosukhin.

Question: Who was/were the authors of the paper "Attention Is All You Need"?

Statement: The Eiffel Tower is located in Paris
Question: Where is the Eiffel Tower located?

Statement: Albert Einstein was a physicist.
Question: What profession was Albert Einstein?

Figure 15: Step 1 in statement correction: question generation. This prompt is used for Llama-3-8b-Instruct.
We adjust the prompt since the masked statement is not used in the prompt for gpt-3.5-turbo-0125.

** Background Knowledge **: {the model answer in step 2}

Leverage the above provided knowledge and your own knowledge to review the correctness
of following statement:

** Statement **: {statement}

Instruction:
- If the statement is correct , output it unchanged.
- If the statement is **not mentioned in the background knowledge and its

correctness cannot be determined **, you should also directly output the statement **
unchanged **.

- If the statement is wrong , revise only the parts of the statement that are
incorrect , to align with the background knowledge. Do not add any additional sentences
or details.

** Output Format :**
Format your output as:
Revised Answer: <Display the original statement if it is correct or not mentioned in the
background knowledge; display the revised statement if it is inaccurate >

Figure 16: Step 3 in statement correction: statement revision.
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**Task: Choose the Best Strategy for Premise Generation **

We need to generate several premises for a given target statement. These premises could
either support or contradict the target statement. Particularly , we have 2 techniques
for premise generation:

1. Logical Relationships: This involves creating premises based on entailment or
contradiction. You can generate premises that either support or contradict the target
statement.

2. Statement Perturbation: Create variations of the statement by altering key details to
form contradictory premises.

Given these techniques , your task is to select the most suitable technique given a
particular statement. Follow the guidelines below to select the most suitable technique.

** Important Guidelines **:
1. Prioritize logical relationships. The logical relation strategy is broadly applicable
, as long as it is straightforward to find supportive or contradictory premises.
2. If a statement contains particular names , numbers , timestamps , or other conditions
that can be varied to generate contradictory premises , consider statement perturbation.
3. If both two methods are applicable , select them together and output "both".

** Output Format :**
Your selection should be one of "Logical Relation", "Statement Perturbation", and "both
".

Target statement: Eating a balanced diet improves overall health.
Output: Logical Relation

Target statement: 'War and Peace ' was a book written by Leo Tolstoy.
Output: Statement Perturbation

Target statement: Water boils at 100 degrees Celsius at sea level
Output: both

Target statement: Mount Everest is 8,848 meters tall.
Output: Statement Perturbation

Target statement: Artificial intelligence will replace most human jobs in the future
Output: Logical Relation

Figure 17: Prompt for strategy selection (gpt-3.5-turbo-0125).
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** Instruction for Choosing the Best Strategy for Premise Generation **

When tasked with generating premises for a given target statement , the choice of
strategy -Logical Relationships or Statement Perturbation -should be determined based on
the nature of the statement and the desired objectives. Use the following guidelines to
route the choice:

### When to Use Logical Relationships
Opt for Logical Relationships when:
- **The Statement is Abstract or Principled **: Ideal for statements that explore broad
principles , ethics , or abstract concepts. This method helps in drawing deep logical
entailments or contradictions.
- ** Complex Relationships or Conditions **: When the statement involves complex logical
or conditional relationships , using this method clarifies or challenges these
intricacies.
- ** Requirement for Detailed Analysis **: For statements needing precise and formal
argumentation , especially in academic or technical discussions.

### When to Use Statement Perturbation
Choose Statement Perturbation when:
- **The Statement is Specific and Concrete **: Best for statements with explicit details
like scenarios , dates , locations , names , numbers or timestamps. Altering these elements
generates varied premises.
- ** Exploration of Counterfactuals or Hypotheticals **: Useful for creating imaginative
or scenario -based premises by modifying key details to envision different outcomes.
- ** Sensitivity to Detail Changes **: When minor modifications in the statement can
significantly alter its implications or truth value.

** Output Format :**
Your selection should be one of "Logical Relation", "Statement Perturbation", and "both
". Here "both" means both two methods are applicable.

** Examples :**
Target statement: Eating a balanced diet improves overall health.
Output: Logical Relation

Target statement: Countries with higher investment in education consistently rank higher
in global innovation indexes

Output: Logical Relation

Target statement: 'War and Peace ' was a book written by Leo Tolstoy.
Output: Statement Perturbation

Target statement: Water boils at 100 degrees Celsius at sea level
Output: both

Target statement: Mount Everest is 8,848 meters tall.
Output: Statement Perturbation

Target statement: The bridge will remain intact even if 75 cars drive on it
simultaneously if the cars are lightweight
Output: Statement Perturbation

Target statement: Artificial intelligence will replace most human jobs in the future
Output: Logical Relation

Figure 18: Prompt for strategy selection (Llama-3-8b-Instruction).
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