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Abstract

Clinical named entity recognition (NER) aims
to retrieve important entities within clinical
narratives. Recent works have demonstrated
that large language models (LLMs) can achieve
strong performance in this task. While previous
works focus on proprietary LLMs, we investi-
gate how open NER LLMs, trained specifically
for entity recognition, perform in clinical NER.
Our initial experiment reveals significant con-
trast in performance for some clinical entities
and how a simple exploitment on entity types
can alleviate this issue. In this paper, we intro-
duce a novel framework, entity decomposition
with filtering, or EDF. Our key idea is to decom-
pose the entity recognition task into several re-
trievals of entity sub-types and then filter them.
Our experimental results demonstrate the effi-
cacies of our framework and the improvements
across all metrics, models, datasets, and entity
types. Our analysis also reveals substantial im-
provement in recognizing previously missed
entities using entity decomposition. We fur-
ther provide a comprehensive evaluation of our
framework and an in-depth error analysis to
pave future works.

1 Introduction

Clinical narratives hold immense value for clin-
ical experts (Tayefi et al., 2021; Mahbub et al.,
2022; Raghavan et al., 2014; Rannikmäe et al.,
2021), largely due to their wealth of information
often inaccessible in the structured data of the elec-
tronic health records (EHR) (Mahbub et al., 2023;
Goodman-Meza et al., 2022; Kharrazi et al., 2018;
Rannikmäe et al., 2020; Hernandez-Boussard et al.,
2019; Boag et al., 2018). Their free format, how-
ever, causes significant challenges for healthcare
systems to utilize. The richness of information
trapped within the narratives, followed by its signif-
icance, has spurred a plethora of works in tackling
the clinical information extraction problem within

the clinical NLP community (Wang et al., 2018;
Landolsi et al., 2023).

One key building block in clinical information
extraction is named entity recognition (NER), fo-
cusing on identifying clinical concepts within these
narratives. Prior methods (Wang et al., 2018) rely
on either traditional natural language processing
(NLP) techniques or supervised learning methods.
Nevertheless, the former approach can be fragile,
while the latter requires significant effort to anno-
tate. In addition, supervised methods cannot simply
scale for the large number of concepts available in
the clinical domain (Bodenreider, 2004).

In light of this, Large Language Models (LLMs),
with their strong capabilities for zero- and few-
shot learning (Chowdhery et al., 2023; Brown
et al., 2020; Thoppilan et al., 2022; Touvron
et al., 2023), serve as promising solutions for clin-
ical NER. While previous works focus on LLMs
trained on general tasks (Agrawal et al., 2022; Liu
et al., 2023; Gero et al., 2023), here we focus
on LLMs specifically trained for entity recogni-
tion, or open NER LLMs (Zhou et al., 2023; Ding
et al., 2024). Inspired by their results in clinical
domain (Zhou et al., 2023), outperforming even
proprietary LLMs (Brown et al., 2020), we conduct
deeper investigations in this study. Surprisingly,
our preliminary experiment (Section 5.1) suggests
a stark performance gap between retrieving dif-
ferent clinical entities (Figure 2). For instance,
an open NER LLM called UniversalNER (Zhou
et al., 2023) performs significantly better at ex-
tracting medications rather than clinical treatments
(85.88% vs 53.81% Exact Match F1-scores). Upon
closer inspection, we find these unidentified treat-
ment entities can be effectively recognized by ex-
ploiting simpler, albeit specific, entity types. For ex-
ample, by explicitly specifying “medication” rather
than “treatment” as input, the model can capture a
substantial portion of the previously unidentified
medication-related treatment entities.
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Building upon this insight, we present a novel
framework, entity decomposition with filtering,
or EDF, aimed at tackling clinical NER. To the
best of our knowledge, we are the first to explore
strategies to effectively use open NER LLMs in
the clinical domain without using any samples.
We draw inspiration from the divide-and-conquer
paradigm (Knuth, 1998), which breaks down a
complex problem into simpler sub-problems. Con-
cretely, we posit that a direct retrieval of entities
may be too complex for the model and instead
propose to disentangle it into a series of retrievals
through entity decomposition. Unlike the previous
approach (Xie et al., 2023), entity decomposition
breaks down the task by identifying through their
entity sub-types, which, ideally, are easier to re-
trieve. Nonetheless, entity decomposition alone is
insufficient since some entity sub-types do not form
strict subsets (further discussed in Section 3.2.3).
To address this, we introduce a filtering mechanism
in our framework to further improve performance.
We illustrate them in Figure 1.

Our work introduces a cost-effective approach
to improve clinical entity recognition using open-
source large language models. Overall, we observe
improvements across models, metrics, datasets and
entity types. Our ablation study also reveals the
robustness of our framework, allowing users to
adjust the components based on their performance
and cost.

2 Related Work

2.1 LLMs for Clinical NER

LLMs are promising for many clinical tasks (Sing-
hal et al., 2023; Agrawal et al., 2022; Clusmann
et al., 2023). Concurrently, several works aim to
improve their performance on clinical NER. For
instance, Agrawal et.al. (Agrawal et al., 2022) pro-
poses a guided prompt design along with a resolver
to handle the structured output space required by
NER, while others (Hu et al., 2024, 2023; Liu
et al., 2023) use prompt engineering. Outside the
clinical domain, several works tackle NER either
by framing it as a sequence labeling task (Wang
et al., 2023), using label decomposition and syntac-
tic augmentation (Xie et al., 2023), or improving
the structured label space (Li et al., 2024), similar
to Agrawal et.al. (Agrawal et al., 2022). Most of
these works focus on LLMs trained in handling di-
verse tasks such as ChatGPT (Brown et al., 2020).
In contrast, we focus on open NER LLMs (Zhou

et al., 2023; Ding et al., 2024), which have two key
differences. First, they are trained specifically for
entity recognition tasks and do not require struc-
tured output space handling (Agrawal et al., 2022;
Li et al., 2024). Second, their instruction-tuning
mostly focused on the diversity of entities rather
than the instructions (e.g., keeping the prompt con-
stant), which may limit the efficacy of prompt engi-
neering techniques. Furthermore, unlike previous
works (Hu et al., 2024, 2023; Liu et al., 2023),
our work does not fall under prompt engineer-
ing. Notably, prompt engineering is limited to
prompt-based models, while our work is model-
agnostic and, thus, is applicable to BERT-based
models (Zaratiana et al., 2024).

2.2 Task Decomposition in LLMs

The idea of task decomposition, solving complex
tasks through solving its constituent simpler sub-
tasks, can be dated back to (Lazarou et al., 1998).
Previous works propose task decompositions for
LLMs to tackle complex problems (Zhou et al.,
2022; Xie et al., 2023). Concurrent with our work,
Xie et.al. (Xie et al., 2023) suggests decomposing
NER into a multi-turn dialogue, asking the model
one question for each label. However, some open
NER LLMs (Zhou et al., 2023) can only extract
one label at a time, thus limiting the efficacy of Xie
et.al. (Xie et al., 2023). Here, we propose to decom-
pose NER on entity-level rather than label-level.
Concretely, we can further decompose each label
into simpler labels. Our method also complements
Xie et.al. (Xie et al., 2023) since these decomposi-
tions can be performed sequentially. Besides, our
work aims to improve open NER LLMs, which
have several key differences from other LLMs as
briefly discussed in Section 2.1

2.3 Open NER LLMs

Clinical narratives fall under domains with a
large number of concepts and scarce annotations.
Thus, developing open named entity recognition
LLMs (Zhou et al., 2023; Ding et al., 2024) is
timely and crucial research for clinical NER. De-
spite the progress, existing works focus on training
the backbone models. Furthermore, these models
present a unique challenge and cannot be treated
similarly to other LLMs (Section 2.1). Our work
paves a way to adapt them for clinical domains
without finetuning.
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Figure 1: Entity Decomposition with Filtering. Our novel framework is composed of three components: (1) Entity
Decomposer breaks down the target entity type (e.g., treatment) into several entity sub-types (e.g., medication, medical device,
medical procedure, etc), (2) Open NER LLM generates the sub-type entities, (3) Filter removes sub-type entities outside the
target entity type. See Section 3 for details.

3 Method

3.1 Problem Definition

Clinical narrative holds important entities about a
patient’s medical history. In this work, we aim to
tackle clinical NER, focusing on extracting them.
We frame the problem through the lens of a text-
generative task. Let x be a clinical narrative, and
further let t be the target entity type we want to
extract. We aim to retrieve the target entities set Y
corresponding to t from x. To illustrate, if x is a pa-
tient’s discharge summary and t = “medication”,
then the goal is to extract medication entities in the
discharge summary. In this case, the ouput can be
Y = {“aspirin”, “methanol”, ...}.

3.2 Entity Decomposition with Filtering

As introduced in Section 1, directly retrieving the
target clinical entities may be too challenging, par-
ticularly for models without domain-specific train-
ing, such as open NER LLMs. We propose to
break the task into multiple retrievals of sub-type
entities instead. We define sub-type entities as en-
tities belonging to a a sub-type of the target entity
type. Concretely, let Ŷi be a set of sub-type enti-
ties corresponding to the i-th entity sub-type si and
let Ŷ be our predicted complete set, where ideally
Ŷi ⊆ Ŷ . The first part of our framework, entity de-
composer, aims to iteratively collect Ŷi to produce
Ŷ ,

⋃N
i=1 Ŷi = Ŷ . The last part of our framework,

filter, involves removing sub-type entities in Ŷ out-
side the target entity type t. The filtered version Ŷf

then serves as the final output. That is, Y = Ŷf

We provide more details of our framework in the

following sections. Figure 1 presents the overall ar-
chitecture of our framework, entity decomposition
with filtering, or EDF.

3.2.1 Entity Decomposer
The first step in our framework is to identify what
constitutes entity sub-types for the target entity
type t. Let D(t) = S be the entity decomposer
module, aimed to produce a set of N entity sub-
types S = {s1, s2, ..., sN} using the target en-
tity type t. To illustrate how the module works,
let’s take “treatment” as an example. In a pa-
tient’s discharge summary, “treatment” constitutes
a myriad of entities, including medications, med-
ical procedures, and more (see Figure 1). In this
case, D aims to decompose t = “treatment” into
S = {“medication”, “medical procedure”, ...}.

There are several ways to construct this mod-
ule, and clinical practitioners can resort to different
methods based on costs and performances. Some
examples include manually curating the entity sub-
types (possibly involving clinical experts) or ob-
tained using existing tools such as a medical knowl-
edge base (Bodenreider, 2004). We provide details
in Appendix A

3.2.2 Open NER LLM
After defining the entity sub-types S , the next step
is to retrieve the sub-type entities Ŷ . In this work,
we leverage an open NER LLM. We base its formal
definition on previous works (Zhou et al., 2023).
Let R be an open NER LLM tasked to retrieve the
sub-type entities Ŷi of si from the clinical narra-
tive x. That is, R(x, si) = Ŷi. To construct the
complete set Ŷ , the model would iteratively collect
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Ŷi from each si. This may be of concern, given
that it requires multiple iterations. To address this,
we also consider other variants (Ding et al., 2024;
Zaratiana et al., 2024) of open NER LLMs, which
we formally define as R∗(x,S) = Ŷ . In contrast
to R, these variants are capable of simultaneously
extracting multiple entity types at once, thereby re-
ducing the whole iterative sub-type entity retrievals
to only one forward pass.

We base the use of an open NER LLM on several
key reasons. First, open NER LLMs are versatile
in recognizing arbitrary entities, which is a char-
acteristic of sub-type entities (e.g. they are not
bounded to a predefined label set). Second, in con-
trast to other LLMs, open NER LLMs are explicitly
trained for NER tasks, substantially reducing the
effort of mapping LLM generative output to the
structured output space of NER (Agrawal et al.,
2022). In addition, our preliminary experiment
in Section 5.1 suggests that open NER LLMs per-
form surprisingly well in recognizing basic clinical
entities such as medications, making them strong
candidates for this module.

3.2.3 Filter
We discuss the last step of our framework here.
Formally, let f(Ŷ, t, C) = Ŷf be the filter module,
where C denotes a context and Ŷf ⊆ Ŷ . In this
framework, f can be viewed as a binary classifier,
assigning a positive label if the entity corresponds
to t, and a negative label otherwise. The filter
module then aggregates and outputs the positively
classified entities. Overall, f aims to eliminate sub-
type entities within Ŷ that do not fall under the
target entity type t based on its context C (e.g. the
paragraph the entity exists). Take “treatment” and
“medical procedure” for example. While “treat-
ment” includes “medical procedure”, not all “med-
ical procedure” qualify as a “treatment”. For in-
stance, some medical procedures (e.g., endoscopy)
may serve purely for diagnosis purposes and should
not be classified as “treatment.”

We provide the rationale behind using a context
C in the filter module. Unlike general domain en-
tities, clinical entities can largely rely on context
cues. To illustrate, consider “adverse drug event
(ADE)” (Zed et al., 2008; Lazarou et al., 1998). By
definition, “ADE” is an "injury resulting from a
medical intervention" (Henry et al., 2020). Thus,
one of its sub-types may be “injury”. However, for
a filter to dictate whether an injury corresponds to
“ADE”, it needs to be aware of where the injury

comes from. Injuries due to an accidental fall may
not be an ADE if the patient does not have any med-
ical interventions. In other words, the filter requires
the context in which the entity occurs to provide
an accurate prediction. Moreover, our experiment
suggests that while some clinical entities do not
need contextual information, they can benefit from
it (see Section 5.3.3).

4 Experimental Setup

We provide the experimental setup here and leave
the details in the Appendix. All of the base models
are available in huggingface*.

4.1 Open NER LLMs

We take SOTA open NER LLMs in our experi-
ments and further improve them. Per definition
in Section 3.2.2, they may be categorized based on
how many entity types can be extracted simultane-
ously. To this end, we use UniversalNER (Zhou
et al., 2023) and GNER (Ding et al., 2024) as the
representative for R and R∗, respectively. Con-
cretely, we use UNIVERSALNER-TYPE-7B and
GNER-LLAMA-7B. Both are finetuned on the
PileNER dataset (Zhou et al., 2023), which is gen-
erated from GPT 3.5 (Brown et al., 2020). We
only experiment with their default prompts since,
in contrast to other LLMs, open NER LLMs are
trained on a set of diverse entity types rather than
prompts (Zhou et al., 2023)

4.2 Entity Decomposers

Here, we experiment with different techniques
to decompose entities. First, given that clini-
cal narratives require specialized knowledge, we
consider entity sub-types curated by clinical ex-
perts. Specifically, we take the annotation guide-
lines available from the datasets. Second, we use
ChatGPT (Brown et al., 2020) to decompose clini-
cal entities automatically. We draw our inspiration
from the recent success of ChatGPT in the clini-
cal domain (Agrawal et al., 2022; Singhal et al.,
2023). Furthermore, using ChatGPT for entity de-
composition is more cost-effective and scalable.
Third, we utilize the Unified Medical Language
System (UMLS) (Bodenreider, 2004), a medical
knowledge base, for retrieving entity sub-types. We
provide more details in the Appendix A.

*https://huggingface.co
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4.3 Filters

We use Asclepius (Kweon et al., 2023) and
LlaMA-2 (Touvron et al., 2023) trained on clin-
ical and general domains, respectively. Specif-
ically, we use ASCLEPIUS-LLAMA2-7B and
LLAMA-2-CHAT-7B versions. Given the inher-
ent generative nature of LLMs, we restrict their
outputs to "Yes/No" responses (when applicable)
using grammar-constrained decoding (Geng et al.,
2023). This strategic constraint reduces the num-
ber of generated tokens, resulting in increased in-
ference speed. By default, we prompt the model
by asking “Can {entity} be considered as a/an
{entity_type}?”. We try different prompts in Sec-
tion 5.3.4. For entities that require context, we
use a simple preprocessing method so that the con-
text provides sufficient information to extract the
clinical entities. That is, we include the whole para-
graph (or more) in which the entity occurs from the
clinical narrative.

4.4 Datasets

We focus our experiments on extracting con-
cepts from publicly available clinical notes†.
We use ClinicalIE (Agrawal et al., 2022),
i2b2 2010 (Uzuner et al., 2011), i2b2 2012 (Sun
et al., 2013), i2b2 2018 Task 2 (Henry et al., 2020)
and CLEF 2014 (Mowery et al., 2014) datasets in
this paper. They are available in Harvard DBMI‡

for i2b2 datasets, PhysioNet§ (Goldberger et al.,
2000) for CLEF 2014 and huggingface for Clini-
calIE. In these datasets, context is not required to
identify clinical entities except for the i2b2 2018
dataset. We provide further details in the Ap-
pendix B.

4.5 Baselines and Metrics

Given the scarce methods to compare with, we
use the method developed in Xie et.al. (Xie et al.,
2023) as our baseline. Concretely, we extract each
entity type one at a time using UniversalNER and
GNER. We also compare with UNIVERSALNER-
ALL, trained with both PileNER and over 40 su-
pervised datasets, including our experiment sets.
We use Precision (P), Recall (R), and Exact Match
F1-Score (F1) as evaluation metrics, similar to pre-
vious works.

†All datasets are available from the providers under ap-
propriate data usage agreements

‡https://portal.dbmi.hms.harvard.edu/
§https://physionet.org/

Figure 2: Open NER LLM (UniversalNER) performs better
at extracting entity sub-type (Med) rather than the target entity
type (Tr, Pr, Te). We use ClinicalIE for Med (medication)
and i2b2 2012 for Tr (treatment), Pr (problem), and Te (test).
Discussion in Section 5.1

5 Experimental Results

Throughout this section, we abbreviate the entity
types in the tables as follows to save space: Tr
for treatment, Pr for problem, Te for test, CD for
clinical department, DD for disease/disorder, AD for
adverse drug, and ADE for adverse drug event.

Given the space limit, we include more re-
sults in the Appendix, including few-shot (Ap-
pendix E), performance on a BERT-based model
(Appendix F), and error analysis on CD perfor-
mance drop (Appendix G).

5.1 Preliminary Experiment

We conduct a preliminary experiment to confirm
that open NER LLMs perform better at recogniz-
ing sub-type entities rather than the target entity
types. For target entities, we use the i2b2 2012
dataset, which contains decomposable entity types
(i.e., entities can further be divided into sub-type
entities). For sub-type entities, we use ClinicalIE,
a medication extraction dataset.

Figure 2 illustrates the result and confirms our
hypothesis. That is, it is harder to recognize the tar-
get entity types (that are decomposable) compared
to the sub-type entities. For instance, we observe a
stark difference between “medication” extraction
and “treatment” extraction, where the former is an
entity sub-type of treatment.

5.2 Overall Performance

We present our results in Table 1 and Figure 3. For
detailed numbers on precision and recalls, we leave
them in the Appendix C.

On average, EDF outperforms baseline by
2.54% and 5.82% F1-score on UniversalNER and
GNER, respectively. Interestingly, for some en-
tity types (e.g. treatments and tests in i2b2 2010),
GNER performs similarly or even outperforms
UniversalNER. This suggests that models that can
recognize multiple entities simultaneously can ben-
efit more from using our framework.
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Table 1: F1-score performance (%) comparison between baseline (B) from Xie et.al. (Xie et al., 2023), Entity
Decomposer (ED) only, Filter (F) only, supervised (UniNER-all) and EDF (Ours) methods across datasets, entity
types, and models. We use Asclepius and the default prompt strategy (Section 3.2.3) for the filter and annotation
guideline for the entity decomposer. We mark the best results in bold and second-best in underlined. Discussion
in Section 5.2

Dataset Entity
Type

UniNER GNER UniNER-all
(Supervised)

B ED F EDF ∆ B ED F EDF ∆

i2b2 2010
Tr 53.81 43.56 54.35 59.63 +5.82 53.31 39.43 62.72 63.23 +9.92 74.95
Pr 49.71 41.99 52.77 51.46 +1.75 40.40 35.91 50.77 50.62 +10.22 73.11
Te 48.78 36.99 40.58 44.17 −4.61 37.27 36.40 37.23 45.78 +8.51 72.43

i2b2 2012

Tr 54.49 48.25 52.82 58.25 +3.76 50.38 40.16 55.63 57.09 +6.71 72.37
Pr 46.61 42.45 49.64 50.24 +3.63 41.11 38.00 47.15 48.82 +7.71 75.16
Te 45.78 31.52 43.98 46.34 +0.56 33.17 27.55 41.09 46.66 +13.49 65.47
CD 41.44 32.57 34.51 38.66 −2.78 58.88 20.46 39.20 37.74 −21.14 44.37

CLEF 2014 DD 46.73 45.94 45.26 58.25 +11.52 18.06 21.11 18.44 26.91 +8.85 63.19

i2b2 2018 AD†‡ 19.07 8.59 27.36 24.92 +5.85 3.16 4.54 10.08 13.66 +10.50 14.37
ADE† 9.56 2.64 15.90 9.43 −0.13 0.61 1.09 2.40 4.05 +3.44 31.18

Avg. 41.60 33.45 41.72 44.14 +2.54 33.64 26.47 36.47 39.46 +5.82 58.66

† AD and ADE are entity types that require context ‡ UniNER-all is not trained to extract AD entities

Entity decomposition (ED) improves recall but
decreases precision. As illustrated in Figure 3, we
observe a consistent improvement in recall across
diverse datasets and entity types for both models,
suggesting that entity decomposition facilitates the
identification of previously missing entities while
being robust to the backbone models. For preci-
sion, however, we notice a drop in performance. As
discussed in Section 3.2.3, some sub-type entities
may not form a subset of the target entities, caus-
ing performance degradation on precision. Further
examination of the F1-score reveals a decline in
overall performance, which justifies the necessity
of incorporating a filtering mechanism.

Conversely, filtering (F) benefits precision but
degrades recall. This shows contrasting results
compared to entity decomposition across datasets,
entity types, and models. The overall F1-score
improvement on EDF compared to using each com-
ponent individually suggests that entity decompo-
sition and filtering complement each other. This
emphasizes the necessity to incorporate both of
them.

EDF is robust to out-of-distribution entities
compared to supervised training. We want to em-
phasize that our method does not require any train-
ing as opposed to the supervised approach. We
use UniversalNER+EDF and UniversalNER-all as
comparison. Despite the performance gap, we ob-
serve that on entities not covered in the training
label set (e.g., adverse drug or AD), EDF outper-
forms by more than 10% on the F1-score. This
shows the robustness of our method.

Figure 3: Average performance improvement to baseline
across metrics and models. Entity decomposition (ED) im-
proves recall but degrades precision. Filter (F) increases preci-
sion but decreases recall. Our method (EDF) achieves better
performance overall. Discussion in Section 5.2

5.3 Ablation Study

We perform additional experiments to test the ef-
ficacy of our framework using different entity de-
composers or filters. We focus on the overall per-
formance or F1-score. To reduce the cost of our
experiments, we only experiment with the i2b2
2012 dataset, given their diversity in entity types.
Unless otherwise specified, we use UniNER as the
open NER LLM, annotation guideline for the entity
decomposer module, and Asclepius for the filter.

5.3.1 Entity Decomposers

First, we conduct ablation study with different en-
tity decomposers as described in Section 4.2 and
present our results in Table 2. We do not experi-
ment with ChatGPT and UMLS for the “clinical
department” entity type since (1) ChatGPT is un-
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Figure 4: Entity Decomposition (ED) captures most previously fully absent entities. Lower value is better. Discussion
in Section 5.4.1

Table 2: Ablation Study on Entity Decomposer.
Entity
Decomposer Filter Entity Type

Tr Pr Te CD

Baseline 54.49 46.61 45.78 41.44

Annotation
✗

48.25 42.45 31.52 32.57
ChatGPT 48.62 44.05 43.80 -
UMLS 55.57 46.98 44.68 -

Annotation
✓

58.25 50.24 46.34 38.66
ChatGPT 58.09 51.12 44.83 -
UMLS 58.23 51.04 44.71 -

able to produce reasonable entity sub-types and (2)
we find there are no correspondence semantic types
in UMLS.

EDF is robust to entity decomposer module.
We observe competitive performance between a
general LLM, medical knowledge base and clinical
experts. For instance, on treatment entities, the per-
formance between clinical experts and ChatGPT
is 58.25% vs 58.09%. Thus, even without cura-
tion from clinical experts, our method can achieve
competitive results.

Without filters, UMLS outperforms other en-
tity decomposers. Most entity sub-types in UMLS
form subsets to the target entities; hence, a filter
may not be necessary in contrast to other entity
decomposers. Interestingly, for some entities, it
performs better than vanilla prompt (e.g. treat-
ments and problems). This is significant since even
without filtering, our framework, specifically en-
tity decomposition, can still outperform the vanilla
approach with proper curation of entity sub-types.
We remark that this does not take away the value
of a filter module. For instance, UMLS can benefit
more from integrating it, as shown in Table 2.

5.3.2 Filter Models
Here, we investigate how different filter models
affect the overall performance of our framework.
Specifically, we compare domain-specific and gen-
eral LLMs. We present the results in Table 3

Clinical model is better at recognizing entities
requiring clinical expertise. Specifically, we ob-

Table 3: Ablation Study on Filter Model.
Entity
Decomposer

Filter
Model

Entity Type

Tr Pr Te CD

Baseline 54.49 46.61 45.78 41.44

✗
Asclepius 52.82 49.64 43.98 34.51
Llama2 51.90 47.49 45.27 35.37

✓
Asclepius 58.25 50.24 46.34 38.66
Llama2 53.94 45.55 37.41 38.69

Table 4: Ablation Study on Filter Context.
Entity
Decomposer

Filter
Context

Entity Type

Tr Pr Te CD

Baseline 54.49 46.61 45.78 41.44

✗
none 52.82 49.64 43.98 34.51
sentence 53.85 42.90 43.91 37.18
document 54.67 41.53 44.45 44.91

✓
none 58.25 50.24 46.34 38.66
sentence 60.58 45.17 46.68 40.80
document 58.24 42.24 45.31 48.90

serve that it is superior to a general domain model
in “treatment”, “problem”, and “test” entities. For
“clinical department”, however, they perform sim-
ilarly. This is unsurprising since the former often
requires clinical-specific knowledge compared to
the latter.

5.3.3 Filter Context

As discussed in Section 3.2.3, some clinical entities
need context. Here, we investigate whether context
helps for entities not requiring it. We compare the
performance between filtering (1) without context,
(2) including the sentence the entity appears in,
and (3) providing the whole clinical narrative or
document. We show the results in Table 4.

Context may improve or hurt performance.
Overall, we observe mixed results across different
entity types, with and without an entity decom-
poser. For instance, we observe slight improve-
ments for “treatment” and “test” entities. On the
other hand, the performance of the “problem” en-
tity consistently drops the more context we provide.
We provide further analysis in Section 5.4.2.
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Table 5: Ablation Study on Filter Prompt

Entity Description Entity Type

Tr Pr Te CD

✗ 58.25 50.24 46.34 38.66
✓ 50.32 47.38 33.18 45.97

5.3.4 Filter Prompts
LLMs are often brittle to prompting strategies (Zhu
et al., 2023). We experiment with how incorporat-
ing the entity description into the filter affects our
framework’s performance. For “treatment”, “prob-
lem” and “test”, we use descriptions available in
i2b2 2010 annotation guidelines. For “clinical de-
partment”, we provide our own definition. We put
the prompts in Appendix D and present the results
in Table 5.

Complex entity description degrades perfor-
mance. Our experiment shows a notable perfor-
mance drop in all entity types except “clinical de-
partment”. We hypothesize that the descriptions
provided in the guidelines may be too complex for
the model to understand. In contrast, we observe
more than 7% F1-score improvement on “clinical
department”, which uses our handcrafted and con-
cise definition.

5.4 Error Analysis

5.4.1 Entity Decomposition Missing Entities
Despite the significant improvement in recall
through entity decomposition, some entities remain
unrecognizable. Thus, we analyze the potential
sources of these errors. First, we calculate the
percentage of entities fully absent from the predic-
tions. To illustrate, if the label is “his aspirin” and
the prediction is “aspirin”, we do not deem it fully
absent since the prediction partially captures the
label. Figure 4 illustrates the percentage of fully
absent entities for each entity type in the dataset.

Entity decomposition significantly reduces the
number of fully absent entities. For instance, only
5.5% entities are fully absent for “treatment” in the
i2b2 2010 dataset after entity decomposition. We
observe improvements across all entity types.

The majority of fully absent entities are abbre-
viations and homonyms. For example, open NER
LLM cannot capture “CVA”, an abbreviation for
“cerebral vascular accident", after entity decomposi-
tion. Another example is “delivery", which carries
nuanced meanings in different contexts (e.g. child-
birth or route of medications). Furthermore, certain
entities such as “HD” are both abbreviations and
homonyms (i.e., high definition vs hemodialysis).

Table 6: i2b2 2012 Polarity Dataset Statistics

Polarity Entity Type (# of samples)

Tr Pr Te CD

Positive 3684 4164 2544 996
Negative 145 858 52 0

Figure 5: The majority of the rejected golden “Problem”
entities are negative, leading to a performance drop in Table 4
when using context. Further discussion in Section 5.4.2.

5.4.2 Performance Drop using Context

Section 5.3.3 shows that there is a notable perfor-
mance degradation for “problem” when context is
provided. To investigate, we observe the ground-
truth “problem” entities that are removed by the fil-
ter. Interestingly, we find that for most of them, the
context specifically stated that the patient does not
experience these problems. We then conduct fur-
ther investigation on their polarity attribute, which
contains information on whether the patient is expe-
riencing medical problems (or taking certain med-
ications, for instance). To clarify, if there are ex-
plicit mentions that a patient does not have certain
medical problems, the polarity is negative. Other-
wise, it is positive. We conduct an analysis of how
entity polarity affects filter responses. We plot our
results in Figure 5.

The “negative” polarity degrades performance.
First, the dataset statistics in Table 6 show that al-
most a fifth of “problem” entities are “negative”,
making it likely that these gold labels would be
rejected. Furthermore, Figure 5 reveals that the
“negative” polarity causes the performance drop
on the “problem” entity, as revealed by how a ma-
jority of the rejected gold “problem” entities are
“negative”.

6 Conclusion and Future Work

In this work, we propose a novel EDF framework
to tackle the clinical named entity recognition task.
Our comprehensive experiments demonstrate the
strength of our framework across different dimen-
sions. We also thoroughly investigate each frame-
work component and provide several key insights.
In future works, we hope to explore how to address
the limitations of our work described in Section 7.
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7 Limitations

First, we restrict our work to clinical narratives
and have yet to explore how our framework gen-
eralizes to other texts. In this work, we deliber-
ately focus on how well the method generalizes to
different datasets, which (1) tackle different and
clinically significant (Lehman et al., 2022) entity
types, (2) are collected from different institutions
(thus different distributions), (3) are de-identified
in different ways (e.g., masks used for the patient’s
sensitive information), (4) used different formats
(e.g., header names and section organizations), etc.
In fact, each patient is a unique case, and each of
them can be treated as a separate domain (Yang
et al., 2023). Thus, generalizing to these datasets
is already a significant challenge. However, testing
how well our framework generalizes beyond clini-
cal narratives would be an interesting avenue. Note
that our motivation for this framework is that we
found some clinical entities are easier to identify
through simpler terms. This is particularly true for
clinical narratives since most entities that are of
interest (Lehman et al., 2022) follow this assump-
tion. Thus, we designed our framework based on
the characteristics of entities inside clinical narra-
tives, not the narratives themselves. This is the
reason we hypothesize that our framework may
work outside clinical narratives (with similar entity
characteristics). We leave this to future work.

Second, we restrict our work to only open-
sourced models and leave experiments on propri-
etary models to future works. Most publicly avail-
able clinical narratives are under restrictive licenses.
Hence, we cannot simply use commercial models,
which may leak the data to a third party that is not
covered by the restricted data use agreements. In
contrast, open-sourced models have more practical
values (e.g., they can be deployed). In this work,
we deliberately use strong open-sourced models
such as UniversalNER (Zhou et al., 2023), which
performs better than ChatGPT (Brown et al., 2020).
However, how open-sourced models fare with other
proprietary models on clinical NER is still un-
known. We leave them to future works.

Third, our work falls under the healthcare do-
main, a high-stakes setting. Despite the good per-
formance of our methods, there is still a long way
to reach the performance achieved in the original
challenge of the datasets years ago, which are from
the supervised learning settings. We provide their
results in Appendix K. It is also critical that NER

performance in clinical texts can satisfy the high
requirements set by healthcare applications. Never-
theless, our work paves a potential solution for the
zero-shot clinical named entity recognition task.

Fourth, despite our attempts in generalization
across datasets, it is very unfortunate that existing
publicly available annotated clinical datasets only
contain a few entity types. The issue is exacer-
bated by the significance of clinical domain, with
emphasize on patient data protection (thus harder
to publicly share) and the domain expertise to an-
notate. Once datasets with other entity types are
made available, we will apply our methods to other
entity types, which we are not able to do at this
point given the lack of datasets with other entity
types.

Fifth, our framework may provide higher infer-
ence cost than supervised methods. We remark that
we develop a framework for a high-stakes domain
that imposes high-performance requirements. Fur-
thermore, our method is much more cost-efficient
than curating an annotated datasets, which is re-
quired for supervised methods. Our framework is
also flexible such that it provides trade-off between
performance and inference cost depending on the
user’s needs.

8 Ethic Statement

Our research is conducted on open, retrospective
clinical datasets without human subject interven-
tion and thus will not harm human subjects. Fur-
thermore, the clinical domain is complex and re-
quires evaluation beyond performance, particularly
regarding safety and bias. Unfortunately, the clin-
ical narratives in our datasets are not associated
with specific patients, impeding such evaluations.
Further evaluations and validations from clinical
experts will be needed to translate research into the
clinical decision process.
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Appendix

A Entity Decomposers

We provide the details for each of our entity decom-
position methods described in Section 4.2 here:
• Manually curating a set of candidate types

using expert-level knowledge. Here, we refer
to the annotation guidelines available in existing
datasets since we believe they are curated by do-
main experts. For “Tr”, “Pr”, “Te” and “DD” we
take the annotation guidelines from i2b2 2010.
For “CD”, we use i2b2 2012. For “AD” and “ADE”,
we use i2b2 2018 Task 2. We list the curated set
in Section A.1.

• Prompting an LLM for automatic generation.
We prompt ChatGPT with “You are an intelligent
clinical language model. Your job is to extract
{entity_type} from a patient’s discharge summary.
What entities can be considered as {entity_type}
in a discharge summary?” for each entity type.
For reproducibility, we present the results in Sec-
tion A.2.

• Utilizing an existing medical knowledge bank.
We use the Unified Medical Language System
(UMLS) since it contains standardized medical
vocabulary for many clinical entities. Here, we
take the UMLS semantic types for “Tr”, “Pr”
and “Te” available in i2b2 2010 guidelines. We
list the curated set in Section A.3.

A.1 Annotation

Treatment: medical treatment, medical
intervention, medical procedure, medical
device, treatment, biological substance,
drug, medication

Problem: medical problem, disease,
syndrome, symptom, medical condition,
behavior, virus, bacterium, injury,
abnormality, abnormal test result,
mental status

Test: medical test, medical procedure,
medical panel, medical examination,
medical evaluation, test, procedure,
laboratory procedure, diagnostic
procedure, panel, measure, physiologic
measure, vital sign, examination,
evaluation

Clinical Department: clinical
department, medical department, clinical
unit, clinical service, clinical

Table 7: Dataset Statistics

Dataset # samples

i2b2 2010 27,625
i2b2 2012 7,446
i2b2 2018 9,181
CLEF 2014 10,422

practice, clinical room, department,
location, building, hospital

Disease/Disorder: medical problem,
disease, syndrome, symptom, medical
condition, behavior, virus, bacterium,
injury, abnormality, abnormal test
result

Adverse Drug: drug

Adverse Drug Event: medical problem

A.2 ChatGPT
Treatment: medical treatment,
medication, medical procedure, therapy,
medical intervention, consultation,
counseling, discharge instruction,
supportive care

Problem: medical problem, medical
diagnosis, disease, abnormal test
result, symptom, abnormal imaging
finding, complication, chronic health
condition, medication side effect,
mental health issue, social determinants
of health

Test: medical test, laboratory test,
imaging study, diagnostic procedure,
genetic test, electrodiagnostic test,
functional test, microbiological test

A.3 UMLS
Treatment: medical treatment,
therapeutic procedure, preventive
procedure, medical device, steroid,
pharmacologic substance, biomedical
material, dental material, antibiotic,
clinical drug, drug delivery device

Problem: medical problem, pathologic
function, disease, syndrome, mental
dysfunction, behavioral dysfunction,
cell dysfunction, molecular dysfunction,
congenital abnormality, acquired
abnormality, injury, poisoning, anatomic
abnormality, neoplastic process, virus,
bacterium, symptom
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Table 8: Extension of Table 1 for Precision (%).

Dataset Entity
Type

UniNER GNER UniNER-all
(Supervised)

B ED F EDF ∆ B ED F EDF ∆

i2b2 2010
Tr 51.63 30.35 61.71 55.09 +3.46 46.08 27.19 74.16 66.60 +20.52 80.63
Pr 44.95 30.94 56.02 47.15 +2.20 33.71 25.61 55.43 47.63 +13.92 75.87
Te 53.51 26.04 58.67 48.84 −4.67 32.70 24.73 59.91 53.73 +21.03 79.14

i2b2 2012

Tr 57.09 36.72 65.25 59.08 +1.99 48.05 29.56 71.32 63.40 +15.35 81.10
Pr 42.93 32.65 53.03 46.87 +3.94 37.49 28.71 52.72 46.57 +9.08 78.97
Te 51.35 21.58 58.34 47.04 −4.31 29.96 18.15 57.95 49.69 +19.73 72.88
CD 35.87 19.94 54.85 47.56 +11.69 55.11 11.73 57.17 50.77 −4.34 59.19

CLEF 2014 DD 69.14 34.05 79.01 55.95 −13.19 29.10 16.29 40.85 28.18 −0.92 78.71

i2b2 2018 AD 12.43 4.54 20.93 15.09 +2.66 1.67 2.43 6.20 8.79 +7.12 12.32
ADE 6.04 1.36 12.36 5.23 −0.81 0.33 0.56 1.76 2.34 +2.01

Avg. 42.49 23.82 52.02 42.79 +0.30 31.42 18.50 47.75 41.77 +10.35 64.76

Table 9: Extension of Table 1 for Recall (%).

Dataset Entity
Type

UniNER GNER UniNER-all
(Supervised)

B ED F EDF ∆ B ED F EDF ∆

i2b2 2010
Tr 56.18 77.13 48.57 64.98 +8.80 63.25 71.70 54.33 60.18 −3.07 70.02
Pr 55.56 65.28 49.87 56.64 +1.08 50.39 60.12 46.83 54.03 +3.64 70.55
Te 44.81 63.84 31.02 40.32 −4.49 43.32 68.94 27.01 39.88 −3.44 66.76

i2b2 2012

Tr 52.11 70.34 44.37 57.45 +5.34 52.95 62.61 45.61 51.92 −1.03 65.34
Pr 50.99 60.64 46.65 54.12 +3.13 45.50 56.20 42.64 51.29 +5.79 71.70
Te 41.30 58.42 35.29 45.65 +4.35 37.15 57.18 31.83 43.98 +6.83 59.43
CD 49.04 88.78 25.18 32.56 −16.48 63.20 79.88 29.83 30.03 −33.17 35.49

CLEF 2014 DD 35.29 70.62 31.71 60.75 +25.46 13.10 29.99 11.90 25.74 +12.64 52.79

i2b2 2018 AD 40.93 77.74 39.50 71.63 +30.70 30.34 34.65 26.93 30.70 +0.36 17.24
ADE 22.86 52.88 22.27 48.11 +25.25 3.78 16.90 3.78 15.31 +11.53 34.00

Avg. 44.91 68.57 37.44 53.22 +8.31 40.30 53.82 32.07 40.31 +0.01 54.33

Test: medical test, laboratory
procedure, diagnostic procedure

B Datasets

We include all entities for i2b2 2010, ClinicalIE,
and CLEF 2014. For i2b2 2012, we found that
UniversalNER and GNER performed poorly on the
last two entities (e.g., evidence and occurrence)
and decided to exclude them. We attribute this to
them consisting mostly of verb phrases, while the
training dataset consists mainly of noun entities.
For i2b2 2018 Task 2, we test our method on a
more challenging setup, extracting adverse drugs
and adverse drug events (Henry et al., 2020). We
provide the dataset statistics in Table 7.

C Recall and Precision Performance

We provide the precisions and recalls for each
dataset and entity type from Table 1 in Table 8
and Table 9 respectively. We observe a similar
trend for both metrics. Furthermore, we observe
that UniNER benefits more from precision and
GNER on recalls using our framework.

D Filter Prompt

We experiment with different ways to prompt
in Section 5.3.4 and provide the specific instruc-
tions here.

D.1 Without Description (Default)

Can ’{entity}’ be considered a/an
{entity_type}? Answer with yes or no.

D.2 With Description

Treatment: Can ’{entity}’ be considered
a procedure or substance given to a
patient to resolve a medical problem?
Answer with yes or no.

Problem: Can ’{entity}’ be considered
an observation thought to be abnormal or
caused by a disease? Answer with yes or
no.

Test: Can ’{entity}’ be considered a
procedure or measure to find more
information about a medical problem?
Answer with yes or no.
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Figure 6: Few-shot performance comparison. We observe
performance drop using in-context learning (ICL). In contrast,
our method (EDF) is more robust. We use the i2b2 2012
dataset with entity types treatment (Tr), problem (Pr), and test
(Te).

Clinical Department: Can ’{entity}’ be
considered a clinical unit or clinical
service name? Answer with yes or no.

E Few-shot Experiment

Here, we tried including some annotated samples
in our framework and compared the approach to
standard in-context learning. We randomly sam-
ple from the annotation guidelines and add them
to the UniversalNER prompt. We also guarantee
that there is at least one sample without entities of
interest (e.g., sentence does not contain treatments
or medical problems). Interestingly, we observe
performance degradation across entity types the
more samples we use. These contrastive results
to general LLMs (Xie et al., 2023) further justify
that open NER LLMs cannot be treated similarly
to them. Furthermore, we observe that this also ap-
plies to our framework, although it is not as severe
as standard in-context learning.

We remark that performance drops on in-context
learning are not uncommon. Previous works (Zhao
et al., 2021; Zhu et al., 2023) show instability in
performance for in-context learning. In addition,
few-shot experiments are uncommon for zero-shot
NER task (Zhou et al., 2023; Ding et al., 2024;
Zaratiana et al., 2024), even if they use LLMs. Our
work reveals that open NER LLMs may not benefit
from in-context learning and are different from
general LLMs. We leave further investigation to
future works.

F Performance on BERT-based Models

We use GLiNER (Zaratiana et al., 2024), a BERT-
based model for open-named entity recognition.
Note that previous prompt engineering methods
cannot be applied here. We conduct the experiment
similar to UniNER and GNER, with Xie et.al. (Xie

Table 10: Performance on GLiNER.

Dataset Entity
Type Metric GLiNER

B ED F EDF ∆

i2b2 2010

Tr
P 52.03 35.70 70.79 66.71 +14.68
R 44.55 76.13 39.86 63.93 +19.38

F1 48.00 48.61 51.00 65.29 +17.29

Pr
P 71.19 48.48 79.13 67.32 −3.87
R 49.22 63.36 46.16 56.49 +7.27

F1 58.20 54.93 58.31 61.43 +3.23

Te
P 42.80 22.93 63.77 56.65 +13.85
R 27.23 55.63 23.43 39.14 +11.91

F1 33.28 32.47 34.27 46.30 +13.02

i2b2 2012

Tr
P 53.77 38.88 71.83 66.92 +13.15
R 48.37 69.76 42.87 58.03 +9.66

F1 50.93 49.93 53.69 62.16 +11.23

Pr
P 71.67 51.93 77.68 67.35 −4.32
R 50.33 63.93 47.27 58.06 +7.73

F1 59.13 57.32 58.78 62.36 +3.23

Te
P 43.97 19.72 66.72 55.42 +11.45
R 39.17 60.09 35.17 48.41 +9.24

F1 41.13 29.69 46.06 51.68 +10.25

CD
P 48.69 22.99 58.28 50.08 +1.39
R 71.59 88.27 29.52 32.96 −38.63

F1 57.96 36.48 39.19 39.76 −18.20

CLEF 2014 DD
P 65.32 41.83 72.26 59.42 −5.90
R 27.90 48.17 26.00 42.99 +15.99

F1 39.09 44.78 38.24 49.89 +10.80

i2b2 2018

AD
P 2.31 3.52 6.47 13.50 +11.19
R 5.39 67.15 5.39 61.40 +56.01

F1 3.23 6.69 5.88 22.13 +18.90

ADE
P 7.42 2.17 15.03 7.70 +0.28
R 14.31 44.93 13.12 40.95 +26.64

F1 9.77 4.15 14.01 12.96 +3.19

Avg.
P 45.92 28.82 58.20 51.11 +5.19
R 37.81 63.74 30.88 50.24 +12.43

F1 40.10 36.51 39.94 47.40 +7.29

et al., 2023) as our baseline. We present the re-
sults in Table 10. We observe the same trend as
in Section 5.2 with an average of 7.29% F1-score
improvement.

G Performance Drop on CD

We observe significant recall drops to “clinical de-
partment” entities across all models. Here, we posit
that some entities may not necessarily conform to
the clinical department in the clinical domain. For
instance, some entities are hospitals; thus, if a filter
is prompted with our template (e.g., “Can hospi-
tals be considered as a clinical department?”), then
it is likely to reject them. One possible solution
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Figure 7: Filter Precision/Recall Trade-off. There is an im-
provement in recall but a decrease in precision when increas-
ing the threshold. The dashed line corresponds to performance
with threshold = 0. We use i2b2 2012 dataset.

is using a clear entity description. As illustrated
in Table 5, our framework outperforms the base-
line (e.g. 45.97% vs 38.66% F1-score respectively)
when using entity description.

H EDF Filter Precision/Recall Trade-off

We analyze how filtering can be made more or less
strict to achieve better trade-offs. We use the filter
output probability to determine whether the entity
is rejected or not. Concretely, rather than directly
rejecting them if the filter outputs “No”, we first
look at the token probability. If it is less than a
certain threshold, we then reject them. Our frame-
work is simplified to entity decomposition if the
threshold is 1. We provide the results in Figure 7.

Overall, increasing the threshold leads to de-
creased precision and improved recall. Interest-
ingly, better thresholding can improve the F1 Score
in “clinical department” entities. This might be due
to the noises for the entities as described in Ap-
pendix G.

I LLM Prompt Templates

Our experiments involve large language models,
which are often trained with specific templates.
We use their default templates (except Llama2)
throughout the experiments and present them here.

I.1 UniNER
A virtual assistant answers questions
from a user based on the provided text.
USER: Text: {input}
ASSISTANT: I’ve read this text.
USER: {instruction}
ASSISTANT:

I.2 GNER
[INST] Please analyze the sentence
provided, identifying the type of entity
for each word on a token-by-token basis.
Output format is: word_1(label_1),
word_2(label_2), ...
We’ll use the BIO-format to label the
entities, where:
1. B- (Begin) indicates the start of a
named entity.
2. I- (Inside) is used for words within
a named entity but are not the first
word.
3. O (Outside) denotes words that are
not part of a named entity.
{instruction}
Sentence: {input} [/INST]

I.3 Asclepius
You are an intelligent clinical languge
model.
Below is a snippet of patient’s
discharge summary and a following
instruction from healthcare
professional.
Write a response that appropriately
completes the instruction.
The response should provide the accurate
answer to the instruction, while being
concise.

[Discharge Summary Begin]
{input}
[Discharge Summary End]

[Instruction Begin]
{instruction}
[Instruction End]
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Table 11: Results from The Original Competitions

Dataset Metric SOTA†

i2b2 2010 Exact F1 85.20
i2b2 2012 Span F Measure 92.00
i2b2 2012 Type Accuracy 86.00
i2b2 2018 Task 2 Lenient F1 58.73
CLEF 2014 - -

† values reported from the best performing method in the
challenges

I.4 Llama2
<s>[INST] <<SYS>>
You are an intelligent clinical languge
model.
Below is an instruction from healthcare
professional.
Write a response that appropriately
completes the instruction.
The response should provide the accurate
answer to the instruction, while being
concise.
<</SYS>>

{instruction} [/INST]

J LLM Hyperparameters

We use the default hyperparameters for each model.
For UniNER and GNER, we use greedy search. For
Asclepius and Llama2, we use temperature 0.2 and
top P probability 0.95. Our exploration reveals
consistent outputs for this set of hyperparameters.

K Results from Original Challenges

Each of the datasets in our experiments is curated
from a competition (Uzuner et al., 2011; Sun et al.,
2013; Henry et al., 2020; Mowery et al., 2014).
We present the results from the original compe-
titions in Table 11. The state-of-the-art methods
from these competitions are trained using super-
vised learning. We remark that each competition is
evaluated differently, and only i2b2 2010 use the
same metric as ours.
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