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Abstract

Reranking, or scoring a list of prediction candi-
dates from a machine translation system with
an external scoring model and returning the
highest-scoring candidate, remains a simple
and effective method for improving prediction
quality. However, reranking with high quality
scoring models can add substantial computa-
tional cost to the translation pipeline, which we
address in this work by framing list reranking
as a Bayesian optimization (BayesOpt) prob-
lem over the candidate list, where unknown
scores are modeled with a Gaussian process.
This algorithm scores candidates iteratively,
choosing next candidates by balancing between
exploration, choosing to score those that dif-
fer from candidates already scored, and ex-
ploitation, choosing to score those that resem-
ble high-scoring candidates. This procedure
finds high-scoring candidates while scoring
only a fraction of the candidates list; given
candidate lists of 200 random samples (before
deduplication), our method achieves the same
CometKiwi score using only 70 scoring eval-
uations on average compared to scoring a ran-
dom subset of 180 candidates. We also pro-
pose multi-fidelity BayesOpt for list rerank-
ing, where scores obtained from a noisier but
cheaper proxy scoring model are incorporated
into the search process. We show that well-
trained distilled proxy scorers can further im-
prove the performance of BayesOpt.

1 Introduction

Reranking is a framework for prediction where
probabilistic generator model produces a list of
candidates, and a separate evaluator or scoring
model produces scores for each of the candidates
which are use to determine the final prediction.
Reranking has a long history in natural language
processing for sequential prediction problems such
as dependency parsing (Collins and Koo, 2005;

0Paper code: github.com/juliusc/bayesopt_reranking

Figure 1: A machine translation system generates candi-
dates Aa, Bb, Cc, Dd, and Ee. The goal of BayesOpt is
to find the highest scoring candidate with fewer scoring
calls. An acquisition function selects the next candi-
date to score repeatedly until budget is reached, and the
candidate with the highest score so far is returned.

Charniak and Johnson, 2005) and language model-
ing problems such as summarization (Ravaut et al.,
2022) and machine translation (MT; Fernandes
et al., 2022).

The quality of models for automatic MT evalua-
tion has surged in recent years due to innovations
in neural network architecture (Rei et al., 2020;
Juraska et al., 2023; Sellam et al., 2020) as well
as the abundance of training data (Freitag et al.,
2023b; Kocmi et al., 2024a). These evaluation mod-
els are often repurposed for reranking to further
improve the performance of an MT system. For in-
stance, in the WMT 2024 shared task (Kocmi et al.,
2024a), 5 out of 19 systems, including the overall
best submission (Rei et al., 2024) use reranking
with Comet models (Rei et al., 2020) and/or min-
imum Bayes risk decoding (MBR; Eikema and
Aziz, 2020), which can be interpreted as a form
of reranking. Prior to the application of automatic
evaluation metrics to reranking, other scoring meth-
ods have been proposed, including discriminatively
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trained classifiers (Lee et al., 2021; Bhattacharyya
et al., 2021) and noisy channel decoding (Yee et al.,
2019).

So, while LMs for MT generation for greatly
improved in recent years, scoring models have seen
a commensurate increase in quality (Zerva et al.,
2022), and thus reranking remains relevant method
for improving translation quality. However, the
scoring models have also grown dramatically in
size, increasing the computational requirements for
reranking.

In this work, we address the computational cost
of reranking by framing it as a search problem
over the list of candidates. The goal of search in
this setting is to find high-scoring candidates in a
small number of steps, thereby avoiding the cost of
scoring the full list. Our proposed algorithm uses
Gaussian processes to model uncertainty about un-
seen scores and Bayesian optimization (BayesOpt;
Shahriari et al., 2016) to choose which candidates
to score next.

GPs are flexible priors over functions which are
able to model the complex and nonlinear relation-
ship between each candidate and its score. GPs
make very few assumptions about the distribution
and base their predictions are mostly on observed
points, which enables them to easily adapt to dif-
ferent candidate lists across translation instances.
BayesOpt is a sequential black-box optimization
method that uses the posterior mean and variance
of unobserved data points to decide which points
to evaluate next.

We apply BayesOpt and GPs (BayesOpt+GP) to
MT list reranking in a straightforward manner and
show that it obtains close to the maximum achiev-
able score with only a fraction of score evaluations.
For example, the maximal obtainable score across
200 randomly sampled candidates on our test set
is 0.8216 CometKiwi; our method achieves 0.8210
with 70 score evaluations on average, while scoring
70 random candidates attains 0.8149, a difference
of 0.0061 which is likely to be human-detectable
according to (Kocmi et al., 2024b). We also pro-
pose a number of search-based baselines which
outperform random selection, all of which are out-
performed by BayesOpt+GP.

Then, building upon previous works that use a
faster but noisier proxy scoring function to prune
the candidate list (Fernandes et al., 2022; Eikema
and Aziz, 2022), we propose a multi-fidelity exten-
sion to BayesOpt which incorporates proxy scores

to improve estimation. This is related in motiva-
tion to coarse-to-fine methods (Petrov, 2011) and
model cascading (Chen et al., 2023), where the use
of a faster proxy model reduces the use of the main
model. In our multi-fidelity experiments, we find
that smaller proxy scoring models distilled from
the main model can assist BayesOpt+GP in finding
high-scoring candidates earlier.

2 Background

2.1 Translation generation and reranking

In a typical machine translation setting, a condi-
tional language model (LM) is trained to model the
probability of the next token yt given a source sen-
tence x and previous tokens: p(yt|x, y1, ..., yt−1).
These probabilities can be autoregressively com-
bined to model a sequence probability p(y|x). Usu-
ally, beam search is used to search for a y which
maximizes log probability combined with a length
normalization objective (Wu et al., 2016).

In a basic list reranking setting, given x, the LM
is used to generate a candidate list Cx = [y1, ..., yn]
with a decoding algorithm such as beam search or
ancestral sampling. A scoring function s(x, yi) is
then applied to each yi ∈ Cx, and the best scor-
ing sequence argmaxyi∈Cx s(x, yi) is returned. A
common choice of scoring function is a quality esti-
mation (QE) model which directly predicts a scalar
value representing the quality.

Reranking with high-quality evaluation metrics
has been shown to be highly effective at improving
translation output (Freitag et al., 2022), though it
can skew results when the same metric is also used
for evaluation (Kocmi et al., 2024a). Reranking
performance improves as the number of candidates
increases (Vernikos and Popescu-Belis, 2024) and
when multiple scoring metrics are combined to
form a stronger prediction (Fernandes et al., 2022).

Reranking adds significant computational costs
to prediction and may be prohibitive to use at test
time, but it can be used to benefit LM training
instead of test time prediction; high-quality pre-
dictions obtained from reranking can be used for
knowledge distillation (Wang et al., 2024) and self-
training (Finkelstein et al., 2024). Such methods
can improve the performance of an MT system
without additional costs during test time.

Previous work on efficient reranking for MT is
relatively limited. Fernandes et al. (2022) and
Eikema and Aziz (2022) perform a two-stage
reranking by first pruning with a faster and noisier

2850



scoring function to a fixed size before evaluating
the target score. There has been recent interest in
efficient approximations for MBR (Cheng and Vla-
chos, 2023; Deguchi et al., 2024; Trabelsi et al.,
2024; Vamvas and Sennrich, 2024), but these meth-
ods are not applicable to general scoring functions.
(Singhal et al., 2023) propose to represent the can-
didate space compactly in a lattice over which a
token-level reranker can efficiently score many can-
didates. In this work, we attempt to address a more
general setting: the reranking of candidate lists
with arbitrary black-box scoring functions.

2.2 Bayesian optimization with
Gaussian process prior

Bayesian optimization is a sequential algorithm
for optimizing a black-box function f . f is as-
sumed to be drawn from a prior distribution over
functions. The main loop of BayesOpt is as fol-
lows: given a set of (possibly noisy) observations
of f(a1), ..., f(ai), the prior distribution over f is
updated to a posterior distribution with Bayes the-
orem. An acquisition function determines a query
point ai+1 at which to evaluate f next. f(ai+1)
is evaluated and added to the set of observations.
This repeats until a stopping criteria is reached.
The principal design choices in BayesOpt are the
prior distribution of f and the acquisition function.

A common choice of prior is the Gaussian pro-
cess, which assumes that any subset of points
f(a1), ..., f(ai) are drawn jointly from a multivari-
ate Gaussian distribution N (µ,K), where K is the
covariance matrix defined by a kernel function such
as the radial basis function kernel (RBF). RBFs de-
fine the covariance of two points a and a′ as:

KRBF(a, a
′) = exp

(
−||a− a′||2

2w2

)
, (1)

where w is the bandwidth hyperparameter which
determines scaling. The choice of kernel dictates
prior assumptions about the shape of f ; with RBF,
points that are closer in Euclidean space have larger
covariance. RBFs are a popular choice of kernel
due their ability to adapt to complex nonlinear func-
tions.

The assumption that f(a1), ..., f(ai) are jointly
Gaussian gives rise to a convenient posterior dis-
tribution. Given a vector of observed data points a
and their observed values f(a), the posterior mean
µa and variance σa of a point a are given by the

conditional multivariate Gaussian distribution:

µa = µ+K(a,a)(K(a,a) + σ2I)−1f(a) (2)

σa = K(a, a) + σ2−
K(a,a)(K(a,a) + σ2I)−1K(a, a)

(3)

where µ is the unconditional mean of the distribu-
tion, σ2 is a constant Gaussian noise on observa-
tions, I is the identity matrix, and K here returns
elementwise kernel values when given vector argu-
ments.

The acquisition function in BayesOpt is the strat-
egy for selecting the next point to evaluate in the op-
timization process. Acquisition functions can seek
the highest expected improvement (EI; Mockus,
1974), an upper confidence bound if the scores are
noisy (Srinivas et al., 2009), or information gain
(Hennig and Schuler, 2011). We use EI, defined as:

α(a) = E[max(f(a)− f(a+), 0)], (4)

where a+ is the location of the current best obser-
vation. When f is Gaussian and there is no ob-
servation noise, this has the following closed-form
solution (Jones, 2001):

α(a) = σa(z · cdf(z) + pdf(z)), (5)

where z = f(a+)−µa

σa
, and cdf,pdf are the Gaus-

sian cumulative distribution function and probabil-
ity density function, respectively. EI encourages
both exploration of uncertain points and exploita-
tion of high-scoring points; the quantity in Equa-
tion 5 can be increased by increasing µa or σa.

The generality of BayesOpt and modeling free-
dom enjoyed by GPs make them suitable for a
great variety of tasks, including spatial monitoring
(Krause et al., 2008) and hyperparameter optimisa-
tion (Bergstra et al., 2011). GPs have been applied
to text regression tasks (Beck et al., 2013, 2014;
Beck and Cohn, 2017), but they are not as well-
studied in NLP compared to many other domains.

3 Methods

3.1 MT reranking with Bayesian optimization

Our main algorithm is an adaptation of BayesOpt
with GPs as described in Section 2.2 to the rerank-
ing setting. Each source sentence x and its as-
sociated candidate list is treated as a standalone
BayesOpt problem, meaning that no observations
are shared across different x. Thus for brevity, we
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Inputs: main metric s, proxy metric s′, budget n for evaluating s, hypotheses C, number of initial main
scores α, number of initial proxy scores β, scoring budget n, batch size k, precomputed multi-fidelity
kernel Kmult.
Output: hypothesis with the highest observed score argmaxy∈Cobs s(y).

1: C′obs ←
( C
min(β,|C|)

)
, Cobs ←

( C′
obs

min(α,|C|)
)

▷ Sample initial subsets
2: Sobs ← {s(y)|y ∈ Cobs} ▷ Compute scores for main scoring function
3: S′

obs ← {s′(y)|y ∈ C′obs} ▷ Compute proxy scores
4: while |Cobs| < n and |Cobs| < |C| do
5: C̄obs ← C \ Cobs ▷ Get complement of Cobs
6: Ŝ ← Norm(Sobs), Ŝ′ ← Norm(S′

obs) ▷ Normalize observed scores to 0 mean, 1 variance
7: ybest ← argmaxy∈Cobs Ŝ(y) ▷ Get best observed point
8: ∀y ∈ C̄obs : µy, σy ← calculate posterior using y,Kmult, Ŝ, Ŝ′

▷ GP posterior as in Equations (2) and (3)
9: ∀y ∈ C̄obs : γy ← EI(ybest, µy, σy) ▷ Expected improvement as in Equation (5)

10: Ctop-k ← arg topky∈C̄obsγy ▷ Select k best hypotheses based on EI
11: Sobs ← Sobs ∪ {s(y)|y ∈ Ctop-k} ▷ Compute scores for selected hypotheses
12: Cobs ← Cobs ∪ Ctop-k ▷ Update observed hypotheses
13: end while
14: return argmaxy∈Cobs s(y)

Algorithm 1: The BayesOpt+GP+P algorithm. BayesOpt+GP is a special case of this where β = 0.

omit x from notation when discussing BayesOpt
for a particular instance.

Let s be the scoring function, an MT quality es-
timator. Let C be a set of candidates, Cobs ⊆ C the
subset of candidates for which we have observed
s(y), and C̄obs be all other y (C̄obs = C \ Cobs). To
perform reranking for an instance, we first generate
candidates C and initialize the algorithm by scoring
a random α-sized subset of the list with s. In one
iteration in the algorithm loop, we normalize the
observed scores to mean 0 and 1 variance at every
step and assume a 0 unconditional mean. Then
we compute the GP posterior of all y ∈ C̄obs with
Equation 2 and 3 given the scores of Cobs, which is
then used to compute EI with Equation 5, assuming
no observation noise. We score the k candidates in
C̄obs with the highest EI, adding them to Cobs (as
well as removing them from C̄obs), and repeat the
loop, terminating when a predefined budget of n
calls to s is reached (or when all candidates have
been evaluated, in the case that |C| ≤ n.). Finally,
we choose argmaxy∈Cobs s(y) as the prediction.

We now describe our choice of GP kernel. y ∈ C
are strings, and we seek a representation that is fast
to compute and to compare, since |C| representa-
tions are generated, and the computing the GP co-
variance matrix requires |C|2 comparisons. Our ker-
nel is KMT(yi, yj) = KRBF(emb(yi), emb(yj)),

where emb returns the mean-pooled token-level
outputs of the final decoder layer when generat-
ing y, normalized to the unit norm after pooling.
emb uses meaning representations produced auto-
matically during candidate list generation, so the
additional cost to compute it is negligible. Also,
the covariance matrix is fast to compute given the
candidate list sizes and embedding dimensionality
used in our experiments.

3.2 Multi-fidelity BayesOpt

We also propose an extension to BayesOpt+GP
for the setting where observations are available
from a different but related proxy score function
s′. We refer to this as BayesOpt+GP+P. s′ is as-
sumed to have non-trivial covariance with the scor-
ing model s and to be cheaper to evaluate. This is
known as multi-fidelity BayesOpt in the literature,
but while the multi-fidelity settings of Kandasamy
et al. (2016); Wu et al. (2020) use acquisition func-
tions that may choose to evaluate lower-fidelity
scores, we study a simpler setting: β observations
of s′ are obtained at the start where β > α, and
only s may be evaluated during the BayesOpt loop.
In the multi-fidelity setting, observations are made
on ⟨yi, si⟩, a combination of a data point and scor-
ing function, instead of the data point alone.

Our kernel for BayesOpt+GP+P is the product
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of the RBF kernel from Section 3.1 and a kernel
over score functions f :

Kmult

(
⟨yi, sk⟩, ⟨yj , sl⟩

)
=

KMT(yi, yj)Kscore(sk, sl). (6)

Kmult is a valid kernel because a product of two
kernels defined on different spaces is also a kernel
(Rasmussen and Williams, 2005). With Kmult, the
covariance between two observations depends on
both the difference between scoring functions and
the distance between data points. This way, an ob-
servation influences the posterior for all other data
points at all choices of scoring function, as long
as the scoring functions are correlated. This for-
mulation enables the use of any number of scoring
functions, but in this work, we consider at most
two: the main scorer s and a proxy scorer s′.

We set Kscore(sk, sl) to be the empirical covari-
ance between sk and sl measured over a validation
set, where all scores are normalized per-instance so
that in each instance, the scores of all candidates
for a particular scorer have 0 mean and 1 variance.
Then for each scoring function, concatenate all can-
didate scores across instances, and compare the
resulting lists to obtain the covariance. Covariance
is a valid kernel because the covariance calculation
can be expressed as a dot product, and dot products
are valid kernels.

Proxy scores are incorporated into posterior esti-
mation given by Equations 2 and 3 by redefining a
to be a tuple of ⟨data point, scoring function⟩ and a
to be a vector of such tuples. The kernel K is set to
Kmult which takes as input two tuples of data point
and scoring function. The full BayesOpt+GP+P
algorithm is in Algorithm 1.

3.3 Proxy scores

We train smaller scoring models to have high co-
variance with s for use in BayesOpt+GP+P. In
this work, our scoring functions are based on the
Comet referenceless quality estimation architec-
ture (Rei et al., 2020), also known as CometKiwi.
These models encode the source and hypothesis
jointly with a bidirectional transformer. Activa-
tions from all transformer layers are pooled to form
a fixed-size representation, which is passed to a
feed-forward regression head. The vast majority
of computation in this models is spent in the en-
coder. Thus, faster Comet models can be obtained
by reducing the size of the encoder.

We train Comet models using two differently
sized pretrained multilingual encoder models in
two ways: (1) training on the same training set as
CometKiwi and (2) distillation. Among distillation
methods, we attempt in preliminary experiments
(1) training on the same training set as CometKiwi
with ground truth scores replaced with CometKiwi
scores and (2) training on a synthetic dataset com-
prising of LM samples along with their associated
CometKiwi scores. The latter achieves higher cor-
relation with CometKiwi on sampled candidates,
which is to be expected since the training distribu-
tion is more suitable for the reranking use case. We
therefore use this latter distillation method for all
subsequent experiments. A similar procedure has
been described in Rei et al. (2022a).

3.4 Candidate list generation

In preliminary experiments, we consider generat-
ing the candidate list using beam search with 128
outputs versus sampling 200 candidates using ϵ-
sampling (Hewitt et al., 2022) with ϵ = 0.02, a
setting which effectively balances quality and diver-
sity for MBR (Freitag et al., 2023a). Under beam
search, the candidates exhibit high lexical overlap,
and while the mean score of candidates is higher,
the average maximum score is lower. The effec-
tiveness of truncated sampling over beam search
in larger conditional language model has also been
observed by Fernandes et al. (2022).

Furthermore, beam search suffers from out-of-
memory errors on long translations, whereas with
sampling, we simply reduce the batch size when
out of memory. While it is possible to implement
beam search in a batched manner, this does not
exist in any popular conditional language model
libraries, to the best of our knowledge.

For these reasons, we generate 200 candidates
per instance with ϵ-sampling, ϵ = 0.02 in all exper-
iments. The sampled candidate list is then dedupli-
cated, resulting in ∼178 candidates on average per
instance.

4 Experiments

We now discuss the details and findings of our
Bayesian optimization experiments, followed by
analysis of our trained proxy scoring models, con-
cluding with runtime measurements. All run time
values are measured on a A100-SXM4-40GB GPU.
For exact values for figures in this section, see
Table 3 in the Appendix. Appendix A contains
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Figure 2: Left: Performance of reranking methods measured as the average CometKiwi score of the selected
candidate. Beam search with beam size 5 achieves a score of 0.754 and is too low to be pictured here. Right:
percentage of instances where the selected candidate had the highest score (right). The x-axis is the scoring budget.
Legends show the normalized area under the curve of CometKiwi score of each method in brackets.

extensive statistical significance tests.
For BayesOpt experiments, we grid search for

the optimal value of RBF bandwidth parameter w
on the entire validation set, setting scoring budget
n = 100 and batch size k = 1. While it is possible
to optimize it for every unique combination of lan-
guage pair, n, k, proxy scoring function, and β, we
find that the results are not statistically significantly
different within a range of settings. For simplicity,
and to demonstrate the robustness of our methods,
we use the same w for all experiments.

In all experiments, we use α = 10 initial ran-
domly scored candidates. We set k = 1 in Sec-
tions 4.2 and 4.3 to demonstrate the effectiveness
of BayesOpt+GP under ideal conditions, but since
k can have a large impact on speed, we experiment
with varying it in Section 4.5.

4.1 Models and datasets

For candidate generation, we use the 600M-
parameter distilled NLLB model (Team et al.,
2022) in all experiments. For the main scoring
model, we use CometKiwi-22 (Rei et al., 2022b).

As a dataset used for proxy model training, we
use data from the WMT Metrics Shared Task up to
2022 (Freitag et al., 2023b), which contains tuples
of ⟨source, hypothesis, human score⟩. The human
scores were largely collected with the DA+SQM
annotation protocol (Kocmi et al., 2022).

For BayesOpt experiments, we select the first
1000 and 500 source sentences per language pair
from the WMT23 Metrics Shared Task dataset
as the validation and test set, respectively, for 7
language pairs: English-Czech, English-German,

English-Japanese, English-Chinese, and the reverse
directions of the latter 3 pairs.

CometKiwi is based on the encoder of XLM-
Robertalarge (Conneau et al., 2019) (2.2GB mem-
ory). For proxy scorers we train smaller mod-
els based on XLM-Robertabase (1.1GB), and
Multilingual-MiniLM-L12-H384 (Wang et al.,
2020) (469MB).

4.2 BayesOpt+GP
The goal of reranking BayesOpt+GP is to improve
the speed by only evaluating a subset of available
candidates. We evaluate this through quality-cost
tradeoff curves, where quality is determined by fi-
nal selected candidate’s CometKiwi score, and cost
is determined by the number of calls to the scor-
ing function. As another measure of approximation
quality, we also show the percentage of instances in
which the actual best scoring candidate is returned.
We devise several baselines with which to compare
BayesOpt+GP. Each is a strategy for selecting a
subset of candidates to score from which the best
scoring candidate is returned. The baselines are:

• UniqRandom: Shuffle the candidate list before
de-duplication, then de-duplicate while preserv-
ing the order of the first appearance of each can-
didate. Select the first min(n, |C|) candidates in
the resulting list.

• Logprob{Avg,Sum}: Sort C in order of negative
sequence log probability (either average or sum),
and then select the first min(n, |C|).

• HillClimbing: Let y+ be the highest scoring ob-
servation point at any time step. Iteratively select
argminy∈C̄obs ||emb(y)− emb(y+)|| as the next
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Figure 3: Average CometKiwi score of the selected top candidate (y-axis) for BayesOpt+GP+P with Distilled-S
(left) and Distilled-M (right) compared to the ProxyFirst baseline. This figure disregards the additional compute
costs for these proxy metrics in order to show the marginal score increase from proxy observations.

Figure 4: Average CometKiwi score of the selected
candidate (y-axis) for BayesOpt+GP+P with different
choices of proxy score.

observation point until min(n, |C|) candidates
are scored.

UniqRandom simulates the effect of iteratively
sampling candidates until n unique candidates are
obtained. LogprobFirst{Avg,Sum} are included
to verify whether more advanced methods indeed
outperform simple subset selection using statistics
obtained for free. HillClimbing is a heuristic iter-
ative selection strategy which, like BayesOpt, is
black-box and derivative-free (Conn et al., 2009).

In Figure 2, BayesOpt+GP outperforms all base-
lines, and HillClimbing is the best among the base-
lines, with LogprobAvg following behind. Log-
probSum severely underperforms UniqRandom in
score, confirming findings on the inadequacy of
very high probability translations (Eikema and

Aziz, 2020). Informally speaking, UniqRandom is
a simple “exploration” strategy that ignores exist-
ing observations, while HillClimbing is a simple
“exploitation” strategy, only searching over neigh-
bors nearest the best observation while ignoring
the full search space. These results confirm that
balancing these respective deciderata helps to find
the optimal candidate more efficiently.

4.3 BayesOpt+GP+P

4.3.1 Proxy score evaluation

We first evaluate trained proxy scorers indepen-
dently of their use in BayesOpt according to (1)
actual runtime, (2) correlation with human rat-
ings in the WMT23 dataset, (3) correlation with
CometKiwi on source-hypothesis pairs in WMT23,
and (4) correlation with CometKiwi on a synthetic
candidates for an instance, averaged over instances.
For correlations we use Kendall’s τc, which is com-
monly used in MT metric evaluation (Freitag et al.,
2023b).

Table 1 shows the results for the proxy models.
The model size corresponds closely to inference
time. As desired, training proxies using distillation
results in much higher correlation with CometKiwi,
although it loses some correlation with human judg-
ments. In subsequent experiments, we consider
Distilled-{S,M} only. While LogprobAvg has com-
paratively much lower correlation, we nevertheless
consider it as a proxy score since it is obtained for
free during candidate generation.
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Human CometKiwi
Model Time Test Test Cands.

CometKiwi 51.38s 0.245 1.000 1.000

LogprobsAvg 0.00s - - 0.191
LogprobsSum 0.00s - - -0.090

Authentic-S 7.13s 0.193 0.314 0.350
Authentic-M 18.71s 0.199 0.320 0.448

Distilled-S 7.13s 0.169 0.488 0.620
Distilled-M 18.71s 0.188 0.572 0.680

Table 1: Benchmarking proxy models (Sec-
tion 3.3) on speed and correlation with human
judgments/CometKiwi using the WMT23 dataset.
Speed is measured by runtime per 10000 samples using
maximum batch size. Correlation is measured with
Kendall’s τc against human judgments and CometKiwi
scores. CometKiwi correlation is taken over the
provided targets in WMT23 (Test) and a synthetic
dataset comprised of 200 samples per source sentence,
deduped (Cands). Logprobs{Avg,Sum} is not evaluated
on WMT23 targets because they are generated by other
MT systems.

4.3.2 Reranking results
When s′ is sufficiently fast and correlated with s,
it can further improve the quality-cost tradeoff in
BayesOpt+GP. Recall that BayesOpt+GP+P initial-
izes with β evaluations of s′. Figure 4 shows the
quality-cost curve when all proxy scores are known,
or β = 200. The relative performance when includ-
ing proxy scores correspond to their correlation
with CometKiwi as shown in Table 1; Distilled-
M outperforms Distilled-S, and both outperform
LogprobAvg. This demonstrates the importance of
ensuring high correlation in the proxy score. The
addition of LogprobAvg to BayesOpt+GP has little
effect, showing that poorly correlated proxies are
too noisy to help and may even hinder performance.
Beyond n = 70, all methods achieve close to the
maximum attainable score.

We also examine the effect of initializing with
a fraction of proxy observations rather than all of
them. For some choice of β, an appropriate base-
line is to rank the top-n candidates among the β
observed proxy scores. We call this ProxyFirst.
The results when using Distilled-M and Distilled-S
as proxies are shown in Figure 3. In both cases,
the difference between BayesOpt+GP+P and Prox-
yFirst is smaller when β = 200 than when β = 50,
and this gap is smaller for Distilled-M. This is to be
expected because as the covariance of s and s′ in-
creases, using ProxyFirst with β = 200 approaches

standard full-list reranking. The marginal benefit
of BayesOpt+GP+P is more clear when β = 50,
where proxy scores help to find promising candi-
dates earlier.

Overall, proxy observations can indeed improve
quality for a particular n. However, for sufficiently
large n, BayesOpt+GP converges, so proxy obser-
vations are unnecessary. Proxy evaluations add to
the runtime cost which we discuss in Section 4.4.
Therefore, while we show that the multi-fidelity
kernel is capable of leveraging proxy scores to im-
prove search, in practice, the overall computational
budget should be considered along with the quality
and cost of the proxy scoring function to ensure
that using the method is worthwhile.

4.4 Runtime

Our reranking algorithm significantly reduces ac-
tual runtime compared to scoring all candidates
for a source sentence. We profile the full pipeline,
from generating candidates to making a final se-
lection, on three settings: (1) BayesOpt+GP with
n = 90, and (2) multi-fidelity BayesOpt+GP with
50 Distilled-S scores and n = 70, and 3) the base-
line of evaluating CometKiwi on all candidates.
n, β are selected to balance the final scores of the
two algorithms (0.8213 and 0.8211 respectively, as
shown in Table 3).

For the runtime calculations, we select 50 source
sentences from each language pair and generate
200 candidates for each. For the baseline, we com-
pute scores for all candidates with a batch size of
200. For BayesOpt+GP methods, we profile the
additional steps required: computing the kernel,
computing the posteriors at each step, and evalu-
ating proxy scores. BayesOpt+GP(+S) uses batch
size k = 10, which does not affect scores com-
pared to using k = 1 (see Section 4.5). Memory
bandwidth can be a major overhead in large neural
networks, making it inefficient to run small batches.
Since BayesOpt+GP obtains k candidates per step,
in order to use large batches, we process candidates
for multiple instances in parallel.

Results are shown in Table 2. In all cases,
candidate generation and CometKiwi calculations
dominate the overall runtime. The extra cost
from BayesOpt-related computations is compen-
sated by the savings from reducing CometKiwi
evaluations, despite similarity matrix computation
being O(|C|2), and matrix inversion for poste-
rior calculation at each iteration being O(|C|3).
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BayesOpt+GP+P with Distilled-S reduces the run-
time by further reducing the number of CometKiwi
calculations to 70, with the cost of loading and
running the Distilled-S proxy metric introducing
minimal overhead.

BayesOpt BayesOpt
Operation AllComet +GP +GP+P

n = 90 n = 70, β = 50

Candidates 701.38 701.38 701.38
Similarities - 1.24 1.24
BayesOpt+GP - 1.92 2.25
Comet Loading 8.43 8.43 11.27
Distilled-S - - 11.11
CometKiwi 274.87 188.39 146.33

Total 984.68 901.36 873.58

Table 2: Runtimes for the full reranking baseline
(AllComet), BayesOpt+GP, and BayesOpt+GP+P with
Distilled-S as proxy score at settings where CometKiwi
scores are roughly equal. Time given in seconds per 350
instances.

4.5 Batch size k in BayesOpt+GP
We examine the effect of batch size k in
BayesOpt+GP for k = 1, 2, 5, 10. Figure 5 shows
that as expected, larger k diminishes performance,
although the differences nearly vanish at n>70.
k impacts how often the BayesOpt loop is run

and thus has a large effect on speed. Fortunately,
we observe for sufficiently large n, k can be in-
creased without sacrificing quality.
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Figure 5: Difference between BayesOpt+GP with batch
size of 1 (top line in red in Figure 2) and BayesOpt+GP
with higher batch sizes. Negative values mean that
higher batch size performed worse than BayesOpt+GP
with batch size of 1.

5 Conclusion

In this work, we formalize MT reranking as a
Bayesian optimization problem, leveraging the ba-

sic observation that similar translations are more
likely to have similar quality scores. We also ex-
tend the framework to accept observations from
proxy scoring functions, which is applicable when
the target score is very costly: large QE models,
MBR, or human evaluation. In realistic experi-
ments, we show that our methods improve rerank-
ing efficiency over strong baselines. We also pro-
pose several design choices that make the methods
useful in practice; a GP kernel that requires mini-
mal overhead, and effective proxy model training
via distillation.

We consider our work a first step in applying
BayesOpt to MT reranking. Future directions in-
clude integrating BayesOpt with candidate genera-
tion, alternative acquisition functions, and further
exploration of GP kernels for MT.

6 Limitations

The optimization problem considered in this work
is to maximize score from a scoring model. We
show that BayesOpt is an effective optimizer, but
we do not explore to what extent the optimization
problem is flawed due to flaws in the scoring model.
We refer to Kocmi et al. (2024b) to understand what
magnitude of score difference between systems
is significant. However, the existence of “metric
overfitting” when directly optimizing an evaluation
metric is debated and may affect the interpretation
of score differences (Fernandes et al., 2022; Wang
et al., 2024).

BayesOpt+GP requires matrix inversion, a
O(|C|3) operation that is performed once per itera-
tion. While it is inexpensive for the |C| we consider,
this limits the number of observations that can be
used for posterior computation without resorting to
approximations (Noack et al., 2023).

As an iterative algorithm, BayesOpt can score
no more than k candidates in a batch for a single
instance. Small batch sizes introduce a significant
bottleneck for large neural networks, so in order
to maintain large batch sizes, we propose process-
ing multiple instances in parallel. However, this
requires additional engineering.
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CometKiwi runs
Method Figure 10 20 30 40 50 60 70 80 90 100

UniqRandom 2 0.7917 0.8022 0.8074 0.8104 0.8124 0.8140 0.8149 0.8160 0.8168 0.8175
LogprobAvg 2 0.7956 0.8055 0.8101 0.8129 0.8149 0.8162 0.8171 0.8181 0.8187 0.8193
LogprobSum 2 0.7519 0.7723 0.7834 0.7913 0.7974 0.8019 0.8051 0.8081 0.8109 0.8125
HillClimbing 2 0.7917 0.8080 0.8124 0.8148 0.8165 0.8176 0.8184 0.8191 0.8196 0.8200
ProxyFirst 200 Distilled-S 3 0.8081 0.8141 0.8167 0.8181 0.8190 0.8197 0.8202 0.8206 0.8208 0.8210
ProxyFirst 200 Distilled-M 3 0.8119 0.8165 0.8184 0.8194 0.8201 0.8206 0.8209 0.8211 0.8212 0.8213
ProxyFirst 50 Distilled-S 3 0.8054 0.8100 0.8114 0.8121 0.8124 - - - -
ProxyFirst 50 Distilled-M 3 0.8073 0.8107 0.8119 0.8122 0.8124 - - - -

BayesOpt+GP 2,4,3 0.7917 0.8121 0.8167 0.8190 0.8201 0.8206 0.8210 0.8212 0.8213 0.8214
BayesOpt+GP+P with LogprobAvg 4 0.7956 0.8123 0.8166 0.8187 0.8198 0.8205 0.8208 0.8210 0.8213 0.8214
BayesOpt+GP+P with 200 Distilled-S 4,3 0.8081 0.8165 0.8190 0.8200 0.8207 0.8210 0.8212 0.8213 0.8214 0.8215
BayesOpt+GP+P with 200 Distilled-M 4,3 0.8119 0.8182 0.8199 0.8205 0.8209 0.8211 0.8213 0.8214 0.8215 0.8215
BayesOpt+GP+P with 50 Distilled-S 4,3 0.8054 0.8153 0.8184 0.8196 0.8204 0.8208 0.8210 0.8213 0.8214 0.8214
BayesOpt+GP+P with 50 Distilled-M 4,3 0.8073 0.8164 0.8187 0.8200 0.8207 0.8209 0.8211 0.8213 0.8214 0.8215

CometKiwi runs
Method Figure 110 120 130 140 150 160 170 180 190 200

UniqRandom 2 0.8182 0.8188 0.8192 0.8197 0.8200 0.8205 0.8208 0.8211 0.8214 0.8216
LogprobAvg 2 0.8199 0.8203 0.8205 0.8209 0.8211 0.8212 0.8213 0.8214 0.8216 0.8216
LogprobSum 2 0.8139 0.8156 0.8170 0.8180 0.8188 0.8196 0.8204 0.8209 0.8212 0.8216
HillClimbing 2 0.8203 0.8206 0.8208 0.8209 0.8211 0.8213 0.8214 0.8215 0.8216 0.8216

BayesOpt+GP 2,4,3 0.8215 0.8215 0.8215 0.8216 0.8216 0.8216 0.8216 0.8216 0.8216 0.8216
BayesOpt+GP+P with LogprobAvg 4 0.8214 0.8215 0.8215 0.8216 0.8216 0.8216 0.8216 0.8216 0.8216 0.8216

Table 3: Exact values (selected candidate score) for Figures 2 to 4.
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A Statistical Significance

We measure statistical significance between two methods based on the final candidate CometKiwi scores
with either budget 30, 60, 90, or across the budget range from 10 to 190 in Table 4. To determine whether
one method is better than another one, we use one-sided paired Student’s t-test with p-value threshold
0.01 which is run across the individual samples.
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LogprobAvg ← ← ↑ ↑
LogprobSum ↑ ↑ ↑ ↑
HillClimbing ← ← ← ↑

ProxyFirst 200 Distilled-S ← ← ← ←
ProxyFirst 200 Distilled-M ← ← ← ← ←

ProxyFirst 50 Distilled-S ← ← ← ↑ ↑
ProxyFirst 50 Distilled-M ← ← ← ↑

BayesOpt+GP ← ← ← ←
BayesOpt+GP+P with LogprobAvg ← ← ← ←

BayesOpt+GP+P with 200 Distilled-S ← ← ← ← ←
BayesOpt+GP+P with 200 Distilled-M ← ← ← ← ←

BayesOpt+GP+P with 50 Distilled-S ← ← ← ← ←
BayesOpt+GP+P with 50 Distilled-M ← ← ← ← ←
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LogprobAvg ← ← ↑ ↑
LogprobSum ↑ ↑ ↑ ↑
HillClimbing ← ← ← ↑

ProxyFirst 200 Distilled-S ← ← ← ← ↑
ProxyFirst 200 Distilled-M ← ← ← ←

BayesOpt+GP ← ← ← ←
BayesOpt+GP+P with LogprobAvg ← ← ← ←

BayesOpt+GP+P with 200 Distilled-S ← ← ← ← ←
BayesOpt+GP+P with 200 Distilled-M ← ← ← ← ←

BayesOpt+GP+P with 50 Distilled-S ← ← ← ←
BayesOpt+GP+P with 50 Distilled-M ← ← ← ← ←
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LogprobAvg ← ← ↑ ↑
LogprobSum ↑ ↑ ↑ ↑
HillClimbing ← ← ← ↑

ProxyFirst 200 Distilled-S ← ← ← ← ↑
ProxyFirst 200 Distilled-M ← ← ← ←

BayesOpt+GP+P ← ← ← ←
BayesOpt+GP+P with LogprobAvg ← ← ← ←

BayesOpt+GP+P with 200 Distilled-S ← ← ← ←
BayesOpt+GP+P with 200 Distilled-M ← ← ← ← ←

BayesOpt+GP+P with 50 Distilled-S ← ← ← ←
BayesOpt+GP+P with 50 Distilled-M ← ← ← ←

Across budgets 10 to 190 U
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LogprobAvg ← ← ↑ ↑
LogprobSum ↑ ↑ ↑ ↑
HillClimbing ← ← ← ↑

ProxyFirst 200 Distilled-S ← ← ← ← ←
ProxyFirst 200 Distilled-M ← ← ← ← ←

BayesOpt+GP ← ← ← ←
BayesOpt+GP+P with LogprobAvg ← ← ← ←

BayesOpt+GP+P with 200 Distilled-S ← ← ← ← ←
BayesOpt+GP+P with 200 Distilled-M ← ← ← ← ←

BayesOpt+GP+P with 50 Distilled-S ← ← ← ← ←
BayesOpt+GP+P with 50 Distilled-M ← ← ← ← ←

Table 4: Statistical significance comparison between proposed methods across various CometKiwi calls budgets.
Within a cell, ↑ means that the column method (in header) is statistically significantly better than the row method
and← means the opposite. If a cell is empty, none of the methods are significantly better than the other one. For
example, in Budget 30 (top left) table, in third row and first column,← means that HillClimbing is significantly
better than UniqRandom in the setup of budget of 30.
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