
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 2776–2794

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Benchmarking Language Model Creativity:
A Case Study on Code Generation

Yining Lu*ι Dixuan Wangα Tianjian Liα Dongwei Jiangα

Sanjeev Khudanpurα Meng Jiangι Daniel Khashabiα
ιUniversity of Notre Dame αJohns Hopkins University

Abstract
As LLMs become increasingly prevalent, it is
interesting to consider how “creative” these
models can be. From cognitive science, creativ-
ity consists of at least two key characteristics:
convergent thinking (purposefulness to achieve
a given goal) and divergent thinking (adaptabil-
ity to explore new environments or constraints)
(Runco, 2003). In this work, we introduce a
framework for quantifying LLM creativity that
incorporates the two design ingredients: (1) We
introduce DENIAL PROMPTING which pushes
LLMs to develop more creative solutions to
a given problem by incrementally imposing
new constraints on the previous solution, com-
pelling LLMs to adopt new strategies. (2) We
define NEOGAUGE, a metric that quantifies
both convergent and divergent thinking in the
generated creative responses by LLMs. We test
the proposed framework on Codeforces prob-
lems, which serve as both a natural dataset for
coding tasks and a collection of prior human
solutions. We quantify NEOGAUGE for various
proprietary and open-source models and find
that even the most creative model, GPT-4, still
falls short of demonstrating human-like creativ-
ity. We also experiment with advanced reason-
ing strategies (MCTS, self-correction, etc.) and
observe no significant improvement in creativ-
ity. As a by-product of our analysis, we release
NEOCODER dataset for reproducing our results
on future models.1

1 Introduction

Most recent works on LLM creativity evaluation fo-
cus on open-ended generation tasks, such as story-
writing (Atmakuru et al., 2024; Gómez-Rodríguez
and Williams, 2023; Chakrabarty et al., 2024a,b),
paper abstract generation (Lu et al., 2024b), and
role-play discussion (Lu et al., 2024a). However,
the degree to which LLMs possess and utilize cre-
ativity for problem-solving remains unclear. An

*Work done at the Johns Hopkins University.
1Our code and data: github.com/JHU-CLSP/NeoCoder

Don’t use A
A

B
Don’t use
A and B

e.g.,
no use of “for loops”

”for
loops” if-else

Figure 1: An overview of how DENIAL PROMPTING
encourages creative solutions. A solution space is a
collection of all possible solutions at a certain state. A,
B indicate atomic techniques (e.g., for-loops, if-else,
etc.) used in the solution.

automatic method for evaluating LLMs creativity
could help developers better understand the emer-
gence of model behaviors and serve as a design
objective in solving complex real-world problems.

However, despite the importance of creativity
evaluation in problem-solving, only a few works
have touched upon it (DeLorenzo et al., 2024; Tian
et al., 2024) because of two major challenges: (1)
eliciting diverse and creative solutions is difficult
(Bronnec et al., 2024; Xu et al., 2024a; Zhang et al.,
2024a), and (2) there are no reliable and compre-
hensive quantitative measurements of LLM cre-
ativity. Below, we explain how we tackle these
two challenges for evaluating LLM creativity in
problem-solving settings.

LLM generations are often repetitive and regur-
gitating training data (Holtzman et al., 2019; Kirk
et al., 2024; Tevet and Berant, 2021; Xu et al.,
2024a; Zhang et al., 2024b), making it hard to elicit
creative generations. However, we argue that an
effective creativity evaluation method should be
based on the spectrum of maximal creative solu-

2776

https://github.com/JHU-CLSP/NeoCoder

tions attained from LLMs. Therefore, we intro-
duce DENIAL PROMPTING (§3.1), a prompting
method that iteratively “denies” one of the basic
tools, techniques, or strategies used in the previ-
ous solution (e.g., A: for loops and B: if-else in
Figure 1), thereby pushing LLM to think out-of-
the-box and elicit creative generations to its fullest
extent.

Another challenge in creativity evaluation is
to build a reliable and comprehensive quantita-
tive measurement. We propose that such evalu-
ation should be state-aware—adaptive to different
contexts, and human-grounded—comparing LLM-
generated solutions to historical human solutions.
According to many cognitive studies, human cre-
ativity is viewed as taking place in the interaction
with a person, environment, or another model (Am-
abile, 1996; Csikszentmihalyi, 1996, 1998; Feld-
man, 1998; Feldman et al., 1994; Holyoak and
Morrison, 2005). Similarly, the essence of LLM
creativity should also be captured from its interac-
tion with the current state (state-aware) and past
human knowledge background (human-grounded).
This understanding reveals that creativity evalua-
tion should be dynamic, with an individual’s cre-
ativity varying under different contexts. For exam-
ple, in Figure 1, a solution at state t = 0 probably
will not be judged at the same creative level as one
at state t = 2, even if they solve the same prob-
lem. Because the latter solution is more likely to
use novel techniques that humans hardly thought
of, such as C: Recursion, to adapt to increasingly
challenging constraints.

To address the second challenge, we propose
NEOGAUGE score (§4) which involves (1) verify-
ing the correctness of the LLM-generated solution
and whether it adheres to the specified constraints
from DENIAL PROMPTING (convergent thinking),
and (2) assessing solution novelty by contrasting it
with techniques previously used in human solutions
(divergent thinking). This aligns well with the argu-
ments made by Runco (2003) that creative achieve-
ment depends on both the number of alternative
solutions and the generation of high-quality alter-
natives. By considering both convergent (Lubart,
2001; Sternberg, 1981, 1982; Sternberg and Gastel,
1989a) and divergent (Guilford, 1950; Holyoak and
Morrison, 2005; Torrance, 1966) creative thinking,
NEOGAUGE not only offers a state-aware evalua-
tion but grounds the evaluation in collective human
knowledge through comparing the generated solu-
tions with historical human solutions.

In our experiments, we apply DENIAL PROMPT-
ING on Codeforces,2 a challenging Text-to-Code
task where model solutions can be automatically
verified and allows comparison to substantial his-
torical human solutions.3 Specifically, we retrieve
199 latest problems from Codeforces along with
30 human solutions per problem that have suc-
cessfully passed unit tests. We then run these
problems on DENIAL PROMPTING to obtain our
dataset NEOCODER which consists of original
questions with sequences of temporally relevant
and increasingly difficult constraints. Examples of
NEOCODER are provided in Table 4. We bench-
mark a broad range of LLMs on NEOCODER

and calculate their NEOGAUGE scores. Addition-
ally, we evaluate four reasoning strategies, MCTS
(Zhang et al., 2023), self-correction (Shinn et al.,
2023), planning (Jiang et al., 2023b), and sampling
(Chen et al., 2021), on our dataset to study the cor-
relation between augmented machine intelligence
and creativity. In summary, our contributions are
twofold:

• We introduce DENIAL PROMPTING to elicit cre-
ative generations from LLMs and NEOGAUGE

metric to evaluate LLM creativity in problem-
solving that follows the two proposed protocols.

• We release a creativity benchmark NEOCODER

and provide a thorough analysis of creativity on
SOTA language models and reasoning strategies.

2 Background and Related Works

We discuss the existing works on machine creativ-
ity evaluation. Then, we explain the concepts of
divergent and convergent creativity in cognitive
science which our evaluation incorporates.

Machine Creativity Evaluation. While the ex-
tensive studies on human creativity from psy-
chological and cognitive science (Amabile, 1982;
Finke et al., 1996; Guilford, 1950; Mumford et al.,
1991; Runco, 2003; Sternberg and Lubart, 1991;
Torrance, 1966), LLM creativity has received little
attention. Existing works studying LLM creativ-
ity in problem-solving settings (DeLorenzo et al.,
2024; Tian et al., 2024; Zhu et al., 2024), however,
tend to overlook two challenges: (1) eliciting cre-
ative LLM solutions, and (2) ensuring evaluation
metrics are grounded and comprehensive.

2https://codeforces.com/problemset
3We provide detailed justifications for task choice in §A.

2777

https://codeforces.com/problemset

Tian et al. (2024) have released a challenging
real-world problem dataset to push LLM to think
out-of-the-box, but they do not provide an au-
tomatic creativity evaluation method built upon
their dataset. Additionally, their problems are con-
structed from a single constraint. In contrast, our
DENIAL PROMPTING is formulated for multiple
iterations of constraint detection and problem re-
finement, making the generations more creative and
providing more states for creativity evaluation. An-
other concurrent work (Atmakuru et al., 2024) also
employs multiple constraints to facilitate creative
generation; however, their evaluation primarily tar-
gets linguistic creativity (Lu et al., 2024b) and it is
tested on open-ended story writing task. Zhu et al.
(2024) and Xu et al. (2024a) design protocols to
dynamically generate challenging problems with
controllable constraints. However, their evaluation
mainly focuses on accuracy rather than creativity.

Chakrabarty et al. (2024a), DeLorenzo et al.
(2024), and Zhao et al. (2024) introduce automatic
evaluation pipelines to quantify the four subcompo-
nents of creativity proposed in the Torrance Tests
of Creative Thinking (Torrance, 1966): fluency,
flexibility, originality, and elaboration. However,
the test is originally designed to study human diver-
gent creative thinking (§2) and is unclear whether
it applies to machine creativity.

Divergent Creative Thinking. Divergent think-
ing is a cognitive process that involves exploring a
multitude of potential applications for a given set
of tools (Holyoak and Morrison, 2005). It typically
occurs spontaneously and randomly, leading to nu-
merous possible solutions. Extensive research (Am-
abile, 1982; Guilford, 1950) has been conducted to
study divergent creativity, including popular psy-
chometric approaches such as the Unusual Uses
Test (Guilford, 1950). These are designed to let
examinees think of as many uses for a (common or
unusual) object as possible. The underlying idea
of stimulating creative solutions from constrained
and unusual settings is also adopted in our DENIAL

PROMPTING.
Divergent thinking can also be viewed through

the lens of P-creativity (Psychological) and H-
creativity (Historical) defined by Boden et al.
(1994). A valuable idea is P-creative if the per-
son in whose mind it arises could not have come
up with it before. Furthermore, a valuable idea is
H-creative if it is P-creative, and no one else in
human history has ever had it before. P-creativity

measurement is embedded in the structure of DE-
NIAL PROMPTING, where at each state, the LLM
is prompted to come up with a brand new solution
that it has never thought of before by imposing a
new constraint. Therefore, we mainly consider H-
creativity measurement in our NEOGAUGE score,
where we compare the model-generated solution
with a set of collected human solutions to examine
if it has ever been proposed in human history (i.e.,
the ratio of the region out of human solution space
in Figure 1). This makes our NEOGAUGE human-
grounded and reflects the novelty from history.

Convergent Creative Thinking. Since the
twenty-first century, more researchers have begun
to accept the proposition that creative thought in-
volves not merely the generation of many alter-
native solutions (divergent thinking) but also the
identification of new feasible solutions (Baer, 1994;
Runco, 2003). They frame this problem-solving
process as convergent creative thinking and begin
to examine how understanding human cognition
and convergent thinking might be used to account
for creative thought (Finke et al., 1996; Mumford
et al., 1991; Sternberg and Lubart, 1991). Several
famous cognitive approaches that study the mental
representation and process underlying convergent
creative thinking (Lubart, 2001) involve asking ex-
aminees to predict future states from past states
using incomplete information (Sternberg, 1981,
1982), or solving the problems as though the coun-
terfactual premises are true (Sternberg and Gastel,
1989a,b). All these tests share certain characteris-
tics, such as always having a single best answer
and asking examinees to think in unconventional
ways. In our work, besides computing H-creativity
for evaluating divergent thinking, our work also
measures convergent creativity by verifying the
feasibility of the generated solution: whether they
are correct and following the given constraints. Our
NEOGAUGE metric delivers a more comprehensive
evaluation of machine creativity.

3 Constructing the NEOCODER Dataset

We present DENIAL PROMPTING to stimulate cre-
ative responses from LLMs.

3.1 DENIAL PROMPTING: Eliciting Creative
Generations from LLMs

Our purpose is to construct a pipeline that itera-
tively imposes constraints on previous solutions
(e.g., disallowing the use of hashmaps) to force

2778

more creative solutions. The setup is as follows:
given an input problem, we use a highly capable
augmentation model PLM (e.g. GPT-4) to gener-
ate solutions and scrutinize “technique(s)” used in
the generated solution, then update the problem
by imposing the detected technique as a constraint.
We repeat this process t times to obtain consecu-
tive t problems with increasingly hard constraints
(Figure 8 shows an example with t = 2).

Specifically, as shown in Algorithm 1, given a
reasoning problem x and an initial empty constraint
list C0 = {}, we first let the augmentation model
PLM to generate an initial solution y1 ∼ PLM(x)
via a default problem-solving prompt and conver-
sation history. We then use the same augmen-
tation model PLM to detect atomic techniques
(e.g., recursion, for loop, hashmaps, etc.), T1 =
{τ1, τ2, · · · , τ i}, used in y1 to solve x with a tech-
nique detection prompt. Then, one technique is ran-
domly sampled τ1 ∼ T1 \ C0 to ensure it has never
been used before as a constraint. Finally, we update
the problem x to x⊕ τ1 which explicitly prohibits
the use of the technique τ1 and update constraint
list C0 to C1 = {τ1}.4 This is the first iteration
of DENIAL PROMPTING. We repeat the process
to progressively obtain the overall constraint list
Ct = {τ1, τ2, · · · , τt}. The prompts for DENIAL

PROMPTING (including technique detection; used
across all experiments) are in Appendix D.

Algorithm 1 DENIAL PROMPTING

Input: Input problem x, augmentation model PLM, max
iterations T
Output: Constraint list CT

1: for t = 1 to T do
Response generation

2: yt ∼ PLM(x⊕ τ1 ⊕ · · · ⊕ τt−1)

Technique detection
3: Tt ∼ PLM(yt)

4: τt ∼ Tt \ Ct−1

5: Ct = {τ1, τ2, · · · , τt}
6: end for

During DENIAL PROMPTING, we use a single
conversation thread of PLM to infer yt such that
the model can utilize the trace of previous interac-
tions (including problem statements, constraints,
and LLM solutions from each iteration). In prac-
tice, we observe adding prior interactions in the
context improves model generations. Conversely,
when detecting solution techniques Tt ∼ PLM(yt)
(line 4 in Algorithm 1), we disregard the context

4We use ⊕ to indicate text concatenation.

from previous conversation rounds to focus the re-
sponses solely on the most recent round.

3.2 NEOCODER Dataset to Support
Benchmarking LLM Creativity

Challenging problems. To construct our creativ-
ity benchmark, we compile n = 199 latest Code-
forces problems. We chose problems with a dif-
ficulty of 800 (easiest level) since, in our prelimi-
nary experiments, we observed near-random perfor-
mance on more challenging problems when using
well-known open-source models. Furthermore, we
selected the recent data to prevent any memoriza-
tion during pre-training (Huang et al., 2023).

Human solutions. For each problem, we extract
m = 30 correct human solutions per problem (total
of 5.9K human solutions).5 We use human solu-
tions to measure H-creativity of LLM responses.

Human annotated test examples. We also re-
trieve all test examples provided with each problem
(4.5 test examples per problem on average, a total
of 2.2K test examples). We then perform manual
fixes to address any parsing or formatting issues in
the collected test examples and ensure that follow a
standardized input-output format. We use these test
examples to measure P-creativity or the functional
correctness of LLM responses.

Augmentation with DENIAL PROMPTING. We
use GPT-4 (OpenAI, 2024) as the augmentation
model PLM because we find that GPT-4 can
achieve 94% technique detection recall compared
to the human programmer in our pilot experi-
ments.6 We feed the retrieved problems to DE-
NIAL PROMPTING (§3.1) with maximum iterations
T = 5 to obtain our dataset NEOCODER. Our
dataset consists of pairs (x, Ct = {τ1, τ2, . . . , τt}),
where x represents a problem (programming chal-
lenge), and Ct represents the constraints that must
be adhered to when solving the problem x. This
implies that a single programming problem may be
associated with various sets of constraints, forming
different pairs accordingly.

Statistics for NEOCODER. Table 1 shows the
number of problems x and the number of the as-
sociated constraints |Ct|. Note that the number of

5We consider 30 human-annotated solutions to construct
a historical solution space for each problem to be sufficient
given the high overlap rate among them.

6We use gpt-4-1106-preview across all experiments, ac-
cessed from Dec 2023 through April 2024.

2779

problems decreases for a larger number of con-
straints. This is due to DENIAL PROMPTING po-
tentially reaching a point where it can no longer
generate new constraints after a certain number of
iterations (i.e., Tt \ Ct−1 = ∅ in Alg. 1). In such a
case, we let τt = ∅ and jump to the next iteration
t+1 without updating the constraint list Ct = Ct−1.

State (# of constraints) 0 1 2 3 4 5

of problems 199 199 198 194 176 97

Table 1: Number of instances at each state.

We also compare the distribution of the top 5
most common techniques from DENIAL PROMPT-
ING in comparison to that of human solutions (Fig-
ure 2). It is evident that, without any constraints,
models tend to use common techniques (e.g., for-
loops) similar to human solutions. However, as
more constraints are imposed, the less common but
more sophisticated techniques are employed.

1 2 3 4 5 Human
State

0%

20%

40%

60%

80%

100%

Pr
op

or
ti

on

for loop
if statement
break statement
misc

hashmap
while loop
tuple

recursion
matrix operation
sorting

Figure 2: Proportion of the top 5 most common atomic
techniques used by GPT-4 per state, compared to those
in human solutions. In absense of any constraints (the
first column), the model default to common and ac-
cessible techniques, like humans (the last column).
This echoes our claim in §1 that eliciting creative solu-
tions is crucial for creativity evaluation.

4 State-Aware and Human-Grounded
Evaluation of Machine Creativity

Augmentation model vs target model. So far,
we have used PLM(.) to denote the augmentation
model, the language model used for dataset con-
struction and extracting atomic techniques. Here,
we introduce GLM(·) to represent the target lan-
guage model, whose creativity we evaluate using
our dataset and the augmentation model PLM(·).

Setup. Here we introduce our metric of creativity
NEOGAUGE for a given model GLM and given
NEOCODER. Denote instances of NEOCODER at
state t (t ≤ T) as:

Dt =
{
(xi, Ci

t = {τ i1, τ i2, · · · , τ it})
}n

i=1
,

where i is the problem index. To evaluate the cre-
ativity of the testing model GLM at state t, we feed
Dt to GLM to obtain its predictions:

Yt =
{
yit ∼ GLM(xi ⊕ Ci

t)
∣∣∣ |Ci

t | = t,

∀(xi, Ci
t) ∈ Dt

}
. (1)

Here |Ci
t | denotes the cardinality of the constraints

set. The constraint |Ci
t | = t ensures that at a given

state t, the questions we evaluated always have t
distinct constraints. Below, we present how we
compute convergent and divergent creativity and
introduce NEOGAUGE metric that unifies them.

Convergent creativity involves problem-solving
and constraint following. To evaluate GLM’s
convergent thinking ability, we examine two char-
acteristics of generated solutions: whether they
are correct and whether they follow the given con-
straints. Therefore, given Yt from Eq.1, we define
its convergent creativity as follows:

convergent(GLM, t) =

1

|Yt|
∑

yit∈Yt

1
T i
t ∩Ci

t=∅ × 1
Correct(yit), (2)

where atomic techniques T i
t ∼ PLM(yit).

1
Correct(yit) is a measure of program correctness, set

to 1 if the generated solution passes all the test ex-
amples. Otherwise it is 0. We use the augmentation
model PLM to detect all atomic techniques T i

t used
in solution yit, and compare them with the given
constraint list Ci

t to check if the solution follows the
given constraints. In Figure 3 examples, only the
solution generated at t = 0 (which does not involve
any constraint) exhibits convergent creativity.

Divergent creativity requires comparison to his-
torical human solutions. As discussed earlier
in §2, a primary focus of our evaluation is on H-
creativity, which requires a juxtaposition of model
solutions with historical human solutions. Let’s
consider a finite set of correct human written so-
lutions with size m, denoted as Hi, for problem
xi. Rather than directly comparing solutions using

2780

State t = 0: Initial State
x = Find the length of longest

consecutive zeros in a binary array.

State t = 1 State t = 2

Correctness: ✅
Constraint Following: ✅
H-Creativity: 0.0

Correctness: ❌
Constraint Following: ❌
H-Creativity: 0.333

Correctness: ❌
Constraint Following: ✅
H-Creativity: 0.0

for loop, if statement

Testing LM
GLM

recursion, if statement, for loop

x = Find the length of longest …
Don’t use for loop, recursion.

x = Find the length of longest …
Don’t use for loop, recursion.

while loop, if statement

Technique detection
w/ PLM

N
E

O
C

O
D

E
R

 M
od

el
 R

es
po

ns
e

 T

ec
hn

iq
ue

s

E

va
lu

at
io

n

NEOGAUGE@0 NEOGAUGE@1 NEOGAUGE@2

Figure 3: Example of NEOGAUGE computation. The question comes from our NEOCODER dataset with ID 1829B
and testing model GLM here is GPT-4. For each state, we compute NEOGAUGE (Eq.4) as the probability of LM
generating correct solutions that meet the given constraints (convergent creativity defined in Eq.2) and also exhibit
H-creativity (divergent creativity defined in Eq.3). However, none of the above three solutions are considered to
be “creative” since convergent solutions may lack divergent creativity (e.g., state t = 0). Alternatively, LLMs’
hallucinated responses resulting in high H-creativity, but often lack correctness and constraint following (e.g., state
t = 1). Therefore, truly creative works should not only be innovative but also appropriately solve a problem.

certain sentence-level similarity scores, as done by
a few prior works such as DeLorenzo et al. (2024),
we break down the comparison to the atomic tech-
nique level, which is more interpretable and gen-
eralizable across varying solutions. Our divergent
creativity score is defined as:

divergent(GLM, t) =
1

|Yt|
∑

yit∈Yt

|T i
t \ “T i|
|T i

t |
, (3)

where T i
t ∼ PLM(yit) are the atomic techniques

used in the model solutions, and “T i indicate all
the atomic techniques used by m human solutions,
defined as: “T i =

⋃m
j=1

{“T i
j ∼ PLM(ŷij), ŷij ∈

Hi
}
. We then compute the H-creativity as the ratio

of techniques used by GLM that have never been
used in the human solution set. For example, as
shown in Figure 3 at state t = 1, among the three
techniques identified within the generated solution,
only the recursion has never been used by humans,
thereby resulting in a ratio of 1

3 . Finally, we average
ratios across different problems to obtain the final
H-creativity at state t.

NEOGAUGE unifies convergent and diver-
gent creativity. Given the above definitions,
NEOGAUGE of GLM at state t can be formalized:

NEOGAUGE@t =

1

|Yt|
∑

yit∈Yt

1
T i
t ∩Ci

t=∅
1

Correct(yit)︸ ︷︷ ︸
Convergent Creativity

× |T i
t \ “T i|
|T i

t |︸ ︷︷ ︸
Divergent Creativity

, (4)

where Yt = {yit ∼ GLM(xi ⊕ Ci
t) | |Ci

t | =
t,∀(xi, Ci

t) ∈ Dt} (defined in Eq.1), T i
t ∼

PLM(yit) (defined in Eq.2), “T i =
⋃m

j=1

{“T i
j ∼

PLM(ŷij), ŷ
i
j ∈ Hi} (defined in Eq.3).

5 Experiments and Results

We report the creativity of current LLMs (§5.2)
and evaluate different reasoning strategies (§5.3)
for creativity.

5.1 Experimental Setup
Models. We use GPT-4 as the augmentation
model PLM. We benchmark the creativity
performance of the following target models

2781

https://codeforces.com/problemset/problem/1829/B

Metric Description Definition Place of Use

convergent(GLM, t) Convergent creativity of GLM at state t Eq.2 Table 3, Figure 5, 7
divergent(GLM, t) Divergent creativity of GLM at state t Eq.3 Table 3, Figure 5, 7
NEOGAUGE@t Creativity evaluation of GLM at state t Eq.4 Table 3, Figure 4
pass@1 (Chen et al., 2021) Probability of the first sample passes the unit tests E

problems

[
1− n−c

n

]
Table 3

constraint following Average ratio of following the constraints at state t E
problems

[1τt∩Ct=∅] Table 3

convergent(human, t) convergent creativity of human at state t Eq.5 Figure 5
divergent(human) lowest divergent creativity of human at state 0 Eq.6 Figure 5

Table 2: Description of various metrics used across experiments.

GLM: GPT-4 (OpenAI, 2024), GPT-3.5 (Ouyang
et al., 2022), Claude 3 Sonnet (Claude-3) (An-
thropic, 2024), Llama3-70B (AI@Meta, 2024),
Llama2-70B (Touvron et al., 2023), CodeLlama-
34B-Python (CodeLlama-34B) (Rozière et al.,
2024), CodeGemma-7B (Google, 2024), and
Mistral-7B (Jiang et al., 2023a). We access
all non-proprietary models through Huggingface
Transformers (Wolf et al., 2019). Following the
parameter choice by Zhang et al. (2023), we apply
a sampling temperature of 1 for code generation.

Metrics. Beyond the three proposed metrics for
evaluating convergent, divergent and overall cre-
ativity, we also compute pass@1 (Chen et al., 2021)
and constraint following ratio for further compari-
son in Table 3. NEOGAUGE@T actually is a joint
probability of GLM being both convergent and di-
vergent creative at state t. Therefore, we also re-
port the cumulative NEOGAUGE across states in
Figure 4, which indicates the model’s maximum
creativity performance boundary. Additionally, we
compute human convergent and divergent creativity
in Figure 5 to compare LLM with human creativity
performance (details in Appendix B). We summa-
rize all used metrics in Table 2.

5.2 Benchmarking Language Model
Creativity

A number of psychological investigators have stud-
ied the link between creativity and intelligence
(Holyoak and Morrison, 2005), agreeing on two
key points: (1) creative individuals tend to have
higher intelligence (Renzulli, 2005), and (2) people
with extremely high intelligence not necessarily
to be extremely creative (Faris et al., 1962). We
re-examine the two findings on LLMs and answer:
Are larger LLMs more creative? Do extremely large
models of equal size exhibit comparable creativity?
Our investigation is based on the widely accepted
hypothesis that language model size correlates pos-
itively with intelligence (Kaplan et al., 2020; Liu

et al., 2023; Zhao et al., 2023).

GPT-4 is the most creative LLM thus far. We
visualize NEOGAUGE and cumulative NEOGAUGE

in Figure 4. GPT-4 consistently has the highest
NEOGAUGE almost at every state t. While oth-
ers (e.g., Claude-3 and Llama3-70B) have a close
NEOGAUGE@0 score to GPT-4, their NEOGAUGE

quickly decreases to 0 within the next two states.
According to cumulative NEOGAUGE, GPT-4 also
has the highest creativity performance boundary,
followed by Claude-3 and Llama3-70B, greatly
outperforming smaller models such as GPT-3.5
and Llama2-70B. These observations could poten-
tially answer the above two questions: larger LLMs
are generally more creaitive, but extremely large
LLM is not necessarily exhibiting extremely cre-
ative performance. In Figure 9, we provide exam-
ple outputs from each model to show their different
creativity abilities.

0 1 2 3 4 5
State

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ne
oG

au
ge

 (%
)

GPT-4
Claude-3

GPT-3.5
Llama3-70B

Llama2-70B
CodeLlama-34B

CodeGemma-7B
Mistral-7B

0 1 2 3 4 5
State

0

1

2

3

4

Cu
m

ul
at

iv
e

Ne
oG

au
ge

 (%
)

Figure 4: NEOGAUGE (left) and cumulative
NEOGAUGE (right) across states.

Which is more creative: machine or human?
Figure 5 displays the creativity comparison be-
tween LLM and humans. LLM demonstrates min-
imally better performance in divergent creativity
compared to humans at their lowest level (Eq.6).
However, humans have significantly greater con-
vergent creativity than LLMs in early states (prior
to state 3). Thus, we reach a tentative conclusion
that, in problem-solving settings, LLMs in Figure 5
barely exhibit human-like creativity. Future works
could focus on measuring human divergent creativ-

2782

0 1 2 3 4 5
State

0

20

40

60

80

100

Cr
ea

tiv
ity

 (%
)

GPT-4
Model Convergent Human Convergent Model Divergent Human Divergent (State=0)

0 1 2 3 4 5
State

0

20

40

60

80

100
Claude-3

0 1 2 3 4 5
State

0

20

40

60

80

100
GPT-3.5

0 1 2 3 4 5
State

0

20

40

60

80

100
Llama3-70B

0 1 2 3 4 5
State

0

20

40

60

80

100

Cr
ea

tiv
ity

 (%
)

Llama2-70B

0 1 2 3 4 5
State

0

20

40

60

80

100
CodeLlama-34B

0 1 2 3 4 5
State

0

20

40

60

80

100
CodeGemma-7B

0 1 2 3 4 5
State

0

20

40

60

80

100
Mistral-7B

Figure 5: A comparison of LLM and human creativity. //// denotes the performance difference of convergent
creativity, and \\\\ denotes the difference of divergent creativity. We observe that Current LLMs still hardly
demonstrate human-like creativity.

ity across states to enable a fairer creativity com-
parison. Moreover, we observe that both human
and LLM convergent creativity declines drastically
over the increase in state t, which follows our ex-
pectation that there is a trade-off between solution
quality and novelty. When stress-testing humans
or LLMs to look for more creative solutions, they
are very likely to make mistakes and may copy
previous solutions during the process.

State t pass@1 Constraint
Following

Convergent
Creative

Divergent
Creative NEOGAUGE

0 16.1 100.0 16.2 4.5 1.0
1 11.6 75.4 8.1 11.9 1.4
2 7.1 46.0 3.6 11.5 0.9
3 5.2 33.0 1.6 12.4 0.5
4 2.3 26.1 0.0 13.2 0.0
5 2.1 14.4 0.0 15.3 0.0

Table 3: GPT-4 creativity evaluation results (in %). Con-
vergent and divergent creativity perform oppositely,
it is crucial to consider both in evaluation.

In-depth analysis of creativity evaluation. We
provide evaluation results for GPT-4 in Table 3. It
is evident that as the state increases (more hard
constraints are imposed), the quality of solutions
declines both in terms of correctness and constraint
following. Even if the model may still generate new
alternative solutions at state 5 (divergent(GPT-4,
5) = 15.3), they fail at convergent evaluation
(convergent(GPT-4, 5) = 0). Therefore, at state
5, GPT-4 shows 0 creativity (NEOGAUGE@5 = 0).

Additionally, unlike the convergent score, which
typically decreases as t increases, the divergent
score of GPT-4 continually rises. This observation
empirically proves the key assumption of DENIAL

PROMPTING that LLMs tend to seek more creative
solutions when facing an unconventional environ-
ment characterized by unusual hard constraints.

5.3 Evaluating Reasoning Strategies for
Creativity

We evaluate four reasoning strategies on our
NEOCODER dataset to further study the correla-
tion between augmented machine intelligence and
creativity: Whether such intelligence-enhancing
techniques also improve creative thinking? We
implement the following four works that are specif-
ically designed for programming tasks:

• MCTS: Zhang et al. (2023) propose a novel
decoding method that uses Monte-Carlo Tree
Search (MCTS) to generate better programs us-
ing the pass rate as reward.

• Self-Correction: Shinn et al. (2023) use verbal
feedback from a reflection agent to reinforce the
performance of an agent in code generation.

• Planning: Jiang et al. (2023b) design a planning
module to let LLM plan out concise solution
steps from the intent, followed by an implemen-
tation module to generate code step by step.

• Sampling: Chen et al. (2021) generate k sam-
ples and compute the probability that at least one

2783

0 1 2 3 4 5
State

2

0

2

4

6

8

10

12

Cr
ea

tiv
ity

 D
iff

er
en

ce
 (%

) 10.6

3.0

1.0 0.5

7.8
8.6 8.6 9.1 8.9 9.7

0.8 0.1 0.1

MCTS
Metrics

Convergent Diff
Divergent Diff
Neogauge Diff

0 1 2 3 4 5
State

2

0

2

4

6

8

10

12

Cr
ea

tiv
ity

 D
iff

er
en

ce
 (%

) 12.1

2.5
1.0

-0.4

0.3 0.2

-1.6

1.8
0.10.3 0.3

Self-Correction
Metrics

Convergent Diff
Divergent Diff
Neogauge Diff

0 1 2 3 4 5
State

2

0

2

4

6

8

10

12

Cr
ea

tiv
ity

 D
iff

er
en

ce
 (%

)

7.1

2.5
1.0 0.5 0.6

-1.2

1.3 2.1

-1.2

2.7 1.9
0.3 0.3

Planning
Metrics

Convergent Diff
Divergent Diff
Neogauge Diff

0 1 2 3 4 5
State

2

0

2

4

6

8

10

12

Cr
ea

tiv
ity

 D
iff

er
en

ce
 (%

)

-0.5 -0.5

0.5

-0.4 -0.1

1.0

-1.7

0.8

-1.9

Sampling
Metrics

Convergent Diff
Divergent Diff
Neogauge Diff

Figure 6: Creativity performance difference before and after applying reasoning strategies. A larger difference value
indicates that the strategy improves the testing model’s creativity. Detailed numeric changes are provided in Table 5.

of the k-generated code samples for a problem
passes the unit tests. For creativity evaluation,
we generate k = 5 samples for each problem and
report the NEOGAUGE from samples that have
the highest convergent and divergent creativity,

1
T i
t ∩Ci

t=∅×1
Correct(yit)× |T i

t \“T i|
|T i

t |
in Eq.4, among

k = 5 samples.

Note that these methods are originally applica-
ble to different kinds of models. Considering
the computation complexity and the cost, we re-
evaluate MCTS on the open-source language model
(CodeGemma-7B (Google, 2024)) and re-evaluate
others on the proprietary model (GPT-3.5).

Most reasoning strategies fail to improve diver-
gent thinking. According to Figure 6, all reason-
ing strategies except sampling help to improve the
model’s convergent creativity thinking ability on
multiple states, as they are fundamentally designed
to improve the accuracy. Conversely, only MCTS
successfully enhances divergent creativity, due to
it rolling out numerous paths during the expansion.
Strategies like self-correction, planning, and sam-
pling, which operate on a single trial or path, fail
to explore divergent solutions.

There is a tradeoff between divergent and con-
vergent creativity. Noticeably, while MCTS con-
sistently enhances divergent creative thinking in all
5 states, its improvement on NEOGAUGE is mini-
mal and becomes 0 after t = 2. This suggests that
divergent solutions generated by MCTS may not

truly augment creativity, potentially due to incor-
rectness or failure to follow the given constraints.
This also implies that MCTS might prioritize di-
vergent thinking over convergent thinking. On the
other hand, self-correction and planning sacrifice
their divergent thinking ability in improving their
convergent thinking because the divergent creativ-
ity difference even goes to negative at certain states
(e.g., Divergent Diff = −1.2 at t = 0, 3 on sam-
pling). None of the four reasoning strategies have
been able to simultaneously improve both conver-
gent and divergent creativity, resulting in limited
improvement of NEOGAUGE. Thus, our findings
indicate that these intelligence-augmenting meth-
ods do not provide much benefit to LLM creativity.
We leave for future works to discover specialized
strategies for better enhancing LLM’s creative per-
formance and NEOGAUGE.

6 Conclusion

We propose protocols for evaluating language
model creativity in problem-solving and intro-
duce the DENIAL PROMPTING framework and
NEOGAUGE metric to provide a comprehensive
creativity evaluation, measuring both convergent
and divergent creativity, inspired by extensive re-
search on human creativity. To facilitate future
research, we release our NEOCODER dataset and
shed light on the limitations of current reasoning
strategies in improving LLM creativity.

2784

Limitations

Application scope. While NEOGAUGE offers a
general-purpose framework for evaluation of LLM
creativity, our study is restricted to Text-to-Code, as
it requires a historical human solution set. For most
tasks in the literature, collecting a comprehensive
set of distinct human responses is nontrivial.

Data leakage concern. Our proposed dataset
NEOCODER is built using latest Codeforces prob-
lems. Despite their recency, future LLMs might
get exposure to these problems during their pre-
training. To alleviate such risks, future works
can focus on more difficult problems or evaluate
NEOGAUGE for higher states, besides incorporat-
ing a newer batch of problems.

Acknowledgements

This work is in part supported by ONR grant
N00014-241-2089, and generous gifts from Ama-
zon and the Allen Institute for AI. We also greatly
appreciate the help of the students at CLSP.

References
AI@Meta. 2024. Llama 3 model card.

Teresa M Amabile. 1982. Social psychology of creativ-
ity: A consensual assessment technique. Journal of
personality and social psychology, 43(5):997.

T.M. Amabile. 1996. Creativity In Context: Update To
The Social Psychology Of Creativity. Avalon Pub-
lishing.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

Anirudh Atmakuru, Jatin Nainani, Rohith Sid-
dhartha Reddy Bheemreddy, Anirudh Lakkaraju,
Zonghai Yao, Hamed Zamani, and Haw-Shiuan
Chang. 2024. Cs4: Measuring the creativity of large
language models automatically by controlling the
number of story-writing constraints.

John Baer. 1994. Divergent thinking is not a general
trait: A multidomain training experiment. Creativity
Research Journal, 7(1):35–46.

Margaret A Boden et al. 1994. Dimensions of creativity.

Florian Le Bronnec, Alexandre Verine, Benjamin Ne-
grevergne, Yann Chevaleyre, and Alexandre Al-
lauzen. 2024. Exploring precision and recall to assess
the quality and diversity of llms.

Tuhin Chakrabarty, Philippe Laban, Divyansh Agarwal,
Smaranda Muresan, and Chien-Sheng Wu. 2024a.
Art or artifice? large language models and the false

promise of creativity. In Proceedings of the CHI
Conference on Human Factors in Computing Sys-
tems, CHI ’24, New York, NY, USA. Association for
Computing Machinery.

Tuhin Chakrabarty, Vishakh Padmakumar, Faeze Brah-
man, and Smaranda Muresan. 2024b. Creativity sup-
port in the age of large language models: An empiri-
cal study involving emerging writers.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
and Michael Petrov et al. 2021. Evaluating large
language models trained on code.

M. Csikszentmihalyi. 1996. Creativity: Flow and
the Psychology of Discovery and Invention. Harper
Perennial Modern Classics. HarperCollinsPublishers.

Mihaly Csikszentmihalyi. 1998. Implications of a Sys-
tems Perspective for the Study of Creativity, page
313–336. Cambridge University Press.

Matthew DeLorenzo, Vasudev Gohil, and Jeyavijayan
Rajendran. 2024. Creativeval: Evaluating creativity
of llm-based hardware code generation.

Robert E. Lee Faris, J. W. Getzels, and Philip W. Jack-
son. 1962. Creativity and intelligence: Explorations
with gifted students. American Sociological Review,
27:558.

David Henry Feldman. 1998. The Development of Cre-
ativity, page 169–186. Cambridge University Press.

David Henry Feldman, Mihaly Csikszentmihalyi, and
Howard Gardner. 1994. Changing the world: A
framework for the study of creativity. Praeger Pub-
lishers/Greenwood Publishing Group.

Ronald A. Finke, Thomas B. Ward, and Steven M.
Smith. 1996. Creative Cognition: Theory, Research,
and Applications. The MIT Press.

Google. 2024. Codegemma: Open code models based
on gemma.

J. P. Guilford. 1950. Creativity. American Psychologist,
5(9):444–454.

Carlos Gómez-Rodríguez and Paul Williams. 2023. A
confederacy of models: a comprehensive evaluation
of llms on creative writing.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text de-
generation. In International Conference on Learning
Representations (ICLR).

K.J. Holyoak and R.G. Morrison. 2005. The Cambridge
Handbook of Thinking and Reasoning. Cambridge
Handbooks in Psychology. Cambridge University
Press.

2785

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://psycnet.apa.org/doiLanding?doi=10.1037%2F0022-3514.43.5.997
https://psycnet.apa.org/doiLanding?doi=10.1037%2F0022-3514.43.5.997
https://books.google.com/books?id=hioVn_nl_OsC
https://books.google.com/books?id=hioVn_nl_OsC
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://arxiv.org/abs/2410.04197
https://arxiv.org/abs/2410.04197
https://arxiv.org/abs/2410.04197
https://doi.org/10.1080/10400419409534507
https://doi.org/10.1080/10400419409534507
https://direct.mit.edu/books/edited-volume/1841/chapter-abstract/4417508/Front-Matter
https://arxiv.org/abs/2402.10693
https://arxiv.org/abs/2402.10693
https://doi.org/10.1145/3613904.3642731
https://doi.org/10.1145/3613904.3642731
https://arxiv.org/abs/2309.12570
https://arxiv.org/abs/2309.12570
https://arxiv.org/abs/2309.12570
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://books.google.com/books?id=K0buAAAAMAAJ
https://books.google.com/books?id=K0buAAAAMAAJ
https://psycnet.apa.org/record/1998-08125-016
https://psycnet.apa.org/record/1998-08125-016
https://arxiv.org/abs/2404.08806
https://arxiv.org/abs/2404.08806
https://api.semanticscholar.org/CorpusID:147301791
https://api.semanticscholar.org/CorpusID:147301791
https://psycnet.apa.org/record/1998-08125-009
https://psycnet.apa.org/record/1998-08125-009
https://www.jstor.org/stable/43853671
https://www.jstor.org/stable/43853671
https://doi.org/10.7551/mitpress/7722.001.0001
https://doi.org/10.7551/mitpress/7722.001.0001
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://doi.org/https://doi.org/10.1037/h0063487
https://arxiv.org/abs/2310.08433
https://arxiv.org/abs/2310.08433
https://arxiv.org/abs/2310.08433
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://books.google.com/books?id=znbkHaC8QeMC
https://books.google.com/books?id=znbkHaC8QeMC

Yiming Huang, Zhenghao Lin, Xiao Liu, Yeyun Gong,
Shuai Lu, Fangyu Lei, Yaobo Liang, Yelong Shen,
Chen Lin, Nan Duan, et al. 2023. Competition-level
problems are effective llm evaluators. arXiv preprint
arXiv:2312.02143.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gi-
anna Lengyel, Guillaume Lample, Lucile Saulnier,
L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre
Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2023a.
Mistral 7b.

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang,
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. 2023b.
Self-planning code generation with large language
models.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeff Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. ArXiv,
abs/2001.08361.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis,
Jelena Luketina, Eric Hambro, Edward Grefenstette,
and Roberta Raileanu. 2024. Understanding the ef-
fects of RLHF on LLM generalisation and diversity.
In The Twelfth International Conference on Learning
Representations.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9).

Li-Chun Lu, Shou-Jen Chen, Tsung-Min Pai, Chan-
Hung Yu, Hung yi Lee, and Shao-Hua Sun. 2024a.
Llm discussion: Enhancing the creativity of large
language models via discussion framework and role-
play.

Ximing Lu, Melanie Sclar, Skyler Hallinan, Niloofar
Mireshghallah, Jiacheng Liu, Seungju Han, Allyson
Ettinger, Liwei Jiang, Khyathi Chandu, Nouha Dziri,
and Yejin Choi. 2024b. Ai as humanity’s salieri:
Quantifying linguistic creativity of language models
via systematic attribution of machine text against web
text.

Todd I. Lubart. 2001. Models of the creative process:
Past, present and future. Creativity Research Journal,
13(3-4):295–308.

Michael D. Mumford, Michele I. Mobley, Roni Reiter-
Palmon, Charles E. Uhlman, and Lesli M. Doares.
1991. Process analytic models of creative capacities.
Creativity Research Journal, 4(2):91–122.

OpenAI. 2024. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training Language Models to Follow Instruc-
tions with Human Feedback. In Advances in Neural
Information Processing Systems (NeurIPS).

Joseph S. Renzulli. 2005. The Three-Ring Conception
of Giftedness: A Developmental Model for Promot-
ing Creative Productivity, page 246–279. Cambridge
University Press.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code.

Mark A. Runco. 2003. Critical creative processes. Per-
spectives on creativity. Hampton Press, Cresskill,
N.J.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning.

Robert J. Sternberg. 1981. Intelligence and nonentrench-
ment. In Journal of Educational Psychology.

Robert J Sternberg. 1982. Natural, unnatural, and super-
natural concepts. Cognitive Psychology, 14(4):451–
488.

Robert J. Sternberg and Joyce Gastel. 1989a. Coping
with novelty in human intelligence: An empirical
investigation. Intelligence, 13(2):187–197.

Robert J Sternberg and Joyce Gastel. 1989b. If dancers
ate their shoes: Inductive reasoning with factual and
counterfactual premises. Memory & Cognition, 17:1–
10.

Robert J. Sternberg and Todd I. Lubart. 1991. An in-
vestment theory of creativity and its development.
Human Development, 34(1):1–31.

Guy Tevet and Jonathan Berant. 2021. Evaluating the
evaluation of diversity in natural language generation.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 326–346, Online.
Association for Computational Linguistics.

Yufei Tian, Abhilasha Ravichander, Lianhui Qin, Ro-
nan Le Bras, Raja Marjieh, Nanyun Peng, Yejin Choi,
Thomas L. Griffiths, and Faeze Brahman. 2024. Mac-
gyver: Are large language models creative problem
solvers?

E Paul Torrance. 1966. Torrance tests of creative think-
ing. Educational and Psychological Measurement.

2786

https://arxiv.org/abs/2312.02143
https://arxiv.org/abs/2312.02143
https://arxiv.org/abs/2310.06825
https://arxiv.org/pdf/2303.06689
https://arxiv.org/pdf/2303.06689
https://api.semanticscholar.org/CorpusID:210861095
https://openreview.net/forum?id=PXD3FAVHJT
https://openreview.net/forum?id=PXD3FAVHJT
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://arxiv.org/abs/2405.06373
https://arxiv.org/abs/2405.06373
https://arxiv.org/abs/2405.06373
https://arxiv.org/abs/2410.04265
https://arxiv.org/abs/2410.04265
https://arxiv.org/abs/2410.04265
https://arxiv.org/abs/2410.04265
https://doi.org/10.1207/S15326934CRJ1334_07
https://doi.org/10.1207/S15326934CRJ1334_07
https://doi.org/10.1080/10400419109534380
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://psycnet.apa.org/record/2005-11244-014
https://psycnet.apa.org/record/2005-11244-014
https://psycnet.apa.org/record/2005-11244-014
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://api.semanticscholar.org/CorpusID:143085609
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://api.semanticscholar.org/CorpusID:144193389
https://api.semanticscholar.org/CorpusID:144193389
https://doi.org/https://doi.org/10.1016/0010-0285(82)90016-0
https://doi.org/https://doi.org/10.1016/0010-0285(82)90016-0
https://doi.org/https://doi.org/10.1016/0160-2896(89)90016-0
https://doi.org/https://doi.org/10.1016/0160-2896(89)90016-0
https://doi.org/https://doi.org/10.1016/0160-2896(89)90016-0
https://link.springer.com/article/10.3758/BF03199551
https://link.springer.com/article/10.3758/BF03199551
https://link.springer.com/article/10.3758/BF03199551
http://www.jstor.org/stable/26767348
http://www.jstor.org/stable/26767348
https://doi.org/10.18653/v1/2021.eacl-main.25
https://doi.org/10.18653/v1/2021.eacl-main.25
https://arxiv.org/abs/2311.09682
https://arxiv.org/abs/2311.09682
https://arxiv.org/abs/2311.09682
https://psycnet.apa.org/doiLanding?doi=10.1037%2Ft05532-000
https://psycnet.apa.org/doiLanding?doi=10.1037%2Ft05532-000

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. LLaMA: Open and ef-
ficient foundation language models. arXiv preprint
arXiv:2302.13971.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024a. WizardLM: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. 2024b.
Hallucination is inevitable: An innate limitation of
large language models.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B. Tenenbaum, and Chuang Gan. 2023.
Planning with large language models for code gen-
eration. In International Conference on Learning
Representations (ICLR).

Tianhui Zhang, Bei Peng, and Danushka Bollegala.
2024a. Improving diversity of commonsense genera-
tion by large language models via in-context learning.

Yiming Zhang, Avi Schwarzschild, Nicholas Carlini,
Zico Kolter, and Daphne Ippolito. 2024b. Forcing
diffuse distributions out of language models.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A
survey of large language models.

Yunpu Zhao, Rui Zhang, Wenyi Li, Di Huang, Jiaming
Guo, Shaohui Peng, Yifan Hao, Yuanbo Wen, Xing
Hu, Zidong Du, Qi Guo, Ling Li, and Yunji Chen.
2024. Assessing and understanding creativity in large
language models.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang
Gong, Diyi Yang, and Xing Xie. 2024. Dyval: Dy-
namic evaluation of large language models for reason-
ing tasks. In International Conference on Learning
Representations (ICLR).

2787

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2303.05510
https://arxiv.org/abs/2303.05510
https://arxiv.org/abs/2404.16807
https://arxiv.org/abs/2404.16807
https://arxiv.org/abs/2404.10859
https://arxiv.org/abs/2404.10859
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2401.12491
https://arxiv.org/abs/2401.12491
https://arxiv.org/abs/2309.17167
https://arxiv.org/abs/2309.17167
https://arxiv.org/abs/2309.17167

Supplemental Material
Appendix Contents

Appendix A Why Choose Codeforces for Creativity Evaluation
Appendix B Additional Details of Experimental Setup
Appendix C Additional Details of Experimental Results
Appendix D Prompts for DENIAL PROMPTING and Benchmarking

A Why Choose Codeforces for Creativity Evaluation?

In this study, we use competitive programming problems sourced from Codeforces for creativity evaluation.
We provide our task choice motivation by answering the following three interrelated questions.

Why choose competitive programming problems? The general purpose of this paper is to benchmark
the LLM’s creativity performance in dealing with unconventional and challenging problems. Understand-
ably, these problems usually do not have ground-truth answers (e.g., how to make coffee without a coffee
maker). In such cases, we typically either evaluate the generated solution through human evaluation,
similar to the approach taken by Tian et al. (2024), or through automated machine evaluation (ours).
Real-world problems (Tian et al., 2024) naturally need human annotation. Collecting human annotations
for measuring machine creativity is particularly challenging since the space is typically vast (because of the
nature of creativity). Conversely, coding becomes an ideal source for problems that can be its functional
correctness (as opposed to the choice of syntax) evaluated automatically with a minimal cost—based on
whether they pass the test cases. Thus, we first chose coding problems to examine LM’s creativity, as they
provide an open-ended environment that could stimulate a model’s creativity performance while making
evaluation easy and cost-effective.

Low performance or low creativity? The low pass rate and constraint following ratio in Table 3 may
raise a new question as to whether there are no reasonable solutions at all or no requisite creativity in
finding solutions. Experimental evidence, however, suggests that LM simply lacks creativity. According
to Figure 5, the huge gap between human and LLMs convergent creativity prior to State 3 (0-3 constraints)
indicates there are valid human solutions for each problem, but the LLMs seem to be lacking creativity in
finding it. Additionally, according to Figure 6, with suitable reasoning strategies, LLM still has room for
improvement in both convergent and divergent creativity. Even though humans’ convergent scores are
nearing zero (Figure 5) at a large state (>3 hard constraints), the problems might not be fully infeasible.

Why not evaluate creativity based on problems but solutions? A motivational example for this
question is that a creative student can always come up with innovative and insightful questions. However,
in this work, we adopt a different standpoint on creativity used by many psychological and cognitive studies
(discussed in section 2), which emphasizes problem-solving abilities. We evaluate a student to be creative
if he/she can leverage all available tools and come up with novel solutions for challenging problems.
Similarly, we study LLM creativity based on solutions they generated for challenging programming
problems.

2788

B Experiment Setup

B.1 Human Creativity Evaluation
We compute human convergent creativity as follows:

convergent(human, t) =
1

m|Yt|
∑

ι∈{i|Ci
t=t,

i=1,2,··· ,n}

m∑

j=1

1
“T ι
j ∩Cι

t=∅, where “T ι
j ∼ PLM(ŷιj), ŷ

ι
j ∈ Hι. (5)

Because the collected historical human solutions ŷιj are always correct, for human convergent creativity

evaluation, we focus on constraint following ratio by examining whether the atomic techniques “T ι
j used by

each human solution follow the given constraints Cι
t at state t. We use the same idea as Eq.3 to compute

human divergent creativity.

divergent(human) =
1

mn

n∑

i=1

m∑

j=1

|“T i
j \ L̂i

j |
|“T i

j |
,

where “T i
j ∼ PLM(ŷij), L̂i

j =
m⋃

k=1,k ̸=j

“T i
k ∼ PLM(ŷik), ŷ

i
j , ŷ

i
k ∈ Hi. (6)

Given total n problems, where each problem has m human solutions, we compute the average ratio of new
techniques used by a single human solution ŷij (jth human solution for ith problem) that the remaining
human solutions {ŷik | k ̸= j, k = 1, 2, · · · ,m} have never used. This is because collecting a human
DP dataset would be quite costly and restrictive. We instead use a diverse collection of solutions from
various human programmers as a proxy. Eq.6 is equivalent to divergent(human, t = 0), representing
the lowest level of human divergent creativity.

2789

C Experiment Results

0 1 2 3 4 5
Denial Prompting State

0

5

10

15

20

25

Cr
ea

tiv
ity

 (%
)

GPT-4
Convergent Only
Divergent Only

0 1 2 3 4 5
Denial Prompting State

0

5

10

15

20

25

Claude-3
Convergent Only
Divergent Only

0 1 2 3 4 5
Denial Prompting State

0

5

10

15

20

25

GPT-3.5
Convergent Only
Divergent Only

0 1 2 3 4 5
Denial Prompting State

0

5

10

15

20

25

Llama3-70B
Convergent Only
Divergent Only

0 1 2 3 4 5
Denial Prompting State

0

5

10

15

20

25

Cr
ea

tiv
ity

 (%
)

Llama2-70B
Convergent Only
Divergent Only

0 1 2 3 4 5
Denial Prompting State

0

5

10

15

20

25

CodeLlama-34B
Convergent Only
Divergent Only

0 1 2 3 4 5
Denial Prompting State

0

5

10

15

20

25

CodeGemma-7B
Convergent Only
Divergent Only

0 1 2 3 4 5
Denial Prompting State

0

5

10

15

20

25

Mistral-7B
Convergent Only
Divergent Only

Figure 7: Stacked results of convergent (Eq.2) and divergent (Eq.3) creativity evaluation across states.

It is crucial to consider both convergent and divergent thinking in creativity evaluation. We plot
the stacked convergent and divergent creativity evaluation results in Figure 7. Among all models, GPT-4
generally exhibits the best performance on both convergent and divergent creative thinking across all states,
followed by Claude-3 and Llama3-70B. It is noticeable that Llama3-70B even outperforms GPT-4 on
convergent creative thinking when t = 0 (convergent(GPT-4, 0) = 16.16 < convergent(Llama3-70B,
0) = 19.19). We hypothesize that the latest Llama3 models are pre-trained on Codeforces problems
and human solutions, so they have superior performance when there is no external constraint t = 0.
However, as t increases, its convergent performance drops drastically. Moreover, divergent creative
thinking never goes to 0 across all states and is sometimes even equally distributed on those less small
models (e.g., CodeGemma-7B and Mistral-7B). Together with independent findings from Xu et al. (2024b),
this observation indicates that LLMs with insufficient reasoning capabilities tend to make up new solutions
regardless of the quality when facing unusual problems. Which, in turn, demonstrates the importance of
the claim we made in section 1 that creative thinking involves not merely the generation of many diverse
alternatives but also the verification of new valid alternatives.

2790

D Prompts for DENIAL PROMPTING and Benchmarking
We apply the same problem-solving prompt in both DENIAL PROMPTING and the benchmarking process.

Problem-Solving Prompt for Codeforces:

You are a Python code generator, only return the import and python function. Input will be an
very detailed description of task, output will be the code. The input will be from command line,
and the output will be printed to the console as well. Your result will be solely a function
named solve(), and do not call this function in your code. Make sure the code is free of bug and
can pass the test cases provided. You can use any library you want. The test cases are provided
in the code. Do not call the solve() function in your code.

Technique Dection Prompt:

You are a code reviewer. Detect all the programming techniques from the input and return a list of
programming techniques. Only select the techniques from this list: [’if statement’, ’for loop’,
’while loop’, ’break statement’, ’continue statement’, ’pass statement’, ’match statement’,
’recursion’, ’stack’, ’queue’, ’tuple’, ’set’, ’dictionary’, ’linked list’, ’tree’, ’graph’,
’two pointers’, ’sliding window’, ’matrix operation’, ’hashmap’, ’depth first search’, ’width
first search’, ’back tracking’, ’divide & conquer’, ’Kadanes algorithm’, ’binary search’, ’heap’,
’dynamic programming’, ’greedy algorithm’, ’misc’, ’minimax’, ’topological sort’, ’sorting’,
’graph traversal’]
Your output should look like this:
- technique 1
- technique 2
- technique 3
- ...

2791

State Constraint Problem Statement

0 N/A

B. Points and Minimum Distance
You are given a sequence of integers a of length 2n. You have to split these 2n
integers into n pairs; each pair will represent the coordinates of a point on a
plane. Each number from the sequence a should become the x or y coordinate of
exactly one point. Note that some points can be equal.
· · ·

1 for loop

B. Points and Minimum Distance
Programming constraints: DO NOT use the following techniques
- for loop
You are given a sequence of integers a of length 2n. You have to split these 2n
integers into n pairs; each pair will represent the coordinates of a point on a
plane. Each number from the sequence a should become the x or y coordinate of
exactly one point. Note that some points can be equal.
· · ·

2 for loop
if statement

B. Points and Minimum Distance
Programming constraints: DO NOT use the following techniques
- if statement
- for loop
You are given a sequence of integers a of length 2n. You have to split these 2n
integers into n pairs; each pair will represent the coordinates of a point on a
plane. Each number from the sequence a should become the x or y coordinate of
exactly one point. Note that some points can be equal.
· · ·

3
for loop
if statement
while loop

B. Points and Minimum Distance
Programming constraints: DO NOT use the following techniques
- while loop
- if statement
- for loop
You are given a sequence of integers a of length 2n. You have to split these 2n
integers into n pairs; each pair will represent the coordinates of a point on a
plane. Each number from the sequence a should become the x or y coordinate of
exactly one point. Note that some points can be equal.
· · ·

4

for loop
if statement
while loop
sorting

B. Points and Minimum Distance
Programming constraints: DO NOT use the following techniques
- sorting
- while loop
- if statement
- for loop
You are given a sequence of integers a of length 2n. You have to split these 2n
integers into n pairs; each pair will represent the coordinates of a point on a
plane. Each number from the sequence a should become the x or y coordinate of
exactly one point. Note that some points can be equal.
· · ·

5

for loop
if statement
while loop
sorting
tuple

B. Points and Minimum Distance
Programming constraints: DO NOT use the following techniques
- tuple
- sorting
- while loop
- if statement
- for loop
You are given a sequence of integers a of length 2n. You have to split these 2n
integers into n pairs; each pair will represent the coordinates of a point on a
plane. Each number from the sequence a should become the x or y coordinate of
exactly one point. Note that some points can be equal.
· · ·

Table 4: An example of NEOCODER dataset with problem ID 1895B and state t = 5.

2792

https://codeforces.com/problemset/problem/1895/B

t = 0
(initial
state)

t = 2

Augmentation with
DENIAL PROMPTING

① Response w/ augmentation model PLM

x = Find the minimum number of
operations required to modify a string
so it contains exactly k instances of B.

② Technique detection w/ PLM

③ Sample a unique technique

hashmap, if statement, recursion …

x = Find the minimum number of …
Don’t use hashmap

Repeat: ① … ② … ③ …

x = Find the minimum number of …
Don’t use hashmap, while loop

⋮

t = 1

Repeat t = T times

Figure 8: Example of DENIAL PROMPTING (Algorithm 1) for NEOCODER construction. The question comes from
our NEOCODER dataset with ID 1898A.

from itertools import chain, repeat, islice

def solve():
 def handle_testcase():
 n = int(input())
 a = list(map(int, input().split()))
 x_coords = a[:n]
 y_coords = a[n:]
 distance = sum(abs(x - y) for x, y in
zip(x_coords, y_coords))
 print(distance)
 # Print the coordinate pairs
 coordinates_output = "\n".join(f"{x_coords[i]}
{y_coords[i]}" for i in range(n))
 print(coordinates_output)

 t = int(input())
 # Using the islice and repeat functions to handle
multiple test cases

list(islice(chain.from_iterable(repeat(handle_testcase
, t)), t))

from itertools import accumulate, pairwise

def solve():
 t = int(input())
 for _ in range(t):
 n = int(input())
 a = list(map(int, input().split()))

 points = [(a[i], a[i+n]) for i in range(n)]

 # Initialize min_dist and path
 min_dist = sum(abs(x1-x2) + abs(y1-y2) for
(x1, y1), (x2, y2) in pairwise(points +
points[:1]))
 path = points

 # Try all possible starting points
 for start in range(n):
 curr_dist = sum(abs(x1-x2) + abs(y1-y2)
for (x1, y1), (x2, y2) in pairwise(points[start:] +
points[:start]))
 if curr_dist < min_dist:

import sys
def solve():
 t = int(input())
 for _ in range(t):
 n = int(input())
 a = list(map(int, input().split()))
 print(sum(a[:n]) - max(a[:n]))

 for i in range(n):
 print(max(a[i], a[i+n]),
min(a[i], a[i+n]))

def solve():
 import math
 t = int(input())
 for _ in range(t):
 n = int(input())
 a = list(map(int,
input().split()))
 x = a[::2]
 y = a[1::2]
 min_dist = 0
 for i in range(n):
 min_dist += math.gcd(x[i],
y[i])
 print(min_dist)
 for i in range(n):
 print(x[i], y[i])

This is the example of the problem.
Please do not use the example as the
test case.
I tried to solve this problem by
creating a function that takes in the
sequence of integers and returns the
minimum distance. However, I'm not
sure how to approach this problem
without using techniques such as
sorting or loops.
Could you please provide me with some
guidance on how to solve this problem?
Also, I would like to know if there is
a way to solve this problem using
dynamic programming.
Thank you for your time and help.

import random
import math
t = int(input())
for i in range(t):
 n = int(input())
 a = list(map(int, input().split()))
 points = []
 for j in range(1,2*n,2):
 points.append((a[j-1],a[j]))
 points_list = random.sample(points,
len(points))
 min_path = 0
 for j in range(len(points_list)-1):
 min_path +=
math.dist(points_list[j],points_list[j+1])
 points_list = points_list[1:] +
points_list[:1]
 for j in range(len(points_list)-1):
 print(points_list[j][0],
points_list[j][1])
 print(min_path)

GPT-4 Claude-3 GPT-3.5 Llama3-70B

Llama2-70B

CodeLlama-34B

CodeGemma-7B Mistral-7B

Figure 9: Example model outputs for question 1895B at state t = 5. Full questions and constraints can be found
in Table 4. It is evident that different models have different convergent and divergent creative performances.
Specifically, CodeGemma-7B and Mistral-7B fail to generate parsable solutions, and Llama2-70B is seeking more
hints from its users.

2793

https://codeforces.com/problemset/problem/1898/A
https://codeforces.com/problemset/problem/1895/B

Strategy State ∆Convergent(old→new) ∆Divergent(old→new) ∆NEOGAUGE(old→new)

MCTS

0 10.60(1.52→12.12) 7.79(5.18→12.97) 0.82(0.00→0.82)

1 3.03(0.00→3.03) 8.62(6.31→14.93) 0.08(0.00→0.08)

2 1.02(0.00→1.02) 8.61(5.55→14.16) 0.10(0.00→0.10)

3 0.52(0.00→0.52) 9.11(5.35→14.46) 0.00(0.00→0.00)

4 0.00(0.00→0.00) 8.93(4.82→13.75) 0.00(0.00→0.00)

5 0.00(0.00→0.00) 9.69(4.23→13.92) 0.00(0.00→0.00)

Self-Correction

0 12.12(2.53→14.65) -0.37(5.41→5.04) 0.29(0.25→0.54)

1 2.53(0.51→3.03) 0.26(4.56→4.82) 0.29(0.00→0.29)

2 1.02(0.00→1.02) 0.24(3.79→4.03) 0.00(0.00→0.00)

3 0.00(0.00→0.00) -1.62(6.04→4.42) 0.00(0.00→0.00)

4 0.00(0.00→0.00) 1.77(3.70→5.47) 0.00(0.00→0.00)

5 0.00(0.00→0.00) 0.05(4.93→4.98) 0.00(0.00→0.00)

Planning

0 7.07(2.53→9.60) -1.16(5.41→4.25) 0.25(0.25→0.50)

1 2.53(0.50→3.03) 1.28(4.56→5.84) 0.25(0.00→0.25)

2 1.02(0.00→1.02) 2.07(3.78→5.85) 0.00(0.00→0.00)

3 0.52(0.00→0.52) -1.24(6.04→4.80) 0.00(0.00→0.00)

4 0.57(0.00→0.57) 2.67(3.70→6.37) 0.00(0.00→0.00)

5 0.00(0.00→0.00) 1.94(4.93→6.87) 0.00(0.00→0.00)

Sampling

0 -0.50(2.52→2.02) -0.38(5.41→5.03) 0.00(0.25→0.25)

1 -0.51(0.51→0.00) -0.10(4.56→4.46) 0.00(0.00→0.00)

2 0.00(0.00→0.00) 1.05(3.78→4.83) 0.00(0.00→0.00)

3 0.52(0.00→0.52) -1.69(6.04→4.35) 0.00(0.00→0.00)

4 0.00(0.00→0.00) 0.76(3.70→4.46) 0.00(0.00→0.00)

5 0.00(0.00→0.00) -1.86(4.93→3.07) 0.00(0.00→0.00)

Table 5: Creativity difference before and after applying reasoning strategies.

2794

