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Abstract

Query-focused tabular summarization is an
emerging task in table-to-text generation that
synthesizes a summary response from tabu-
lar data based on user queries. Traditional
transformer-based approaches face challenges
due to token limitations and the complex-
ity of reasoning over large tables. To ad-
dress these challenges, we introduce DETQUS
(Decomposition-Enhanced Transformers for
QUery-focused Summarization), a system de-
signed to improve summarization accuracy by
leveraging tabular decomposition alongside a
fine-tuned encoder-decoder model. DETQUS
employs a large language model to selectively
reduce table size, retaining only query-relevant
columns while preserving essential information.
This strategy enables more efficient processing
of large tables and enhances summary quality.
Our approach, equipped with table-based QA
model Omnitab, achieves a ROUGE-L score
of 0.4437, outperforming the previous state-of-
the-art REFACTOR model (ROUGE-L: 0.422).
These results highlight DETQUS as a scalable
and effective solution for query-focused tabular
summarization, offering a structured alternative
to more complex architectures.

1 Introduction

Tabular data has become increasingly prevalent in
our society, with nearly all businesses employing
it to store crucial information. As the amount of
collected data increases over time, this has cre-
ated the need for techniques and systems that allow
individuals to analyze and create insights about
their data. Automatic summarization is an area
of research that investigates methods to glean in-
sights from natural language data using various
techniques (Mridha et al., 2021).

The importance of analyzing tabular data com-
bined with the existing summarization research has
given rise to a new subset of summarization: query-
focused tabular summarization. Query-focused tab-

Figure 1: Query-focused table summarization with QT-
SUMM, generating a summary from the query: “What
is the latest ... intelligence?”

ular summarization refers to the task of extracting
key points and context from large tables based on
a user-provided query (Zhao et al., 2023).

Considering the query-focused table summariza-
tion system depicted in Figure 1, when a user in-
quires about “arrival date” and “basic information,”
our model evaluates the user’s requirements in con-
junction with a table lookup and then generates a
summary based on these constraints.

We consider using neural techniques, particu-
larly transformer-based models, and identify sev-
eral associated challenges. The first challenge is the
inherent token capacity limitation of transformer
models. When tables are converted to text and tok-
enized, they can exceed the input length of the trans-
former model, causing performance degradation
due to truncation from the overly long sequence
length. Another challenge is processing larger ta-
bles and complex queries, which require models to
reason across numerous columns, establish mean-
ingful connections, and synthesize coherent sum-
maries from the extracted information. Although
large language models (LLMs) exhibit emergent
reasoning abilities and greater token capacity, their
reasoning abilities still falls short of human perfor-
mance (Wei et al., 2022; Davis, 2023).
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To address these limitations, we introduce DE-
TQUS (Decomposition-Enhanced Transformers
for QUery-focused Summarization), a novel sys-
tem designed to enhance query-based table summa-
rization through tabular decomposition. DETQUS
dynamically restructures tables into smaller, more
relevant forms based on the provided query, ef-
fectively mitigating token length constraints while
preserving critical content. The principle behind
this technique is that the model only accesses data
relevant to improving performance. This helps mit-
igate the token limitation of many attention-based
methods and the complexity of reasoning over large
tables and complex queries.

Our work builds on the foundational research
of Ye et al. (2023), introducing tabular decompo-
sition based on the given query. We extend this
approach to query-focused table summarization,
making several key contributions. Our main contri-
bution is developing DETQUS, a system that lever-
ages tabular decomposition to enhance query-based
table summarization. DETQUS outperforms prior
baselines while offering a more structured and inter-
pretable approach. We evaluate our method across
multiple transformer-based models, demonstrating
improvements in summarization quality through a
combination of fine-tuned neural architectures and
optimized decomposition techniques.

Section 2 presents related work, followed by
a description of our system architecture for tabu-
lar summarization in Section 3. We present data
and experiments in Section 4. Finally, we discuss
insights gleaned from our study and provide con-
clusions and future directions.

2 Related Work

This section outlines the task of query-focused
tabular summarization, highlighting how it differs
from other table-to-text tasks. We review prior ap-
proaches to these tasks and their limitations, com-
paring them to our method. We also describe the
QTSUMM dataset which we use for our evaluation.

2.1 Explanation of the Task

Query-focused tabular summarization is a spe-
cific type of table-to-text generation that combines
elements of table question answering (QA) and
generic table summarization (Zhao et al., 2023).
Unlike tabular QA, which focuses on extracting
specific facts from a table based on a query, query-
focused tabular summarization aims to generate a

coherent summary that addresses the user’s query
by integrating relevant information from the table.
This task is distinct from generic table summariza-
tion, which generates summaries based solely on
the tabular input without regard to a specific query.

2.2 Prior Approaches to Tabular QA and
Summarization

Previous research in tabular question answering pri-
marily focuses on models that can extract relevant
facts from tables in response to specific queries.
These models typically rely on sophisticated pars-
ing techniques and neural networks to understand
and retrieve the correct information. For example,
the method developed by Chen et al. (2021) extracts
facts from tables given a particular query. While
this approach provides a high degree of user con-
trol, its focus on fact extraction does not allow for
generating insightful summaries or interpretations
beyond the presented data.

Recent advancements in table-based question
answering (QA) highlight the effectiveness of pre-
training models with both natural and synthetic data
to improve few-shot learning scenarios. Jiang et al.
(2022) introduce OmniTab, a model pre-trained
using natural sentences paired with tables and syn-
thetic questions derived from SQL queries. This
dual approach enhances the model’s ability to align
natural language with tabular data and perform
complex reasoning tasks. OmniTab achieves state-
of-the-art performance on the WikiTableQuestions
benchmark, demonstrating that integrating both
data types balances alignment and reasoning.

Generic table summarization involves generating
summaries based solely on the tabular input with-
out specific queries, as seen in the work of Lebret
et al. (2016). This method, while straightforward,
lacks user control over the summary content. To ad-
dress this limitation, single-sentence table-to-text
tasks are introduced by Chen et al. (2020), which
provide models with tabular data and specific se-
quences describing rows and columns. Although
this offers some level of control, it still requires
manual input for regions of interest, limiting its
flexibility as a system.

2.3 Advances in Query-focused Text
Summarization

Recent advancements in query-focused text sum-
marization have improved the efficiency and rele-
vance of summaries for specific user queries. Rah-
man and Borah (2015) demonstrate extractive tech-
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niques aimed at distilling information for a spe-
cific query. Xu and Lapata (2022) introduce la-
tent queries to bridge the gap between explicit user
queries and implicit information, leveraging latent
semantic analysis for deeper query understanding.
Although these approaches primarily target textual
data, they provide a foundation for developing tech-
niques applicable to tabular data.

2.4 Advances in Table Summarization
Techniques

Previous developments in table summarization
techniques focus on improving the ability of mod-
els to generate accurate and relevant summaries
from structured data. Techniques such as TAPAS
(Herzig et al., 2020) and TAPEX (Liu et al., 2021)
demonstrate significant progress in enhancing rea-
soning capabilities over tabular data. These models
employ pre-trained transformers designed specif-
ically to handle structured information, achieving
strong performance on table-based reasoning and
question-answering tasks.

Despite these advancements, there are notable
limitations, particularly in handling larger or more
complex tables. Models like TAPAS and TAPEX
often struggle with scalability and suffer from to-
ken limitations, as they may not efficiently process
tables with a large number of columns or rows.
To address these issues, REASTAP (Zhao et al.,
2022) introduces table reasoning skills during pre-
training, improving performance on specific tasks
like table-based question answering. However,
even REASTAP encounters difficulties related to
token limitations and integrating unstructured data
with structured inputs.

Our approach introduces a novel tabular decom-
position technique using a large language model
(LLM) to decompose tables based on the user query.
This method addresses token capacity constraints
by reducing the table to its most relevant columns
and rows, allowing the model to handle larger
datasets more effectively while retaining essential
information for generating accurate summaries.

Although few-shot learning is widely used to
improve model performance across various NLP
tasks, recent research in query-focused summariza-
tion, such as Zhao et al. (2023), reveals that it does
not always yield significant improvements for table-
based tasks. Informed by these results, we decide
not to implement few-shot learning in our study
and instead focus on alternative methods, such as
tabular decomposition, to enhance performance.

2.5 QTSUMM Dataset

The QTSUMM dataset,1 introduced by (Zhao et al.,
2023), is a comprehensive resource for training
and evaluating models on query-focused tabular
summarization. This dataset includes tables and
query-summary pairs, with a single table poten-
tially having more than one query-summary pair.
The tables are scraped from Wikipedia and con-
tain diverse topics. In total, the QTSUMM dataset
consists of 7,111 query-summary pairs over 2,934
tables (Zhao et al., 2023).

This dataset is curated from the LOGICNLG
(Chen et al., 2020) and ToTTo (Parikh et al., 2020)
tables derived from Wikipedia. Next, tables that are
excessively large or small, possess only string-type
columns or have hierarchical structures are filtered
out from this pool. It is worth noting that topically,
the tables used in this dataset are diverse, ranging
from sports to scientific literature. This provides a
wide domain of tables, queries, and summaries to
evaluate models on.

2.6 Our Methodological Approaches Derived
from Previous Works

Our research methodology addresses the limita-
tions of traditional query-focused table summariza-
tion by focusing on a few key innovations. Unlike
traditional methods that use either the entire table
or manually selected regions, our approach utilizes
LLMs to decompose tables based on the query.
This method accommodates token-limit constraints
while retaining critical information necessary for
generating accurate summaries.

For tabular decomposition, we implement a strat-
egy that uses LLMs to perform table decomposi-
tion. For queries that the LLM understands and can
confidently identify relevant columns, a precise de-
composition is performed in which a table is com-
pressed to the necessary rows and columns. How-
ever, for more complex queries where the LLM
is less certain, the decomposition is conservative,
retaining all potentially relevant columns. This
adaptive approach strikes a balance between provid-
ing focused information for straightforward queries
and maintaining comprehensive context for more
complex ones, thus mitigating the risk of informa-
tion loss and potential model hallucinations.

1QTSUMM dataset is publicly available, see here, https:
//huggingface.co/datasets/yale-nlp/QTSumm
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Figure 2: Prompt for converting the table to markdown
format for LLM (Llama3-70b)

3 System Architecture for Tabular
Summarization

This section outlines the architecture of our ap-
proach to the tabular decomposition. We describe
the table decomposition process and present the
algorithmic details of our implementation.

3.1 Table Decomposition

Building on Ye et al. (2023)’s work, our approach
uses a large language model (LLM) to guide the tab-
ular decomposition, operating in two stages: com-
pression and table-building. In the compression
stage, we first convert the table to markdown for-
mat for LLM processing. Using Llama3-70b with a
tailored prompt (see Figure 2), we identify columns
most relevant to the user’s query. These columns
are then used in the table-building stage to con-
struct the final decomposed table.

3.2 Algorithms for Table Decomposition

Algorithm 1 outlines a process for decomposing a
table into smaller relevant tables based on a user
query, using LLMs to guide the decomposition.
The algorithm runs through procedure, MAIN PRO-
CESS (lines 28-33), utilizing two important func-
tions: table decomposition and creating a decom-
posed table.

The TABLE_DECOMPOSITION function first
converts the input table to markdown format
and constructs a prompt combining the user’s
question, table content, and specific instructions

for column selection. This prompt is then sent
to the LLM API for processing. The CRE-
ATE_DECOMPOSED_TABLE function takes the
LLM’s response and uses it to build a new, focused
table. It searches for column names mentioned in
the LLM’s output and creates a subset table contain-
ing only those columns. Importantly, if no relevant
columns are identified in the LLM’s response, the
function defaults to using all columns from the orig-
inal table, ensuring robustness against ambiguous
queries or unclear LLM responses.

Algorithm 1 Table Decomposition and Creation
1: function TABLE_DECOMPOSITION(table, question, title)
2: Markdown format← table
3: Construct prompt:
4: Add instructions for column relevance
5: Add the given question
6: Add the table in markdown format
7: Add the table title
8: Send prompt to LLM API
9: Retrieve and return the API response
10: end function
11: function CREATE_DECOMPOSED_TABLE(table, output_text)
12: DataFrame← table
13: Relevant column names← []
14: for all column in the table do
15: if column name appears in output_text then
16: Add column name to relevant column names list
17: end if
18: end for
19: if no relevant column is found then
20: Use all columns from table
21: end if
22: Create a new table with only relevant columns:
23: Use the original table ID and title
24: Use relevant column names as header
25: Extract corresponding data for relevant columns
26: return new decomposed table
27: end function
28: procedure MAIN PROCESS
29: Define original_table structure
30: Call table_decomposition with the original table, question, and title
31: Call create_decomposed_table with the original table and output from

table_decomposition
32: return the decomposed table
33: end procedure

4 Data and Experiments

We use the community standard benchmark dataset
QTSUMM by Zhao et al. (2023). Additionally, we
create a decomposed dataset from the QTSUMM
by removing irrelevant columns. We then train
several models on both datasets where the tabular
data along with the user query serve as input and
the expected output is the summary.

Four models are used in our experiments: T5
(Raffel et al., 2020), Flan-T5 (Chung et al., 2024),
BART (Lewis et al., 2019) and OmniTab (Jiang
et al., 2022). To improve the summary accuracy
for the four transformer-based models, we apply ta-
ble decomposition, fine-tuning, and pre-processing.
Next, for evaluating the query-focused table sum-
marization task on LLMs, we utilize Llama, Mix-
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tral, Smaug, Claude and GPT. We compare the
results of these models and the summaries they
generate against the expected summaries using
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
BERTScore (Zhang et al., 2020) and PARENT
(Dhingra et al., 2019).

We split the test data into validation and test sets.
Since the summary is readily available in the test
data, we omit it for the validation set. Our model
is then evaluated using the new validation split.

4.1 Dataset

We randomly select 2000 training data entries
from QTSUMM—including tables, summaries,
and queries—to train our model. We select 500
entries as test data and 200 entries as validation
data. We train and test our model on a subset of
data due to resource limitations. The entries are
selected at random ensuring that the data contains
diverse table topics to ensure minimal scope of
bias. We then train and evaluate our model on two
versions of the QTSUMM dataset.

1. Original Data: This is the original QTSUMM
dataset without any preprocessing or modifica-
tions. It contains the raw tabular data, queries,
and expected summaries.

2. Decomposed Data: In this variant, we apply
our table decomposition approach to the QT-
SUMM dataset. The tables are decomposed to
retain only the most relevant columns based
on the given query, removing extraneous in-
formation to address token limitations.

By training and evaluating on these two varia-
tions, we analyze the impact of our table decom-
position technique and the effect of supplementing
the input with extracted facts from the table.

4.2 Preprocessing

Preprocessing is a crucial step before model train-
ing and evaluation. It ensures that tabular data
is structured appropriately for transformer-based
models. Our preprocessing pipeline includes the
following steps:

• Flattening Tables: We convert tables into
a linear text format to align with sequence-
based input constraints, following Hancock
et al. (2019), where each row is transformed
into a “key:value” structure.

• Column Selection: To simplify the input
and reduce the token count, we filter out
non-relevant columns by using an LLM de-
composer to break the original table into the
smaller table which only contains relevant in-
formation to the query.

• Tokenization: We apply the appropriate tok-
enizer for each model (T5, BART, etc.), ensur-
ing input compatibility.

• Formatting for Fine-Tuning: We append
metadata like table titles and queries to ensure
contextual relevance during summarization.

4.3 Fine-tuned Models

We fine-tune four encoder-decoder text generation
models: T5,2 Flan-T5,3, BART4 and OmniTab5.
The selection of these models is primarily driven
by the need to enhance comparability with previ-
ous studies, particularly the work of (Zhao et al.,
2023). By using the same models, we can draw
clear comparisons between our results and theirs,
providing a consistent benchmark for progress in
query-focused table summarization.

T5 is a widely used baseline for text summariza-
tion. Flan-T5 builds on T5, but it has not been as
extensively used for tabular summarization as T5.
We include both models to investigate improve-
ments Flan-T5 offers over T5. Including BART
allows us to explore potential improvements in tab-
ular summarization from an alternative architec-
ture compared to T5 and Flan-T5. OmniTab is the
current state-of-the-art model on the QTSUMM
dataset and utilizes a BART backbone with a pre-
training setup that emphasizes tabular QA.

It is crucial to acknowledge that these
transformer-based models include restrictions re-
garding their context length, which may affect their
capacity to manage large tables. T5 has a maxi-
mum input length of 512 tokens, whereas BART

2T5 is released under the Apache 2.0 license, users are
granted a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license, see here, https:
//apache.org/licenses/LICENSE-2.0

3Flan-T5 is released under the Apache 2.0 license, users
are granted a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license, see above

4Users of BART are granted right to redistribute and
use in source and binary forms, with or without modi-
fication, see here, https://github.com/mrirecon/bart/
blob/master/LICENSE

5OmniTab model is publically available on hug-
gingface, see here https://huggingface.co/neulab/
omnitab-large
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has a maximum input length of 1024 tokens. Flan-
T5, being an extension of T5, has a maximum input
length of 512 tokens. OmniTab, constructed on the
BART architecture, maintains the 1024 token lim-
itation. These constraints need solutions such as
table decomposition to efficiently manage bigger
tables and reduce information loss resulting from
truncation. All these models are fine-tuned using
an AMD EPYC 75F3 32-Core Processor and 3
NVIDIA A100 GPUs. We select the large versions
of each model with publicly available on Hugging-
Face. Due to the large model and dataset sizes,
we use small batch sizes during training. Addi-
tionally, we employ 4-bit quantization to reduce
the memory footprint of parameter values during
training while maintaining the standard precision,
as demonstrated by Dettmers et al. (2023).

For each fine-tuning experiment, we run 20
epochs. The batch size is adjusted for each model
to fit into the available memory: T5 and Flan-T5
use smaller batch sizes due to more parameters,
while BART and OmniTab, with fewer parameters,
use larger ones. The models are fine-tuned and eval-
uated on two different versions of the QTSUMM
dataset: the original and a decomposed version.

Before fine-tuning, we preprocess the tabular
data following the steps outlined in Section 4.2.
This ensures that the input format aligns with the
transformer-based architecture constraints. Once
preprocessing is complete, we apply table decom-
position to reduce input size, then fine-tuning.

4.4 Large Language Models (LLMs)

We run experiments with various LLMs (Llama,6

Mixtral,7 GPT, Claude,8 and Smaug9) on the same
task using a zero-shot prompting approach with-
out fine-tuning on our dataset. We employ a zero-
shot prompting approach, where the models are
provided with a prompt containing the table and
the query, without any additional training or fine-
tuning. For our experiments, we tailor the prompt
for each model as per the recommendations pro-

6Meta grants a non-exclusive, worldwide, non-transferable,
and royalty-free limited license for the use of Llama 3, see
here, https://Llama.meta.com/Llama3/license/

7Mixtral is released under the Apache 2.0 license, users
are granted a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license, see above

8Users of Claude are granted a to deal in the Software
without restriction and free of charge, see here, https://
github.com/Rassibassi/claude/blob/master/LICENSE

9Smaug is released under the Apache 2.0 license, users
are granted a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license, see above.

vided by the authors during their respective releases.
To prepare the tabular data for input, we prepro-
cess and flatten the tables into one-dimensional text
strings. We followed the same process for flatten-
ing the tables as described in Section 4.3.

Finally, each model’s performance is evaluated
using BLEU, ROUGE, BERTScore and PARENT
against the test dataset. This process ensures that
our models not only perform well in the training
data but also generalize effectively to unseen data.

4.5 Metrics

We employ four metrics, including BLEU (Bilin-
gual Evaluation Understudy), ROUGE (Recall-
Oriented Understudy for Gisting Evaluation),
BERTScore, and PARENT, to assess the quality
and accuracy of the summaries generated by each
model. ROUGE emphasizes recall in our evalua-
tions, while BLEU focuses on precision by mea-
suring the n-gram overlap between generated and
reference summaries. BERTScore addresses the
limitations of n-gram-based metrics by considering
semantic similarity. Additionally, we incorporate
PARENT, which aligns n-grams from the reference
and generated texts to the underlying data before
computing precision and recall. By considering
BLEU, ROUGE, BERTScore, and PARENT, our
evaluations provide a more comprehensive assess-
ment of both lexical accuracy and contextual fi-
delity while also accounting for the alignment of
generated summaries with the source data.

5 Results and Analyses

The results indicate that our approach performs
effectively and, in certain cases, surpasses the per-
formance of the prior baseline technique.

The analysis, as presented in Tables 1 and 2
reveals that Llama 3 outperforms other large lan-
guage models, while OmniTab achieves the highest
scores in most metrics, including ROUGE-L and
PARENT. This suggests that the new Llama model
offers significant advantages over earlier LLM ar-
chitectures for querying tables.

In particular, the OmniTab model, when used
with decomposed tabular data, emerges as the best-
performing model, achieving a ROUGE-L score
of 0.4437 and a PARENT score of 0.3346. This
performance surpasses the previous state-of-the-
art REFACTOR model, which has a ROUGE-L
score of 0.422, also employing the OmniTab model.
Additionally, it is noteworthy that models such as
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Original Data Decomposed Data

BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore PARENT BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore PARENT

T5 0.2046 0.4489 0.2212 0.3722 0.8918 0.2642 0.2138 0.4544 0.2287 0.3870 0.8949 0.2787
Flan-T5 0.2174 0.4699 0.2597 0.3930 0.8974 0.2981 0.2216 0.4851 0.2685 0.4115 0.8971 0.3124
BART 0.2248 0.4684 0.2312 0.4081 0.8949 0.3112 0.2405 0.4709 0.2428 0.4197 0.8968 0.3200

OmniTab 0.2213 0.4902 0.2506 0.4405 0.9008 0.3220 0.2432 0.4989 0.2756 0.4437 0.9016 0.3346

Table 1: Results Table for T5, Flan-T5, BART, and OmniTab with two different table handling approaches. SOTA
model, REFACTOR (Zhao et al., 2023) yields a ROUGE-L score of 0.422 on the same task using OmniTab.

BART, T5, Flan-T5, and OmniTab generally ex-
hibit slightly better performance than other LLMs.
This indicates that these models possess strengths
particularly suited to the task.

Table 1 shows a consistent trend across all mod-
els, with better performance on the decomposed
data. This suggests that breaking down the data into
its constituent parts, before presenting it to the mod-
els, enhances the models’ ability to generate accu-
rate summaries. This improvement occurs because
the models can focus more effectively on relevant
information when it is presented in a structured
and decomposed format. This structured approach
allows the models to concentrate on essential ele-
ments, thereby improving the overall accuracy and
quality of the generated summaries.

Model BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore PARENT

Claude 2 0.2238 0.4816 0.2464 0.3702 0.9011 0.2673
Claude 3 Opus 0.2334 0.4975 0.2561 0.3857 0.9022 0.2843
GPT-3.5 Turbo 0.2303 0.4593 0.2255 0.3301 0.8974 0.2548
Llama 2-70B 0.2134 0.4694 0.2435 0.3543 0.8989 0.2457
Llama 3-70B 0.2539 0.4948 0.2649 0.4105 0.9103 0.2953
Smaug-72B 0.2230 0.4801 0.2333 0.3369 0.9033 0.2407
Mixtral-8x22B 0.2198 0.4790 0.2412 0.3542 0.9035 0.2476

Table 2: Results Table for LLMs.

6 Human Evaluation Study and Error
Analysis

Although automatic n-gram overlap metrics like
ROUGE are valuable, they have limitations in eval-
uating semantically similar text. A qualitative anal-
ysis is necessary to better understand any system’s
strengths and limitations. Therefore, we conduct
an error analysis and a human evaluation study to
gain additional insights into our system.

6.1 Evaluation of Table Decomposition
To provide a qualitative perspective of the tabular
decomposition method, we perform a human evalu-
ation study. We employ a Likert scale ranging from
1 to 5 to assess the completeness and accuracy of
the information in the decomposed tables.

• A score of 1 means that most or all relevant
information is missing

• A score of 2 suggests that some relevant in-
formation is present, though the table remains
largely incomplete.

• A score of 3 indicates that most relevant infor-
mation is available, but not comprehensive.

• A score of 4 signifies that all relevant informa-
tion is present, but some may still be missing,
or the table includes irrelevant details.

• A perfect score of 5 reflects that the table con-
tains only the relevant information.

We randomly sample 100 data points, evaluate
them, and present the results. We choose 100 sam-
ples due to time and resource constraints. For table
decomposition, we score 4.46 on a scale of 5, indi-
cating there is room for improvement.

6.2 Human Evaluation of Table
Summarization

For the human evaluation study, three MS-level
non-algorithm developers independently evaluate
summaries generated by multiple models based
on accuracy, relevance, and clarity, using a five-
point rating scale. The results of human evalu-
ation of some of our best models are shown in
Table 3. Llama3 is the best-performing model in
terms of accuracy. We can also conclude that the
Omnitab model performs better for tabular data, as
evidenced by its improved Rouge-L and accuracy
scores compared to the BART model.

Models Accuracy Relevance Clarity
BART 3.22 3.92 4.67

Omnitab 3.41 4.12 4.58
Llama3 3.77 4.08 4.42

Table 3: Human Evaluation Results. Bart and Omnitab
model evaluation are done on decomposed data. Llama3
evaluation is done on original data.

To measure inter-rater agreement, we select a
common set of randomly generated 100 summaries,
which are independently rated by all three evalua-
tors. We then compute the Intraclass Correlation
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Coefficient (ICC) (Koo and Li, 2016) to assess the
consistency of the ratings across the three criteria.
The ICC score obtained is 0.7768, indicating good
level agreement among the evaluators.

6.3 Error Analysis for Table Summarization
For the error analysis, we categorize errors into
factual incorrectness, irrelevant information, hallu-
cinations, and repetition (Zhao et al., 2023). Irrele-
vant information includes cases where the facts
extracted by the model are correct but are not
pertinent to the user query. We manually review
100 randomly-selected samples of generated sum-
maries and evaluate them as errors within these
categories. This analysis reveals which stages in
our process fail, along with the limitations of our
current approach and areas for future improvement.
The results of error analysis for the Omnitab model
using our table decomposition approach, are pre-
sented in Table 4.

Error Total Counts
Factual incorrectness 18
Irrelevant information 14

Hallucination 6
Repetition 2

Correct 60

Table 4: Total number of errors in different categories
on 100 random examples

As shown in Table 4, according to human evalu-
ators, 60% of the summaries generated are correct.
Factual incorrectness is the most common, which
accounts for 18% of total samples, followed by
irrelevant information which accounts for 14% of
all the samples. Hallucinations and repetitions are
less frequent with 6% and 2% probability respec-
tively. This analysis highlights the areas where the
summarization model requires improvement, par-
ticularly in addressing the factual correctness and
relevance of the facts generated. By focusing on
these aspects, future iterations of the model can
enhance overall performance and reliability.

7 Conclusion and Future Work

This study presents a novel query-focused approach
to tabular summarization, integrating table decom-
position with advanced text generation models (T5,
Flan-T5, BART, and Omnitab). We mitigate token
limitations of existing models by efficiently han-
dling large and complex tables, thereby improving
upon the current state-of-the-art REFACTOR.

Our best-performing model attains a ROUGE-
L score of 0.4437, setting a new high score for
query-focused tabular summarization. By explor-
ing diverse models (T5, Flan-T5, BART, Omnitab,
Llama, Mixtral, GPT), we gain valuable insights
into their capabilities on this task.

Future research directions include exploring ad-
ditional models and LLMs, such as Flan-T5 XXL,
a larger variant than the one used in this study. Im-
proving ensemble techniques by training models
on different types of data or queries is another fu-
ture direction. For example, some models could be
trained on simple queries and others on complex
queries, or one model could train on the full dataset
while others train on the decomposed dataset. This
would allow the ensemble model to leverage the
respective strengths of individual models.

Moreover, Llama3 demonstrates the highest ac-
curacy in query-based table summarization tasks,
as demonstrated by human evaluation, reflecting
superior fact extraction capabilities, but OmniTab
achieves the highest ROUGE score, indicating
stronger overall summarization performance. This
result suggests that while Llama3 excels in accu-
racy and detailed fact retrieval, OmniTab provides
a more coherent and comprehensive summary. To
leverage the strengths of both models, future re-
search could explore the development of a hybrid
model that combines Llama3’s precise fact extrac-
tion with OmniTab’s robust table summarization
capabilities. Such an approach could potentially
enhance both the accuracy and overall quality of
table summarization, offering a more balanced and
effective solution.

In scenarios where even a decomposed table ex-
ceeds the summarization model’s token capacity,
additional strategies become necessary. One ap-
proach is further decomposition—breaking the ta-
ble into even smaller, manageable segments. Al-
ternatively, hierarchical methods can process large
tables by first summarizing individual sections and
then combining these summaries into a cohesive
final output. Techniques such as iterative summa-
rization or chunked processing may also help pre-
serve key information when handling extremely
large datasets. Evaluating the effectiveness of these
approaches is an important direction for future re-
search to enhance model robustness in managing
complex, large-scale tabular data.

Additionally, implementing continuous learn-
ing mechanisms may allow models to evolve in
response to new data and user feedback without
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requiring full retraining. This adaptive learning
may help maintain the relevance and efficiency of
the summarization system (Wu et al., 2024).

Another promising avenue for future work is to
explore evaluation metrics beyond BLEU, ROUGE,
BERTScore and PARENT such as BARTScore. It
utilizes a pre-trained BART model and has demon-
strated robust efficiency in evaluating the quality of
output summaries by analyzing both lexical over-
lap and semantic similarity. By applying this, we
could assure a more thorough assessment of model
performance and produced summaries.

By employing these enhancements, we can solid-
ify the utility of our research and push the bound-
aries of what automated systems can achieve in the
realm of intelligent data summarization.

Limitations

Several shortcomings have emerged during this re-
search study. First, our models tend to perform
best on simple queries or recall queries that ask for
direct information from the table (see Appendix A,
Example 1). However, our model demonstrates re-
duced performance when handling queries that in-
volve complex reasoning across multiple columns
or require identifying intricate relationships and
patterns within the table (see Appendix A, Ex-
ample 2). This limitation arises from the model’s
difficulty in comprehending and reasoning across
several data points within a single query, leading
to challenges such as factual inaccuracies or hallu-
cinations. Specifically, our method struggles with
accurately synthesizing summaries when queries
involve intricate temporal, causal, or relational pat-
terns, as these exceed the scope of the model’s
current decomposition approach.

To address the challenges of complex queries,
we propose integrating a “chain-of-thought” rea-
soning process in future model iterations. This
approach would involve decomposing complex
queries into a sequence of logical, incremental
reasoning steps. By breaking down the task into
smaller units, the model could tackle one part of the
query at a time, gradually building up to a complete
and accurate summary. This decomposition would
enhance the model’s ability to reason over multi-
faceted data relationships and reduce the likelihood
of hallucinations. Additionally, we aim to explore
ensemble methods, using standard decomposition
for simpler tasks and a hierarchical multi-step ap-
proach for complex reasoning.

Second, while table decomposition is intended
to filter out noise for improving model accuracy, it
can sometimes lose important data or specific infor-
mation needed for recall and comparison queries
(Appendix A, Example 3). In such cases, our model
may hallucinate and generate facts not present in
the table. Table decomposition also negatively im-
pacts queries that require an overarching under-
standing of trends or patterns, as these advanced
queries often need more information for accurate
summaries, and table decomposition can omit this
additional data. To mitigate this issue, we plan to
implement a dynamic decomposition strategy that
adjusts the extent of decomposition based on the
complexity of the query. For simple recall queries,
more aggressive decomposition is applied, whereas,
for complex queries, a lighter decomposition is
used to retain more information, in accordance with
previous work (Ye et al., 2023).

When the original table exceeds the sequence
length of the LLM-decomposer, our current ap-
proach cannot process the entire table directly. In
such cases, there is a possibility of truncation of the
input and potentially degradation of table decom-
position quality. This limitation highlights the need
for further investigation into alternative strategies.
For instance, hierarchical decomposition or table
segmentation can divide large tables into smaller,
manageable parts, ensuring the integrity of the sum-
marized content through improved token allocation.
Additionally, exploring large language models with
higher context windows also accommodates larger
inputs without sacrificing performance.

Finally, the human evaluation and error analysis
in this study have been conducted by only three
evaluators, which may potentially introduce human
biases. With a limited number of evaluators, there
is an increased risk that individual perspectives,
experiences, and subjective interpretations could
disproportionately influence the results. This may
lead to certain errors being overlooked or specific
patterns being misinterpreted, potentially affecting
the reliability of the human evaluation. A more
diverse group of evaluators could provide a broader
range of insights, helping to ensure that the analysis
is comprehensive and more representative of a gen-
eral consensus. To mitigate this limitation, we aim
to involve a larger and more diversified panel of ex-
pert evaluators or employing additional measures
such as cross-validation and consensus discussions
to reduce the impact of individual biases on the
evaluation outcomes.
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Ethical Considerations

In conducting this research on query-focused tab-
ular summarization, several ethical considerations
are central. The potential for bias in data and model
outputs is critically assessed, with our efforts to use
a diverse dataset, although it is acknowledged that
the complete elimination of bias is challenging and
ongoing efforts are necessary.

The environmental impact of training and de-
ploying large language models (LLMs) is another
significant consideration. Techniques such as 4-bit
quantization are employed to reduce computational
resources and mitigate the carbon footprint associ-
ated with extensive model training (Dettmers et al.,
2023). Furthermore, the risk of model inaccura-
cies, including the generation of erroneous facts,
is recognized. This underscores the importance of
continuous monitoring and iterative improvement
of models to enhance accuracy and reliability (Zhao
et al., 2023). By mitigating these ethical considera-
tions, this research aims to responsibly advance the
field of query-focused table summarization while
mitigating potential negative impacts.

This paper is assisted by AI software solely for
formatting and grammatical checking purposes. No
underlying ideas or content are generated by AI.
All original ideas, analysis, and conclusions in this
paper are solely created by the listed authors.
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A Appendix

We provide examples of query, expected summary,
and model outputs with decomposing table process.

EXAMPLE 1
Non-Decomposed Table

List of Columbo episodes -Season-4 (1974–75)

Decomposed Table

Query - Who played the role of the murderer in
the episode "Negative Reaction", and who were the
victims in this particular episode?

Expected Summary - In the episode "Negative
Reaction," Dick Van Dyke plays the role of the
murderer. The victims in this special episode are
Antoinette Bower and Don Gordon.

Returned Summary (BART) - In the episode
“Negative Reaction,” Dick Van Dyke plays the role
of the murderer. The victims in this episode are
Antoinette Bower and Don Gordon

ROUGE-L Score- 0.8444

EXAMPLE 2
Non-Decomposed Table

S and DJR 7F 2-8-0-Construction

Decomposed Table

Query - How does the timeline of withdrawal
correlate with the dates of construction for the lo-
comotives listed in the table, especially those built
by Robert Stephenson & Co in 1925?

Expected Summary - The time to withdraw for
trains in table look like has order, old one withdraw
first then new one. For trains made by Midland
Railway between February and August 1914, their
withdraw time is from June 1959 to February 1962.
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The first made train is first to be withdraw. Not
same, trains made by Robert Stephenson & Co
in 1925 have withdraw time between December
1963 and September 1964. This shows these trains,
because they are new, withdraw later than those
made by Midland Railway. This way tells that
withdraw time has relation with make time, as old
trains often took out from use before new ones.

Returned Summary (BART) - The timeline of
withdrawal for the locomotives listed in the table
seems to have a strong correlation with the dates
of construction for the locomotives listed in the
table. The locomotives built by Robert Stephenson
& Co in 1925 were all completed between January
1964 and September 1964. This suggests that the
timeline of withdrawal for these locomotives was
not as long as the dates of construction for the other
locomotives listed in the table.

ROUGE-L Score- 0.2111

EXAMPLE 3
Non-decomposed Table

List of international cricket centuries at Rose Bowl
- One Day International centuries

Decomposed Table

Query - How did team’s innings (Inns.) affect
their chances of winning or losing the match?

Expected Summary - From table, we can see
that team bat first (Inns. 1) win match in 10 out of
16 times, and team bat second (Inns. 2) win in 6 out
of 16 times. This maybe means bat first can give
team advantage, because they can set high target
for other team to chase.

Returned Summary (BART) - In 1948-1949

Ashes series, teams’ innings (Inns.) have big effect
on their chances to win or lose match. When Eng-
land play first innings, they have more chance to
win, if they score 200 runs or more, and when they
score 150 runs or less, they can win match. For
example, when England score 400 runs in first in-
nings against Sri Lanka, they win match, but when
they bat second innings, their chances of win go
down. In same way, if England score 200 or less
runs in second innings against Pakistan and India,
they get more chance of win, because they score
more runs, make match more likely to end in win.

ROUGE-L Score- 0.1454
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