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Abstract

In this paper, we explore using Large Lan-
guage Models (LLMs) for rumor detection on
social media. It involves assessing the verac-
ity of claims on social media based on social
context (e.g., comments, propagation patterns).
LLMs, despite their impressive capabilities in
text-based reasoning tasks, struggle to achieve
promising rumor detection performance when
facing long structured social contexts. Our pre-
liminary analysis shows that large-scale con-
texts hinder LLMs’ reasoning abilities, while
moderate contexts perform better for LLMs,
highlighting the need for refined contexts. Ac-
cordingly, we propose a semantic-propagation
collaboration-base framework that integrates
small language models (e.g., graph attention
network) with LLMs for effective rumor de-
tection. It models contexts by enabling text
semantic and propagation patterns to collabo-
rate through graph attention mechanisms, and
reconstruct the context by aggregating atten-
tion values during inference. Also, a cluster-
based unsupervised method to refine context
is proposed for generalization. Extensive ex-
periments demonstrate the effectiveness of pro-
posed methods in rumor detection. This work
bridges the gap for LLMs in facing long, struc-
tured data and offers a novel solution for rumor
detection on social media.

1 Introduction

The rise of social media has made the dissemination
of information more convenient and widespread.
However, it has also made the issue of rumor be-
come dominant. More seriously, the malicious
use of LLMs facilitates rumor creation and may
bring larger risks in the near future (Chen and Shu;
Vykopal et al., 2023; Wu and Hooi, 2023). Al-
though human countermeasures like establishing re-
porting mechanisms and conducting fact-checking
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Figure 1: In rumor detection with LLMs, existing meth-
ods (a) directly input the claim and social context to
LLMs. Conversely, our method (b) aim to refine large-
scale social context, i.e., model and reconstruct it to a
moderate size for LLMs.

have been adopted (Walter et al., 2020), their in-
evitable lag effect makes rumors costly and difficult
to verify in real-time. Therefore, automatic rumor
detection on social media is highly desirable and
socially beneficial.

Most traditional works for detecting rumors fo-
cus on incorporating various information (e.g.,
credibility (Popat et al., 2017), social context(Ren
et al., 2020), extra knowledge (Dun et al., 2021))
to learn the latent features of rumors via fine-tuned
small language models (SLMs) (e.g., deep neural
networks (Cui and Jia, 2024; Yu et al., 2017; Liu
et al., 2018)). Among them, models based on so-
cial context and graph neural networks have been
widely proposed and achieved SOTA performances
(Sun et al., 2022; Xu et al., 2022). However, their
performance is limited by real-world requirements
(e.g., explainability, zero-shot capabilities). There-
fore, rumor detection with SLMs still seeks better
solutions in real-world scenarios.

In rumor detection systems with LLMs, most
studies treat LLMs as secondary components (e.g.,
context simulator (Wan et al., 2024; Nan et al.,
2024), advisors (Hu et al., 2024) for SLMs). They
have made progress in detection precision, but their
application in real-world scenarios, which require
explainable or zero-shot capabilities, remains lim-
ited. Some works (Chen and Shu, 2023) attempt to
apply LLMs as the primary decision maker in de-
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tecting rumors to overcome these limitations. Un-
fortunately, the experiments reveal a gap between
LLMs and fine-tuned SLMs. It can be attributed
to the following reasons and challenges: (1) Social
contexts usually contain large amounts of text com-
ments. LLMs struggle to focus on key clues and
get lost in the middle when faced with long texts
or redundant information (Liu et al., 2024a,b). (2)
The propagation patterns within social contexts are
critical for rumor detection, however, LLMs lack
proficiency in handling such structured data (Hu
et al., 2024; Liu et al., 2024b).

Tackling the above challenges requires us to in-
vestigate efficient ways of modeling social context
for LLMs, which includes both extensive text com-
ments and structured propagation patterns on social
media. To this end, we conduct a preliminary anal-
ysis of social contexts(§3). The results demonstrate
that LLMs perform better when reasoning over
moderate-sized social contexts, rather than those
that are too long or too short. Additionally, tightly-
knit groups are often formed based on shared user
interests in the social context, and the key nodes
within these groups could provide important infor-
mation. This insight suggests a solution to these
challenges: refining the social context for LLMs by
focusing on the key nodes within it. The compari-
son of our method with existing approaches that use
LLMs as primary decision-makers is demonstrated
in Figure 1.

Based on the above insights, we propose a
Semantic-Propagation collaboration-based rumor
detection framework (SePro), which refines the so-
cial context for LLMs. Its strength lies in integrat-
ing LLMs with graph neural networks to enhance
the system’s ability to process large-scale struc-
tured data. Specifically, we first construct propaga-
tion and semantic graphs based on social context.
Then, we employ supervised graph attention net-
works (GATs) to model propagation patterns and
text semantic features. Simultaneously, by extract-
ing attention values from GATs, we enable col-
laboration between these features to identify core
nodes, and reconstruct the social context into mod-
erate size. Additionally, we propose a cluster-based
unsupervised method to refine the social context for
generalization. Finally, based on refined social con-
text, we design an elaborate chain-of-clue prompt
to verify the claim and generate explanations by
inferring reasons on key clues. Extensive experi-
ments demonstrate that our proposed methods have
achieved excellent performance in detecting rumors

and providing explanations.

2 Related Works

2.1 Traditional Methods on Rumor Detection

Early attempts on rumor detection mainly focus on
text content (Ma et al., 2018a) or extracting statisti-
cal features of the propagation process (Ma et al.,
2015; Kwon et al., 2013). Among them, detec-
tion models based on graph neural network have
achieved state-of-the-art performances (Sun et al.,
2022; Xu et al., 2022; Bian et al., 2020; Lu and Li,
2020). Nowadays, considering practical applica-
tions, rumor detection in explainable or zero-shot
scenarios have drawn much attention (Xu et al.,
2023; Lin et al., 2023; Wang et al., 2024). For ex-
plainable, many studies (Kotonya and Toni, 2020;
Zeng et al., 2024; Atanasova, 2024; Wang et al.,
2024) treat the task of generating explanations as
a summarization task, using external debunked re-
ports gathered from fact-checking websites. How-
ever, the debunking of claims is a labor-intensive
and time-consuming process. Therefore, in tradi-
tional methods, rumor detection with SLMs still
seeks better solutions.

2.2 LLMs on Rumor Detection

Recently, LLMs have demonstrated excellent ca-
pabilities in text generation and reasoning tasks
(Chang et al., 2024b; OpenAI, 2024; MetaAI,
2024). In rumor detection systems with LLMs,
most works treat LLMs as secondary components.
Wan et al. (2024) and Nan et al. (2024) leverage
AI-generated content for social graph simulation,
aiding traditional graph-based methods. Yang et al.
(2023) use LLMs as an auxiliary tool for construct-
ing relational graphs, while Hu et al. (2024) use
LLMs as advisors for SLMs. Some works attempt
to use LLMs as the primary decision-makers (Hu
et al., 2024; Li et al., 2023; Su et al., 2023; Liu
et al., 2024b) to enhance their application in real-
world scenarios. Unfortunately, they suffer from
performance gap between LLMs and fine-tuned
SLMs. LLMs struggle to outperform fine-tuned
small models in detecting rumors because they can-
not effectively model large-scale social contexts
(e.g., long texts and structured data). Therefore, we
aim to explore LLMs as primary components in
an effective rumor detection system by refining the
large-scale social context.
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Dataset Claims Avg. comments Propagation

Twitter 2,308 232 ✔
labels non-rumor, false, true, unverified
Weibo 4,174 816 ✔
labels non-rumor, rumor

Table 1: Summary statistics of datasets. Avg. comments
represents the average number of comments per claim.

Figure 2: The performance of LLMs in rumor detection,
grouped by the number of comments. When the input
length exceeds the limit of LLMs, we truncate it.

3 Social Context Analysis

Social context refers to the comments, replies and
propagation patterns linked to a claim on social
networks. It sheds light on information spread,
user reactions, and interaction dynamics around
the claim.

Firstly, for LLMs on large-scale social context
analysis, recent researches reveal that LLMs can-
not reason well over redundant information (Huang
et al., 2023; Xie, 2023). To investigate this limita-
tion in rumor detection, we tested the performance
of widely-used LLMs (GPT-3.5-turbo-0125 (Ope-
nAI, 2024)) with a vanilla prompt on two datasets,
i.e., Twitter (Ma et al., 2017) and Weibo (Ma et al.,
2018b) (see Table 1). We grouped the results based
on social context scale (number of comments), as
shown in Figure 2. It reveals that detection accu-
racy drops sharply when a sample has too many
comments, due to redundant information. LLMs
perform best when reasoning over a moderate num-
ber of comments.

Secondly, to conveniently refine the large-scale
social context to a moderate size, we analyse its
clustering phenomenon. In social networks, indi-
viduals form tightly-knit groups, known as commu-
nity clusters (Newman, 2006; Girvan and Newman,
2002), due to similar user preferences (Dou et al.,
2021) and relationships. They are characterized
by dense internal connections and relatively sparse
connections with the rest of the network, with each
community guided by a few central nodes, typi-
cally acting as hubs. To further investigate this, we
analyzed user preferences to engage in rumor prop-

Figure 3: The results of user preference analysis on
Weibo and Twitter. A smaller user preference value P
indicates a higher tendency to engage with rumors.

agation based on interaction records from above
datasets. We assign a value to interactions based
on the claim label: 0 for fake (rumor, false), 0.5
for neutral (unverified), and 1 for real (non-rumor,
true). Each user receives an interaction value cor-
responding to the claim they engage with. We then
calculate each user’s average interaction value, de-
noted as P (user preference). Users are grouped by
P and their proportions (%) are reported in Figure
3. To present the results more smoothly, we ap-
plied log normalization. We observed three notable
peaks at the low (fake), high (real), and middle
(neutral) user preference values. This reveals that
during rumor propagation, users with similar pref-
erences tend to cluster together. The above analysis
result suggests to model the entire large-scale so-
cial context, then reconstruct it based on core nodes
to a moderate size suitable for LLMs.

Additionally, individuals often base their deci-
sions on others’ actions rather than their own in-
formation (Bikhchandani et al., 1992; Easley et al.,
2010). This can trigger a chain reaction of simi-
lar decisions, resulting in an information cascade.
It suggests the context that directly interacts with
claim (i.e., local context) in a network have the
greatest influence. Based on this idea, we propose
a framework to models social context from both lo-
cal and global (entire social context) perspectives.

4 Methods

This section begins with a formal definition of ru-
mor detection. Then, we present our rumor de-
tection framework SePro in Figure 4. Given the
input sample including claim and its social context
(text comments, propagation structure), we first
construct a propagation graph and a semantic graph.
After that, we use a global semantic-propagation
collaboration module to capture global semantic
and propagation features, enabling features collab-
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Figure 4: The overview of the proposed framework,
which refines social context from local and global per-
spective, and reasons over key clues by chain of clues.

oration to refine the global social context. A local
aggregation module proposed to refine local con-
text. Finally, proposed a Chain-of-Clue prompt for
better reasoning over claims and social context.

4.1 Problem Statement

Rumor detection is to assess the authenticity of
claims by analyzing the claims and social contexts,
including comments and propagation structure. In
general, it can be regarded as a multi-classification
task.

Formally, let X = {x1, x2, ..., xm} be the ru-
mor detection dataset, where xi is the i-th sample.
For each sample xi = {r, c1, c2, ..., cni−1,P}, r is
the claim, P indicates the propagation structure, cj
refers to the j-th relevant comments, and ni repre-
sents the number of texts (include claim and com-
ments). Besides, each claim xi is annotated with
a ground-truth label yi ∈ Y , where Y represents
fine-grained classes (e.g., non-rumor, false, true,
unverified). We aim to model both claim and social
contexts to detect rumors, that is f : X → Y .

4.2 Graph Construction

To facilitate social context modeling, we construct
both a propagation graph to and a semantic graph.
In dual-graph views, combining structural and se-
mantic insights, provides a comprehensive repre-
sentation.

To construct propagation graph in a sample x,
we use texts representations to initialize nodes
feature matrix, with the propagation relationships
(e.g., reply, forward) serving as the edges. Specif-
ically, Gp is defined as a propagation graph Gp =
⟨V, Ep,Ap,X⟩. The node set V represents the col-
lection of texts (claim and comments), Ep repre-
sents edge set between nodes, and Ap ∈ Rn×n

is an adjacency matrix derived from Ep. X ∈
Rn×d0 represents the node feature matrix, initial-
ized by node text representations. We leverages
spaCy’s pretrained word2vec vectors (Honnibal

et al., 2020), and average the vectors of existing
words to obtain its text representation.

To construct the semantic graph Gs =
⟨V, Es,As,X⟩, we simply calculate the similarity
between nodes u and v using a cosine similarity
function sim(u, v) and edge set Es is determined
based on nodes similarity. An edge euv is estab-
lished if the similarity exceeds a threshold of 0.8.

4.3 Social Context Modeling

Refined social context is crucial for LLMs in ru-
mor detection. To this end, we design a global
semantic-propagation (S-P) collaboration module
to refine (model and reconstruct) global context, an
aggregation module to refine local context.

4.3.1 Global S-P Collaboration
Global context refers to the entire social context,
including propagation patterns and comments. To
enhance applicability, we propose both supervised
(SePro) and unsupervised (SePro-U) methods for
modeling the global context.

Graph Attention-based Supervised Modeling.
Graph-based models have demonstrated promis-
ing performance in modeling structured data (Sun
et al., 2022; Bian et al., 2020). Inspired by this,
we employ Graph Attention Neural Networks (Liu
et al., 2018) (utilizes attention mechanisms to dy-
namically adjust the weights of neighboring nodes),
to update node features and get two graphs repre-
sentation respectively. Next, the two graph features
are merged and fed into a linear classifier to obtain
the label distribution. During inference, as shown
in Figure 5, we innovatively leverage attention val-
ues from GATs to to facilitate the collaboration
between propagation and semantic signals, iden-
tify key nodes, and subsequently reconstruct global
social context to a moderate size based on these
nodes.

Formally, in training, node features at the l-th
layer H(l)

p and H
(l)
s can be defined as follows:

H(l)
p = σ

(
GATConv(H(l−1)

p ,Ap,W
(l)
p ,a(l)p )

)
,

(1)

H(l)
s = σ

(
GATConv(H(l−1)

s ,As,W
(l)
s ,a(l)s )

)
,

(2)
where H

(l)
p and H

(l)
s are node features of propaga-

tion and semantic graph, respectively. σ(·) refers
to a non-linear sigmoid function, W(l) is weighting
matrix, and a(l) is the weight vector of the attention
mechanism. We initialize node representations by
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Figure 5: Supervised modeling global social context
based on GATs.

textual features, i.e., H(0)
p = H

(0)
s = X. For each

layer of GAT in graph, the graph attention value
can be calculated as:

α(l)
p = softmax

(
aTp [W

(l)
p Hp∥W(l)

p Hp]
)
, (3)

α(l)
s = softmax

(
aTs [W

(l)
s Hs∥W(l)

s Hs]
)
, (4)

where α
(l)
p and α

(l)
s are attention matrix. To aggre-

gate node representations in the graph, we employ
global maximum pooling to form the graph repre-
sentations, i.e.,

Hglobal
p = GMP(H(l)

p ), (5)

Hglobal
s = GMP(H(l)

s ), (6)

where GMP(·) refers to the max-pooling aggregat-
ing function. Based on concatenating two graph
representations, label distribution can be defined
by a multi-layer perceptron and a softmax function,
i.e.,

ŷ = Softmax
(

MLP(Hglobal
p ∥Hglobal

s )
)
. (7)

We optimize all the parameters by minimizing the
cross-entropy loss of the predictions and ground
truth distributions.

During inference, in addition to using GATs
for label prediction, we employ an aggregator to
combine the attention values from the propagation
graph and the semantic graph. Specifically, for
the i-th node in a graph, we adopt the initial atten-
tion matrices, i.e., αp = α

(1)
p and αs = α

(1)
s , to

calculate their node attention values as follows:

NodeAttip =

∑
(u,v)∈Ep α

uv
p · I[v = i]

∑
j

∑
(u,v)∈Es α

uv
p · I[v = j]

, (8)

NodeAttis =

∑
(u,v)∈Es α

uv
s · I[v = i]

∑
j

∑
(u,v)∈Es α

uv
s · I[v = j]

, (9)

Figure 6: Global semantic-propagation collaboration
without training based on community detection.

where NodeAtti denote node i attention value and I
is an indicator function that equals 1 if v = i, and
0 otherwise. Then, node attention values are aver-
aged to obtain a combined score. The top n nodes
with the highest scores are selected, as follows:

ComNodeAtti =
NodeAttip + NodeAttis

2
, (10)

{v1, v2, . . . , vn} = Top(ComNodeAtt, n), (11)

where {v1, v2, . . . , vn} is a set of core nodes, and
Top refers to a function that selects the top n nodes
based on ComNodeAtt scores. After that, we re-
construct the social context based on the source
propagation relationships, and node will connect
to its grandparent node if its parent node has been
pruned. Further, convert them into text sequences
using a simple hierarchical representation. This
method uses indentation and markers to denote dif-
ferent levels of comments (refer to Table 6). Finally,
we input the reconstructed social context and the
predictions from the proposed supervised method
into the LLMs.

Cluster-based Unsupervised Modeling. Ac-
quiring large amounts of supervised rumor detec-
tion data in real world is labor-intensive. Therefore,
we propose an unsupervised method to enhance
generalization. As shown in Figure 6, we fuse the
semantic graph and propagation graph to form an
S-P Hybrid Graph. We then apply community de-
tection methods (e.g., spectral clustering (Ng et al.,
2001; Newman, 2006)) to identify potential com-
munities within the Hybrid Graph. Finally, we
identify the core nodes within each community and
reconstruct the context based on these nodes.

Specifically, S-P Hybrid Graph is calculated as
follows:

Asp = αAp + (1− α)As, (12)

where Asp is the adjacency matrix of S-P Hybrid
Graph, and α is a trade-off weight. After that,
we apply spectral clustering (SC, unsupervised in
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handling complex clusters and capturing graph pat-
terns, details in appendix §A.1) to perceive com-
munity clusters within the graph, as follows:

C = SC(Asp
i , k), (13)

where C represents the clustering result, and k is a
hyperparameter indicating the number of commu-
nity clusters. For a community Ci, we identify the
top ni = Ni/k core nodes based on their degree
centrality:

Degree Centrality(v) =
deg(v)
ni − 1

, (14)

{v1, v2, . . . , vni} = argmax
v∈Ci

Degree Centrality(v),

(15)
where deg(v) is the degree of node v and Ni is the
total number of nodes in the community. Finally,
like supervised methods, we reconstruct the social
context and convert it into text sequences.

4.3.2 Local Context Aggregation.
Local context refers to first-level comments or for-
wards, which directly interacts with the claim. In-
spired by the information cascade phenomenon
(Bikhchandani et al., 1992), which suggests that
local context is more influential. Therefore, we
specifically refine the local context for LLMs.
Specifically, we first filter out comments with fewer
than 5 words in English or fewer than 5 characters
in Chinese. Then, we calculate the information
entropy of each comment and retain the top n com-
ments with the highest entropy values, where n is
a hyperparameter and consistent with the value de-
fined in Equation (11). Specifically, for a comment
c,

H(c) = −
∑

i

pi log pi, (16)

where H(c) is the information entropy of comment
c, and pi is the probability of the i-th word in the
comment c.

{v1, v2, . . . , vn} = Top(H(c), n), (17)

where Top refers to a function that selects the top
n nodes based on information entropy scores.

4.4 Chain of Clues
Previous research indicates that LLMs often strug-
gle to focus on key clues and tend to lose track
when facing long contexts (Liu et al., 2024a,b).
Meanwhile, the Chain of Thought (CoT) has

demonstrated promising performance in reasoning
tasks (Wang et al., 2022; Wei et al., 2022). Writing
style and Information consistency are highlighted
for misinformation identification (Przybyla, 2020;
Hu et al., 2024). Inspired by these findings, we pro-
pose a chain of clues methodology to teach foun-
dation models (e.g., LLMs) reasoning over social
contexts.

Specifically, we design elaborate prompts that in-
clude potential clues and reasoning steps, as shown
in Prompt 1 Box. It teaches LLMs to concentrate
on the key clues (e.g., writing style and information
consistency in a claim) and think step by step to
detect rumors and generate explanations. In unsu-
pervised methods (SePro-U), there is no prediction
distribution. Therefore, we removed this clue from
the chain of clues in SePro-U.

Prompt 1: Chain of Clues

<chain-of-clue>
1. Examine the **writing style** of claim for exaggerated
language or emotional tone.
2. Check for **information consistency** within claim and
cross-reference with commonsense knowledge or known
facts.
3. Review the **local comments**, paying attention to any
questions or affirmations.
4. Look into **global comments** for in-depth discussions
or additional evidence provided by users.
5. Assess the **propagation pattern** to understand the
spread of the news.
6. Reference **prediction distribution** of fine-tuned
model to mutual verification.
7. Based on above information, choose the answer from
the candidate label list and generate explanation.
</chain-of-clue>

Finally, we use the refined local and global social
contexts from Section §4.3 to construct the input
prompt for LLMs, refer to Appendix A.2 for more
details.

5 Experiments

5.1 Experimental Setup

5.1.1 Dataset
For evaluation, we conduct experiments on two
public datasets, including Twitter dataset (we com-
bine Twitter15 and Twitter16 to get it (Ma et al.,
2017)) and Weibo dataset (Ma et al., 2018b). De-
tails in Table 1. They are mainly collected from
two popular social media platforms at that time, i.e.,
Twitter (English) and Weibo (Chinese). Further-
more, the dataset is divided chronologically into
training (80%), validation (10%), and test (10%)
sets to simulate real-world scenarios.
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5.1.2 Baselines
We compare with two groups of rumor detection
method. The first group is the supervised meth-
ods: content-based methods (BERT (Devlin et al.,
2018)), graph-based methods (BiGCN (Bian et al.,
2020), GAT (Liu et al., 2018), SBAG (Huang
et al., 2022), ClaHi-GAT (Lin et al., 2021), HGAT
(Huang et al., 2020), GLAN (Yuan et al., 2019)
and GACL (Sun et al., 2022)) and LLMs-aided
methods (CICAN (Yang et al., 2023), ARG (Hu
et al., 2024)). The second group is LLMs-based ap-
proaches: (1) GPT-3.5-turbo-0125 (OpenAI, 2024),
an API-access LLMs, is a highly advanced lan-
guage model developed by OpenAI1. (2) LLaMA-
3-8b-instruct (MetaAI, 2024), a widely used fully
open source LLM developed by Meta AI2. We also
include the CoT (Wei et al., 2022) (adding an elic-
iting sentence such as "Let’s think step by step.")
and ReAct (Yao et al., 2023) (integrating verbal rea-
soning and action steps to improve performance)
in these LLMs for comparison. (3) LeRuD (Liu
et al., 2024b), an LLM-empowered rumor detec-
tion approach using designed prompts and chain of
propagation. LLMs are also prompted to generate
explanations when verifying claims.

5.1.3 Implementation Details.
In this work, we utilize GPT-3.5-turbo-0125 as
LLMs in proposed framework. Please refer to Ap-
pendix A.3 for more details.

5.2 Overall Performance
The result are presented in Tables 2. From it, we
have the following observation:
(1) There is a gap between LLMs-based methods
and fine-tuned SLMs. ReAct and CoT settings
bring additional performance gain compare to zero-
shot setting in general. However, they only narrows
the gap with the graph-based methods (e.g., GACL,
SBAG, which fully leverage the propagation infor-
mation). LLMs aren’t sufficient to replace task-
specific SLMs in rumor detection, emphasizing the
importance of propagation patterns for success.
(2) SePro achieves decent performance among
supervised methods. In the supervised methods,
graph-based methods (e.g., SBAG, HGAT) have
achieved excellent performance in classification ac-
curacy, owing to their strong modeling capabilities
of rumor propagation patterns. Nonetheless, our
method, SePro, has obtained comparable results,

1https://openai.com/
2https://llama.meta.com/llama3/

achieving the second-best overall performance, just
behind SBAG. This demonstrates the effectiveness
of modeling and reconstructing social context for
LLMs in rumor detection.
(3) SePro-U achieves better performance in
LLMs-aided/based methods. In the LLM-aided
methods (e.g., CICAN, ARG) or LLM-based meth-
ods, our method has demonstrated the best per-
formance. SePro-U outperforms the best baseline
(GPT-3.5 with ReAct) on Twitter and Weibo by
3.81% and 5.55% in accuracy, respectively. It also
demonstrates respectable performance even when
compared to supervised methods. This presents a
promising application method in rumor detection
with LLMs in the real world.

Overall, although our approach may result in
a slight sacrifice in accuracy compared to graph-
based methods, it addresses the crucial need for
interpretability. This enhancement promotes the
effective application of LLMs in rumor detection.

5.3 Evaluations on Explanation

5.3.1 Evaluation Metrics.

For evaluating explanations, traditional automated
metrics are inadequate for assessing the output
of LLMs (Chang et al., 2024a). Fortunately, re-
cent studies (Chen et al., 2023; Liu et al., 2023)
demonstrate LLMs excels at evaluating text qual-
ity from multiple angles, even without reference
texts. Therefore, we engage advanced LLMs (gpt-
4o-2024-05-133 in practice) to evaluate the quality
of explanations based on four metrics which widely
employed in human evaluation (Wang et al., 2024,
2023): misleadingness (M), readability (R), sound-
ness (S) and informativeness (I). More details in
Appendix A.4.

Additionally, we add a human evaluation to pro-
vide a comprehensive assessment of the explana-
tions. We invited 10 volunteers (5 undergraduates
and 5 graduates) to assess a random sample of
100 items in two dataset. The evaluation metrics
are identical to those used in the automatic evalua-
tion, and we report the average scores. Moreover,
we utilize Fleiss Kappa (Fleiss, 1971) to measure
three-way inter-evaluator reliability scores. Kappa
numbers above 0.4 typically indicate moderate to
excellent agreement (the higher the better). We
report the average kappa value of four metrics in
the results.

3https://openai.com/index/hello-gpt-4o/
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Method Twitter Weibo
Accuracy N-F1 F-F1 T-F1 U-F1 Accuracy Precision Recall F1-score

Supervised Methods
BERT 0.7695 0.7540 0.6235 0.7770 0.7460 0.8021 0.8007 0.8140 0.7974
GAT 0.8804 0.9082 0.8782 0.8629 0.9028 0.9243 0.9241 0.9243 0.9238
BiGCN 0.883 0.869 0.8645 0.9335 0.8645 0.9258 0.9133 0.9335 0.9233
GLAN 0.9035 0.9225 0.8930 0.8495 0.9475 0.9460 0.9460 0.9455 0.9455
HGAT 0.9145 0.9440 0.9210* 0.9260 0.8765 0.9437 0.9523 0.9327 0.9416
ClaHi-GAT 0.8410 0.8190 0.8200 0.8550 0.8515 0.8812 0.9172 0.8727 0.8803
SBAG 0.9420 0.9560 0.9415 0.9115 0.9555 0.9570 0.9570 0.9570 0.9570
GACL 0.9105 0.9460 0.8600 0.9310 0.8915 0.9354 0.9294 0.9409 0.9351
CICAN 0.8575 0.8270 0.8185 0.8360 0.8815 0.9390 0.9298 0.9458 0.9377
ARG 0.8902 0.8828 0.8529 0.8915 0.8937 0.9043 0.9022 0.9089 0.9055
SePro (Ours) 0.9157 0.9448 0.8718 0.9387 0.9141 0.9512 0.9503 0.9507 0.9505
LLMs-based Methods
LLaMA3⋆ 0.5883 0.5904 0.5911 0.5704 0.5819 0.7572 0.7658 0.7422 0.7538

w/ CoT 0.6002 0.6182 0.5819 0.5952 0.6192 0.7693 0.7437 0.7708 0.7569
w/ ReAct 0.6893 0.6972 0.6741 0.6829 0.6842 0.8012 0.7927 0.8093 0.8009

GPT-3.5⋆ 0.6326 0.6419 0.6298 0.6364 0.6235 0.8233 0.8223 0.8216 0.8220
w/ CoT 0.6591 0.6683 0.6721 0.6461 0.6556 0.8387 0.8322 0.8462 0.8391
w/ ReAct 0.7646 0.7742 0.7528 0.7834 0.7634 0.8662 0.8634 0.8702 0.8670

LeRuD 0.7795 0.7722 0.7634 0.7840 0.7820 0.8401 0.8427 0.8333 0.8379
SePro-U (Ours) 0.8027 0.8129 0.8072 0.7944 0.7982 0.8944 0.8946 0.8940 0.8943

Table 2: Performance of SePro and baselines on Twitter and Weibo. N-F1, F-F1, T-F1, and U-F1 represent the F1
scores for the categories Non-rumor (N), False Rumor (F), True Rumor (T), and Unverified Rumor (U) in Twitter,
respectively. The mark ⋆ denotes zero-shot setting, bold indicates the maximum value, and underline indicates the
second-highest value.

5.3.2 Evaluation results.
The automatic and human evaluations of expla-
nations for Weibo and Twitter are summarized in
Table 3. The human evaluation results align closely
with the LLM-based evaluation, and both evalua-
tion demonstrate that our methods achieve the best
performance on most metrics. It shows that GPT-
3.5 w/ ReAct performs well on S but underperforms
on other metrics compared to our methods (includ-
ing two sub-methods SePro-U and SePro). It shows
combining reasoning and action can improve the
model’s reasoning ability but falls short in captur-
ing other valuable information. As a comparison,
our methods consistently achieves excellent per-
formance in M & S & I. It indicates that refined
social context retains valuable information and pro-
vides a clearer context, which is better for LLMs
to generate high-quality explanations.

5.3.3 Clue Analysis.
To explain predictions intuitively, we investigate
which clues are critical in rumor detection. LLMs
need to identify key clues from the following list:
writing style (WS), information consistency (IC),
local comments (LC), global comments (GC), prop-
agation pattern (PP), and prediction distribution
(PD) (see Appendix §A.4 for details). We count the
occurrences of clues and reported their percentages

Figure 7: The result of clue analysis on Twitter and
Weibo. We report the proportion (%) of each clue.
SePro-U is an unsupervised method, so it lacks PD.

in Figure 7. It reveals that the proportion of WS is
larger than IC, indicating that clues from writing
style more important than those from knowledge
conflicts. Additionally, PP, GC and LC have a de-
cent proportion compare to WS. This corroborates
that clues in social context remain indispensable,
besides clues in claims.

5.4 Ablation Study

We conduct an extensive ablation study for our
methods by removing key components: (1) local
context aggregation module (w/o local). (2) global
S-P collaboration module (w/o global). (3) the
chain-of-clue (w/o chain). We also include GPT-
3.5-turbo-0125 in a zero-shot setting as a baseline.
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Method Twitter / Weibo KappaM ↓ R ↑ S ↑ I ↑
Auto Evaluation
LLaMA3⋆ 3.0 / 2.2 4.0 / 2.6 3.2 / 3.4 2.5 / 3.0 -

w/ CoT 2.9 / 2.0 4.0 / 4.6 3.2 / 3.5 2.6 / 3.1 -
w/ ReAct 2.8 / 1.8 4.2 / 4.7 3.7 / 3.5 3.1 / 3.1 -

GPT-3.5⋆ 2.5 / 1.4 4.3 / 4.8 3.7 / 3.4 2.9 / 2.7 -
w/ CoT 2.3 / 1.3 4.3 / 4.8 3.7 / 3.7 2.9 / 2.7 -
w/ ReAct 4.6 / 1.3 4.5 / 4.7 3.8 / 4.0 3.3 / 2.9 -

LeRuD 2.5 / 2.1 4.6 / 3.8 3.7 / 3.8 3.3 / 2.8 -
SePro-U 2.2 / 1.3 4.6 / 4.5 3.7 / 3.8 3.3 / 3.1 -
SePro 2.0 / 1.2 4.6 / 4.8 3.8 / 3.9 3.4 / 3.5 -
Human Evaluation
LLaMA3⋆ 2.9 / 2.1 3.7 / 2.8 3.3 / 3.5 3.0 / 3.1 0.6 / 0.5

w/ CoT 2.8 / 1.9 4.0 / 4.2 3.4 / 3.6 3.2 / 3.1 0.7 / 0.7
w/ ReAct 2.6 / 1.7 4.1 / 4.1 3.6 / 3.6 3.2 / 3.1 0.5 / 0.6

GPT-3.5⋆ 2.6 / 1.9 4.2 / 4.6 3.5 / 3.6 2.8 / 2.7 0.6 / 0.6
w/ CoT 2.5 / 1.6 4.6 / 4.8 3.5 / 3.8 3.0 / 2.8 0.7 / 0.6
w/ ReAct 3.7 / 1.4 4.6 / 4.7 3.7 / 3.8 3.4 / 3.0 0.6 / 0.6

LeRuD 2.6 / 2.1 4.0 / 4.4 3.7 / 3.8 3.0 / 2.8 0.5 / 0.6
SePro-U 2.3 / 1.4 4.4 / 4.5 3.8 / 3.9 3.2 / 3.3 0.7 / 0.6
SePro 2.1 / 1.2 4.5 / 4.7 3.9 / 4.1 3.4 / 3.4 0.6 / 0.6

Table 3: Explanation Evaluation on Twitter and Weibo, using a 5-Point Likert scale rating by both GPT-4o (Auto
Evaluation) and human evaluators (Human Evaluation). The Fleiss’ Kappa values indicate the inter-rater agreement
for each method in the human evaluation.

Figure 8: Key components ablation study on Weibo.

The result are presented in Figure 8. It demonstrate
that all three key components are essential within
the framework, with the removal of the global or
local component causing the most notable decline.
It highlights the critical role of local and global
social contexts in rumor detection.

5.5 Context-scale Analysis
In Figure 9 (a), we report the performance of all
methods under different context scales. We also
report their computational overhead in Figure 9 (b).
It shows, as the scale increases, the performance
of baseline drops significantly, accompanied by
increased computational overhead. LeRud manages
to maintain its performance, but its overhead grows
excessively. In contrast, SePro and SePro-U not
only sustain an upward performance trend but also
exhibit low computational overhead compared to
the baselines, demonstrating their Pareto efficiency
in balancing performance and overhead.

Figure 9: The performance and overhead as context
scales increase on Weibo. Avg. Tokens denotes the
tokens consumed by LLMs per sample.

6 Conclusion

In this paper, we investigate using LLMs for ef-
fective rumor detection. Currently, LLMs have
challenges in modeling large-scale structured data.
Our analysis reveals moderate context is crucial
for LLMs, suggesting to refine long structured con-
texts. We propose a rumor detection framework,
which integrates graph attention neural networks
with LLMs to model and reconstruct contexts from
multiple perspectives. It fills the gap in utilizing
LLMs for rumor detection on social media.

Limitation

While we have taken various factors into account,
there are a few limitations.

Firstly, Our methods have concerns regarding
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Figure 10: Hyperparameter analysis of SePro on Weibo.

Figure 11: Performance of different foundation models
in the proposed framework on Weibo.

hyperparameter sensitivity. When refining large-
scale social context to a moderate size for LLMs,
how to define ’moderate size’ lacks theoretical sup-
port. Alternately, we conducted empirical experi-
ments to determine appropriate parameter settings
to achieve a moderate size social context. In Fig-
ure 10, we assessed the impact of hyperparameters
on the proposed method’s performance. In SePro,
the key hyperparameters is the number of nodes n
in refine social context. From Figure 10, the best
performance is observed when n = 50 (meaning
50 global comments and 50 local comments) in
SePro. It corroborates the finding drawn in Section
§3. In SePro-U, the key hyperparameters are the
trade-off weight α and community cluster k. In the
results, configurations near k = 50 and α = 0.3
demonstrate excellent and stable performance.

Secondly, our methods have concerns regarding
the generalization of foundation models. There-
fore, we investigate using different LLMs as foun-
dation models in our framework. The following
LLMs were tested: gpt-4o-2024-05-13, GPT-3.5-
turbo-0125, LLaMA3-8b-instruct and LLaMA3-
70b-instruct. We also used these LLMs in zero-
shot prompting to serve as baselines for compari-
son. The results, presented in Figure 11, indicate
that our methods consistently outperforms the base-
lines across different LLMs, with the most signifi-
cant improvement observed using GPT-3.5-turbo-
0125. Additionally, SePro with gpt-4o-2024-05-13
achieved the best performance, reaching an accu-

racy of 96.7%. However, it performs poorly on the
LLaMA3 series model.

Finally, there may be data leakage issues. We
use collected datasets, so for some samples, the
recently released LLMs might already know their
labels (e.g., Twitter dataset released in 2017). This
could affect the model’s performance and the in-
tegrity of our findings.
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A Appendix

A.1 Spectral Clustering for Community
Detection

This is a introduction of Semantic-Propagation Col-
laboration Spectral Clustering Algorithms for com-
munity detection. Given a adjacency matrix Asp

i

of Semantic-Propagation Hybrid graph, it 1) Con-
struct the Laplacian Matrix, the degree matrix D
is a diagonal matrix where each element Dii is the
sum of the elements in the corresponding row of
Asp

i :

Dii =
∑

j

Asp
i (i, j), (18)

L = D −Asp
i , (19)

where L is the Laplacian matrix. 2) Compute the
Eigenvalues and Eigenvectors, Solve the eigen-
value problem for the Laplacian matrix:

Lv = λv (20)

where λ represents the eigenvalues and v repre-
sents the corresponding eigenvectors. 3) Then, se-
lect the k smallest eigenvalues and form the matrix

Prompt 2: System Prompt

You are an AI specialized in rumor detection. Your task is
to assess the potential veracity of claim on social media
and classify it with an appropriate label.

You should consider the following chain of clues step by
step to verify the claim.
{chain-of-clue}

There is a claim: {claim}
There are selected local comments: {local_cmt}
There are selected global comments: {global_cmt}
The prediction distribution from fine-tuned models is: {pre-
diction}
{output formatter}

Table 4: The template of input system prompt.

U by normalizing the rows of corresponding eigen-
vectors Vk.

Uij =
Vij√∑

j V
2
ij

(21)

4) Finally, cluster the rows of U using k-means
(Ikotun et al., 2023) to form the community. It treat
each row of U as a point in Rk and cluster these
points using the k-means algorithm.

C = k-means(U, k) (22)

where C represents the clustering result, and k is a
hyperparameter indicating the number of commu-
nity clusters.

A.2 Input Prompt

The template of input prompt is shown in 4. The
output formatter is used to format the output as a
JSON instance (see Table 4).

A.3 Implementation Details of SePro.

GAT models are implemented with the PyTorch-
Geometric package (Fey and Lenssen, 2019). We
trained the GAT models using an A100 GPU with
80GB of memory, and it took one hour. We repro-
duce ReLuD based on GPT-3.5-turbo-0125, and
not data filter for a fair compare. For a fair com-
parison, all LLMs-based methods and LLMs-aid
methods are reproduced using GPT-3.5-turbo-0125
for a fairly compare. In LeRuD, we not include
data filtering to compare fairly with other methods.
In the experiments, we run proposed methods three
times and report the average results. The LLMs
inputs are configured in a zero-shot setting. When
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Hyperparameters Values

In LLMs
# Temperature 0.7
# Seed 1
# Top_p 0.95

In Our Methods
# Refined nodes n 50
# Clustering number k 50
# Trade-off α 0.3

Table 5: Hyperparameters in our methods.

the input length exceeds the LLMs’ limits, we trun-
cate it (16K for GPT-3.5-turbo-0125 and 8K for
LLaMA3-8b-instruct). Table 5 shows detailed hy-
perparameters.

A.4 Implementation Details of Evaluation.
A 5-point Likert scale was employed, with the met-
rics defined as follows:

• Misleadingness (M) assesses whether the
model’s explanation is consistent with the real
veracity label of a claim, with a rating scale
ranging from 1 (not misleading) to 5 (very
misleading);

• Readability (R) evaluates whether the expla-
nation follows proper grammar and structural
rules, and whether the sentences in the ex-
planation fit together and are easy to follow,
with a rating scale ranging from 1 (poor) to 5
(excellent);

• Soundness (S) describes whether the expla-
nation seems valid and logical, with a rating
scale ranging from 1 (not sound) to 5 (very
sound);

• Informativeness (I) assesses whether the ex-
planation provides new information, such as
explaining the background and additional con-
text, with a rating scale ranging from 1 (not
informative) to 5 (very informative);

In Section 5.3.3, key clues are generated by output
formats prompt in Table 8.

A.5 Discussion
This work alleviates the knowledge gap in LLMs
when handling long, structured data for rumor de-
tection. We propose a novel approach that inte-

Box 3: Hierarchical Representation of
Context

-Because simple, so happy
--Yes, look at the world from another angle, and the
mentality determines the future
---Thinking in other places is important
----@[] [good]
--Start over, myself!
-@[]
-good Change the angle, let the life be broader ~~
-Everyone should watch it.
-Simple is happy
-[good]

Table 6: A example of hierarchical representation of
social context.

grates graph attention neural networks with LLMs,
leveraging their strengths.

Advanced methods rely on high-quality data
(clear claims, complete social context), which is
often hard to obtain in real-world scenarios. There-
fore, simulating real-world conditions for rumor
detection using LLMs is a viable solution and will
be the focus of our future research.

A.6 Case Study
We analyze two cases from the testing set, aiming
to know the usefulness of refined social context
(local context and global context), and demonstrate
the explanation and clues generated by our frame-
work. In Table 7, we have hidden usernames (e.g.,
@[]) in the text for privacy reasons. These cases
show that the source social context contains a lot
of irrelevant information, while the refined social
context has a high signal-to-noise ratio. Our re-
fined social context provide clear clues to verify
the claim.

In the Input, the local context is a text sequence
(a string of comments separated by ’||’), and the
global context is also converted into text sequences
using a simple hierarchical representation. Table 6
illustrates a hierarchical representation of a struc-
tured social context. In the Output, the label, ex-
planation, and clues are extracted from the JSON
instance formatted by the output formatter (shown
in Table 8).
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(Case 1) Claim: When you’re tired, change your perspective; when you’re stressed, change your environment and breathe
deeply; when you’re confused, change your position and think; when you’re hesitant, change your approach and choose;
when you’re down, change your surroundings and find joy; when you’re troubled, change your mindset and resolve it;
when you’re complaining, change your method and view the problem differently; when you’re feeling inferior, change
your attitude. Learning to change your viewpoint in life makes your world simpler, and a simple heart is a happy one.
Social Context: -Forward \n -Forward \n -Forward \n -Forward \n -Forward \n -Forward \n -Forward \n -Forward \n
-Forward \n -Forward \n -Forward \n -Forward \n -Forward \n -Forward \n -Forward \n -Forward \n -Forward \n -Forward
\n -Forward \n -Forward \n -Forward \n -Forward \n -Forward \n -Oh \n -Forward \n -Forward \n -Because simple, so
happy \n ... (197 comments).
Local Context: -Simple is happiness. @[] || -@[] || -Recruitment part-time: easy working hours, simple, income more
work, interested + V; || -Change the angle, let the life be broader ~~ || -@[] || -How to look at it from another angle? ||
-Everyone should watch it. || -Because simple, so happy || -Thinking in other places is important || -A simple heart is a
happy heart || -@[] good || -good || -@[] || -Simple is happy || -[good] || -[applaud]
Global Context: -Because simple, so happy \n -- Yes, look at the world from another angle, and the mentality determines
the future \n ---Thinking in other places is important \n ---- @[] [good] \n --Start over, myself! \n -@[] \n -good Change
the angle, let the life be broader ~~ \n -Everyone should watch it. \n -Simple is happy \n -[good]
Prediction Distribution‡: ’non-rumor:0.781’, ’false-rumor:0.219’

Label: non-rumor
Explanation: The news seems to be a motivational or philosophical message about changing perspectives in life to find
happiness. The local and global comments reflect positive responses and agreement with the message. The prediction
distribution from fine-tuned models also leans towards non-rumor classification.
Clues: writing style, local comments, global comments, prediction distribution
(Case 2) Claim: Due to excess inventory, if China ranks first in gold medals at the end of the London Olympics, one
iPhone 4s will be given to a participant who reposts this and follows @[] and tags 5 friends. One special gold medal will
also be awarded to a top winner. Go China!
Social Context: -@[] La La Ah \n -Forward \n -Go China @[] \n -@[] \n -Really? \n -@[] Bless China, bless me! \n
-Forward \n This should count as fraud \n -Forward \n --@[] \n ---Forward \n ---@[] \n -Really? @[] \n -Forward \n - \n
-Go China@[] \n -@[] \n -@[] \n -@[] \n -I hope you don’t delete it! \n -See how you end up! ! !@[] \n -Forward \n -@[]
\n -@[] \n -@[] \n -@[] \n -@[] \n -@[] \n -I have to! \n -Go @[] \n -Go Haha, there are all of them \n --Is it true or false to
close the closing ... (374 comments).
Local Context: -@[] The closing ceremony is hung first in China, and you are looking for the owner without you || -@[] I
don’t know if it’s true or false! || -Is it really given? Is it true? @[] || -See how you end up! ! !@[] || -@[] Go China, haha
|| -@[] Go China \n -For this type, firstly, we need to @ 5 friends, and then we need to @ 5 people, namely @[] \n -Go
ahead, go ahead, let’s see how you guys end up || -I’ll see if you can keep your word || -@[] Go China || -Try it @[] || -Go
China @[] || -Wow, this must be turned @[] || -@[] || -@[] || -@[] Wait for you to take a look || -@[] || -Go China @[] ||
-@[] Come on iPhone || -@[] || -@[] || -@[] || -@[] For the gold medal for the iphone... turn || -Go China @[] || -@[] || -@[]
|| -@[] China! China! China 4S 4S 4S || -@[] Top up || -@[] || -@[] Go China!!! ||I’m changing phones...@[] || -@[]
LaLaA || -Come on... @[]
Global Context: -@[] \n -@[] \n -@[] Come and watch... \n -@[] \n -@[] \n -Try it @[] \n -@[] \n -Go China! @[] \n
-@[] Top up \n -@[] Wait for you to take a look \n -@[]The closing ceremony is hung first in China, and you are looking
for the owner without you \n -@[] \n -Decisive support @[] \n -@[] \n -I am absolutely supportive @[] \n -@[] \n -@[] \n
-@[] \n -Wait... @[] \n -@[] \n -@[] For the gold medal for the iphone... \n -@[] \n -Go China @[] \n -@[] \n -@[] I’ll just
see if what you said can be fulfilled \n -@[] \n -Too awesome. @[]
Prediction Distribution‡: ’non-rumor: 0.329’, ’false-rumor: 0.671’

Label: false-rumor
Explanation: The news contains elements that suggest it is a false rumor, such as offering rewards for sharing, tagging
friends, and making unrealistic promises. Additionally, local comments question the authenticity of the news, showing
doubt among the audience. The prediction distribution from fine-tuned models also indicates a high probability of being a
false rumor.
Clues: writing style, local comments, prediction distribution

Table 7: Case Study in SePro: The claims is selected from the Weibo test set. We translated the text from Chinese to
English for better presentation. The Input (Claim, Local Context, Global Context, Prediction Distribution‡ ), source
social context and Output(Label, Explanation and Clues) are listed. Prediction Distribution‡ refers to the prediction
of fine-tuned models.
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Box 4: Output Formats in SePro

Your output should be formatted as a JSON instance that conforms to the JSON schema below. As an example, for
the schema {"properties":"foo": "title": "Foo", "description": "a list of strings", "type": "array", "items":"type":
"string", "required": ["foo"]}, the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The
object {"properties": "foo": ["bar","baz"]} is not well-formatted.
Here is the output schema:

{
"type": "object",
"properties": {

"label": {
"title": "Label",
"description": "a most likely category label in candidate label list",
"type": "string"

},
"explanation": {

"title": "Explanation",
"description": "A textual analysis and explanation for your assessment.",
"type": "string"

},
"clues": {

"title": "Clues",
"description": "The names of useful clues in detecting this claim,

the candidate clues list: ['writing style',
'information consistency', 'local comments', 'global comments',
'propagation pattern', 'prediction distribution']",

"type": "array",
"items": {"type": "string"}

}
},
"required": ["label", "explanation", "clues"]

}

Table 8: Output Formats in SePro.
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