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Abstract

Few-shot Continual Relation Extraction
(FCRE) has emerged as a significant challenge
in information extraction, necessitating
that relation extraction (RE) systems can
sequentially identify new relations with limited
labeled samples. While existing studies have
demonstrated promising results in FCRE, they
often overlook the issue of similar relations,
which is a critical factor contributing to
catastrophic forgetting. In this work, we
propose SIRUS, a novel method that utilizes
relation descriptions and dynamic clustering on
these descriptions to identify similar relations.
Leveraging this information, we introduce
innovative loss functions specifically designed
to enhance the distinction between relations,
with a focus on learning to differentiate similar
ones. Experimental results show that our
approach can effectively mitigate the problem
of catastrophic forgetting and outperforms
state-of-the-art methods by a large margin.
Additionally, we explore the potential of
Large Language Model Embeddings (LLMEs)
with representation learning and embedding
capabilities, demonstrating their promise for
advancing FCRE systems.

1 Introduction

Relation Extraction (RE) is a fundamental task in
natural language processing (NLP) that involves
recognizing relationships between entities from un-
derlying content. Traditional relation extraction
approaches commonly require substantial labeled
datasets and assume a static collection of prede-
fined relationships (Sun et al., 2020; Cabot and
Navigli, 2021; Tang et al., 2022). In real-world set-
tings, various specialized fields, such as scientific
research (Kruiper et al., 2020), medicine (Luo et al.,
2022), or law (Hendrycks et al., 2021), are rapidly
advancing, leading to a continuous expansion in the
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diversity of relationships (Le et al., 2024c, 2025).
Consequently, RE systems are required to exhibit
adaptability to handle these evolving changes ef-
fectively. Besides, another challenge in developing
RE models is the scarcity of annotated data for
emerging relations.

To this end, the concept of Few-shot Contin-
ual Relation Extraction (FCRE) has been proposed
(Qin and Joty, 2022; Chen et al., 2023) to enable the
continuous learning of new relations from a limited
number of samples. FCRE is a branch of contin-
ual information extraction (Le et al., 2025; Nguyen
et al., 2023; Le et al., 2024b; Dao et al., 2024).
However, due to the continual learning process
with limited data, FCRE models are often biased
toward the current task, facing the challenges of
overfitting (Hawkins, 2004) and Catastrophic for-
getting (Thrun and Mitchell, 1995; Le et al., 2024a;
Hai et al., 2024; Van et al., 2022; Phan et al., 2022).
Several methods have been introduced to address
these issues, with memory-based approaches in-
tegrated with contrastive learning emerging as a
prominent paradigm (Wang et al., 2023; Ma et al.,
2024; Luo et al., 2024; Tran et al., 2024; Nguyen
et al., 2025). These methods typically involve re-
taining a few representative samples from previous
tasks and applying contrastive learning to ensure
that the representations of samples across different
relations remain sufficiently distinguishable.

However, none of the mentioned methods have
considered the confusion between similar relations,
which has been identified as a significant factor
contributing to catastrophic forgetting in continual
relation extraction (Wang et al., 2022; Zhao et al.,
2023). This phenomenon becomes even more criti-
cal in the FCRE scenario, where the few available
samples for each relation may not sufficiently rep-
resent the relations causing models to ignore subtle
distinctions between similar relations, leading to
catastrophic forgetting. A recent method, ConPL,
introduced by Chen et al. 2023, addresses this is-
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sue by identifying similar classes based on the dis-
tance between relation prototypes and examples,
and employs focal loss to emphasize the distinc-
tions between these similar classes. The relation
prototypes are computed by averaging the represen-
tations of entities within the same relations; how-
ever, a limited number of samples may fail to pro-
duce sufficiently representative prototypes (Wang
et al., 2023). Moreover, the problem of inconsis-
tencies resulting from varying context sentences
can render these prototypes unstable (Li and Lyu,
2024), reducing the effectiveness of this approach
in identifying similar classes in the FCRE scenario.

Recent studies have leveraged label descriptions
(Luo et al., 2024; Li and Lyu, 2024; Sainz et al.,
2021; Borchert et al., 2024) for few-shot relation
extraction, demonstrating their effectiveness in en-
riching representations and stabilizing label pro-
totypes. Especially, Nguyen et al. (2025) utilizes
LLMs to augment data by generating additional
label descriptions and multiple samples for each
relation type. However, in this work, we focus
solely on exploiting the original relation descrip-
tions without using an LLM-based data augmen-
tation mechanism. We propose SIRUS, a novel
method to enhance the Discriminative Representa-
tion in Similar Relation Clusters, involves utilizing
relation descriptions for label representation and
employing dynamic clustering. As a result, the
learning process enhances the differentiation of
samples across relations, with a particular focus on
similar relations, thereby reducing the phenomenon
of catastrophic forgetting.

Furthermore, pre-trained Large Language Mod-
els (LLMs) with billions of parameters excel in
autoregressive text generation tasks (Dubey et al.,
2024; Jiang et al., 2023) and demonstrate strong
performance on downstream tasks with only a few
examples (Brown, 2020; Kojima et al., 2022), mak-
ing them a promising approach for application in
FCRE. They have also been explored in text clas-
sification and information extraction (Zhao et al.,
2021; Wei et al., 2023); however, they often un-
derperform compared to discriminative encoder
models like BERT due to their generation-focused
mechanism potentially makes them less effective
for text representation learning. In the FCRE sce-
nario, a recent study by Tran et al. (2024) has ex-
plored the capabilities of LLMs; however, it re-
tained the use of causal language modeling (CLM)
and applied a classification head to the last token,

which may not fully exploit the embedding ability
of LLMs. Several recent studies (BehnamGhader
et al., 2024; Li et al., 2024; Lee et al., 2024) have
investigated the capabilities of LLMs in representa-
tion learning by removing the causal mask and fine-
tuning LLMs with contrastive learning, referred to
as Large Language Model Embeddings (LLMEs),
demonstrating promising results in retrieval and
classification tasks. However, their ability for con-
tinual learning, particularly in the context of FCRE,
remains unexplored. Therefore, we conduct com-
prehensive experiments on these LLMEs, offering
valuable insights into the forgetting phenomenon
within these models and their performance out-
comes in FCRE settings.

In summary, our contributions are as follows:

1. We present a novel approach to address the
issue of similar classes by utilizing relation de-
scription representation and subsequently em-
ploying dynamic clustering to identify groups
of similar relations.

2. Leveraging information from similar relations,
we propose three innovative loss functions to
improve the distinction between samples from
different relations. Ablation studies demon-
strate the efficacy of each loss function.

3. We are the first to examine LLMEs with repre-
sentation learning capabilities within the con-
text of FCRE. Our findings indicate that these
models continue to suffer from the issue of
catastrophic forgetting. However, applying
our methods significantly enhances their per-
formance, surpassing both the use of BERT
encoder backbones and original LLMs with
causal language modeling.

4. Extensive experiments conducted on two
FCRE benchmarks, TACRED and FewRel,
demonstrate the effectiveness of our proposed
framework and highlight the promising results
achieved through the use of LLMEs.

2 Background

2.1 Problem Formulation

Few-Shot Continual Relation Extraction (FCRE)
presents a challenging paradigm in natural lan-
guage processing, combining the complexities of
continual learning with the constraints of few-shot
scenarios. Some related works are discussed in
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Appendix A. In this framework, a model confronts
a series of tasks T = {T 1, T 2, ..., T n}, each intro-
ducing a set of novel relations Ri to be learned. For
every task T i, the model is provided with a limited
dataset Di = {(xj , rj)}mj=1, where m = N × K
represents the total number of examples, where N
represents the number of new relations and K de-
notes the few-shot sample size for each relation.
Each example consists of an input sentence xj con-
taining a pair of entities (eh, et), and a correspond-
ing relation label yj ∈ Ri. This task configuration
is also known as “N-way-K-shot” learning setting,
as introduced by Chen et al. (2023). Finally, evalua-
tion is conducted on a comprehensive test set Dtest

that contains all relations Rtotal =
⋃n

i=1Ri en-
countered across tasks, assessing both its ability to
learn new relations and retain proficiency in earlier
ones. This formulation encapsulates the essence of
FCRE, highlighting its significance in developing
adaptive and efficient relation extraction systems.

The core challenge of FCRE is twofold: the
model must quickly adapt to new relations with
limited examples (few-shot learning) while main-
taining knowledge of previously learned relations
(continual learning). This requires balancing the
model’s plasticity for learning new relations and its
stability for preserving prior knowledge.

2.2 Input Formulation and Representation

In Relation Extraction, the foundational deep learn-
ing approach (Ji et al., 2020; Wang and Lu, 2020)
typically involves encoding input data with a pre-
trained language model (PLM) like BERT (Devlin
et al., 2019). A crucial aspect of RE is how to for-
mulate the input effectively to obtain high-quality
representation embedding for classification. Early
studies frequently follow BERT by concatenating
the [CLS] token with the original input x and uti-
lizing this token’s vector representation for classifi-
cation. Another method involves using additional
special tokens to enclose the two entities, and then
concatenating their embeddings to form the input
representation for the relation classification layer
(Zhao et al., 2022; Le et al., 2024c).

In this study, we employ the input format sug-
gested by Ma et al. (2024). Specifically, we use
a special [MASK] token to denote the relation be-
tween the head entity (eh) and tail entity (et), and
integrate this token with the original sentence x and
the two entities. Besides, several learnable tokens
are also inserted to avoid relying entirely on hand-

crafted tokens. Consequently, the input template is
formulated as follows:

I(x) = x [v0:n0−1] eh [vn0:n1−1] [MASK]

[vn1:n2−1] et [vn2:n3−1] .
(1)

where [vi] represents the i-th learnable continu-
ous token, and ni denotes the length of the token
phrases. In our specific implementation, we use a
special [UNUSED] token as [v]. We then forward the
templated input I(x) through a PLM, encoding it
into a sequence of continuous vectors. From these,
we extract the hidden representation zx of the input,
corresponding to the position of the [MASK] token.

zx = fM
(
I(x)

)
[position([MASK])], (2)

where fM(X) denotes the forward function of a
PLMM on input X . The latent representation is
then used for contrastive learning and predicts the
relation associated with the given input x.

3 Methodology

In this section, we present our method aimed at en-
hancing FCRE by tackling the problem of similar
relations. Specifically, we proposed Clustering Re-
lations via Label Description (CRLD) to identify
groups of similar relations. Accordingly, we pro-
pose three loss functions designed to differentiate
samples that are semantically similar but belong to
distinct relations, using the clustering information.

3.1 Clustering Relations via Label Description
The label description of a relation is a summariza-
tion that describes the meaning and provides gen-
eral information about the relation. It has been
demonstrated to be more consistent than the label
prototype, which is derived from multiple sample
contexts associated with the same label (Li and
Lyu, 2024). Therefore, we leverage this informa-
tion for clustering purposes to recognize similar
relations. This framework allows us to identify in-
formative hard negatives for samples using cluster
information, thereby enhancing the differentiation
of samples in similar classes and potentially im-
proving training convergence (Xiong et al., 2020).

Let {(ri, di)}Ni=1 denote the set of relations and
their corresponding description. For each descrip-
tion di, we obtain its embedding di by passing it
through the same encoder used for input sentences
containing entities fM(di), as presented in Section
2.2. However, instead of applying the input tem-
plate I, we directly use the raw description and
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obtain its latent embedding by mean pooling the
token representations within the description. Subse-
quently, we employ the Agglomerative Clustering
algorithm (Müllner, 2011) on these embeddings to
categorize the relations into K clusters according
to their semantic similarity. This clustering method
allows us to automatically identify the number of
clusters by selecting a distance threshold θ, thereby
eliminating the need for manual selection of group
sizes for similar relations. Besides, the cluster-
ing algorithm is applied iteratively for each batch.
Thus, the cluster for each relation is dynamically
updated following the encoder’s parameters adjust-
ment after each batch, as illustrated in Algorithm
1. As a result, each relation-description pair (ri, di)
is assigned to a new cluster c(ri) ∈ {1, 2, . . . ,K}
after each batch.

3.2 Discriminative Loss Functions

In this section, we introduce three innovative loss
functions to improve the model’s ability to distin-
guish samples across relations.

Weighted Supervised Contrastive Loss aims
to bring closer positive sample pairs, which share
the same relation label, while pushing apart nega-
tive pairs that belong to different relation. To this
end, we conduct the Supervised Contrastive Loss
(Khosla et al., 2020), enhanced with weighting hard
negatives according to the similarity of their label
descriptions, thus focusing more on samples from
similar relations. Specifically, this loss is computed
as follows:

LWSC(x) =

−
∑

p∈P (x)

log
f(zx, zp)∑

x̄∈D\{x}w(x, x̄) · f(zx, zx̄)
(3)

where f(zx, zy) = exp
(
γ(zx,zy)

τ

)
and

w(x, x̄) =

{
1 + α · γ(dx,dx̄) if c(rx) = c(rx̄)

1 otherwise

(4)

Here, γ(·, ·) represents the Cosine Similarity
function, τ is the temperature scaling parameter, α
is a weighting factor based on the description sim-
ilarity, and c(·) is the cluster assignment function.

P (x) and D refer to the sets of positive samples
for sample x and the entire dataset, respectively.

Cluster-based Mutual Information Loss aims
to bring closer the semantic representation of a
sample with its corresponding label description,
while pushing apart it from descriptions of different
relations. Specifically, it involves maximizing the
mutual information (MI) between the input’s hid-
den representation zx and its corresponding label
description dx, while leveraging cluster informa-
tion to identify hard negatives. This extends the
traditional Mutual Information loss (van den Oord
et al., 2019) by introducing a weighting function
that considers the similarity between label descrip-
tions within the same cluster.

The mutual information MI(x) between the in-
put embedding zx and its corresponding label de-
scription is lower-bounded by:

MI ≥ logB + InfoNCE(DB;h), (5)

However, we modify the InfoNCE loss by incorpo-
rating a weighting function w(xi, xj), as presented
in equation (4), to assign greater emphasis on hard
negatives within the same cluster. The modified
InfoNCE is thus defined as follows:

InfoNCE(DB;h) =

1

B

B∑

i=1

log
h(zxi ,dxi)∑B

j=1w(xi, xj) · h(zxi ,dxj )
,

where h(z,d) = exp
(
zTWd

τ

)
, τ is the tempera-

ture, DB = {xi}Bi=1 is the mini-batch data with
size B, and W is a trainable parameter. The final
CMI loss function with an input x is defined as:

LCMI(x) = − log
h(zx,dx)

Z(x)
(6)

where,
Z(x) = h(zx,dx) +

∑

x̄∈N (x)

w(x, x̄) · h(zx,dx̄)

N (x) = {x̄|x̄ ∈ DB, rx̄ ̸= rx}

Double Triplet Loss for Intra- and Inter-Cluster
Separation aims to enforce that samples are
close to their own descriptions and far from other
cluster centroids, especially those not associated
with their labels. In particular, we employ Double
Triplet Loss (DTL) (Schroff et al., 2015) on input,
label description, and cluster centroid.
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LDT(x) =

max
(
0, D(zx,dx)−D(zx, c

+
x ) +m1

)
+

max
(
0, D(zx, c

+
x )−D(zx, c

−
x ) +m2

)

(7)

where,

c+x = ck =
1

|Ck|
∑

d∈Ck

d if c(rx) = k

c−x = ck̄ such that k̄ = argmin
c(rx )̸=k

D(zx, ck)

Here, D(·, ·) = 1−γ(·, ·) is the Cosine Distance,
ck, Ck represent the centroid representation and set
containing the description embeddings of relations
within cluster k, respectively. c+x is the centroid
representation of the cluster which containing rx,
while c−x denotes the centroid of the nearest cluster
to x that does not include the relation rx. m1 and
m2 are margin hyperparameters.

Overall Training Objective. The total loss func-
tion is formulated by combining equations (3), (6)
and (7) as follows:

L(x) = λ1LWSC(x) + λ2LCMI(x) + λ3LDT(x)
(8)

where λ1, λ2 and λ3 are weighting hyperparam-
eters that balance the contributions of each loss
component.

3.3 Large Language Model Embeddings for
FCRE

Large Language Model Embeddings (LLMEs) re-
define decoder-only LLMs as text encoders, en-
hancing their embedding and representation learn-
ing capabilities (BehnamGhader et al., 2024; Li
et al., 2024; Lee et al., 2024). This transforma-
tion typically involves two main adjustments: (1)
removing the causal mask to allow bidirectional at-
tention, and (2) replacing the next-token prediction
task with alternative training objectives, such as
contrastive learning or masked token prediction.
These modifications enable LLMEs to function
similarly to encoder models like BERT while lever-
aging the extensive architecture and pretraining
corpus of the original LLMs, thereby enhancing
generalization and comprehension capabilities.

We explore the application of LLMEs in the
FCRE scenario by substituting the backbone model
M with these models, as described in Section

2.2. However, since LLMs perform well with
instruction prompts and mean-pooling all token
embeddings yields the best results in LLM2Vec
(BehnamGhader et al., 2024)—an LLME, we for-
mulate an input x with entities eh, et as follows.

FLLMEs(x) = x. The relation between

[eh] and [et] is:

This instruction prompt allows LLMEs to grasp
the semantic context to categorize relations for the
entities. The latent embedding is subsequently ob-
tained by mean pooling the token representations.
Training and inference procedures remain similar
across all backbone models.

3.4 Training and Inference Procedures

Algorithm 1 Training procedure at each task T j

Input:
M: Backbone PLM
Dtest: Test data
L: The number of training samples allocated to

memory for each relation.
Previous variables: Φj−1, R̃j−1, M̃j−1, S̃j−1

Current variables: Dtrain
j , Dtest

j , Rj , Sj .
Output:
Φj , M̃j , S̃j , P̃j .

1: Initialize Φj from Φj−1

2: S̃j ← S̃j−1 ∪ Sj , R̃j ← R̃j−1 ∪Rj

3: for batch in batches(M̃j−1 ∪Dj) do
4: di ← fMΦj

(di) ∀di ∈ S̃j

5: AGGLOMERATIVECLUSTERING({di})
6: Update Φj ▷ Backward using loss L in (8)
7: end for
8: M̃j ← M̃j−1

9: for each r ∈ Rj do ▷ Update memory buffer
10: Br ← {(xi, ri)|xi ∈ Dtrain

j , ri = r}Li=1

11: M̃j ← M̃j ∪ Br
12: end for
13: Dtest ← Dtest ∪Dtest

j ▷ For inference

Training Procedure: Algorithm 1 outlines the
end-to-end training process at each task T j , with
Φj−1 denoting the model parameters after train-
ing on the previous j − 1 tasks. In line with
memory-based methods, we maintain a memory
buffer M̃j−1 that stores a few representative sam-
ples from all previous tasks T 1, . . . , T j−1, along
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Figure 1: The confusion matrix of CPL_MI, ConPL, and SIRUS predictions on similar relations detected by our
CRLD method. The descriptions of relations are presented in Table 8. Note that the figure illustrates only the
relations from the test set that appear in these two detected similar clusters, rather than displaying all relations.

with a relation description set S̃j−1 that holds the
descriptions of all previously encountered relations.

1. Initialization (Lines 1–2): The model param-
eter for the current task, Φj , is initialized with
the parameters of Φj−1. We update the rela-
tion R̃j and relation description sets Ẽj with
new relations.

2. Model Update (Lines 3–7): We train and up-
date the model parameters using a dataset that
combines memory data with the data from the
current task T j . Relation description represen-
tation and cluster results are updated in each
batch (Lines 4–5). Accordingly, the loss func-
tion is adjusted to reflect the cluster changes
to update the current parameter Φj .

3. Memory Update (Lines 8–12): We select
L representative samples from Dj for each
relation r ∈ Rj . These are the L samples
whose latent representations are closest to the
1-means centroid of all class samples.

4. Testset Update (Line 13): The test set is ex-
panded by incorporating the test data from the
current task and will be utilized for evaluation
after finishing training across all tasks.

Inference Procedure: Leveraging the discrimi-
native feature distribution learned during training,
we adopt the Nearest-Class-Mean classifier, as em-
ployed by Ma et al. (2024), for relation prediction
in the test phase. However, instead of relying solely
on the label prototype, we incorporate both the la-
bel description and prototype to extract the relation.

Given a sample x with hidden representation zx,
a set of relation prototypes {pr}nr=1 and a set of
relation descriptions {dr}nr=1.

pr =
1

L

L∑

i=1

zi, (9)

The inference process begins by calculating the
Cosine similarity between zx and each prototype
pr and label description dr. The final prediction
y∗ is then determined by:

y∗ = argmax (γ(zx,pr) + γ(zx,dr)) (10)

where γ(·, ·) denotes the cosine similarity function.

4 Experimental Results

4.1 Experiment Setup

We compare our method against 8 state-of-the-art
baselines on two widely used benchmarks FewRel
(Han et al., 2018) and TACRED (Zhang et al., 2017)
in the literature of CRE and FCRE. We conduct ex-
periments using BERT (Devlin et al., 2019) and
two LLMEs: LLM2Vec (BehnamGhader et al.,
2024) and BGE (Li et al., 2024). Moreover, we
employ three variants of LLM2Vec, using LLama2,
LLama3, and Mistral as backbones. After com-
pleting each task, we evaluate the models on the
updated Dtest with 6 random seeds and report the
mean and standard deviation of the accuracy. More
details about datasets, baselines, backbones, and
evaluation metrics are presented in Appendix B.
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Method
Tasks

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

FewRel (10-way–5-shot)

RP-CRE (Cui et al., 2021) 93.97±0.64 76.05±2.36 71.36±2.83 69.32±3.98 64.95±3.09 61.99±2.09 60.59±1.87 59.57±1.13

CRL (Zhao et al., 2022) 94.68±0.33 80.73±2.91 73.82±2.77 70.26±3.18 66.62±2.74 63.28±2.49 60.96±2.63 59.27±1.32

CRECL (Hu et al., 2022) 93.93±0.22 82.55±6.95 74.13±3.59 69.33±3.87 66.51±4.05 64.60±1.92 62.97±1.46 59.99±0.65

ERDA (Qin and Joty, 2022) 92.43±0.32 64.52±2.11 50.31±3.32 44.92±3.77 39.75±3.34 36.36±3.12 34.34±1.83 31.96±1.91

SCKD (Wang et al., 2023) 94.77±0.35 82.83±2.61 76.21±1.61 72.19±1.33 70.61±2.24 67.15±1.96 64.86±1.35 62.98±0.88

ConPL§ (Chen et al., 2023) 95.18±0.73 79.63±1.27 74.54±1.13 71.27±0.85 68.35±0.86 63.86±2.03 64.74±1.39 62.46±1.54

CPL (Ma et al., 2024) 94.87 85.14 78.80 75.10 72.57 69.57 66.85 64.50
CPL_MI (Tran et al., 2024) 94.69±0.70 85.58±1.88 80.12±2.45 75.71±2.28 73.90±1.80 70.72±0.91 68.42±1.77 66.27±1.58

SIRUS 94.74±0.27 87.12±2.21 81.06±1.52 77.49±2.58 75.47±2.60 72.48±1.75 70.6±1.31 69.16±0.43↑ 2.89

TACRED (5-way-5-shot)

RP-CRE (Cui et al., 2021) 87.32±1.76 74.90±6.13 67.88±4.31 60.02±5.37 53.26±4.67 50.72±7.62 46.21±5.29 44.48±3.74

CRL (Zhao et al., 2022) 88.32±1.26 76.30±7.48 69.76±5.89 61.93±2.55 54.68±3.12 50.92±4.45 47.00±3.78 44.27±2.51

CRECL (Hu et al., 2022) 87.09±2.50 78.09±5.74 61.93±4.89 55.60±5.78 53.42±2.99 51.91±2.95 47.55±3.38 45.53±1.96

ERDA (Qin and Joty, 2022) 81.88±1.97 53.68±6.31 40.36±3.35 36.17±3.65 30.14±3.96 22.61±3.13 22.29±1.32 19.42±2.31

SCKD (Wang et al., 2023) 88.42±0.83 79.35±4.13 70.61±3.16 66.78±4.29 60.47±3.05 58.05±3.84 54.41±3.47 52.11±3.15

ConPL§ (Chen et al., 2023) 88.77±0.84 69.64±1.93 57.50±2.48 52.15±1.59 58.19±2.31 55.01±3.12 52.88±3.66 50.97±3.41

CPL (Ma et al., 2024) 86.27 81.55 73.52 68.96 63.96 62.66 59.96 57.39
CPL_MI (Tran et al., 2024) 85.67±0.80 82.54±2.98 75.12±3.67 70.65±2.75 66.79±2.18 65.17±2.48 61.25±1.52 59.48±3.53

SIRUS 87.41±0.41 84.28±7.38 76.38±3.99 73.86±4.16 68.06±5.57 66.64±5.76 62.74±3.92 60.68±3.53↑ 1.2

Table 1: Accuracy (%) of methods using BERT backbone after training for each task. The best results are in bold,
while the second highest scores are underlined. All the baseline results are obtained from (Wang et al., 2023) and
(Tran et al., 2024). § ConPL results that are reproduced with the same settings as other models (Appendix B.2).

.

4.2 Evaluation Results of SIRUS Framework

In this section, we analyze the results of Cluster-
ing Relations via Label Description (CRLD) and
our proposed SIRUS, which integrates CRLD with
three loss functions in FCRE.

Effectiveness of CRLD: Figure 1 presents the
relations within two clusters that are close together
generated by CRLD, showing that they share a com-
mon topic related to location and country. Through
the visualization of the confusion matrix in these re-
lations derived by 3 methods, we observe that these
relations are frequently confused. For instance,
models often misclassify samples to the relations
“country of origin” and “country of citizenship” or
“headquarters location” and “location of forma-
tion”. This observation indicates that CRLD can
effectively identify similar relations.

In addition, in comparison to CPL_MI, ConPL–
a method that also tackles the challenge of simi-
lar relations, offers a clearer differentiation among
these relations. For example, between two rela-
tions “country” and “country of origin”, CPL_MI
depicts a higher number of misclassified samples
than ConPL (32 compared to 19). Meanwhile,
SIRUS shows clearer results in reducing confusion
between these classes, with darker blocks along the
diagonal (indicating more correct classifications)
and lighter blocks outside the diagonal (reflecting

fewer misclassifications). This not only demon-
strates the effectiveness of CRLD in accurately
identifying similar relations, which aids the model
in focusing on learning to differentiate them but
also reveals the overall efficacy of SIRUS for FCRE.

Performance of SIRUS against the Baselines:
Table 1 presents the performance comparison be-
tween SIRUS and 8 state-of-the-art methods. Over-
all, our approach consistently outperforms the per-
formance of existing methods across all tasks on
both benchmarks. Specifically, on the FewRel
dataset, SIRUS surpasses the baselines by a sig-
nificant margin, achieving over 1% improvement
compared to the second-best method, CPL_MI,
across all tasks. As a result, after the final task,
SIRUS achieves 69.16% accuracy on the test set
encompassing all relations, demonstrating an im-
provement of nearly 3% over CPL_MI. A similar
trend is observed in the TACRED dataset, where
our method outperforms CPL_MI by more than
1%. Besides, additional results demonstrating the
effectiveness of each proposed loss function are
provided in Appendix C.1. These results demon-
strate the effectiveness of SIRUS and underscore
the importance of addressing the issue of similar
relations in FCRE.
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Backbone Method LLME
Tasks

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

FewRel (10-way–5-shot)

LLama2

CPL ✗ 95.73±0.92 85.87±1.46 80.57±1.74 78.60±3.31 77.30±2.41 73.95±1.54 71.35±3.75 69.87±2.32

CPL_MI ✗ 95.63±1.08 87.14±1.94 83.25±2.14 80.59±2.37 79.20±1.36 76.41±2.13 74.62±1.73 72.08±3.18

CPL† ✓ 96.78±0.37 88.91±3.38 84.90±2.93 81.99±2.21 79.20±3.28 77.60±2.4 75.57±3.2 74.12±1.23

LLM2Vec†w/o-mem ✓ 95.05±0.21 84.88±2.79 78.15±2.54 72.4±2.26 72.36±2.95 69.21±2.81 64.89±1.68 63.38±0.65

SIRUS † ✓ 95.58±0.24 87.93±2.54 83.22±1.51 81.76±1.01 81.23±2.25 79.07±1.69 76.86±1.63 75.98±0.5

Mistral

CPL ✗ 96.57±0.40 86.80±2.53 83.31±1.94 79.45±2.53 77.17±2.2 74.24±1.96 73.59±2.00 71.89±1.97

CPL_MI ✗ 96.55±0.43 90.77±2.11 84.81±1.09 83.08±1.50 78.92±1.35 77.27±2.06 77.05±2.30 75.02±1.67

CPL† ✓ 96.6±0.22 88.75±2.63 84.39±2.65 82.46±2.08 80.38±1.93 78.06±1.18 75.41±1.9 74.00±1.32

LLM2Vec†w/o-mem ✓ 96.37±0.16 86.53±3.87 80.50±2.38 76.00±1.85 72.83±5.08 68.50±3.93 67.38±2.75 65.65±1.43

SIRUS † ✓ 96.13±0.31 89.74±2.69 86.10±2.41 84.25±2.25 81.96±2.81 79.79±2.56 77.75±2.09 76.96±1.15

BGE‡
w/o-mem ✓ 96.38±0.20 86.88±2.48 79.58±2.40 76.50±1.67 73.40±4.04 72.80±2.34 69.31±2.05 67.51±1.89

CPL‡ ✓ 96.52±0.26 89.88±3.33 84.3±1.97 81.5±2.94 79.05±4.02 77.27±3.49 75.6±2.99 73.25±2.48

SIRUS ‡ ✓ 96.90±0.34 91.14±1.83 87.94±1.46 86.39±2.11 84.62±2.22 82.82±1.96 80.9±0.69 79.38±0.48

LLama3
LLM2Vec†w/o-mem ✓ 97.25±0.31 86.67±3.13 80.14±1.27 76.12±2.39 72.71±3.45 68.30±3.71 65.15±4.45 63.42±4.24

CPL† ✓ 97.37±0.15 87.96±2.66 83.02±1.34 79.78±2.78 78.09±3.09 75.95±1.87 74.65±1.60 73.19±1.11

SIRUS † ✓ 96.80±0.18 91.04±2.43 87.36±1.49 85.25±1.48 84.28±2.69 82.46±1.67 81.03±1.42 78.82±0.98

TACRED (5-way-5-shot)

LLama2

CPL ✗ 86.76±1.58 75.94±4.76 70.65±2.57 68.64±3.03 67.44±2.95 65.12±3.85 60.27±3.79 58.03±1.98

CPL_MI ✗ 85.55±0.74 77.91±2.80 76.49±2.79 74.99±2.69 69.15±3.65 68.19±2.29 64.19±3.01 62.04±1.10

CPL† ✓ 87.37±1.85 82.74±9.54 77.49±7.52 77.29±4.49 72.75±6.28 73.37±4.57 70.08±6.01 68.35±5.02

LLM2Vec†w/o-mem ✓ 88.56±0.66 82.34±8.49 71.12±4.69 68.58±3.06 63.82±4.7 60.79±3.63 55.72±3.77 52.99±2.42

SIRUS † ✓ 89.62±0.31 87.07±7.02 78.98±4.58 76.04±3.28 74.64±3.15 74.14±2.39 70.96±1.77 70.88±0.59

Mistral

CPL ✗ 86.67±0.81 80.98±5.42 77.16±4.96 73.24±3.63 70.05±2.5 67.70±3.95 67.04±3.12 64.11±3.68

CPL_MI ✗ 86.32±1.25 81.00±3.20 77.71±2.31 75.48±2.59 71.92±3.09 71.02±2.84 67.69±3.58 65.48±1.97

CPL† ✓ 88.56±0.58 83.57±5.25 75.54±6.82 74.82±5.28 72.55±4.99 71.13±6.44 69.05±5.94 67.36±4.67

LLM2Vec†w/o-mem ✓ 89.26±0.37 84.30±6.65 77.78±2.89 72.21±3.78 67.66±4.02 66.46±3.00 63.13±4.58 59.68±1.87

SIRUS † ✓ 88.24±0.23 83.29±5.02 79.12±3.98 76.92±3.74 75.26±3.24 75.31±1.4 73.64±4.97 73.06±3.23

BGE‡
w/o-mem ✓ 89.30±0.35 83.09±5.81 74.28±3.59 70.89±4.88 65.44±5.90 64.75±3.71 61.44±6.42 58.85±2.58

CPL‡ ✓ 88.43±0.86 85.51±5.27 77.76±5.19 75.79±4.57 74.23±2.93 71.97±4.47 70.68±5.11 67.52±5.37

SIRUS ‡ ✓ 88.33±0.14 85.72±3.46 78.80±2.80 75.23±3.62 73.62±2.18 72.34±1.64 70.18±3.57 70.07±2.74

LLama3
LLM2Vec†w/o-mem ✓ 88.42±0.41 82.51±4.26 75.61±2.48 72.31±2.94 68.22±4.40 63.35±4.22 59.48±4.57 56.94±3.60

CPL† ✓ 88.75±0.59 81.18±9.26 76.14±4.36 76.16±5.6 72.14±5.85 71.35±5.41 69.99±5.21 69.70±5.36

SIRUS † ✓ 87.76±0.61 85.85±3.97 82.19±4.19 77.61±2.67 74.86±3.41 75.67±3.03 74.42±4.02 73.97±3.71

Table 2: Accuracy (%) of methods using LLM and LLME-based backbones after training for each task. w/o-mem
denotes that the memory buffer is excluded during training across tasks. LLME column indicates the use of LLMEs
(✓) or original LLMs with causal mask (✗). † denotes LLM2Vec variant, while ‡ represents BGE variant. The
baseline results of original LLMs with the causal mask are obtained from Tran et al. (2024).

4.3 Evaluation Results of LLMEs in FCRE

In this section, we analyze the results of LLMEs,
concentrating on the catastrophic forgetting in
these models and comparing their performance to
the use of BERT and LLMs with causal language
modeling. Additionally, we also aim to assess
the effectiveness and adaptability of our method,
SIRUS, on these large-scale models.

Catastrophic Forgetting in LLMEs: To investi-
gate the issue of Catastrophic Forgetting in LLMEs,
we employ LLM2Vec, BGE-variants as backbones,
training them with contrastive loss (Khosla et al.,
2020) across sequential tasks while excluding the
memory buffer for storing previous data. Table
2 indicates that these models still suffer from
catastrophic forgetting. Specifically, their perfor-
mance remarkably decrease in later tasks. This
phenomenon is also observed when utilizing causal

LLMs in FCRE (Tran et al., 2024).

Comparison between LLMEs and LLMs: Ta-
bles 1 and 2 reveal a significant improvement of up
to 10% on both benchmarks in LLMEs compared
to BERT when using SIRUS and CPL, highlighting
the huge potential of LLMEs in FCRE. Consider
utilizing original LLMs with decoder-only architec-
ture, CPL performs worse than CPL_MI by a large
margin using both LLama2 and Mistral on the two
benchmarks. However, after integrating LLMEs
into CPL, it surpasses CPL_MI with the original
LLMs by over 2% on FewRel and 6% on TA-
CRED. This result demonstrates the effectiveness
of LLMEs’ representation and embedding capa-
bilities, extending beyond the generation-focused
nature of LLMs in the FCRE scenario.

Our proposed method, SIRUS, consistently out-
performs CPL across all cases when integrated with
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LLMEs. This showcases the versatility and adapt-
ability of our approach across a diverse range of
architectures. Among all backbones, the LLama3
variant of LLM2Vec integrated with SIRUS exhibits
the highest performance on FewRel, while BGE
with Mistral shows superior results for TACRED.

5 Conclusion

In conclusion, our novel approach to Few-shot Con-
tinual Relation Extraction (FCRE) effectively ad-
dresses the challenge of similar relations, which of-
ten leads to catastrophic forgetting. By leveraging
relation descriptions and dynamic clustering, we
enhance the distinction between relations through
innovative loss functions. Our experimental results
indicate that our approach achieves superior perfor-
mance, surpassing state-of-the-art methods. More-
over, our comprehensive investigation of Large
Language Model Embeddings (LLMEs) demon-
strates superior performance over both BERT and
decoder-only LLMs in all cases, emphasizing their
potential to advance FCRE systems. This work
paves the way for more robust and accurate rela-
tion extraction systems, contributing to the broader
field of information extraction.

6 Limitations

Currently, the approach and analyses conducted
in this study are limited to high-level relation ex-
traction tasks, where the entities are predetermined.
Therefore, to achieve more practical and advanc-
ing FCRE systems, it is essential to investigate
end-to-end relation extraction challenges in future
research, integrating both entity recognition and
the extraction of relations among the identified en-
tities. This scenario presents greater challenges as
it necessitates addressing both overfitting and catas-
trophic forgetting across two consecutive tasks.

Our approach primarily targets the challenge
of similar relations, particularly leading to catas-
trophic forgetting; however, it has not yet consid-
ered the issue of overfitting, which arises from
the constraints of limited data. Despite this lim-
itation, SIRUS demonstrates superior performance
compared to techniques that involve augmenting
data for previously learned tasks (Qin and Joty,
2022; Ma et al., 2024; Tran et al., 2024). This
suggests that while our current method effectively
addresses the problem of similar relations, there
remains room for improvement. We believe that
incorporating data augmentation could further en-

hance the performance of our method. Therefore,
we plan to investigate this approach in future re-
search.
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Appendix
A Related work

Continual Learning (CL) aims to progressively learn new knowledge from a sequence of tasks
while preventing the problem of forgetting learned knowledge, known as catastrophic forgetting (Thrun
and Mitchell, 1995). Several approaches have been explored and can be classified into three main
categories: regularization/prior-based methods (Kirkpatrick et al., 2017; Ahn et al., 2019; Jung et al.,
2020), architecture-based methods (Li et al., 2019), and memory-based methods (Shin et al., 2017; Rolnick
et al., 2019). Memory-based methods, which store a limited number of representative samples from the
current task and replay them after subsequent tasks to reinforce prior knowledge, have become widely
adopted in NLP tasks, especially in relation extraction (Cui et al., 2021; Zhao et al., 2022; Hu et al., 2022).

Few-shot Continual Relation Extraction (FCRE) aligns with the scope of continual relation extraction
research, but faces the additional challenge of limited sample availability for newly emerging relations.
Therefore, it poses challenges related to both overfitting and catastrophic forgetting. The concept was
first introduced by Qin and Joty (2022), and they introduced a data augmentation framework to address
the challenges of data scarcity and catastrophic forgetting. Subsequently, several studies on FCRE have
been introduced (Wang et al., 2023; Chen et al., 2023; Ma et al., 2024; Luo et al., 2024; Tran et al., 2024),
most of which primarily rely on the memory-based approach. In particular, Wang et al. (2023) employs
serial knowledge distillation and contrastive learning, while Chen et al. (2023) introduces a framework
comprising three key modules: a prototype-based classification module, a memory-enhanced module, and
a consistent learning module. Meanwhile, Luo et al. (2024) improves the contrastive loss component with
a multi-view perspective, serving label and instance as distinct anchors, thereby enhancing representation
learning for few-shot scenarios. Recently, Tran et al. (2024) investigated the potential of LLMs in FCRE,
employing mutual information maximization on the language model head to retain prior knowledge.

B Experimental Details

B.1 Datasets
We conduct our experiments on two benchmark datasets:

• FewRel (Han et al., 2018) consists of 100 relations and 70,000 examples. Following the setup in
Qin and Joty (2022), we use 80 relations, divided into 8 tasks, each containing 10 relations (10-way).
The first task T 1 contains 100 examples per relation, while the remaining tasks are few-shot tasks
performed under a 5-shot setting.

• TACRED (Zhang et al., 2017) features 42 relations with 106,264 examples sourced from Newswire
and Web documents. In line with the methodology from (Qin and Joty, 2022), we remove instances
labeled as "no_relation" and distribute the remaining 41 relations across 8 tasks. Task T 1 includes 6
relations, each with 100 examples, and the following tasks are 5-way 5-shot tasks, each involving 5
relations.

B.2 Baselines
In this section, we provide a brief overview of several state-of-the-art methods in Few-Shot Continual
Relation Extraction (FCRE) that serve as benchmark baselines in our evaluations, including:

• SCKD (Wang et al., 2023) implements a structured approach to knowledge distillation, focusing on
retaining knowledge from earlier tasks. Additionally, this method leverages contrastive learning with
pseudo-samples to improve the differentiation between representations of various relations.

• CPL (Ma et al., 2024) introduces a Contrastive Prompt Learning framework, which designs prompts
to generalize across relation categories and applies margin-based contrastive learning to manage
challenging samples. This helps reduce both catastrophic forgetting and overfitting. The method also
incorporates a memory augmentation strategy by generating diverse samples using ChatGPT, which
alleviates overfitting in low-resource Few-Shot Continual Relation Extraction scenarios.
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• RP-CRE (Cui et al., 2021): This method addresses Continual Relation Extraction (CRE) by utilizing
stored samples to reduce the forgetting of previously learned relations. It applies K-means clustering
to generate prototypes that represent each relation based on the stored data. These prototypes are
then used to adjust the embeddings of new samples, allowing the model to retain knowledge of past
relations while learning new ones. This approach improves memory efficiency compared to earlier
CRE models, leading to better performance.

• CRL (Zhao et al., 2022): This approach tackles catastrophic forgetting by implementing a consistent
representation learning strategy. It focuses on maintaining stable relation embeddings through
contrastive learning and knowledge distillation during the replay of stored samples. The method
applies supervised contrastive learning on a memory bank dedicated to each new task, followed by
contrastive replay of memory samples and knowledge distillation to preserve knowledge of previous
relations. This consistent representation learning effectively mitigates forgetting.

• CRECL (Hu et al., 2022): This method enhances traditional few-shot learning by introducing
additional constraints on the training data. It achieves this by incorporating information from
support instances to enrich instance representations. Additionally, it promotes open-source task
enrichment to enable cross-domain knowledge aggregation and introduces the TinyRel-CM dataset,
specifically designed for few-shot relation classification with limited training data. Experimental
results demonstrate its effectiveness in improving performance in low-data scenarios.

• ERDA (Qin and Joty, 2022): This work introduces Continual Few-Shot Relation Learning (CFRL)
as a new challenge, highlighting the limitations of existing methods that require extensive labeled
data for new tasks. CFRL aims to learn new relations with minimal data while avoiding catastrophic
forgetting. To address this, ERDA proposes a technique based on embedding space regularization
and data augmentation. This approach enforces constraints on relational embeddings and supple-
ments relevant data through self-supervision. Comprehensive experiments demonstrate that ERDA
significantly outperforms previous state-of-the-art methods in CFRL settings.

• ConPL (Chen et al., 2023) presents a method with three key components: a prototype-based
classification module, a memory-enhanced module, and a consistent learning module aimed at
preserving distribution consistency and minimizing forgetting. Additionally, ConPL utilizes prompt
learning to improve representation learning and incorporates focal loss to reduce confusion between
closely related classes.

• CPL+MI (Tran et al., 2024) introduces an innovative approach to improve FCRE models by
effectively utilizing the language model (LM) heads. By maximizing the mutual information between
these heads and the primary classifiers, the method better preserves prior knowledge from pre-trained
backbones while also enhancing representation learning.

It is important to note that we reproduce the results of ConPL (Chen et al., 2023) using the same settings
as SCKD and CPL. This adjustment is made because the evaluation strategy in the original paper is not
feasible for continual learning scenarios.

B.3 Pre-trained language models

• For BERT-based models: We use BERT-base-uncased checkpoint1 on Hugging Face.

• For LLM2Vec-based models: We use three checkpoints on Huggingface:

– Meta-Llama-3-8B-Instruct-mntp-supervised 2,
– LLM2Vec-Mistral-7B-Instruct-v2-mntp-unsup-simcse 3

1https://huggingface.co/bert-base-uncased
2https://huggingface.co/McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-supervised
3https://huggingface.co/McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp-unsup-simcse
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– LLM2Vec-Llama-2-7b-chat-hf-mntp-supervised 4 checkpoint on Hugging Face.

• For BGE models: We use the bge-en-icl 5 checkpoint on Hugging Face.

B.4 Evaluation and Training Configurations
For each reported result, we conduct 6 independent runs with different random seeds and report the mean
and the corresponding standard deviation.

Evaluation Metric: We use final average accuracy to evaluate methods in our experiments. The average
accuracy after training task Tj is calculated as follows:

ACCj =
1

j

j∑

i=1

ACCj,i

where ACCj,i is the accuracy on the test set of task Ti after training the model on task Tj .

Training Configuration: Our BERT-based experiments were conducted on an NVIDIA RTX 3090
GPU with 24GB of memory. For experiments with the LLM2Vec and BGE backbone, we utilized an
NVIDIA A100 GPU with 80GB of VRAM. The operating system used across all experiments was Ubuntu
Server 18.04.3 LTS.

Details of hyperparameter search:

• Learning rate: {1× 10−5, 2× 10−5, 1× 10−4}

• α: { 0.1, 0.15, 0.2, 0.25}

• λ1: {0.5, 1.0, 1.5, 2.0, 2.5}

• λ2: {0.5, 1.0, 1.5, 2.0, 2.5}

• λ3: {0.25, 0.5, 0.75, 1.0}

• τ LCMI: {0.01, 0.02, 0.03, 0.04, 0.05}

• m1: { 1.0, 2.0}

• m2: { 1.0, 2.0}

• θ: { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}

Lora config target modules: "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj",
"down_proj".

Additionally, Tables 3 and 4 provide the optimal values of hyperparameters for each model backbone.

C Additional experimental results

C.1 Ablation study
Effectiveness of Each Loss Component: Figure 1 and Table 1 have demonstrated the effectiveness
of our proposed loss functions in enhancing discriminative representations for similar relations, thereby
mitigating catastrophic forgetting and improving overall performance. We further investigate the impact
of each loss component on performance through an ablation study by removing each component from
the total loss function. Table 5 demonstrates that the absence of any loss component leads to a drop
in performance. Specifically, LCMI (6) exhibits a significant impact, underscoring the importance of
leveraging label descriptions to effectively distinguish similar relations. Besides, the results present

4https://huggingface.co/McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-supervised
5https://huggingface.co/BAAI/bge-en-icl
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Table 3: Hyperparameters setting for the BERT-
backbone.

Hyperparameter Value
Epochs 10
Learning rate 1× 10−5

α 0.25
τ LCMI (FewRel) 0.01
τ LCMI (TACRED) 0.05
τ LWSC 0.1
θ (TACRED) 0.3
θ (FewRel) 0.1

Encoder output size 768
BERT input max length 256

λ1 1.0
λ2 (FewRel) 1.0
λ2 (TACRED) 2.0
λ3 0.25

Soft prompt initialization Random
Soft prompt phrase length 3
Soft prompt number of phrases 4

Table 4: Hyperparameters setting for LLMEs back-
bone.

Hyperparameter Value
Encoder output size 4096
Epochs 10
Learning rate 1× 10−5, 1× 10−4

α 0.2
τ LCMI 0.05
τ LWSC 0.1
θ (FewRel) 0.3
θ (Tacred) 0.5

Lora alpha 16
Lora rank 8
Lora dropout 0.05
λ1 1.0
λ2 2.0
λ3 0.5

Method
Tasks

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

FewRel (10-way–5-shot)

SIRUS 94.74±0.27 87.12±2.21 81.06±1.52 77.49±2.58 75.47±2.6 72.48±1.75 70.6±1.31 69.16±0.43

w/o LWSC 94.08±0.44 85.46±2.23 78.69±1.72 75.10±2.71 73.03±2.76 70.24±1.78 68.51±1.23 66.85±0.77

w/o LCMI 94.71±0.38 79.23±3.41 72.77±1.01 70.39±1.98 70.32±1.94 67.76±1.74 66.40±1.44 64.65±1.22

w/o LDT 94.69±0.28 86.68±2.14 80.71±1.78 77.13±2.26 75.52±2.66 72.77±1.73 70.41±1.33 68.29±0.84

TACRED (5-way-5-shot)

SIRUS 87.41±0.41 84.28±7.38 76.38±3.99 73.86±4.16 68.06±5.57 66.64±5.76 62.74±3.92 60.68±3.53

w/o LWSC 87.79±0.41 84.45±6.18 75.91±2.41 73.67±4.61 67.76±6.66 66.35±5.10 61.55±4.78 59.48±2.59

w/o LCMI 86.49±0.39 79.98±5.03 71.2±4.45 66.25±5.37 62.47±5.46 61.23±5.21 56.08±3.68 54.30±2.88

w/o LDT 87.31±0.54 84.27±6.69 75.77±4.66 72.8±4.27 66.84±4.53 66.12±5.84 61.86±3.96 59.5±3.66

Table 5: Ablation study (%) of loss functions. The best results are in bold.

limited contribution of LDT to the model performance. One possible explanation is that, throughout the
training process, we observe that the identified clusters exhibit stability and demonstrate minimal variation
after a few optimization steps. This suggests that the model learns to cluster and identify similar classes
effectively early on, with the support of all losses. As a result, which focuses on the relationship between
samples and their cluster centroids, may contribute less during later training steps, where the emphasis
shifts toward distinguishing samples between different relations. Nonetheless, the incorporation of still
results in approximately a 1% improvement in model performance. Given already high accuracy and the
challenging of FCRE, this incremental improvement is meaningful and highlights its effectiveness.

Influence of Clustering Algorithms: To assess the influence of different clustering algorithms in our
method, we evaluate its performance using various clustering techniques. Specifically, we compare
Agglomerative Clustering, K-means, and DBSCAN while employing BERT as the backbone model and
conducting experiments on the TACRED dataset. The results, summarized in the Table 6, indicate that
Agglomerative Clustering achieves superior performance, underscoring its effectiveness and suitability
for our approach.
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Cluster Algorithm Accuracy on the final task
K-means with K =R / 2 66.89

K-means with K =R / 3 67.20

DBSCAN 67.18

Agglomerative Clustering 69.16

Table 6: Accuracy after training on the final task using different clustering algorithms. R represents the total number
of relations in the dataset.

Hyper-parameter Sensitivity: To examine the impact of weighted parameters for each loss function,
we conducted experiments by varying λ2 and λ3 while keeping λ1 = 1 to limit the exponential growth of
possible configurations. The results, presented in the Table 7 for the TACRED dataset using BERT back-
bone, exhibit low standard deviation across different parameter settings, suggesting minimal sensitivity
to these hyperparameters. Notably, the lowest accuracy (57.16%) is observed when λ2 and λ3 are set to
small values, emphasizing the critical role of each loss function in enhancing the model’s performance.

λ2 = 0.5 λ2 = 1.0 λ2 = 1.5 λ2 = 2.0

λ3 = 0.25 57.16 59.37 59.57 60.68

λ3 = 0.5 58.35 59.29 60.28 60.58

λ3 = 0.75 58.94 58.84 59.94 60.44

λ3 = 1.0 59.23 60.06 59.55 60.54

Table 7: Accuracy variations with different weighted parameter settings for each loss function.

Computational Overhead: To assess the computational efficiency of SIRUS, we compare its additional
time cost against CPL and CPI. We measure the average training time per epoch on an RTX 3090 GPU
using the TACRED dataset, with a fixed batch size of 16 and BERT as the backbone model. Compared to
CPL (10.34s) and CPI_MI (11.30s), SIRUS (22.89s) introduces some additional computational overhead,
primarily due to processing label descriptions and running the Agglomerative Clustering algorithm (L4-5
in Algorithm 1). However, the time spent on clustering is minimal, averaging only 0.05 seconds, with most
of the overhead attributed to updating description embeddings via forward passes. However, in few-shot
learning scenarios, the number of training samples is small, with only a few samples per class. As the
training time of SIRUS is short, the trade-off between its time complexity and significant improvement in
performance is acceptable. This trade-off enables SIRUS to outperform the two CPL-based models. On
the other hand, CPL and CPL_MI methods rely on data augmentation techniques using LLMs to generate
additional data, which increases computational complexity. The time cost for these methods can scale
with the number of extra generated samples, further potentially adding overhead compared to the more
efficient SIRUS approach.

C.2 Relation and Description
Table 8 provides details of the relations and their descriptions corresponding to each class index depicted
in Figure 1. These descriptions provide clearer evidence of their similarity.
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Index Relation Description
1 headquarters location city where an organization’s headquarters is or has been situated

2 work location location where persons or organizations were actively participating in employment, business, or other work

3 location of formation location where a group or organization was formed

4 located in the administrative territorial entity the item is located on the territory of the following administrative entity

5 country of citizenship the object is a country that recognizes the subject as its citizen

6 country sovereign state of this item (not to be used for human beings)

7 country of origin country of origin of this item (creative work, food, phrase, product, etc.)

Table 8: Corresponding relation and its description to class index in Figure 1.
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