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Abstract

Aligning language models (LMs) with curated
human feedback is critical to control their be-
haviors in real-world applications. Several
recent policy optimization methods, such as
DPO and SLiC, serve as promising alterna-
tives to the traditional Reinforcement Learning
from Human Feedback (RLHF) approach. In
practice, human feedback often comes in a for-
mat of a ranked list over multiple responses to
amortize the cost of reading prompt. Multiple
responses can also be ranked by reward mod-
els or AI feedback. There lacks such a thor-
ough study on directly fitting upon a list of re-
sponses. In this work, we formulate the LM
alignment as a listwise ranking problem and
describe the LiPO framework, where the pol-
icy can potentially learn more effectively from
a ranked list of plausible responses given the
prompt. This view draws an explicit connec-
tion to Learning-to-Rank (LTR), where most
existing preference optimization work can be
mapped to existing ranking objectives. Fol-
lowing this connection, we provide an exam-
ination of ranking objectives that are not well
studied for LM alignment, with DPO and SLiC
as special cases when list size is two. In par-
ticular, we highlight a specific method, LiPO-
λ, which leverages a state-of-the-art listwise
ranking objective and weights each preference
pair in a more advanced manner. We show
that LiPO-λ can outperform DPO variants and
SLiC by a clear margin on several preference
alignment tasks with both curated and real
rankwise preference data.

1 Introduction

Recent Large Language Models, such as GPT-
4 (OpenAI, 2023) and Gemini (Team et al., 2023),
have unlocked unprecedented capabilities, wit-
nessed by impressive performance on diverse tasks
from conversational chatbot to programming. A
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Figure 1: Performance of the pairwise DPO (DPOBT),
listwise DPO (DPOPL), and our new listwise approach
LiPO-λ. All benefit from training data beyond pairwise
data (List Size = 2), while LiPO-λ can benefit more and
monotonically as list size increases. 95% bootstrapped
confidence intervals are shown as shaded areas.

key step to control the behavior of such Language
Models (LMs) is to align them with curated human
feedback. Reinforcement Learning with Human
Feedback (RLHF) (Christiano et al., 2017) was first
introduced to improve the alignment of LMs with
human preferences (Ouyang et al., 2022). However,
RLHF is a complex process, requiring substantial
memory and hyperparamter tuning.

Several recent works resort to alternatives of
RLHF, and noticeably converge to a pairwise
ranking optimization paradigm. For example,
DPO (Rafailov et al., 2023) optimizes a pairwise
logistic loss directly from pairwise human prefer-
ence data, while avoiding an explicit reward model
and RL-based optimization. Similarly, SLiC (Zhao
et al., 2023) optimizes a pairwise hinge loss ob-
jective on pairwise preference data directly from
human or reward model ranked samples from the
supervised fine-tuned (SFT) policy. RRHF (Yuan
et al., 2023) starts from listwise preference data la-
beled by a reward model, and optimizes a pairwise
contrastive objective by comparing all pairs in the
list, which is analogous to the SLiC objective.
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Virtually all popular preference optimization
frameworks do not go beyond pairwise preferences.
However, in practice, human preference data can
come as a ranked list to amortize the cost of read-
ing prompt (Köpf et al., 2024; Ouyang et al., 2022).
It is also highly efficient for sampling a list of re-
sponses from a shared prompt (Pope et al., 2023).
These motivate us to study preference optimiza-
tion on listwise data. Some recent work did study
preference optimization using listwise ranking ob-
jectives. For example, the DPO paper (Rafailov
et al., 2023) briefly touches the listwise Plackett-
Luce model (Luce, 2005) for preference model-
ing without any experimental results. Meanwhile,
PRO (Song et al., 2024), studied the Plackett-Luce
model more formally. However, existing work are
usually ad-hoc, and there lacks a thorough study
of the listwise ranking perspective for the LM pref-
erence optimization problem, which will bring in
new insights and solutions as shown in this paper.

In this work, we formally formulate LM align-
ment as a listwise ranking problem, where the LM
can potentially learn alignment more effectively
from listwise preferences. This for the first time
draws an explicit connection to the rich Learning-
to-Rank (LTR) literature (Liu, 2009). Noticeably,
the LTR literature has shown that a direct listwise
optimization can be more effective than pairwise
alternatives for the listwise ranking problem, with
a rich set of methods of various properties and per-
formances. In particular, popular existing methods
can be mapped to existing ranking objectives. As
we will show, not every listwise objective is ef-
fective and thus it is desired to conduct an close
examination to identify the most effective ones for
LM alignment. In Figure 1, we can see that list-
wise preference data can benefit existing pairwise
methods like DPO even though they treat all pairs
from a list equally, a problem not well studied in
the literature, while our new listwise method, in-
spired by our general formulation, called LiPO-λ,
can further benefit from listwise preferences.

To this end, we provide the first comprehensive
study of ranking objectives under the listwise pref-
erence optimization (LiPO) framework, which al-
lows us to compare popular and state-of-the-art
ranking objectives for the LM preference optimiza-
tion problem. In particular, existing popular meth-
ods, such as DPO, RRHF, and SLiC, can be mapped
to existing pairwise ranking optimization objectives
from listwise data (if only pairwise data is used,
it is equivalent to list size being 2). On the other

hands, existing listwise methods, such as PRO, usu-
ally map to ineffective listwise objectives and LiPO
allows us to analyze their pitfalls. Furthermore, in-
spired by the LiPO framework, we show that a new
method, LiPO-λ, which leverages a state-of-the-
art ranking objective (Burges et al., 2006; Wang
et al., 2018; Jagerman et al., 2022a), can achieve
very competitive performance. Noticeably, LiPO-
λ allows an intuitive interpretation: it leverages
a sophisticated weighting paradigms that assigns
listwise-aware weighting to sampled pairs, to opti-
mize a well-founded ranking metric (Wang et al.,
2013), in contrast to existing methods that assign
uniform weights or use weighting schema that fails
to consider various factors.

By a comprehensive study of various ranking
objectives on Reddit TL;DR, AnthropicHH, and
OpenAssistant tasks, we show that LiPO-λ is bet-
ter than existing methods, including (pairwise and
listwise) DPO (Rafailov et al., 2023), SLiC (Zhao
et al., 2023), PRO (Song et al., 2024), as well as
other baselines motivated by the LTR literature.

Our contributions are summarized as follows:

• We describe the novel Listwise Preference
Optimization (LiPO) framework, which gen-
eralizes many recent preference optimization
methods and allows an examination of such
methods through the lens of LTR for a deeper
understanding.

• We for the first time provide a comprehen-
sive investigation of ranking objectives for
LM preference optimization, especially list-
wise objectives that are not well studied in the
LM preference optimization literature.

• We highlight a new method, inspired by the
LiPO framework and advanced in the LTR
literature, LiPO-λ, which shows competitive
performance across the evaluation tasks.

2 The LiPO Framework

2.1 Preliminary

In LM generation, given a prompt, x ∈ X , there
is an action space Y , where each action is usually
called a response. A policy π ∈ ∆XY associates to
each prompt x a discrete probability distribution
π(.|x) ∈ ∆Y where ∆Y is the set of discrete dis-
tributions over Y . The goal is to learn a policy π
from training data, with a key consideration that
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Figure 2: An illustration of the Listwise Preference Optimization (LiPO) pipeline. For each prompt, LiPO samples
a list of responses from certain policy or mixed policies. Then human or reward ranking model assigns each
response a ranking label. After that LiPO optimizes the policy via ranking loss to align with the preferences.

the policy should align with human preference. Ex-
isting work (Rafailov et al., 2023) mainly focus on
learning from pairwise preference data.

The training dataset for DPO is D =

{x(i), y(i)w , y
(i)
l }Ni=1: given a prompt x, we have

two responses where yw is prefered over yl. The
training objective of DPO (Eq.7) is

−E(x,yw,yl)∼D
[
log σ(β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x))

]
,

(1)
where πθ is the policy parameterized by θ that is
to be learned, πref is the SFT policy that initializes
πθ, and β is a hyper-parameter to control the KL
divergence between πθ and πref. Rafailov et al.
(2023) showed that β log πθ(y|x)

πref(y|x) can be treated as
“implicit reward”, the goal of DPO is to align the
“implicit reward” towards human preference data
directly, which is shown to be effective.

2.2 The Listwise Formulation

We note that preference modeling can be treated as
a more general listwise ranking problem: eventu-
ally the policy π is expected to virtually rank a list
of discrete actions from ∆Y , and learning from list-
wise preference data may be more effective for LM
alignment. As discussed above, human preference
data can come as a ranked list to amortize the cost
of reading the prompt (Köpf et al., 2024; Ouyang
et al., 2022). Thus, we describe a general Listwise
Preference Optimization framework.

In the listwise formulation, the training dataset
is D = {x(i),y(i), ψ(i)}Ni=1: given a prompt x, we
have a list of responses y = (y1, ..., yK) of size
K, which can be generated from SFT policy or
other sources. When K = 2, this reduces to pair-
wise data. We assume there are real-valued labels
ψ = (ψ1, ..., ψK) ∈ [0, 1]K associated with the
corresponding responses, which may come from

human raters or be derived from a reward model.
A higher label value indicates a better response.

2.3 LM alignment as Learning-to-Rank
Given the listwise preference data, LM alignment
can be formulated as a Learning-to-Rank (LTR)
problem. In LTR (Liu, 2009), the goal is to learn
a ranking model πθ that can output the relevance
scores s for all documents given a query. In LM
alignment, we treat x as the query and y as docu-
ments in the LTR setting. Then we define the scores
s = {s1, ..., sK}, where si is defined as the follow-
ing normalized one for (x, yi) inspired by Rafailov
et al. (2023): s(πθ, πref, β) = {s1, ..., sK} ,
{
β log πθ(y1|x)

πref(y1|x) , ..., β log πθ(yK |x)
πref(yK |x)

}
, (2)

To simplify the notation, we omit the dependency
of s upon (πθ, πref, β) from now on.

LTR algorithms learn πθ using loss functions
as their objectives. A ranking loss function is in
general defined based on labels ψ of responses y
and predicted scores s:

L(πθ;πref, β) = E(x,y,ψ)∼D [l(ψ, s)] . (3)

l is the loss function for a single prompt x that
takes the labels and scores as input and output a
real value as the loss:

l : (ψ, s)→ R. (4)

A Learning-to-Rank algorithm is to find the optimal
πθ that minimizes the overall loss in the space of
ranking models. We call Eq 3 the LiPO framework
under the context of LM alignment.

2.4 Ranking Losses in Existing Work
With the definition of s in Eq 2, we show that
several popular LM alignment methods can be
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mapped into the LiPO framework using differ-
ent ranking losses. Proofs of the propositions
below can be found at Appendix A. In Rafailov
et al. (2023), two loss functions are proposed un-
der two ranking frameworks: Bradley-Terry (BT)
model (Bradley and Terry, 1952) and Plackett-Luce
(PL) model (Plackett, 1975). We refer DPOBT
loss as the BT model-based pairwise loss, and re-
fer DPOPL loss as the PL model-based listwise
loss. We use SLiCnorm to denote the improved
SLiC (Zhao et al., 2023) as in RSO (Liu et al.,
2023), which normalizes the likelihood with the
reference policy and removes the regularization.

Pairwise preference losses. The pairwise lo-
gistic ranking loss (Burges et al., 2005) is one
popular choice to fit a list of ranked data:
Lpair-logistic(πθ;πref, β) =

Ex,y,ψ∼D
[∑

ψi>ψj
log(1 + e−(si−sj))

]
. (5)

We connect the above loss with DPOBT via the
following proposition:

Proposition 2.1. When K = 2 and pairwise lo-
gistic ranking loss is used, LiPO is equivalent to
DPOBT (Rafailov et al., 2023).

Similarly, we can connect SLiCnorm with pair-
wise hinge loss from RankSVM (Joachims, 2002):
Lpair-hinge(πθ;πref, β) =

Ex,y,ψ∼D
[∑

ψi>ψj
max (0, 1− (si − sj))

]
(6)

Proposition 2.2. When K = 2 and pairwise
hinge ranking loss is used, LiPO is equivalent to
SLiCnorm (Zhao et al., 2023; Liu et al., 2023).

Listwise preference losses. One can fit all pairs
using pairwise-logistic or pairwise-hinge losses.
Another way is to directly fit an Maximum Likeli-
hood Estimation (MLE) on the listwise ranked data.
Xia et al. (2008) proposes list MLE ranking loss:
Llist-mle(πθ;πref, β) =

−Ex,y1,y2...yK∼D
[
log
∏K
k=1

exp(sτ(k))∑K
j=k exp(sτ(j))

]
,

(7)
where τ(i) is the document ranked at the i-th po-
sition in the listwise permutation determined by
label. This loss is used in DPOPL (Rafailov et al.,
2023) and PRO (Song et al., 2024).

Proposition 2.3. When the list MLE loss is used,
LiPO is equivalent to DPOPL (Rafailov et al., 2023)
and PRO (Song et al., 2024).

2.5 Pitfalls of Existing Work

From the general LiPO formulation and the analy-
sis of recent policy optimization methods, we can
see they map to specific choices of existing ranking
objectives. Through LTR, we note there are two
major concerns of the discussed methods that may
limit the effectiveness of preference optimization.

First, all pairwise approaches, which dominate
the current preference optimization literature, ig-
nore listwise permutation information beyond pairs.
Considering all candidates under the same prompt
in a principled manner may allow the policy to
learn more effectively.

Second, virtually all existing methods, even the
listwise one (DPOPL and PRO), ignore the label
values, i.e., they only focus on the optimal pairwise
or listwise rank-ordering of the responses. This has
information loss and may incur confusing learning
behavior. For example, two lists with labels (0.99,
0.50, 0.01) and (0.51, 0.50, 0.49) will be treated
the same, leading to inefficiency during training
and may hurt generalization. They also force an
ordering while it is common to have tied labels in
ranking data (Liu, 2009).

3 LiPO-λ

Under the general LiPO framework, a rich family
of other optimization objectives can be explored
from the LTR literature. In this section, we propose
a specific instantiation, LiPO-λ, which builds upon
a state-of-the-art ranking objective, addresses the
above pitfalls in a principled manner, and performs
well empirically in the experiments.

Our LiPO-λ is based on the LambdaLoss
method (Burges et al., 2006; Wang et al., 2018).
Specifically, the training objective of LiPO-λ is:
Llambda-loss(πθ;πref, β) =

Ex,y,ψ∼D
[∑

ψi>ψj
∆i,j log(1 + e−(si−sj))

]
, (8)

where ∆i,j = |Gi − Gj | · | 1
D(τ(i)) − 1

D(τ(j)) |,
known as the Lambda weight. G is called a gain
function with Gi = 2ψi − 1 as the commonly
used one. D is a rank discount function with
D(τ(i)) = log(1 + τ(i)) as the commonly used
one, where τ(i) is the rank position of yi in the
ranking permutation induced by s, thus it is a list-
wise method even though the formula can be writ-
ten in terms of pairs. In other words, there are
dependencies on other items in the same list for
each pair. One has the flexibility to change the
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gain and discount functions and we resort to the
original LambdaLoss configuration for its simplic-
ity and strong empirical performance. It has been
shown that this loss function can optimize the DCG
metric (Burges et al., 2006; Donmez et al., 2009),

DCG =
∑K

i=1
Gi

D(τ(i)) ,

which has several ideal properties as a well-
founded ranking metric such as consistent distin-
guishability (Wang et al., 2013): for every pair of
substantially different ranking policies, the ranking
metric can decide which one is better in a consistent
manner on almost all datasets.

Comparisons. There are several interesting find-
ings by comparing LiPO-λ with other methods un-
der the LiPO framework. First, the gain function G
considers label score values ψ, which is ignored in
virtually all existing methods. Second, comparing
with the list MLE loss, the permutation considered
is induced by the model prediction scores, instead
of the static labels. Burges et al. (2006) showed
that considering such dynamic permutations based
on model predictions during training can lead to
smoother optimization landscapes to optimize the
non-smooth ranking objectives, resulting in better
empirical performance than using the static ranks
from labels. Last but not least, LiPO-λ can be
treated as a weighted version of DPOBT over all
pairs of ranked list by comparing with Eq 5. Instead
of treating each pair equally, Lambda weight is a
listwise permutation aware weighting mechanism.
One intuition of Lambda weight is to weight each
pairs by the difference of ranking metrics when
they are swapped in the list (Burges, 2010).

4 Other Ranking Losses

Other existing or future ranking objectives may
be studied under the LiPO framework. In ex-
periments, in addition to existing methods that
can be treated as specific instantiations of LiPO,
we also study two pointwise ranking objectives,
the pointwise Mean Squared Error (MSE) loss:
Lpoint-mse(πθ;πref, β) =

Ex,y,ψ∼D
∑K

k=1(ψk − sk)2, (9)

and the pointwise sigmoid cross entropy loss:
Lpoint-sigmoid(πθ;πref, β) =

−Ex,y,ψ∼D
∑K

i=1 (ψi log σ(si) + (1− ψi) log(1− σ(si)))

(10)

We also consider softmax cross entropy loss
as in ListNet (Cao et al., 2007)), which again
maps to a recent work called NCE (Chen et al.,
2024):Lsoftmax(πθ;πref, β) =

Ex,y,ψ∼D
[∑K

k=1
ψk∑K
j=1 ψj

log

(
exp(sk)∑K
j=1 exp(sj)

)]
.

(11)

5 Experiments

Tasks. We study different ranking losses unified
under the LiPO framework on the popular Reddit
TL;DR summarization (Stiennon et al., 2020) and
AnthropicHH dialogue (Bai et al., 2022) datasets,
and provide further verification on OpenAssistant
dataset in Section 5.4. The Reddit TL;DR sum-
marization dataset contains both fine-tuning data
Dtldr

sft and human feedback dataDtldr
hf . Dtldr

sft contains
117k/6k examples in train and validation splits.
Dtldr

hf consists of 93k human preferences on decodes
from multiple models. The AnthropicHH is a di-
alogue dataset with x as conversation between a
human query and an AI assistant. We use the help-
ful slice Dhelpful

hf from 161k/9k examples in train
and validation splits. We use the positive responses
as SFT targets.

Method. For each task, we first train a T5-large
(770M) (Raffel et al., 2020) SFT policy on the SFT
dataset. We pick the best checkpoint with lowest
perplexity on validation split. We also train a T5-
XXL (11B) pairwise reward-ranking model (Zhao
et al., 2023; Liu et al., 2023) on the human pref-
erence dataset (See Appendix F for details). We
pick the best checkpoint with the highest accuracy
on validation split of the human preference dataset.
Then we sample K = 8 responses (with ablation
below) for each prompt from the SFT policy via
Top-K sampling with temperature = 0.7 and
top_k = 40. We conduct all pair comparisons
using the pairwise reward-ranking model, resulting
in a winning probability matrix Ψ ∈ [0, 1]K×K ,
after which we compute ψk as ψk = 1

K

∑K
i=1 Ψki.

Reward model is shown to be critical in the success
of alignment (Liu et al., 2023; Gao et al., 2023).
This aggregation and labeling schema is valid theo-
retically (Shah and Wainwright, 2018) and works
well empirically (Qin et al., 2023) in the ranking lit-
erature. For directly optimizing on human-ranked
responses without a reward model, we approxi-
mate the winning probability as P̂(yi � yj) =
1(rank yi is higher than yj). See Section 5.4 for an
experiment on OpenAssisant dataset (Köpf et al.,
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2024). To compute the normalized ranking scores
s, we set β = 0.05.

We consider three types of loss functions under
the LiPO framework: pointwise, pairwise, and list-
wise. Pointwise losses include point-mse (Eq 9)
and point-sigmoid (Eq 10). Pairwise losses include
pair-hinge (Eq 6) and pair-logistic (Eq 5). Listwise
losses include list-mle (Eq 7), softmax (Eq 11), and
lambda-loss (Eq 8). We use the open-sourced RAX
library (Jagerman et al., 2022b) to compute losses
in Jax. See Appendix B for example usages.

For pairwise losses, we utilize all 64 pairs and
show in Section 5.2 that it can improve performance
than sampling a single pair each time as commonly
done, so this setting is not only fair but also benefit
pairwise methods. We use batch size 32 and learn-
ing rate 2e-5 with Adafactor optimizer (Shazeer
and Stern, 2018a), which takes about 1 day to run
the calibration on 32 TPU-v3 chips. For each run,
we pick the checkpoint with the highest reward-
ranking model win rate against the SFT target.

Evaluation. Our experiments use three different
approaches to evaluate following existing proto-
cols (Rafailov et al., 2023; Liu et al., 2023): Proxy
Reward Model, AutoSxS, and human evaluation.
Proxy Reward Model computes the relative win
rate of generated response against SFT target over
the SFT validation split on the trained T5-XXL
pairwise reward-ranking model. AutoSxS com-
putes the relative win rate of generated response
against SFT target over the SFT validation split
using large instruction tuned model (PaLM 2-L-
IT) (Google et al., 2023) via few-shot in-context
learning (details in Appendix C). Human Evalua-
tion asks human raters to assign an absolute quality
score on each response and determine the relatively
best one among DPOBT, DPOPL (PRO) and LiPO-
λ (details in Appendix D). We note these are stan-
dard evaluation protocols in related work.

5.1 Performance Comparison

The main comparison results are shown in Table 1.
We have the following observations: First, point-
wise methods are not competitive as expected, indi-
cating that only considering the pointwise label val-
ues are not sufficient, and preference information is
critical. Second, DPOPL (PRO) does not perform
better than DPOBT, showing that the choice of list-
wise ranking objective is important given listwise
data. This aligns with existing LTR literature that
list-mle is not a competitive ranking objective as it

enforces listwise permutation without caring about
label values. On the other hand, while DPOBT does
not consider label values either, the pairwise format
can be less prone to ill-behaved listwise behaviors.
Third, the listwise Softmax loss (NCE) is not com-
petitive. This is understandable as Softmax loss is
most effective on optimizing listwise ranking with
sparse labels, such as binary click data (Yu et al.,
2015). For LM generation, the responses are sam-
pled from a plausible set so the labels are dense,
which do not fit the Softmax loss well. Meanwhile,
LiPO-λ shows strong performance and improves
upon all baselines by effectively leveraging listwise
data and label value information.

5.2 Ablation Studies and Analysis

To gain an in-depth understanding of the benefits
brought by the listwise formulation and methods,
we conduct ablation studies to understand the effect
in terms of listwise data, Lambda weight choices,
and model sizes.

Ablation study on list size. To better understand
the effect of preference optimization on listwise
data, we conduct analysis over multiple choices
of list sizes on the Reddit TL;DR dataset. As il-
lustrated in Figure 3(a), most methods can benefit
from going beyond pairwise training data (List Size
= 2) by leveraging more information under each
prompt x. LiPO-λ with lambda-loss is the only
method that can robustly benefit from longer list
sizes, showing it can more effectively leverage the
rich listwise information.

Ablation study on Lambda weights. As dis-
cussed in Section 3, we use specific choice of
Lambda weights by setting the gain function Gi =
2ψi − 1 and rank discount function D(τ(i)) =
log(1 + τ(i)), which is called the DCG weight,
that can optimize the DCG ranking metric. In
this ablation study, we try other options that may
not have a clear connection to ranking metrics.
Constant Weight assigns equal weights on all
pairs, which reduces to DPOBT. Constant δ Gain
sets the gain function difference to a constant:
|Gi − Gj | = 1, and Constant δ Discount sets
the rank discount function difference to a constant:
| 1
D(τ(i)) − 1

D(τ(j)) | = 1. The comparisons in Fig-
ure 3(b) show that using DCG weight is most ef-
fective on both datasets, showing the importance
of setting both functions appropriately in order to
optimize well-founded ranking metrics.
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Approach Ranking Loss Proxy Reward (%) AutoSxS (%)
Reddit TL;DR

point-mse 49.43±1.18 39.94±1.22

point-sigmoid 64.14±1.16 49.28±1.27

NCE softmax 75.40±0.98 58.60±1.22

SLiCnorm pair-hinge 87.23±0.78 67.16±1.15

DPOBT pair-logistic 88.52±0.74 67.09±1.17

DPOPL (PRO) list-mle 88.27±0.76 67.13±1.08

LiPO-λ lambda-loss 90.60±0.65 68.26±1.05

AnthropicHH
point-mse 57.55±1.22 21.97±0.85

point-sigmoid 71.35±1.11 25.72±0.87

NCE softmax 73.21±1.07 28.87±0.95

SLiCnorm pair-hinge 89.68±0.72 42.07±1.01

DPOBT pair-logistic 91.11±0.66 44.80±1.00

DPOPL (PRO) list-mle 90.61±0.72 43.25±1.02

LiPO-λ lambda-loss 92.60±0.62 47.90±0.98

Table 1: Comparison of different methods with T5-large policy model to leverage listwise preference data. Proxy
rewards and few-shot PaLM 2-L-IT win rates against SFT target text are reported. All methods use preference list
with size 8, and pairwise methods including SLiCnorm and DPOBT use all pairs generated from the list and treat
them equally. 95% bootstrapped confidence intervals are indicated by the subscripts.
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Figure 3: (a): Performance of different ranking losses with varying list sizes on the Reddit TL;DR dataset. The
shaded areas are 95% confidence intervals. 95% bootstrapped confidence intervals are shown as shaded areas. (b):
Performance on the Reddit TL;DR and AnthropicHH datasets by using different Lambda weight choices. See text
for explanation of different options. The error bars denote 95% confidence intervals.

Scale up the policy model. To understand how
well the LiPO can be scaled up to larger policy
models, we train a T5-XXL policy model and com-
pare among DPOBT, DPOPL (PRO) and LiPO-λ.
Table 2 shows that all three methods scale up well
and LiPO-λ is competitive on both tasks.1

5.3 Human Evaluation Results

To further verify the improvements of LiPO-λ, we
conduct side-by-side human evaluation using Ama-
zon Mechanical Turk. Given a document and three
responses generated from DPOBT, DPOPL (PRO)
and LiPO-λ, raters are asked to assign a point-
wise overall quality (1-5) to each response, and

1We further conduct human evaluation study to verify the
gains in Appendix E.

to choose the best one. Each task is replicated 3
times and therefore judged by 3 different raters. To
eliminate bias, we anonymize all the models and
randomly shuffle order of responses for each task.
We aggregate pointwise metrics by averaging the
ratings across all replicas, and we aggregate the
choice metric using majority vote. For more details
about the tasks, see Appendix D.

In total 50 different raters participated in the
Reddit TL;DR evaluation study with a median of
24.5 tasks per rater. The human evaluation results
are shown in Table 3. LiPO-λ has shown to be
better than DPOBT and DPOPL (PRO) in both tasks.
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Approach Proxy Reward (%) AutoSxS (%)
Reddit TL;DR

DPOBT 96.22±0.43 82.38±0.85
DPOPL (PRO) 96.00±0.45 81.96±0.92
LiPO-λ 97.32±0.36 83.79±0.88

AnthropicHH
DPOBT 97.48±0.34 68.81±0.94
DPOPL (PRO) 97.28±0.37 68.84±0.91
LiPO-λ 98.27±0.29 69.81±0.91

Table 2: Comparison of DPOBT, DPOPL (PRO),
and LiPO-λ with T5-XXL policy model. Proxy
rewards and AutoSxS win rates against SFT tar-
get text are reported. All methods use preference
list with size 8. 95% bootstrapped confidence in-
tervals are indicated by the subscripts.

Approach Chosen as Preferred Quality
Reddit TL;DR

DPOBT 19% 3.63
DPOPL (PRO) 16% 3.67
LiPO-λ 40% 3.80

AnthropicHH
DPOBT 20% 3.66
DPOPL (PRO) 20% 3.66
LiPO-λ 27% 3.72

Table 3: Human evaluation comparing three loss
functions on two tasks. The proportion may not
sum up to 100% due to equal preference cases.

5.4 Direct Alignment on Human Ranked
Responses

To further verify the case when only ranks are avail-
able, we add a new dataset, OpenAssistant (Köpf
et al., 2024). The dataset is of conversation tree
structure with only rank associated with each re-
sponse. We filter out non-English prompts and
leave the prompts with exactly 3 ranked responses.
We get 2.6k and 155 prompts in training and val-
idation splits, respectively. We pick the best re-
sponse as the target during SFT, followed by list-
wise calibration. To compute the label, we first
construct the preference matrix M as Mii = 0.5
and Mij = 1(rank yi is higher than yj) (see Sec-
tion 2.2). Then we aggregate the matrix as label
values according to Section 5. The results are sum-
marized in Table 4. LiPO-λ again performs the
best even with rank-only annotations directly from
human.

6 Related Work

LM Alignment. While self-supervised LMs
learn to complete some interesting tasks (Radford
et al., 2019), their performance on downstream

Approach Ranking Loss AutoSxS (%)
DPOBT pair-logistic 25.48
DPOPL (PRO) list-mle 23.54
LiPO-λ lambda-loss 27.10

Table 4: Comparison of DPOBT, DPOPL (PRO), and
LiPO-λ with T5-large policy model on OpenAssistant
dataset. Few-shot PaLM 2-L-IT win rates against SFT
target text are reported. All methods use preference list
with size 3.

tasks, such as acting as a conversational agent, can
be significantly improved by alignment with hu-
man preference datasets. The pivotal Reinforce-
ment Learning from Human Feedback (RLHF)
framework (Christiano et al., 2017) first fits a
reward function under a preference model such
as the Bradley-Terry model (Bradley and Terry,
1952), then fine-tunes the LM to maximize the
given reward using reinforcement learning algo-
rithms. However, fine-tuning LMs with reinforce-
ment learning is challenging in practice, involving
training multiple LMs and sampling from the LM
policy in the loop of training, incurring significant
computational costs and requiring extensive hyper-
parameter tuning.

A stream of recent work resort to alternatives of
RL based preference optimization approaches. As
we discussed, two parallel work, SLiC (Zhao et al.,
2023) and RRHF (Yuan et al., 2023) directly use
human preference data or use a reward model to
label preferences, then both use a pairwise hinge
loss to align policy responses. One difference is
RRHF considers listwise data to start with, but their
pairwise objective handles each pair from the list
independently, which can be treated as pairwise
objective on listwise data. DPO (Rafailov et al.,
2023) proposes to directly align the behavior of
LM without using a reward model with the pair-
wise logistic loss. IPO (Azar et al., 2023; Calan-
driello et al., 2024) improves DPO by removing the
Bradley-Terry assumption. RSO (Liu et al., 2023)
improves DPO with a better sourcing of preference
dataset. GSHF (Xiong et al., 2023; Dong et al.,
2024) further improves RSO with iterative opti-
mization. OAIF (Guo et al., 2024) improves DPO
with online AI feedback. Same as listwise version
of DPO, PRO (Song et al., 2024) proposes list MLE
loss for list of responses. In this work, we mainly
focus on the optimization objective perspective of
LM alignment.
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Learning-to-Rank. The Learning-to-Rank
(LTR) field has a rich literature due to its practical
values in applications such as web search (Liu,
2009). Traditional LTR work mainly focuses on
developing more effective ranking objectives to
optimize ranking metrics, ranging from pointwise,
pairwise, to listwise approaches (Liu, 2009).
Beside ranking objectives, the LTR is also
concerned about other relevant topics such as
ranking architectures (Qin et al.) and learning from
biased feedback (Wang et al., 2021), which are
orthogonal to our work since we focus on standard
LLM architectures and assume reliable feedback
from reward models.

RankSVM (Joachims, 2002) and
RankNet (Burges et al., 2005) leverage pair-
wise hinge loss and pairwise logistic loss
respectively for the ranking problem. Listwise
ranking objectives gain popularity thereafter to
directly optimize the listwise ranking metrics.
ListMLE and Softmax cross entropy losses are
two representative listwise losses proposed in (Xia
et al., 2008) and (Cao et al., 2007). ListMLE only
concerns about the ordering under the Plackett-
Luce model (Luce, 2005), and Softmax cross
entropy loss is effective on lists with sparse labels,
such as click logs (Yu et al., 2015; Bai et al., 2023).
LambdaRank (Burges et al., 2006) shows that
weighting pairs with the listwise Lambda weight
leads to strong empirical performance in terms
of optimizing the non-smooth DCG metric, and
it is unified under the LambdaLoss (Wang et al.,
2018) framework with theoretical justification and
convergence proof. In this work, we show the con-
nection between existing LM alignment methods
and ranking objectives from LTR. Following this
connection, we studied multiple under-explored
listwise objectives for LM alignment.

7 Conclusion

We describe the LiPO framework for LM align-
ment with a list of responses for each prompt with
connection to LTR techniques. We generalize re-
cent preference optimization methods and analyze
pitfalls of existing methods from the LTR perspec-
tive. With comprehensive studies over existing
LTR losses, we highlight LiPO-λ as the best ap-
proach that builds upon the state-of-the-art rank-
ing objectives and shows competitive performance
across several tasks.

8 Limitations

In this work, we study the algorithms on listwise
responses only in offline setting, same as pivot
work in the literature such as DPO. It is interesting
to study how to do the online learning where the
list of responses are elicited from the policy being
trained to reduce the distribution shift. Also, the
number of labels generated by the reward model is
quadratic to list size. Even though in the offline set-
ting, the cost is only realized in the preprocessing
step, for future work, we may leverage more effec-
tive approaches, such as using partial comparisons
to reconstruct the label relevance score.

References
Mohammad Gheshlaghi Azar, Mark Rowland, Bilal

Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. 2023. A general theoret-
ical paradigm to understand learning from human
preferences. arXiv preprint arXiv:2310.12036.

Aijun Bai, Rolf Jagerman, Zhen Qin, Le Yan, Pratyush
Kar, Bing-Rong Lin, Xuanhui Wang, Michael Ben-
dersky, and Marc Najork. 2023. Regression compat-
ible listwise objectives for calibrated ranking with bi-
nary relevance. In Proceedings of the 32nd ACM In-
ternational Conference on Information and Knowl-
edge Management, pages 4502–4508.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Ralph Allan Bradley and Milton E Terry. 1952. Rank
analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–
345.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hullender.
2005. Learning to rank using gradient descent. In
Proceedings of the 22nd international conference on
Machine learning, pages 89–96.

Christopher Burges, Robert Ragno, and Quoc Le. 2006.
Learning to rank with nonsmooth cost functions. In
Advances in Neural Information Processing Systems,
volume 19. MIT Press.

Christopher JC Burges. 2010. From ranknet to lamb-
darank to lambdamart: An overview. Learning,
11(23-581):81.

Daniele Calandriello, Daniel Guo, Remi Munos, Mark
Rowland, Yunhao Tang, Bernardo Avila Pires,
Pierre Harvey Richemond, Charline Le Lan, Michal
Valko, Tianqi Liu, et al. 2024. Human alignment

2412



of large language models through online preference
optimisation. arXiv preprint arXiv:2403.08635.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: from pairwise ap-
proach to listwise approach. In Proceedings of the
24th international conference on Machine learning,
pages 129–136.

Huayu Chen, Guande He, Hang Su, and Jun Zhu.
2024. Noise contrastive alignment of language
models with explicit rewards. arXiv preprint
arXiv:2402.05369.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep re-
inforcement learning from human preferences. Ad-
vances in neural information processing systems, 30.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang,
Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. 2024. Rlhf work-
flow: From reward modeling to online rlhf. arXiv
e-prints, pages arXiv–2405.

Pinar Donmez, Krysta M. Svore, and Christopher J.C.
Burges. 2009. On the local optimality of lamb-
darank. In Proceedings of the 32nd International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’09, page
460–467, New York, NY, USA. Association for
Computing Machinery.

Leo Gao, John Schulman, and Jacob Hilton. 2023.
Scaling laws for reward model overoptimization.
In International Conference on Machine Learning,
pages 10835–10866. PMLR.

Google, Rohan Anil, Andrew M. Dai, Orhan Fi-
rat, Melvin Johnson, Dmitry Lepikhin, Alexandre
Passos, Siamak Shakeri, Emanuel Taropa, Paige
Bailey, Zhifeng Chen, Eric Chu, Jonathan H.
Clark, Laurent El Shafey, Yanping Huang, Kathy
Meier-Hellstern, Gaurav Mishra, Erica Moreira,
Mark Omernick, Kevin Robinson, Sebastian Ruder,
Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang,
Gustavo Hernandez Abrego, Junwhan Ahn, Ja-
cob Austin, Paul Barham, Jan Botha, James Brad-
bury, Siddhartha Brahma, Kevin Brooks, Michele
Catasta, Yong Cheng, Colin Cherry, Christopher A.
Choquette-Choo, Aakanksha Chowdhery, Clément
Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev,
Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad
Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus
Freitag, Xavier Garcia, Sebastian Gehrmann, Lu-
cas Gonzalez, Guy Gur-Ari, Steven Hand, Hadi
Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jef-
frey Hui, Jeremy Hurwitz, Michael Isard, Abe Itty-
cheriah, Matthew Jagielski, Wenhao Jia, Kathleen
Kenealy, Maxim Krikun, Sneha Kudugunta, Chang
Lan, Katherine Lee, Benjamin Lee, Eric Li, Music
Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim,
Hanzhao Lin, Zhongtao Liu, Frederick Liu, Mar-
cello Maggioni, Aroma Mahendru, Joshua Maynez,
Vedant Misra, Maysam Moussalem, Zachary Nado,

John Nham, Eric Ni, Andrew Nystrom, Alicia
Parrish, Marie Pellat, Martin Polacek, Alex Polo-
zov, Reiner Pope, Siyuan Qiao, Emily Reif, Bryan
Richter, Parker Riley, Alex Castro Ros, Aurko Roy,
Brennan Saeta, Rajkumar Samuel, Renee Shelby,
Ambrose Slone, Daniel Smilkov, David R. So,
Daniel Sohn, Simon Tokumine, Dasha Valter, Vi-
jay Vasudevan, Kiran Vodrahalli, Xuezhi Wang, Pi-
dong Wang, Zirui Wang, Tao Wang, John Wiet-
ing, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven
Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav
Petrov, and Yonghui Wu. 2023. PaLM 2 technical
report. Preprint, arXiv:2305.10403.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu,
Misha Khalman, Felipe Llinares, Alexandre Rame,
Thomas Mesnard, Yao Zhao, Bilal Piot, et al. 2024.
Direct language model alignment from online ai
feedback. arXiv preprint arXiv:2402.04792.

Rolf Jagerman, Zhen Qin, Xuanhui Wang, Michael
Bendersky, and Marc Najork. 2022a. On optimizing
top-k metrics for neural ranking models. In Proceed-
ings of the 45th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 2303–2307.

Rolf Jagerman, Xuanhui Wang, Honglei Zhuang, Zhen
Qin, Michael Bendersky, and Marc Najork. 2022b.
Rax: Composable learning-to-rank using jax. In
Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages
3051–3060.

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In Proceedings of the
eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 133–
142.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stan-
ley, Richárd Nagyfi, et al. 2024. Openassistant
conversations-democratizing large language model
alignment. Advances in Neural Information Pro-
cessing Systems, 36.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kel-
lie Lu, Thomas Mesnard, Colton Bishop, Victor Car-
bune, and Abhinav Rastogi. 2023. Rlaif: Scaling
reinforcement learning from human feedback with
ai feedback. arXiv preprint arXiv:2309.00267.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman,
Mohammad Saleh, Peter J Liu, and Jialu Liu. 2023.
Statistical rejection sampling improves preference
optimization. arXiv preprint arXiv:2309.06657.

Tie-Yan Liu. 2009. Learning to rank for information
retrieval. Found. Trends Inf. Retr.

R Duncan Luce. 2005. Individual choice behavior: A
theoretical analysis. Courier Corporation.

2413

https://doi.org/10.1145/1571941.1572021
https://doi.org/10.1145/1571941.1572021
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2305.10403


OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural In-
formation Processing Systems, 35:27730–27744.

Robin L Plackett. 1975. The analysis of permutations.
Journal of the Royal Statistical Society Series C: Ap-
plied Statistics, 24(2):193–202.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Ke-
fan Xiao, Shivani Agrawal, and Jeff Dean. 2023. Ef-
ficiently scaling transformer inference. Proceedings
of Machine Learning and Systems, 5.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu,
Donald Metzler, Xuanhui Wang, et al. 2023.
Large language models are effective text rankers
with pairwise ranking prompting. arXiv preprint
arXiv:2306.17563.

Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Ku-
mar Pasumarthi, Xuanhui Wang, Michael Bender-
sky, and Marc Najork. Are neural rankers still out-
performed by gradient boosted decision trees? In
International Conference on Learning Representa-
tions.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAI blog, 1(8):9.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Nihar B Shah and Martin J Wainwright. 2018. Sim-
ple, robust and optimal ranking from pairwise com-
parisons. Journal of machine learning research,
18(199):1–38.

Noam Shazeer and Mitchell Stern. 2018a. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, pages 4596–4604.

Noam Shazeer and Mitchell Stern. 2018b. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,
pages 4596–4604. PMLR.

Lei Shu, Liangchen Luo, Jayakumar Hoskere, Yun Zhu,
Canoee Liu, Simon Tong, Jindong Chen, and Lei
Meng. 2023. Rewritelm: An instruction-tuned large
language model for text rewriting. arXiv preprint
arXiv:2305.15685.

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei
Huang, Yongbin Li, and Houfeng Wang. 2024. Pref-
erence ranking optimization for human alignment.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 18990–18998.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–
3021.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Nan Wang, Zhen Qin, Xuanhui Wang, and Hongning
Wang. 2021. Non-clicks mean irrelevant? propen-
sity ratio scoring as a correction. In Proceedings
of the 14th ACM international conference on web
search and data mining, pages 481–489.

Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael
Bendersky, and Marc Najork. 2018. The lambdaloss
framework for ranking metric optimization. In Pro-
ceedings of the 27th ACM international conference
on information and knowledge management, pages
1313–1322.

Yining Wang, Liwei Wang, Yuanzhi Li, Di He, and Tie-
Yan Liu. 2013. A theoretical analysis of ndcg type
ranking measures. In Conference on learning the-
ory, pages 25–54. PMLR.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and
Hang Li. 2008. Listwise approach to learning to
rank: theory and algorithm. In Proceedings of the
25th international conference on Machine learning,
pages 1192–1199.

Wei Xiong, Hanze Dong, Chenlu Ye, Han Zhong, Nan
Jiang, and Tong Zhang. 2023. Gibbs sampling from
human feedback: A provable kl-constrained frame-
work for rlhf. arXiv preprint arXiv:2312.11456.

Jun Yu, Dacheng Tao, Meng Wang, and Yong Rui.
2015. Learning to rank using user clicks and visual
features for image retrieval. IEEE Transactions on
Cybernetics, 45(4):767–779.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Wei Wang,
Songfang Huang, and Fei Huang. 2023. RRHF:
Rank responses to align language models with hu-
man feedback. In Thirty-seventh Conference on
Neural Information Processing Systems.

2414

https://arxiv.org/abs/2303.08774
https://doi.org/10.1109/TCYB.2014.2336697
https://doi.org/10.1109/TCYB.2014.2336697


Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman,
Mohammad Saleh, and Peter J Liu. 2023. Slic-hf:
Sequence likelihood calibration with human feed-
back. arXiv preprint arXiv:2305.10425.

A Proofs

Proof of Proposition 2.1.

Proof. When K = 2, there are only two pairs:
(y1, y2) and (y2, y1). We use yw to denote the win-
ning response and yl to denote the losing response.

Then Eq 5 becomes:

E(x,yw,yl)∼D
[
log(1 + e−(sw−sl))

]
= (12)

− E(x,yw,yl)∼D [log(σ(sw − sl))] (13)

which is the same as Eq (7) in Rafailov et al. (2023)
if we substitute si with β log πθ(yi|x)

πref(yi|x) .

Proof of Proposition 2.2.

Proof. When K = 2, there are only two pairs:
(y1, y2) and (y2, y1). We use yw to denote the win-
ning response and yl to denote the losing response.

Then Eq 6 becomes:

E(x,yw,yl)∼D [max (0, 1− (sw − sl))] (14)

which is the same as Eq (10) in Liu et al. (2023)
if we substitute si with β log πθ(yi|x)

πref(yi|x) and set β =
γ.

Proof of Proposition 2.3.

Proof. The list MLE loss is identical to the one in
Eq (20) in Rafailov et al. (2023) if we substitute si
with β log πθ(yi|x)

πref(yi|x) .

B Reproducibility

All our datasets are publicly available. The policy
and reward models are based on publicly accessible
model checkpoints as well. The implementation of
ranking objectives leverage open-sourced libraries
RAX. Algorithm 1 illustrates how to compute each
ranking loss in Python using RAX framework un-
der Jax. We are in the process of releasing well-
organized code to facilitate the reproducibility of
our work.

C AutoSxS Details

C.0.1 Implementation details
The purpose of the AutoSxS is to prevent the artifi-
cially high reward scores by Reward Model due to

reward hacking on learned policies. Since the pol-
icy is trained using the information in the pairwise
reward-ranking model, it is not necessary the higher
the win rate on reward-ranking model, the better
the policy. AutoSxS has been widely used in the
field (Rafailov et al., 2023; Liu et al., 2023) as one
source of evaluation. It can be agnostic to reward
hacking because the few-shot LLM is not trained
on the reward model’s training data. Our AutoSxS
uses PaLM 2-L-IT few-shot in-context learning to
infer 8 decoded samples with 4 flipped order of
response A and B. The label contains three choices:
A, B, and tie with score 1, 0, and 0.5, respectively.
To ensure the robustness, we use average score
to determine the win or loss if the magnitude ex-
ceeds 0.35. The AutoSxS has been demonstrated
as effective and consistent in DPO using GPT-4
as zero-shot rater (Rafailov et al., 2023). In this
work, we replace GPT-4 with PaLM 2-L-IT for our
evaluation using few-shot prompts. The quality
of PaLM 2-L-IT on similar tasks has been shown
to be close to human raters (Lee et al., 2023; Shu
et al., 2023). The systematic study on consistency
and quality of AutoSxS is beyond the scope of this
work.

C.0.2 Reddit TL;DR Few-Shot Prompts
task: Judge the quality of two TLDRs, choose the
options among (A), (B) or same.

context: I’ve (M[21]) been in a relationship for
a year and a half with F[22] and it really has never
gone well. I think we want different things and
we are not overly compatible. I broke up with her
about a year ago and she tried to kill herself so we
got back together. This week I met an F[19] who I
think I’m really compatible with. She and I talked
for a few hours and we have a lot in common. I
like her a lot, but she is currently a freshman and
I am currently a senior so I will be graduating in
May and going on to a prestigious PhD program
starting next fall.

So here are my questions: * What should I do in
regards to my current relationship? I know I need
to end it, but I just don’t know how. * What should
I do in regards to the other girl? * Do you think my
feelings for the other girl stem from my distaste for
my current relationship?

I appreciate any help you give me.
tldr (A): I’m unhappy in my current relationship
with a girl I just met, but don’t know how to end it.
I have no idea what I’m doing or what to do.
tldr (B): M[21] unhappy in relationship with F[22].
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Algorithm 1 Computing different ranking losses in Python

import rax
import jax.numpy as jnp

scores = jnp.array ([[2.0 , 1.0, 3.0]])
labels = jnp.array ([[1.0 , 0.0, 0.0]])

point_mse_loss = rax.pointwise_mse_loss(scores , labels)

point_sigmoid_loss = rax.pointwise_sigmoid_loss(scores , labels)

pair_hinge_loss = rax.pairwise_hinge_loss(scores , labels)

pair_logistic_loss = rax.pairwise_logistic_loss(scores , labels)

list_mle_loss = rax.listmle_loss(scores , labels)

softmax_loss = rax.softmax_loss(scores , labels)

lambda_loss = rax.pairwise_logistic_loss(
scores , labels , lambdaweight_fn=rax.dcg_lambdaweight

)

Met an F[19] in town with similar interests and
I really like her. What should I do in regards to
current relationship/other girl?
explanation: tldr (A)’s second and third sentences
convey similar idea and are redundant. tldr (B)
mentions an important piece of information of the
new girl, contains more details than tldr (A) and is
concise at the same time.
choose among (A), (B) or same: (B)

context: Before anything, not a sad story or any-
thing, I don’t think she’s cheating or anything of
the sorts. My country’s equivalent to Valentine’s
Day is coming and I had this pretty simple idea to
surprise my girlfriend and it would involve giving
her some roses. The thing is, although I know she
would appreciate my intention in and of itself, I
don’t know if she would like the actual flowers and
such, so I wanted to find out if she likes roses and
if she would like getting some, but without her re-
alizing it so as not to spoil the surprise. Any ideas
on how to get that information out of her? tldr
(A): How do I find out if my girlfriend likes roses
without her realizing it?
tldr (B): I want to surprise my girlfriend with some
flowers when Valentine’s Day is around the corner,
but I don’t know if she would like the flowers or
flowers themselves without her knowing.
explanation: tldr (A) is a concise that captures the
main idea. tldr (B) also captures the main point
with more details, but the language ’flowers or flow-
ers themselves’ is not fluent.
choose among (A), (B) or same: (A)

context: Okay, so my younger brothers were
out and about when they passed some teenagers
who yelled obscenities at them. My father then
went over and told them to knock it off, when they
started yelling obscenities at him. My dad, with
a small amount of temper, got angry and yelled
at them. They started recording it and made a
video on YouTube where it looked like he was
just screaming at them. After that, we were able to
get it taken down only to have it reuploaded with
blurred faces. We have in no way given consent to
be in this video. Is there any way we can get them
to take it doen?
tldr (A): my dad got angry at teenagers for yelling
obscenities at him, they got a video on youtube and
blurred faces, what can we do to get it taken down?
tldr (B): My brothers were being verbally harassed
by kids, father yelled at them, they made a video
of it to get the video taken down, it was like a blur
with blurred faces.
explanation: tldr (A) mentions most main points
of story while skipping some details like younger
brothers being yelled at and original videos taken
down. tldr (B) has a major factual error, they didn’t
make a video to get the video taken down.
choose among (A), (B) or same: (A)

context: Apologize for the throw away account.

My friend is interested in in making his way into
the mainstream music industry as an A&R repre-
sentative. He has a 4 year degree in English but
did some extra curricular activities around music
business in college. He also has had 2 internships

2416



out of college with small time record labels in the
Chicago area. He has been trying for a few years
now with no success. He lives in Chicago but has
moved to LA for a year. He returned recently to
Chicago. It has been about 3 years since his last in-
ternship, but he has done some online collaboration
stuff. Still far and few in between.

My question is what path have any of you taken
to make your way into the record industry? Is net-
working the only important thing? Is there a set of
skills that are specifically looked for?
tldr (A): My friend wants to make his way into the
music industry as an A&R representative. What
does he need to know to make it happen?
tldr (B): friend wants to break into the music in-
dustry as an A&R rep. what is the best way to do
this?
explanation: tldr (A) and (B) are basically para-
phrase of each other. With (A) slightly more ver-
bose and (B) slightly more concise.
choose among (A), (B) or same: same

context: I was at a concert this weekend support-
ing my favorite artist. Most of the amphitheater
was standing, however *some* people in my sec-
tion were not (including some people behind me
and to my right). All of a sudden at the end of the
set I got basically shoved in the back and told to sit
down. I told them absolutely not, I want to support
my favorite artist (who kept saying STAND UP,
btw). I paid over $100 for these seats and I want to
have a great time.. after all this IS a concert. Not
to mention, I heard them calling me names before
they confronted me so now I was certainly not go-
ing to sit down. Then a few songs later the woman
sitting next to me told me what a bitch I was for
not letting the people behind me see. Was I in the
wrong here?
tldr (A): I stood up at a concert, people in front of
me didn’t and confronted me. Was I in the wrong?
tldr (B): I stood up at a concert even though I was
told not to. I got yelled at by a woman who was
sitting next to me. Was I in the wrong?
explanation: tldr (A) doesn’t say who confronted
the author or wrongly implied it was the people
in front. tldr (B) is correct but could mention that
more people confronted the author than the woman
sitting next.
choose among (A), (B) or same: (B)

C.0.3 AnthropicHH Few-shot Prompts
task: For the following query to a chatbot, which
response is more helpful? Choose among (A), (B)

and same.
context: Human: Why can’t humans build a

space station on the moon? Assistant: That’s a re-
ally good question. We don’t know yet if we’ll be
able to build a space station on the moon, though
it seems quite feasible. But we can also look at
the science for something more ambitious, like a
spaceship that’s large enough to make a round trip
to Mars. That might be hard to do! Even with the
technology we have now, it’s not clear to scientists
how you’d build a spaceship that would travel for
months in space. Human: I think we should start
on the Moon first.
response (A): Assistant: I think you’re right that
the Moon is a good place to start, since it’s a natu-
ral satellite of Earth. There are a lot of interesting
places on the Moon to study, but we have to go to
Mars to check out the atmosphere, the conditions
on the ground, and the survival potential of humans,
and to see if there are living things.
response (B): Assistant: The problem is that we
don’t know yet if it’s even possible to build a space
station on the moon. But let’s assume we could do
it, and see how far we could get with a spaceship
to Mars.
explanation: Response (A) offers a more expan-
sive and engaged exploration of the user’s senti-
ment about starting with the Moon, while Response
(B) reiterates previous information without address-
ing the user’s perspective or adding new insights.
choose among (A), (B) and same: (A)

context: Human: What is garam masala?
Assistant: Garam masala is a mixture of spices,

typically consisting of cumin, pepper, garlic, and
either coriander, ginger, or both. It’s frequently
used in curries or vegetable dishes, but it’s also
added to some vegetable or meat sides, or used as
a spread.

Human: What other things can I add to it to
make it unique?

Assistant: Try adding some of the following in-
gredients, in any combination you like: turmeric
cinnamon cardamom celery seeds fennel fresh
chilies, like jalapeños or Thai chiles grated ginger
green onions basil mint

Human: Is there a sweet garam masala?
Assistant: Yes, some garam masasalas are sweet-

ened. They might contain sugar or honey, or they
might be just made with ground cinnamon or car-
damom. You might also want to mix some sort of
mango or pineapple relish into your garam masala.

Human: What is a good use for sweet garam
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masala?
response (A): Assistant: You might use it to flavor
vegetable or meat stews, or chilies, or as a spread
on toast. You might mix some into yogurt or fruit
salad, or serve it with nuts and chutney on crack-
ers.
response (B): Assistant: Sweet garam masala is
typically used in desserts like ice cream or fudge,
or in sweet curries like risotto or köfte. You can
also use it in curries to add a sweet flavor. You can
also use it as a spice rub for meats, like chicken or
fish. You can also use it as a spice mix in a curry,
or you can use it to make a sweet sauce for a curry.
explanation: Response (B) offers specific and di-
verse uses of sweet garam masala, allowing the user
to get a clearer idea of its potential applications in
cooking.
choose among (A), (B) and same: (B)

context: Human: What is the customary amount
to tip a taxi driver?
response (A): Assistant: The standard tip for taxi
drivers in the United States is typically a 20% tip.
This is a fairly standard tip that is given to taxi
drivers for a job well done, and it’s also a nice
gesture to show your appreciation for their ser-
vice. The tip can be more or less depending on
the driver’s service and the level of professionalism
they showed. If you’re considering tipping a taxi
driver, I would recommend giving them a tip of at
least 20%.
response (B): Assistant: A standard 10% tip is rec-
ommended.
explanation: Response (A) provides a clear recom-
mendation, contextualizes it to a specific country
(the U.S.), and offers additional guidance based
on the quality of service. It’s more comprehensive
than response (B).
choose among (A), (B) and same: (A)

D HumanSxS Details

For task examples see Figure 4 and Figure 5 for
Reddit TL;DR and AnthropicHH respectively.

E Human Evaluation on XXL Policy

We conduct human evaluation on Reddit TL;DR
task to verify the gains on XXL policy. The result
is shown in Table 5. LiPO-λ shows to be preferred
more often than DPOBT and DPOPL (PRO).

Approach Chosen as Preferred Quality
DPOBT 25% 3.86
DPOPL (PRO) 19% 3.81
LiPO-λ 27% 3.90

Table 5: Human evaluation comparing three loss func-
tions on Reddit TL;DR task with XXL policy.

F Reward-ranking Model Details

We train a pairwise T5-XXL (Raffel et al., 2020)
text-to-text reward-ranking model ρ(x, y1, y2) on
human preference dataset to approximate P(y1 �
y2|x). SLiC-HF (Zhao et al., 2023) demonstrates
that pairwise reward model is preferred in RL-free
learning. Our pairwise reward ranking model has
accuracy of 73.23% on the validation split for sum-
marization task and 69.75% on the validation split
for AI assistant task. The model ρ(x, y1, y2) takes
the text input as:

• “[CONTEXT] x [SUMMARY A] y1 [SUM-
MARY B] y2” for summarization task

• “[CONTEXT] x [RESPONSE A] y1 [RE-
SPONSE B] y2” for AI assistant task

ρ(x, y1, y2) outputs “A” or “B” as preferred one.
We use the probability of decoding “A” as estima-
tion of the preference probability P̂(y1 � y2|x).
We randomly flip response pairs and the associated
labels to remove positional bias. We use 64 TPU-
v3 chips to train the pairwise reward model, which
takes about 2 hours for each experiment. We use
batch size 128 with up to 1024 input tokens and
2 output tokens. We use Adafactor (Shazeer and
Stern, 2018b) optimizer with learning rate 0.001.
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Figure 4: Example of human evaluation task on Reddit TL;DR dataset.
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Figure 5: Example of human evaluation task on AnthropicHH dialogue dataset.
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