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Abstract

When comparing the linguistic capabilities of
language models (LMs) with humans using LM
probabilities, factors such as the length of the
sequence and the unigram frequency of lexical
items have a significant effect on LM proba-
bilities in ways that humans are largely robust
to. Prior works in comparing LM and human
acceptability judgments treat these effects uni-
formly across models, making a strong assump-
tion that models require the same degree of
adjustment to control for length and unigram
frequency effects. We propose MORCELA, a
new linking theory between LM scores and ac-
ceptability judgments where the optimal level
of adjustment for these effects is estimated
from data via learned parameters for length
and unigram frequency. We first show that
MORCELA outperforms a commonly used
linking theory for acceptability—SLOR (Pauls
and Klein, 2012; Lau et al., 2017)—across two
families of transformer LMs (Pythia and OPT).
Furthermore, we demonstrate that the assumed
degrees of adjustment in SLOR for length and
unigram frequency overcorrect for these con-
founds, and that larger models require a lower
relative degree of adjustment for unigram fre-
quency, though a significant amount of adjust-
ment is still necessary for all models. Finally,
our subsequent analysis shows that larger LMs’
lower susceptibility to frequency effects can be
explained by an ability to better predict rarer
words in context.1

1 Introduction

Are the probabilities provided by language mod-
els (LMs) compatible with theories of linguistics
and human language processing? This is a funda-
mental question that has implications in fields from
psycholinguistics to natural language processing
applications, and requires understanding of how to
relate LM probabilities with quantities associated

1Our code is available at https://github.com/
lindiatjuatja/morcela.

(1) Acceptable (Score: 1.19)
It is silly for one to sing in the shower.

(2) Borderline (Score: 0.00)
Tanya danced with as handsome a boy as
her father.

(3) Unacceptable (Score: −1.11)
It seems a cat to be in the tree.

Figure 1: English sentences with linguistic acceptability
scores reported by Sprouse et al. (2013). Participants
where asked to rate sentences on a scale from 1 (least ac-
ceptable) to 7 (most acceptable), whose scores were then
normalized by participant to a mean of 0 and variance
of 1. Scores shown are averaged across participants.

with human language processing. In this work, we
consider the relationship between LM probabilities
and human judgments of linguistic acceptability,
and investigate how LM probabilities should be
treated when comparing them to human acceptabil-
ity judgments.

Acceptability judgments are speakers’ reported
perceptions about the well-formedness of utter-
ances, which are often elicited by asking questions
such as “How natural/acceptable/grammatical is
this utterance?” (Sprouse, 2013). These judgments
are typically reported in binary or numerical form
(Sorace and Keller, 2005; Sprouse, 2007, 2015;
Lau et al., 2017), and they are collected through a
variety of annotation tasks, such as binary classi-
fication, Likert scale scoring, or ranking (Schütze,
2016; Sprouse et al., 2013). Examples of accept-
ability judgments, from Sprouse et al. (2013), are
provided in Figure 1. Judgments such as these play
a central role in linguistics, where they are used to
motivate and evaluate theories of natural language
syntax (Chomsky, 1957).

In order to relate LM probabilities with any
human behavioral measure, we need a linking
theory between them to make the two quantities
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comparable. Although the existence of a rela-
tionship between probability and acceptability has
been subject to debate (Quine, 1960; Chomsky,
1969; Pereira, 2000; Norvig, 2017), an influential
proposal by Lau et al. (2017) hypothesizes that
sentence-level LM probabilities largely reflect lin-
guistic acceptability, but are influenced by word
frequency and sentence length in ways that humans
are largely robust to. Thus, a linking theory be-
tween LM probabilities and human acceptability
scores should somehow control for these factors.
Out of the various functions they used to control for
length and frequency, Lau et al. (2017) find that the
syntactic log-odds ratio (SLOR, Pauls and Klein,
2012) served as the best linking theory between ac-
ceptability and probabilities from n-gram LMs and
simple recurrent LMs (Elman, 1990). SLOR con-
trols for unigram frequency and length in a uniform
manner across LMs by dividing the probability of
the sentence under the LM by the joint unigram fre-
quency, then averaging over all tokens to control for
length. However, it is not clear a priori that these
model-agnostic transformations are the appropri-
ate ones to link LM probabilities and acceptability
judgments, nor that these transformations should
be held constant across different LMs.

In this work, we first show that the model-
agnostic transformations in SLOR may severely
underestimate LM probability correlations with hu-
man acceptability judgments. We propose a new
linking theory, Magnitude-Optimized Regression
for Controlling Effects on Linguistic Acceptabil-
ity (MORCELA), a parameterized linking theory
where the effect sizes of length and unigram fre-
quency are automatically estimated from human
acceptability judgment data. Our experiments first
show that MORCELA significantly outperforms
SLOR in predicting human acceptability judgments
from probabilities calculated by Transformer LMs
(Vaswani et al., 2017) from the Pythia (Biderman
et al., 2023) and OPT (Zhang et al., 2022) families.
Our results show a relationship with scale, where
larger models exhibit greater correlation with hu-
man judgments compared to smaller models in
the same family, using the same linking theory.
Examining the estimated optimal parameter val-
ues of MORCELA reveals that larger models are
more robust to length and unigram frequency ef-
fects, and thus their probabilities require a lower
degree of adjustment when comparing them to hu-
man acceptability judgments. We show in particu-
lar that larger models’ lower reliance on unigram

frequency is driven by their improved ability to pre-
dict rare words given appropriate context. These re-
sults demonstrate that when comparing probability-
based LM acceptability judgments to those of hu-
mans, controls for factors like length and unigram
frequency should be made on a per-model basis.

2 MORCELA: Acceptability Judgments
from LM Probabilities

To evaluate LMs according to their ability to pre-
dict human judgments of linguistic acceptability,
we need a linking function that takes as input the
probability of the sentence under a LM and outputs
an acceptability score, which we then correlate with
human judgments. This linking function should
account for the effects of length and unigram fre-
quency, as noted by Lau et al. (2017), which im-
pact LM probabilities in predictable ways that
may cause them to deviate from human judgments.
Specifically, longer sentences will be assigned a
lower probability than to any strictly smaller prefix
of the sentence and a sentence containing a rare to-
ken will likely have a lower probability compared
to one containing a more frequent one, all else be-
ing equal.

We propose MORCELA (Magnitude-Optimized
Regression for Controlling Effects on Linguistic
Acceptability), a parameterized linking function
given by

acceptability ∝ p− βu+ γ

ℓ
(1)

where ℓ is the length of a sentence, p is the sen-
tence’s LM log probability, u is the sentence’s un-
igram log probability, and β and γ are learnable
parameters. The values of β and γ can be estimated
from human acceptability judgment data by fitting
a linear regression model

acceptability ≈ a
p

ℓ
+ b

u

ℓ
+ c

1

ℓ
+ d

and taking β = −b/a and γ = c/a. MORCELA
improves upon the syntactic log-odds ratio (SLOR,
Pauls and Klein, 2012), widely used as a link-
ing function for predicting acceptability judgments
(Lau et al., 2017, 2020; Sprouse et al., 2018; Kann
et al., 2018; Kumar et al., 2020; Misra and Ma-
howald, 2024; Lu et al., 2024), by allowing for
arbitrary linear relationships between the variables
p and u via the parameters β and γ. We argue
here that MORCELA mitigates overcorrections for
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length and frequency effects from SLOR, and our
main experiment shows that MORCELA scores are
significantly more correlated with z-normalized
human acceptability ratings than SLOR scores.

2.1 Prior Work: SLOR
SLOR was proposed as a linking function by Lau
et al. (2017), who compare it against several other
linking functions on acceptability judgments from
multiple sources. SLOR predicts the acceptability
rating of a sentence to be given by

acceptability ∝ p− u

ℓ
(2)

where p, u, and ℓ are defined as above. Intuitively,
the SLOR score of a sentence is the average log
probability assigned to its tokens, adjusted for fre-
quency. It uses p as an initial estimate of acceptabil-
ity, and incorporates ℓ and u under the assumption
that long sentences and sentences with rare words
have lower LM probabilities, but not lower human
acceptability judgments, than short sentences or
sentences without rare words.

2.2 MORCELA
The normalizations involved in SLOR are based
on specific assumptions about the impact of length
and frequency on LM probabilities, namely that
LM probabilities and unigram frequencies should
have equal importance on the resulting acceptabil-
ity score, and that taking the geometric mean of
each token’s probability under the LM largely elim-
inates the impact of sentence length. However,
it is unclear a priori whether these assumptions
hold, and furthermore whether they hold uniformly
across models.

MORCELA relaxes these assumptions by allow-
ing for arbitrary linear relationships between LM
probabilities and unigram frequencies, expressed
via the parameters β and γ. These parameters can
be understood as mitigating overcorrections for fre-
quency and length effects by SLOR, respectively.
To see this, let us rewrite equations (1) and (2) as
follows:

MORCELA = SLOR + (1− β)
u

ℓ︸ ︷︷ ︸
frequency

+ γ
1

ℓ︸︷︷︸
length

The “frequency” term, controlled by β, adjusts
SLOR according to the average unigram proba-
bility of the sentence’s tokens, while the “length”
term, controlled by γ, provides an adjustment to

SLOR that is inversely proportional to the sen-
tence’s length.

3 Main Experiment

How much does optimizing the relative effect of
length and unigram frequency via MORCELA im-
pact fit of LM acceptability scores to human judg-
ments? To investigate this, we correlate the LM
acceptability scores from MORCELA to gradient
human judgments across LMs of varying sizes and
compare the resulting correlation to two baseline
linking functions: log probabilities and SLOR.

3.1 Models

We evaluate models of varying sizes from the
Pythia Scaling Suite (Biderman et al., 2023) and
Open Pre-Trained Transformers (OPT, Zhang et al.
2022) families. Both families of models are
decoder-only autoregressive transformer LMs. We
test all eight sizes of Pythia models (70M–12B pa-
rameters) and all but the two largest OPT models
(125M–30B parameters). Models within each fam-
ily were trained on the same pretraining corpus:
Pythia models were trained on The Pile (Gao et al.,
2020), whereas the OPT models were trained on a
concatenation of data from subsets of the RoBERTa
training corpus (Zhuang et al., 2021), The Pile (Gao
et al., 2020), and PushShift.io Reddit (Baumgartner
et al., 2020; Roller et al., 2021). Both families of
models saw ≈ 300B tokens during training. We
list additional model hyperparameter details in Ap-
pendix A.

3.2 Unigram Frequency Estimation

As input to the various linking functions, we need
to calculate the LM probability p, the unigram prob-
ability u, and length ℓ of the sentence in tokens.2

To calculate u, we need to measure the frequency
of tokens as they appear in the training corpus of
the LM. This is easily done for the Pythia models
as the training corpus (The Pile, Gao et al. 2020)
is publicly available. However, since this is not
the case for the OPT models, we instead look at
text generated from the largest OPT model we test

2Technically, for the OPT models this involves calculating
the probability conditioned on only the beginning of sequence
(BOS) token. Pythia models were trained without a BOS to-
ken, so to calculate p we do not append an additional BOS
token to the input sequence, and instead exclude the first to-
ken’s probability when calculating p and u, though subsequent
tokens in p are calculated with the first token provided in the
context. We also exclude the first token when calculating the
length of the sentence ℓ.
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(OPT-30B) as a proxy for the training corpus, with
the intuition that the distribution of generated text is
largely similar to that of its pretraining corpus. We
estimate token unigram frequency by aggregating
the probability of a token being generated in each
position of a sequence of arbitrary length, then av-
eraging this value over a large number of generated
sequences (n = 100000). We provide additional
details for this estimation process in Appendix B.

3.3 Dataset

We evaluate acceptability predictions and fit
MORCELA parameters using data from Sprouse
et al. (2013), which contain acceptability judg-
ments for example sentences from the Linguistic
Inquiry, a leading theoretical linguistics journal.
We use judgments reported on a 1–7 Likert scale
by native English speakers in the United States, z-
normalized by annotator.3 To ensure balance, we
limit our dataset to minimal pairs of acceptable and
unacceptable sentences that Sprouse et al. (2013)
have determined to have equal semantic plausibility.
After filtering out unpaired sentences as well as sen-
tences with missing data, we obtain a final dataset
of acceptability judgments for 1450 sentences.

3.4 Fitting and Evaluating Linking Functions

For each linking function we examine, we calcu-
late the correlation (Pearson’s r) between the LM
acceptability scores generated by the function and
z-normalized Likert scale human judgments. For
functions with learned parameters, we train and
evaluate linear regression models using 5-fold cross
validation (with shuffling), and report the average
correlation over each test fold. To calculate an up-
per bound for correlation, we randomly split judg-
ments per sentence into two groups, which yields
an inter-group correlation of r = 0.860.

4 Results

We first compare MORCELA to two baseline link-
ing functions (raw log probabilities and SLOR),
then assess the impact that parameterizing either
unigram frequency or length has on correlation
with human judgments.

3For example, the acceptability score of 1.19 for sentence
(1) in Figure 1 means that this sentence was judged to be 1.19
standard deviations more acceptable than the mean acceptabil-
ity of sentences in the dataset.

4.1 MORCELA vs. SLOR

Figure 2 shows correlation of acceptability scores
using log probabilites, SLOR, and MORCELA
across varying sizes of Pythia and OPT models.
There is a general increasing monotonic trend with
size, though to a lesser degree with the OPT models
as smaller OPT models have a higher correlation
with humans compared to similarly sized Pythia
models. Nevertheless, overall trends regarding the
relative performances of the different linking func-
tions, and how they change with scale, are similar.

Across all models, the addition of the two
learned parameters in MORCELA leads to a sig-
nificant gain in correlation with human judgments.
We observe up to +∆0.33 increase from raw log
probabilities and +∆0.17 from SLOR with Pythia-
6.9B and 12B, which amounts to a 46% relative
error reduction from SLOR with respect to the
inter-group correlation upper bound. As models
get larger (and correspondingly, generally better
at predicting human judgments), we also observe
greater differences in correlation between SLOR
and MORCELA. This suggests that larger models
with higher baseline correlation with humans (as
demonstrated by higher raw log probability cor-
relation) reap greater benefits from the additional
parameterization.

4.2 Parameter Ablation Study

The performance gap between SLOR and
MORCELA clearly shows that the assumed values
(β = 1, γ = 0) in SLOR are non-optimal across all
models, and especially so for larger ones. But how
important is the optimization of either parameter
in improving fit to human judgments? To answer
this, we perform ablations to MORCELA, where
either length or unigram normalization are set to
their default values (β = 1, γ = 0) and the other is
allowed to vary.

The results of these ablations are shown in Fig-
ure 3, where MORCELAβ=1 optimizes the value
of the length-normalized intercept γ given the
default weight for unigram frequency, and vice
versa for MORCELAγ=0. We find that optimiz-
ing the unigram coefficient β without a length in-
tercept (MORCELAγ=0) leads to little to no gain
in performance. In contrast, adding the length-
normalized intercept γ while keeping the unigram
coefficient β fixed (MORCELAβ=1) can—for the
smallest Pythia models—reach the performance
of MORCELA, though the difference between
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intercept γ to vary on its own (MORCELAβ=1) leads to similar performance to MORCELA, though models still
benefit from additionally varying the unigram coefficient β.

MORCELAβ=1 and MORCELA tends to grow as
models become larger.

A natural question that follows is whether this
gain in correlation is significant enough to war-
rant the extra degree of freedom that comes with
additionally varying β. Using two model selec-
tion criteria—Akaike information criterion (AIC,
Akaike 1974) and Bayes information criterion
(BIC, Schwarz 1978), which take into account both
model fit and number of predictors—we find that it
is: MORCELA is preferred over MORCELAβ=1

for all but one LM (Pythia-14M).4 Thus, while the
addition of the length-normalized intercept γ on
its own can significantly correlation with human

4We include details for calculation and values of AIC and
BIC for each linking function per LM in Appendix C.2.

judgments, adding the unigram coefficient β in con-
junction with γ is still preferred.

4.3 Trends in Length and Unigram Frequency
Effects Across Models

The above results tell us that the coefficients
used by SLOR to control for length and unigram
frequency—namely an equal weighting of LM log
probabilities and unigram log probabilities and the
lack of a length-normalized intercept—are non-
optimal, and that the impact of turning these con-
trols into tuned parameters impacts models to vary-
ing degrees. However, looking at correlation alone
does not tell us about how these controls are non-
optimal. We inspect the learned optimal values of
the unigram coefficient β and length-normalized

2177



8

9

10

11

12

Le
ng

th
: 

0.35 0.40 0.45 0.50 0.55 0.60 0.65
Correlation with Human Judgments (Pearson r)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

U
ni

gr
am

 F
re

qu
en

cy
: 

Optimal Values of  and  for MORCELA

1

1

2

3

4

6
5

7 8

9

9

8
7

5
6

4

3

2

Figure 4: Optimal values of γ (top) and β (bottom)
versus correlation with human judgments across for
MORCELA, fit using all of the data. As models become
better correlated with human judgments, γ increases
and β decreases. Points shown are from Pythia mod-
els (numbered from smallest to largest), though these
trends generally hold for the OPT models as well (see
Appendix C).

intercept γ to see whether the assumed values in
SLOR are under- or overestimating the impact of
these confounds across models.

Figure 4 shows the optimal values of γ and β
for MORCELA, fit using all the data. All values of
γ are positive, and grow larger as models become
better correlated with human judgments. Qualita-
tively, the observation that γ is positive indicates
that naively normalizing by dividing by the length
of the sentence is actually overcorrecting for length.
A larger positive γ more dramatically increases
acceptability scores of shorter sentences relative
to longer ones. This counteracts the division by
length, which on its own increases the scores of
longer sentences.

Like γ, for the unigram coefficient β we see a
trend with respect to correlation (and thus, to a
large extent, model size), though in this case the
value of β decreases as correlation increases. No-
tably, all values of β are less than the default value
of 1. This, too, shows that the assumed impact of
unigram frequency as used in SLOR is an overes-

timate, and that larger models tend to require less
adjustment for unigram frequency. Additionally,
we find that trends across both γ and β also hold
among various other linking functions that parame-
terize β and/or γ, as shown in Figure 6 in Appendix
C.

5 Ability to Predict Infrequent Tokens
Explains Impact of Unigram Frequency

As we have just shown, as models get larger and
better at predicting human acceptability judgments,
the smaller the relative importance of unigram fre-
quency becomes. One possible explanation for this
is that models that are better predictors of accept-
ability are so because they are better at predicting
more infrequent tokens in context, and as a result
are more robust to the effect of unigram frequency.
The intuition behind this is that while some tokens
may be very rare within the distribution of the en-
tire corpus (e.g. names of chemical compounds),
they may be relatively frequent given a specific
context (e.g. within a scientific article). Thus, if a
model is better able to predict such cases of tokens
by utilizing context, they should no longer need to
be controlled as heavily for unigram frequency.

To test this hypothesis, we first need a way to
quantify the ability of a LM to predict rarer tokens
in context. We operationalize this by correlating
the LM’s conditional log likelihood over instances
of tokens with the unigram log-probability of those
tokens. As our corpus to calculate conditional log
likelihood over, we use a portion (∼ 100 million
tokens) of the test set of The Pile (Gao et al., 2020),
the training corpus of the Pythia models. For uni-
gram log-probabilities, we use counts from the en-
tire training split (as in our calculations of pU (S)).
We do this for all sizes of models in the Pythia
suite. To calculate conditional log likelihood, we
use a sliding window of the max sequence length
of the Pythia models (2048 tokens) with a stride of
1024. As before, since Pythia was trained without
a BOS token, the log likelihood of the first token
in a document is not considered.

If our hypothesis—that LMs better at predict-
ing rarer tokens in context are more robust to uni-
gram frequency effects—holds, we would expect
that models that are worse at predicting human ac-
ceptability judgments have lower conditional log
likelihood for more infrequent tokens compared to
models that are better fits to judgments, and vice
versa. In other words, if we were to plot conditional
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log probability versus unigram log-probability, we
should see that models with higher correlation with
human judgments and lower values of β have a
steeper positive slope.

We find that this prediction largely holds, as
shown in Figure 5. In general, as models get better
at predicting rarer tokens in context, i.e. a higher
log likelihood on aggregate for rarer tokens and
thus a less positive slope between log likelihood
and token unigram frequency, they show greater
correlation with human judgments as well as in-
creasingly lower values of β.

6 Discussion

Our method MORCELA lies within the context of
a large body of work that examines how well (neu-
ral) language models reflect human-like language
processing. We now discuss our work’s relation to
previous studies evaluating LMs as psycholinguis-
tic subjects and the application of parameterized
linking theories in this setting, and compare our
results to related findings from comparisons of LM
surprisal to reading times.

6.1 Methods for Evaluating LMs as
Psycholinguistic Subjects

A common methodological setup in comparing the
linguistic capabilities of language models to hu-
mans is the targeted syntactic evaluation paradigm
(Linzen et al., 2016; Marvin and Linzen, 2018;
Gulordava et al., 2018, inter alia). In this setup,
probability-based LM judgments are considered

consistent with those of humans if they assign a
higher probability to acceptable sentences com-
pared to their minimally different unacceptable
counterparts. Datasets such as BLiMP (Warstadt
et al., 2020), as well as evaluation frameworks
like SyntaxGym (Gauthier et al., 2020), follow
this paradigm. A notable feature of many of these
works is the use of a forced choice, binary judgment
setup, which comes with the assumption that one
sentence is more acceptable than the other. Thus,
in these evaluations the information about relative
differences within and across pairs is not present,
though the use of minimal pairs in itself does not
require this. For example, work by Leong and
Linzen (2023) correlate the difference in LM prob-
abilities between the acceptable and unacceptable
sentences within a minimal pair with the difference
in gradient human judgments. Nevertheless, the
use of minimal pairs makes strictly controlling for
length and frequency effects possible at the data
construction stage.

Our experimental setting is most similar to work
such as Lau et al. (2017), Vázquez Martínez et al.
(2023), Misra and Mahowald (2024), and Lu et al.
(2024) which instead correlate (transformed) LM
probabilities directly to gradient human judgments
on individual sentences. However, while this set-
ting more easily allows for greater granularity in
judgments across a wider range of examples, it
requires a linking function that either assumes or
estimates the effects of various factors on LM prob-
abilities. Commonly used linking functions in these
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settings, such as SLOR, bake in assumptions about
length and frequency effects, namely that length
can be controlled for by dividing by the number of
tokens in the sequence, and that unigram frequency
and LM probabilities should have equal weight.
Our work challenges these assumptions by instead
estimating this effect directly from acceptability
data via a parameterized linking function.

6.2 Linking Functions
More generally, a linking function between mea-
sured quantities from LMs and humans is a way
to control for asymmetries in effects of factors ex-
ternal to the construct of interest. In the case of
LM probabilities and acceptability judgments, we
expect that LM probabilities over sentences are
impacted by unigram frequency and the length in
ways that humans are thought to be largely robust
to (Lau et al., 2017; Goodall, 2021).

We can draw parallels to methods in compar-
ing LM word-level surprisal with measures of in-
cremental sentence processing (e.g. eye tracking,
reading and reaction times), where instead there
are external effects on the human side, such as the
length or predicatbility (estimated using a statis-
tical language model) of a word in reading time
experiments (Smith and Levy, 2013; Goodkind and
Bicknell, 2018; Wilcox et al., 2021; Meister et al.,
2021). However, unlike other works comparing
LMs to human acceptability judgments that assume
the strength and quality of effects (specifically of
length and unigram frequency), it is standard for
the parameters associated with the covariates in
these studies are learned and fit per participant.
MORCELA can be viewed as following a similar
methodology, where we instead fit parameters per
model to correct for model-side effects.

Nevertheless, MORCELA, like SLOR, still
makes the assumption that the form of the relation-
ship between LM probabilities and acceptability
is log-linear. Meister et al. (2021) find evidence
for a super-logarithmic relationship between LM
probabilities and reading times, as well as binary
acceptability judgments, differing from our gradi-
ent judgment setting; future work could explore
other forms to fit between probabilities and gradi-
ent judgments.

6.3 Impact of Scale on Similarity with
Humans

MORCELA demonstrates that the strength of
length and unigram frequency effects (1) are not

uniform across models, (2) are overestimated by
the default values in SLOR, and (3) show a trend
with scale. As models become larger and generally
better predictors of human acceptability judgments
(up to a certain point), the less they need to be con-
trolled for unigram frequency effects. In contrast,
prior work by Oh and Schuler (2023) observe the
opposite trend with respect to scale when compar-
ing LM surprisal with reading times, with larger
models serving as poorer fits to humans. In follow-
up work they found that this trend can be explained
by frequency, with the inverse correlation between
model size and reading times being the strongest
amongst the least frequent words (Oh et al., 2024).
Similar to our analysis, they show that this is driven
by the ability of larger LMs to more accurately pre-
dict rare words.

We hypothesize that the seeming paradox be-
tween more human-like judgments vs. less human-
like reading time predictions may be a consequence
of the role of predictability in offline and online
language processing. In the case of reading times,
it may be that frequency effects at the word level
are important for humans, and thus models can be
“too good” at predicting rare words relative to hu-
mans, whereas this is may not the case—at least, to
the same extent—in predicting acceptability judg-
ments.

7 Conclusion

In this work, we reexamine the assumptions made
by commonly used linking theories such as SLOR
in evaluating LMs’ fit to human acceptability
judgments. We introduce a new linking theory,
MORCELA, which parameterizes controls for
length and unigram frequency, and learns the op-
timal values for these controls from acceptability
data via linear regression. By adding two simple,
interpretable parameters, MORCELA drastically
improves correlation with human judgments com-
pared to SLOR, showing that SLOR greatly un-
derestimates correlation between LM and human
acceptability scores. An inspection of the optimal
values of these parameters shows that the magni-
tude of correction for confounds in SLOR overesti-
mate the impact of frequency and length in Trans-
former LMs, and that this overestimation is greater
as models grow larger. Finally, we show that LMs’
robustness to unigram frequency effects can be ex-
plained by their ability to predict rarer words in
context.
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Our findings suggest that evaluations of
probability-based LM acceptability judgments
should account for model-specific qualities with re-
spect to factors like frequency and length, and that
doing so reveals that LMs may be better correlated
with human judgments than previously thought.
However, there is still a sizable gap between the
maximum correlation between LMs and human
judgments and the correlation between annotators.
Future work could investigate what additional fac-
tors/transformations could lead to closer correspon-
dence between LMs and humans, and further inte-
grate these insights into training more cognitively
plausible models.

8 Limitations

Our evaluations are limited to two model families
trained on predominantly English data on judg-
ments of English sentences by English AMT work-
ers with a US-based location (Sprouse et al., 2013).
Thus, there is no guarantee that our results would
hold for models or data in other languages/in a mul-
tilingual setting. The size of our data (n = 1450) is
relatively small, so while we expect general trends
with respect to scale to hold, the actual values of
the optimized parameters may change with larger
and more varied data.
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A Model Hyperparameters

Hyperparameters of the Pythia and OPT models
examined in this work are shown in Table 1.

B Unigrahams Estimator

This section proposes a novel technique, the un-
igrahams estimator, for estimating the unigram
distribution of an LM without access to its train-
ing corpus. The unigrahams estimator estimates
the unigram distribution for text generated by an
LM of a given length ℓ, which we assume approxi-
mates the unigram distribution of the LM’s training
corpus. Given a prompt x, we generate a number
n of responses to x, counting the number of oc-
currences of each token in each response. These

Model Variant #L #H dmodel #Parameters

OPT 125M 12 12 768 ∼125M
OPT 350M 24 16 1024 ∼350M
OPT 1.3B 24 32 2048 ∼1.3B
OPT 2.7B 32 32 2560 ∼2.7B
OPT 6.7B 32 32 4096 ∼6.7B
OPT 13B 40 40 5120 ∼13B
OPT 30B 48 56 7168 ∼30B

Pythia 14M 6 4 512 ∼14M
Pythia 70M 6 8 512 ∼70M
Pythia 160M 12 12 768 ∼160M
Pythia 410M 24 16 1024 ∼410M
Pythia 1B 16 8 2048 ∼1B
Pythia 1.4B 24 16 2048 ∼1.4B
Pythia 2.8B 32 32 2560 ∼2.8B
Pythia 6.9B 32 32 4096 ∼6.9B
Pythia 12B 36 40 5120 ∼12B

Table 1: Hyperparameters of model variants examined
in this work. #L, #H, and dmodel respectively refer to
number of layers, number of attention heads per layer,
and embedding size.

Algorithm 1 Unigrahams Estimator
Inputs: LM m, prompt x, response length ℓ
Parameters: Number of samples n, vocabulary V
Output: Frequency estimates fℓ(· | x) : V→ R

for all w ∈ V do
fℓ(w | x)← 0

repeat n times
y ← x
repeat

for all w ∈ V do
fℓ(w | x)← fℓ(w | x) + Pm[w|y]

n

Sample a token v ∼ Pm[· | y]
y ← yv

until |y| = ℓ+ |x|
return fℓ(· | x)

frequency counts are weighted by LM probabilities
in the following sense: if, during the generation
process, the LM assigns a next-token probability of
q to token w, then we assume that q instances of w
have occurred in this position of the generated text.
A full description of the unigrahams estimator is
given in Algorithm 1, and its correctness is proven
in Subsection B.1.

As mentioned in Subsection 3.2, we use the uni-
grahams estimator to estimate the unigram distribu-
tion of the OPT training corpus from the OPT-30B
model. We use parameter values of n = 106 and
ℓ = 34, the latter being the length of the longest
sentence in our dataset of acceptability judgments
from Sprouse et al. (2013).
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B.1 Theoretical Analysis
We now prove the correctness of the unigrahams
estimator. Let m be a LM, and let Pm[y | x] denote
the probability that m will generate response y
to prompt x. Let |y| denote the length of y (in
tokens), let y:i denote the first i tokens of y, and for
each token w in vocabulary V, let |y|w denote the
number of occurrences of w in y. Below we give a
formal definition of a LM’s unigram distribution.

Definition 1. The length-ℓ unigram frequency of
a token w ∈ V with respect to prompt x and LM
m is the expected number of times w occurs in
responses to x of length ℓ:

fℓ(w | x) := E|y|=ℓ[|y|w]

where y ∼ Pm[· | x].
Our goal is to show that the unigrahams estima-

tor is an unbiased estimator of fℓ(w | x) for each
w ∈ V. This result is stated as follows.

Theorem 1. For all ℓ ≥ 1 and w ∈ V,

fℓ(w | x) = E|y|=ℓ−1

[
ℓ−1∑

i=0

Pm[w | xy:i]
]

To see why Theorem 1 is the desired result, ob-
serve that Algorithm 1 returns the mean of

ℓ−1∑

i=0

Pm[w | xy:i]

for a sample of ys of length ℓ − 1 drawn from
Pm[· | x]. This is an unbiased estimator of the
right-hand side of Theorem 1, whence it follows
that proving Theorem 1 suffices for verifying the
correctness of the unigrahams estimator.

To that end, we note that Theorem 1 is straight-
forwardly derived from the following lemma.

Lemma 1. For all ℓ > 1 and w ∈ V,

fℓ(w | x) = fℓ−1(w | x) + E|y|=ℓ−1[Pm[w | xy]]

Proof of Lemma 1. Observe:

fℓ(w | x)
=

∑

|y|=ℓ

|y|wPm[y | x]

=
∑

|y|=ℓ−1

[
(|y|w + 1)Pm[yw | x] +

|y|w
∑

v∈V\{w}
Pm[yv | x]




=
∑

|y|=ℓ−1

(|y|w + Pm[w | xy])Pm[y | x]

= E|y|=ℓ−1[|y|w + Pm[w | xy]]
= fℓ(w | x) + E|y|=ℓ−1[Pm[w | xy]].

Proof of Theorem 1. We induct on ℓ. To prove the
ℓ = 1 case, we simply observe that

f1(w | x) = Pm[w | x].

Now suppose Theorem 1 holds for some value of ℓ.
Observe that

E|y|=ℓ−1

[
ℓ−1∑

i=0

Pm[w | xy:i]
]

= E|y|=ℓ

[
ℓ−1∑

i=0

Pm[w | xy:i]
]

.

Thus, by Lemma 1 we have

fℓ+1(w | x)
= fℓ(w | x) + E|y|=ℓ[Pm[w | xy]]

= E|y|=ℓ

[
Pm[w | xy] +

ℓ−1∑

i=0

Pm[w | xy:i]
]

= E|y|=ℓ

[
ℓ∑

i=0

Pm[w | xy:i]
]

as desired.

C Additional Results

C.1 Optimal values of β and γ

Optimal values of MORCELA and the two ab-
lations (MORCELAβ=1 and MORCELAγ=0) for
OPT and Pythia models are shown in Table 2 and
visualized in Figure 6.

C.2 AIC and BIC Calculations
We calculate AIC and BIC for SLOR,
MORCELAβ=1, MORCELAγ=0, and MORCELA
using the following formulas, where SSE is the
sum of squared error and n and k are the sample
size and number of predictor terms (including the
intercept), respectively:

AIC = n ∗ ln SSE
n

+ 2k (3)
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BIC = n ∗ ln SSE
n

+ k ∗ lnn (4)

AIC and BIC for each linking function for every
model is reported in Table 3 and Table 4. Rows in
each table are sorted in ascending order using BIC.
For both AIC and BIC, a lower value is better.

Model Variant β γ r

OPT 125M 0.743 13.410 0.606
OPT 350M 0.640 12.827 0.751
OPT 1.3B 0.657 14.103 0.637
OPT 2.7B 0.654 14.034 0.637
OPT 6.7B 0.649 14.267 0.648
OPT 13B 0.627 13.916 0.652
OPT 30B 0.611 14.246 0.653

Pythia 14M 0.892 8.211 0.375
Pythia 70M 0.896 9.026 0.457
Pythia 160M 0.830 9.782 0.569
Pythia 410M 0.756 10.987 0.613
Pythia 1B 0.699 11.590 0.645
Pythia 1.4B 0.695 11.563 0.643
Pythia 2.8B 0.672 11.805 0.648
Pythia 6.9B 0.664 11.863 0.662
Pythia 12B 0.645 11.619 0.664

Table 2: Optimal values of β and γ for each model,
along with their correlation (Pearson r) with human
judgments.

Size Linking Function AIC BIC SSE Predictors

125M

MORCELA -1384.3 -1363.2 555.1 4
MORCELAβ=1 -1329.5 -1313.7 577.2 3
MORCELAγ=0 -1101.2 -1085.4 675.7 3
SLOR -1091.2 -1080.7 681.3 2

350M

MORCELA -1448.8 -1427.7 530.9 4
MORCELAβ=1 -1323.5 -1307.7 579.6 3
MORCELAγ=0 -1133.5 -1117.6 660.8 3
SLOR -1101.8 -1091.3 676.3 2

1.3B

MORCELA -1472.9 -1451.8 522.2 4
MORCELAβ=1 -1363.6 -1347.8 563.8 3
MORCELAγ=0 -1128.8 -1112.9 663.0 3
SLOR -1105.6 -1095.0 674.6 2

2.7B

MORCELA -1472.6 -1451.4 522.3 4
MORCELAβ=1 -1360.3 -1344.5 565.1 3
MORCELAγ=0 -1126.0 -1110.2 664.2 3
SLOR -1102.3 -1091.7 676.1 2

6.7B

MORCELA -1520.8 -1499.7 505.2 4
MORCELAβ=1 -1401.8 -1386.0 549.2 3
MORCELAγ=0 -1150.7 -1134.9 653.0 3
SLOR -1126.0 -1115.4 665.2 2

13B

MORCELA -1524.5 -1503.4 503.9 4
MORCELAβ=1 -1386.4 -1370.6 555.0 3
MORCELAγ=0 -1155.3 -1139.4 651.0 3
SLOR -1124.3 -1113.7 665.9 2

30B

MORCELA -1535.6 -1514.4 500.1 4
MORCELAβ=1 -1389.3 -1373.4 553.9 3
MORCELAγ=0 -1156.7 -1140.9 650.3 3
SLOR -1124.0 -1113.4 666.1 2

Table 3: AIC and BIC of various linking functions
across OPT models.

Size Linking Function AIC BIC SSE Predictors

14M

MORCELAβ=1 -934.8 -919.0 757.9 3
MORCELA -935.6 -914.5 756.4 4
SLOR -782.2 -771.6 843.1 2
MORCELAγ=0 -780.7 -764.8 842.8 3

70M

MORCELA -1150.0 -1128.9 652.4 4
MORCELAβ=1 -1141.2 -1125.3 657.3 3
SLOR -974.3 -963.8 738.5 2
MORCELAγ=0 -972.7 -956.9 738.3 3

160M

MORCELA -1341.4 -1320.3 571.7 4
MORCELAβ=1 -1307.7 -1291.8 586.0 3
SLOR -1044.9 -1034.3 703.4 2
MORCELAγ=0 -1045.6 -1029.7 702.1 3

410M

MORCELA -1464.9 -1443.8 525.1 4
MORCELAβ=1 -1395.6 -1379.8 551.5 3
MORCELAγ=0 -1105.2 -1089.3 673.8 3
SLOR -1099.5 -1089.0 677.4 2

1B

MORCELA -1454.0 -1432.9 529.0 4
MORCELAβ=1 -1352.5 -1336.7 568.2 3
MORCELAγ=0 -1090.2 -1074.3 680.9 3
SLOR -1078.0 -1067.4 687.5 2

1.4B

MORCELA -1446.0 -1424.9 531.9 4
MORCELAβ=1 -1353.0 -1337.1 568.0 3
MORCELAγ=0 -1082.8 -1067.0 684.3 3
SLOR -1072.6 -1062.1 690.1 2

2.8B

MORCELA -1527.3 -1506.1 503.0 4
MORCELAβ=1 -1417.1 -1401.3 543.4 3
MORCELAγ=0 -1113.4 -1097.6 670.0 3
SLOR -1101.8 -1091.2 676.3 2

6.9B

MORCELA -1560.6 -1539.5 491.5 4
MORCELAβ=1 -1451.9 -1436.1 530.5 3
MORCELAγ=0 -1128.0 -1112.1 663.3 3
SLOR -1117.4 -1106.8 669.1 2

12B

MORCELA -1539.3 -1518.1 498.8 4
MORCELAβ=1 -1413.2 -1397.3 544.9 3
MORCELAγ=0 -1113.5 -1097.6 670.0 3
SLOR -1099.2 -1088.6 677.6 2

Table 4: AIC and BIC of various linking functions
across Pythia models.
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Figure 6: Optimal values of γ and β versus correlation with human judgments across linking theories. Top set of
plots are for the OPT models, bottom are for Pythia. Points are numbered in order of model size (smallest to largest).
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