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Abstract
Detecting factual inconsistency for long doc-
ument summarization remains challenging,
given the complex structure of the source ar-
ticle and long summary length. In this work,
we study factual inconsistency errors and con-
nect them with a line of discourse analysis. We
find that errors are more common in complex
sentences and are associated with several dis-
course features. We propose a framework that
decomposes long texts into discourse-inspired
chunks and utilizes discourse information to
better aggregate sentence-level scores predicted
by natural language inference models. Our ap-
proach shows improved performance on top
of different model baselines over several eval-
uation benchmarks, covering rich domains of
texts, focusing on long document summariza-
tion. This underscores the significance of in-
corporating discourse features in developing
models for scoring summaries for long docu-
ment factual inconsistency.

1 Introduction

Current state-of-the-art summarization systems can
generate fluent summaries; however, their ability
to produce factually consistent summaries that ad-
here to the source content or world knowledge re-
mains questionable. This phenomenon is known
as factual inconsistency, one type of “hallucina-
tion” problem (Maynez et al., 2020; Zhang et al.,
2024b; Cao and Wang, 2021; Kryscinski et al.,
2020; Goyal and Durrett, 2021; Cao et al., 2022). A
rigorous line of research approaches this problem
by developing models to detect unfaithful summary
content, including utilizing pre-trained models such
as natural language inference (NLI) (Kryscinski
et al., 2020; Laban et al., 2022; Zha et al., 2023)
and question answering (QA) (Scialom et al., 2021;
Fabbri et al., 2022) models. Such approaches are
tested on rich benchmark datasets, such as TRUE

(Honovich et al., 2022), SUMMAC (Laban et al.,
2022), and AGGREFACT (Tang et al., 2023), etc.

However, such benchmark datasets only include
short documents (< 1000 words) and summaries
with a few sentences. While the methods men-
tioned above perform well with short texts, they
struggle with longer documents (Schuster et al.,
2022). Recent NLI work addresses this by selecting
the input and breaking down the summary. Lengthy
summaries are split into individual sentences or
more minor atomic claims, while small chunks
of the source document are extracted as premises.
This approach reduces the task to multiple short
evaluations, which are then aggregated to provide a
summary-level label (Zha et al., 2023; Zhang et al.,
2024a; Scirè et al., 2024; Yang et al., 2024).

Out of the existing NLI-based methods, ALIGN-
SCORE demonstrated superior performance on mul-
tiple benchmarks. It breaks the input document
into continuous chunks of text to tackle the input
restriction. However, this exhaustive approach may
break the structure of the context (section and para-
graph split), thus reducing the chances that the
summary sentence can be correctly verified with its
factual consistency. On the other hand, most fac-
tuality evaluation metrics aggregate the sentence-
level aligning scores through averaging or selecting
the minimum, disregarding that sentences are not
equally important (Krishna et al., 2023). For in-
stance, people can remember the big picture more
easily but struggle to retain low-level details when
retelling a story. The natural questions would be:
do system-generated summaries carry a similar pat-
tern? If so, how can we utilize the text organization
information to help detect the inconsistencies be-
tween the summary and the source document?

In this work, we study the factual inconsistency
problem through the lens of discourse analysis.
By analyzing the structure (here we use Rhetor-
ical Structure Theory (RST) (Mann and Thompson,
1988)) of the original articles and the summaries,
we uncover the importance of preserving the arti-
cle structure and studying the connections between
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discourse structure and the factual consistency of
model-generated summaries. Our analysis shows
that complex sentences built by multiple elemen-
tary discourse units (EDUs, the basic units used in
the discourse theory) have a higher chance of con-
taining errors, and we also find several discourse
features connected to the factual consistency of
summary sentences.

Motivated by the analyses mentioned above, we
propose a new evaluation method, STRUCTSCORE,
based on the NLI-based approaches to better de-
tect factual inconsistency. Our algorithm includes
two steps: (1) leveraging the discourse informa-
tion when aggregating the sentence-level alignment
scores of the target summary and (2) decompos-
ing the long input article into multiple discourse-
inspired chunks. We tested our proposed approach
on multiple document summarization benchmarks,
including AGGREFACT-FTSOTA split, DIVER-
SUMM, LONGSCIVERIFY, LONGEVAL, and a non-
scientific domain dataset LEGALSUMM with a fo-
cus on long document summarization. Our pro-
posed approach obtained a performance gain on
multiple tasks.1

To sum up, two research questions are addressed:
1. How and what discourse features are connected
to the factual inconsistency evaluation? 2. Can our
discourse-inspired approach improve the detection
performance on long document summarization?

2 Related Work

Factual Inconsistency Detection in Long Doc-
ument Summarization Research on automatic
factual inconsistency evaluation metrics and re-
sources for long document summarization is lim-
ited. Recently, Koh et al. (2022a) surveyed the
progress of long document summarization eval-
uation and called for better metrics and corpora
to evaluate long document summaries. Koh et al.
(2022b) released annotated model-generated sum-
maries assessing factual consistency at the sen-
tence and summary levels for GovReport (Huang
et al., 2021) and arXiv (Cohan et al., 2018). Fur-
thermore, Bishop et al. (2024) and Zhang et al.
(2024a) introduced benchmarks of LONGSCIVER-
IFY and DIVERSUMM that cover diverse domains
respectively, and further proposed different frame-
works to utilize the context of source sentences
for evaluating the factual consistency of generated

1Our models and model outputs are publicly avail-
able at https://github.com/cs329yangzhong/
discourse-driven-summary-factuality-evaluation

summaries. However, their approaches relied on
extracting context through computing similarities
with the summary sentence. The summary-level
score is a simple average of all sentence-level pre-
dictions. Our work analyzed a subset of DIVER-
SUMM and AGGREFACT (Tang et al., 2023) that
have sentence-level factual inconsistency types and
introduced a generalizable approach to better de-
tect such inconsistency errors across domains.

Aggregation of Sentence-level Evaluations
Text summaries are usually composed of multi-
ple sentences. Most factual inconsistency eval-
uation metrics first compute the sentence-level
scores for individual summaries, then aggregate
them by either soft aggregation in computing the
unweighted-average (Zha et al., 2023; Glover
et al., 2022; Scirè et al., 2024; Zhang et al., 2024a)
or hard aggregation with the minimum score
(Schuster et al., 2022; Yang et al., 2024). However,
these approaches were primarily validated on older
benchmarks, consisting of shorter texts (a few hun-
dred input words and summaries of 2-3 sentences).
There lacks a systematic study in the context of
long document summarization. Our work dives
into the discourse structure of system-generated
summaries with span/sentence-level factuality an-
notations. We introduce a discourse-inspired re-
weighting algorithm to calibrate the scores.

Discourse-assisted Text Summarization Dis-
course factors have been known to play an impor-
tant role in the summarization task (Ono et al.,
1994; Marcu, 1998; Kikuchi et al., 2014; Xu et al.,
2020; Hewett and Stede, 2022; Pu et al., 2023).
Louis et al. (2010) conducted comprehensive ex-
periments to examine the power of different dis-
course features for context selection. We carry a
similar analysis but focus on summary sentences
that contain factual inconsistency errors. On ad-
justing the weight of EDUs, Huber et al. (2021)
proposed a weighted RST style discourse frame-
work that derives the discourse units’ continuous
weights from auxiliary summarization task (Xiao
et al., 2021). Differently, our re-weighting algo-
rithm is built on top of the trained parser’s parsed
discourse tree and applies to the final aggregation
of scores. To the best of our knowledge, our work is
the first that studies the connections between RST
discourse structure and the factual consistency of
model-generated summaries.
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Dataset Sum.Task Size Doc.Word Doc.Sent Sum.Sent Sum.Word

AGGREFACT-FTSOTA XSum (Tang et al., 2023) 558 360.54 16.09 1.01 20.09
CNNDM (Tang et al., 2023) 559 518.85 23.31 2.72 52.21

DIVERSUMM

Multi-news (Fabbri et al., 2019) 90 669.20 27.2 6.81 152.20
QMSUM (Zhong et al., 2021) 90 1138.72 72.80 3.04 65.22

Government (Huang et al., 2021) 147 2008.16 71.35 15.1 391.22
ArXiv (Cohan et al., 2018) 146 4406.99 195.18 6.18 149.70

ChemSumm (Adams et al., 2023b) 90 4612.40 188.80 7.36 172.79

LONGSCIVERIFY
PubMed (Cohan et al., 2018) 45 3776.80 125.00 8.60 225.60
ArXiv (Cohan et al., 2018) 45 6236.40 282.93 7.28 210.93

LONGEVAL PubMed (Krishna et al., 2023) 40 3158.35 110.00 10.38 193.55

LEGALSUMM Legal Opinions (Elaraby et al., 2023) 50 2873.87 115.64 8.36 208.28

Table 1: Summary-level task statistics on AGGREFACT-FTSOTA, DIVERSUMM, LONGSCIVERIFY, LONGEVAL
and LEGALSUMM. We report the number of annotated doc-summary pairs of the test split (Size), document
length in the average number of words (Doc.Word) and the average number of sentences (Doc.Sent), summary
length in the average number of sentences (Sum.Sent), and words (Sum.Word).

3 Datasets

This section describes the datasets used to explore
our research questions. We begin with the dis-
course analysis dataset, which includes sentence-
level fine-grained labels of errors introduced in
Pagnoni et al. (2021), enabling systematic analy-
sis of the relationships between different features
and their labels. We then discuss the benchmark
datasets, which provide summary-level labels in
either binary or continuous scores, and evaluate
our approach and baselines on them.

Discourse Analysis Dataset Our discourse anal-
ysis harnessed the subsets of ARXIV and GOVRE-
PORT from DIVERSUMM (Zhang et al., 2024a),
which come with annotated sentence-level errors
labels. Following Zhang et al. (2024a), we denote
it as DIVERSUMM-SENT. It covers 293 document-
summary pairs of which 3138 summary sentences
have sentence-level annotations.2

Summary-level Factuality Detection Datasets
We test on the AGGREFACT-FTSOTA split (Tang
et al., 2023), DIVERSUMM (Zhang et al., 2024a),
LONGSCIVERIFY and LONGEVAL from Bishop
et al. (2024). We additionally collect LEGAL-
SUMM, a legal summarization dataset, which cov-
ers model-generated summaries from the CanLII
(Canadian Legal Information Institute) dataset (Xu
et al., 2021; Elaraby et al., 2023) with document-
level factuality labels annotated by legal experts.3

Table 1 presents a careful comparison of datasets
from different perspectives. We conduct analysis
on the document’s structure in §4.2 using these

2We include analysis of the short document summariza-
tion datasets in Appendix A.1.

3We provide details of the dataset in Appendix B.

datasets. Except for AGGREFACT, all remaining
datasets are focused on long documents and sum-
mary pairs.

4 Discourse Analysis

Preliminaries Discourse analysis with Rhetori-
cal Structure Theory (RST) is helpful for different
downstream tasks, such as argument mining (Peld-
szus and Stede, 2016; Hewett et al., 2019), text
simplification (Zhong et al., 2020), AI-generated
text detection (Kim et al., 2024b), and summariza-
tion (Marcu, 1998; Xu et al., 2020). RST pre-
dicts tree structures on the grounds of underlying
coherence relations that are primarily defined in
speaker intentions (Mann and Thompson, 1988).
The discourse tree comprises lower-level Elemen-
tary Discourse Units (EDUs), each corresponding
to a phrase within a sentence. These units are then
integrated into more complex structures, such as
sentences and paragraphs, to form the full discourse
tree. Discourse labels (i.e., elaboration, contrast,
condition, etc.) are assigned as the relation be-
tween nodes. Additionally, a nuclearity attribute is
assigned to every node of the discourse tree, aiming
to encode the relative importance between the pairs
of sub-trees (nucleus roughly implying primary im-
portance and a satellite means supplemental).

We first parse the summaries from the datasets
as mentioned earlier in Section 3 with an open-
sourced DMRST model (Liu et al., 2021), follow-
ing similar work which utilizes the same model for
discourse parsing (Adams et al., 2023a; Pu et al.,
2023; Kim et al., 2024b). In the following para-
graphs, we propose and verify multiple hypotheses
that inspired our discourse-structure-aware factual
inconsistency detection approach. Figure 1 summa-
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Figure 1: Our proposed approach to faithfulness inconsistency detection utilizes findings from discourse analysis.
We first conduct discourse analysis on parsed summary sentences (§4.1) and exploit the source document’s
discourse structure (§4.2). Motivated by the findings, our proposed approach is introduced in §5.2 and §5.1.

Error Discourse Subtree Depth

-1 0 >= 1
(split link) (1 edu) shallow/deep trees

GramE 6% 28% 66%

LinkE 14% 23% 63%

OutE 15% 13% 72%

EntE 11% 10% 79%

PreE 20% 13% 67%

CorefE 11% 0% 89%

CircE 8% 8% 84%

NoE 8% 23% 69%

Table 2: The distribution depths of discourse subtrees
of a sentence that are not factually consistent (depth
of sub-tree) in DIVERSUMM-SENT. “-1” means the
original sentence belongs to two sub-trees. Appendix
C includes details of error types.

rizes our findings in §4.1 and §4.2.

4.1 Discourse Analysis on Summary Errors

Finding 1: Errors are located in sentences with
dense discourse tree (more EDUs) RST can cap-
ture the salience of a sentence with respect to its
role in the larger context. Prior work finds that
the salience of a unit or sentence does not strictly
follow the linear order of appearance in the docu-
ment but is more indicative through its depth in
the tree (Zhong et al., 2020). We consider the
depth of the current sentence in the RST tree of the
document (viewing each sentence as a discourse
unit). We also noted that, at times, the original
summaries’ sentences are broken into parts and
span two discourse subtrees (i.e., a sentence cov-

ers EDUs 24-28, while the parsing tree’s subtrees
are “22-25”’, “26-28”). In this case, we approxi-
mate the depth of the sentence by computing the
square root of the absolute distance of min and max
EDUs, i.e., in the above case, the depth is computed
as

√
(28− 24) = 2.4

We additionally studied the distribution of the
tree structure of sentences with errors. The hy-
pothesis is that several errors will likely appear
in sentences with complex structures (more EDU
units and dense trees). As shown in Table 2, sen-
tences containing factual inconsistency errors are
generally more complicated and cover multiple dis-
course units. It is worth noting that the case of
“-1” means the sentence is deeply intervened with
its neighboring sentences, and the discourse parser
fails to segment it independently. One example is
illustrated in the summary of Figure 1, where Sen-
tence 3 (S3) contains three EDU segments, making
it more complex than the other two sentences.

Finding 2: Errors are associated with the nucle-
arity and related discourse features We further
analyze the distribution of nuclearity and different
discourse features of sentences containing errors
from the DIVERSUMM-SENT dataset. We observe
that a greater number serve as satellites within the
discourse relation (62%) for sentences comprising
a single Elementary Discourse Unit (EDU).

We calculated several discourse feature scores:

4We assume that the discourse tree is nearly binary, with
each node having two children.
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RST features t-stat p-value

Ono penalty (Ono et al., 1994) 1.606 0.1089
Depth score (Marcu, 1998) -9.084 0.0000
Promotion score (Marcu, 1998) -0.828 0.4083

Normalized Ono penalty 2.160 0.0314
Normalized depth score -8.919 0.0000
Normalized promotion score -0.303 0.7617

Table 3: Two-sided t-test of significant RST-based fea-
tures comparing sentences with factual inconsistency
errors to consistent ones in DIVERSUMM-SENT. We
report the test statistics and significance levels. The
original and normalized depth scores and the normal-
ized penalty scores are significant (p-value <= 0.05).
Fine-grained per error-type results are in Table 7 of
Appendix C.

the penalty score (Ono penalty) as defined in Ono
et al. (1994), the maximum depth score (Depth
score) (Marcu, 1998), and the promotion score
(Marcu, 1998).5 The penalty score accounts for
the number of satellite nodes found on the path
from the tree’s root to that EDU. The depth score is
determined by the proximity of an EDU’s highest
promotion to the tree’s root. The highest promotion
refers to the closest node to the root, including the
EDU within its promotion set. The promotion score
quantifies the salience of an EDU based on how
many levels it has been promoted through within
the tree structure. We compute both unnormalized
and normalized versions (with the max tree depth)
for the above three scores. As shown in Table 3,
we find significant differences in the distributions
of depth score. We normalize the Ono penalty and
depth score between factually consistent and in-
consistent sentences and will include them in our
proposed approach.

4.2 Document Structure
We further analyze the structure of parsed discourse
trees for both documents and summaries of differ-
ent datasets. We assume that the linguistic structure
of discourse can change depending on factors such
as the writing style, domain, and depth of reasoning
of texts. To check whether the structures are evenly
branched or follow a more sequential pattern, we
measure a document graph’s average shortest path
length (Kim et al., 2024b). The intuition is that
linear or chain-like graphs tend to have shorter
average shortest path lengths (ASPL), reflecting
the linear pattern. Meanwhile, branched structures
would have a longer ASPL, given the spread na-

5Details of feature scores are in Appendix A.2.

Figure 2: Average shortest path length per dataset for
document and summary discourse trees. We sort the
dataset by the average length of the document, finding
that longer document-summary (DOC, SUMM) pairs
would be more branched, and their summaries are
also complicated. AG, DS, LSV, and LE refer to AG-
GREFACT FTSOTA, DIVERSUMM, LONGSCIVER-
IFY and LONGEVAL respectively.

ture of nodes. As shown in Fig 2, for long docu-
ment datasets (the last seven datasets), the source
documents’ ASPL is longer than the news articles
such as CNN/DM and XSUM.6 In the meantime,
longer summaries also carry evenly branched com-
plex structures compared to short news summaries.
While mainstream research segments long source
texts into continuous chunks with limited window
size, we argue that this disrupts the original struc-
ture of texts, leading to information loss.7 We pro-
pose utilizing the tree structure and constructing
the segments based on level traversals to preserve
the high-level segmentation.

5 StructScore

In this section, we describe the STRUCTSCORE

framework. The lower right part of Figure 1
presents motivations for each module.

5.1 Tree-structure Inspired Weighting
Algorithm

Prior work (Zha et al., 2023; Scirè et al., 2024)
computes the aggregated summary-level prediction
on factual consistency score by picking the mini-
mum sentence-level score or selecting the average.

6We exclude Multi-news and LEGALSUMM, as the
former dataset’s source text is composed of multiple news
articles and the latter comes with split section structures,
making the ASPL reporting less accurate.

7See Appendix D for examples.
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However, as indicated in Section 4.1, EDUs with
different discourse relations and structures can be
weighted differently. We thus propose to re-weigh
the sentences based on the features of the discourse.

First, we examine the sentence’s nuclearity and
the associated discourse features within the dis-
course tree. As found in Table 3, the normalized
depth score, which utilizes the given node’s nucle-
arity and the tree structure, is significantly different
given the existence of factual inconsistency errors
(p-value < 0.00001), where inconsistent sentences
have a lower normalized depth score (Finding 2
in §4.1).8 Based on this finding, we decided to
increase the weight of the alignment score for sen-
tences with lower depth scores within their parsed
tree. Since NLI methods generate scores within
a 0-1 range, we apply an exponent to appropri-
ately scale these scores. Let xi be the computed
normalized depth score of a summary sentence, si
the original computed aligning score, and x1:j the
mean of all depth scores from x1 to xj in the sum-
mary with length j. The function to re-weight the
aligning score f(si) can be defined as follows:

f(si) = s
1+(x1:j−xi)
i

Secondly, observing that sentences that contain con-
nective EDUs or have complicated discourse struc-
tures with more EDUs are more likely to contain
errors (Finding 1 in §4.1), we propose scaling the
score by selecting an appropriate exponent, given
that the original score falls within the range of 0
to 1. We apply a tuning factor α on the discourse
sub-tree height for the summary sentence senti:

s∗i = f(si)
1+(height−subtree(senti)∗α)

We conduct ablation studies on these two compo-
nents in §7. We search for the best parameters on
a held-out dev set of DIVERSUMM and keep the
same across other datasets.

5.2 Source Document Segmentation
We parse the original article with the RST parser
and break the long documents into linear segments.
This approach differs from prior work, which ei-
ther applies a fixed window or selects a few con-
text sentences surrounding a given source sentence.
Motivated by findings from §4.2, we follow the

8Among the three significant features, we use the normal-
ized depth score to ensure consistent scaling. Our prelimi-
nary results also indicate that the normalized Ono penalty
score did not enhance the dev set performance as much.

below approach: (1) If the parser fails, we will use
the document structure (paragraph/sentence hierar-
chies) to group by the neighboring sentences. We
then follow the naive chunking approach in ALIGN-
SCORE (window size 350) to prepare the input. (2)
If the parsing is successful, we will extract the seg-
mentation from the discourse tree up to level N. For
instance, in the top-right of Figure 1, an original
article has EDU segments (1-688), and the root of
the RST tree is split into 1-648 and 649-688; we
will adopt this segmentation. We apply the chunk-
ing approach outlined previously for segments that
exceed the ALIGNSCORE model’s context capacity.
On the second level, we break (1-648) into (1-325)
and (326-648), while the remainder are also broken
into smaller chunks. Since the RST parser could
break long sentences into multiple EDUs, we have
additional post-processing to map the EDUs back
to the source sentences.

6 Experimental Details

We adapt mainstream evaluation setups for each
benchmark. For DIVERSUMM, we apply an 80/20
test/dev split by stratifying the labels for each sub-
task. For AGGREFACT, we use their released
val/test split. For LONGSCIVERIFY, LONGEVAL

and LEGALSUMM, we use them as test sets.

Baselines One of our baselines is ALIGNSCORE
(Zha et al., 2023), an NLI-based metric that com-
putes the aggregated inference score between a
source article and generated summaries. We
included INFUSE (Zhang et al., 2024a), which
sets the SOTA on DIVERSUMM, MINICHECK
FT5 (MiniCheck-FlanT5 checkpoints) (Tang et al.,
2024) that is a best-performing non-LLM fact-
checker over multiple benchmarks, and LONG-
DOCFACTSCORE (Bishop et al., 2024) which
claimed to work well on factuality validation of
lengthy scientific article summaries. Our experi-
ment notes that MINICHECK did not work well
over long summaries due to its design objectives of
short-statement fact-checking. We thus introduce
MC-FT5 (SENT), which computes the individual
summary sentences’ scores using MINICHECK and
reports their average as the final summary score.
We additionally include the GPT4o (OpenAI et al.,
2024) as the LLM fact-checker, using a prompt
adopted from Tang et al. (2024) (see Table 8 in Ap-
pendix E). Lastly, we include Llama-3.1-BeSpoke-
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ID Evaluation Model AGGREFACT DIVERSUMM LSV LONGEVAL LEGALS

XSMAG CNDAG MNW QMS GOV AXV CSM Macro- PUB AXV PUB
evaluation metric AUC AUC AVG Kendal’s τ Kendal’s τ AUC
avg src. len 360.54 518.85 669.20 1138.72 2008.16 4406.99 4612.40 – 3776.80 6236.40 3158.35 2873.87

Baselines

1 LONGDOCFACTSCORE 50.47 65.27 61.20 40.69 83.52 65.36 60.06 62.17 61.0 61.0 29.0 60.19
2 MINICHECK-FT5 75.04 72.62 48.68 45.31 70.26 61.77 52.93 55.79 26.5 38.1 17.4 61.33
3 GPT4o 75.36 70.47 51.11 70.22 86.81 67.78 61.53 67.49 54.7 51.8 51.2 67.71
4 BeSpoke-MC-7B 83.56 71.38 55.38 65.42 82.83 75.07 63.43 68.42 55.1 57.9 58.1 55.81

Apply our approach with different baselines(↑ means improved the performance compared to the baseline with significance.)

5 ALIGNSCORE 75.66 69.50 46.74 56.48 87.02 77.46 61.03 65.75 54.9 53.9 36.9 73.52
6 + re-weighting 75.67 69.20 45.33 53.95 87.29↑ 81.15↑ 60.55 65.65 53.0 54.3↑ 34.8 76.57↑

7 + LV1 SEGMENT 76.23↑ 69.25† 45.86† 61.25↑ 86.74† 79.47↑ 64.15↑ 67.49↑ 51.9 52.8 43.6↑ 59.43
8 STRUCTS-LV1 76.20↑ 69.03 46.21† 60.06↑ 86.04 82.78↑ 64.47↑ 67.91↑ 50.4 53.9† 43.4↑ 59.81

9 + LV2 SEGMENT 74.27 70.30↑ 46.03† 55.74 85.10 76.79 63.11↑ 65.35 58.1↑ 51.1 43.9↑ 67.05
10 STRUCTS-LV2 74.28 69.85↑ 45.33 51.86 85.65 80.00↑ 63.59↑ 65.29 55.3↑ 54.1↑ 43.7↑ 64.00

11 MC-FT5 (SENT) 79.62 70.95 57.67 60.66 83.24 78.66 59.74 67.99 55.7 52.7 30.2 61.14
12 + re-weighting 79.73 70.76† 56.79 60.36† 84.75↑ 79.38↑ 60.06↑ 68.27↑ 52.8 55.1↑ 31.4↑ 59.81

13 + LV1 SEGMENT 77.84 73.48↑ 44.80 61.10↑ 87.50↑ 85.22↑ 63.59↑ 68.44↑ 57.5↑ 51.4 33.0↑ 68.95↑
14 STRUCTS-LV1 76.75 73.40↑ 38.45 60.66† 88.05↑ 86.32↑ 63.11↑ 67.31 56.2↑ 53.8↑ 30.7↑ 72.57↑
15 + LV2 SEGMENT 73.70 72.30↑ 47.80 57.53 86.26↑ 83.73↑ 62.07↑ 67.48 56.0↑ 52.9↑ 35.6↑ 72.57↑
16 STRUCTS-LV2 71.31 72.30↑ 41.27 59.02 87.16↑ 84.78↑ 61.75↑ 66.80 53.4 54.2↑ 33.0↑ 73.71↑

17 INFUSE 68.48 72.52 54.14 39.64 84.41 68.13 57.82 60.83 59.4 55.9 36.9 63.43
18 + re-weighting 67.30 72.37 53.44 40.54↑ 84.68↑ 74.31↑ 59.82↑ 62.56↑ 58.3 56.3↑ 34.6 66.29↑

Table 4: Results for all summarization tasks in AGGREFACT-FTSOTA (AGGREFACT), DIVERSUMM,
LONGSCIVERIFY (LSV), LONGEVAL and LEGALSUMM (LegalS). In DIVERSUMM, CSM, MNW, QMS, AXV,
and GOV refer to ChemSum, MultiNews, QMSUM, ArXiv, and GovReport. We also report the macro-average of
DIVERSUMM AUC. We highlight the best performed approach where multiple greens indicate systems indistin-
guishable from the best according to a paired bootstrap test with p-value < 0.05, and the second-best system for
each column. The seven baseline models are bolded. Cells with † mean the result is indistinguishable from the
raw baseline according to the bootstrap test. We report the average of 3 runs for GPT4o, given the randomness in
LLM inference.

MiniCheck-7B (BeSpoke-MC-7B)9, the SOTA
fact-checking model on the LLM-AggreFact bench-
mark (Tang et al., 2024). Unless otherwise noted,
we reran the baseline models on our datasets using
the original authors’ released code and checkpoints.
Implementation details are provided in Appendix
E.

Our Approach We re-utilized baseline models
to compute the scores between context chunks and
summary sentences, including ALIGNSCORE (Zha
et al., 2023), MINICHECK-FT5 (SENT) and IN-
FUSE (Zhang et al., 2024a), and experimented with
below settings to apply our proposed approaches:

• + re-weighting: we apply the discourse-
inspired re-weighting algorithm to adjust the
sentence-level scores. We tune the factor α on
height-subtree weighting as 1 over the valida-
tion set of DIVERSUMM and apply it to other
benchmark datasets.

• + LvN SEGMENT: Instead of using the default
9https://huggingface.co/bespokelabs/

Bespoke-MiniCheck-7B

chunking approach, we segmented the source
documents with the algorithms introduced in
Sec. 5.2 with different levels of granularity.

• STRUCTS-LvN: Combining top two methods.

The reweighting and segmentation can not be
applied to LONGDOCFACTSCORE, as it produced
negative scores on all enumeration of source-target
sentence pairs, which does not utilize the structural
information. INFUSE utilizes the ranked list of
entailment scores for all document sentences as-
sociated with each summary sentence. Thus, the
segmentation approach does not affect.

Evaluation Metrics For experiments with
AGGREFACT-FTSOTA, DIVERSUMM and
LEGALSUMM, following Laban et al. (2022);
Zhang et al. (2024a), we adopt ROCAUC which
measures classification performance with var-
ied thresholds as our evaluation metric. On
LONGSCIVERIFY and LONGEVAL, we report
Kendall’s Tau τ , following Bishop et al. (2024).
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7 Results

Overall Performance Table 4 presents our main
results with detailed setups. Overall, our pro-
posed approach (with different combinations of
re-weighting and segmentation settings) achieves
the best or second best across AGGREFACT, most
of DIVERSUMM and LEGALSUMM (LEGALS).
Compared to top-performed LLM-based models
(rows 3,4), our approach outperforms in 7 out of 11
datasets, with significant improvements on GOV,
AXV, CSM, and LEGALSUMM.10 The rest of the
section addresses the following research questions:
RQ1: Can the re-weighting algorithm help im-
prove the models’ performance? RQ2: How does
source document segmentation impact factual in-
consistency detection? RQ3: How does combining
both in STRUCTSCORE perform?

RQ1. We observe that the re-weighting algo-
rithm improves prediction performance on differ-
ent baselines (rows 5-6, 11-12, 17-18). For long
source documents, the re-weighting approach con-
sistently improves or closely matches GOV, AXV,
CSM splits in DIVERSUMM and the AXV split
in LONGSCIVERIFY (LSV-AXV) and LEGALS
performance. Noticeably, ALIGNSCORE with
reweighting scored the best on LegalS. On the other
hand, for both XSM and CND in AGGREFACT-
FTSOTA, the re-weighting algorithm does not help
much. We posit that the short summary length
(1-3 sentences) has minimally structured informa-
tion, so the scores will not change much. For
MNW and QMS, the short summaries in QMS
(averaging 3 sentences) reduce the effectiveness
of the re-weighting algorithm. Moreover, MNW’s
non-factual sentences often receive high prediction
scores, which our re-weighting approach tends to
amplify, leading to a drop in performance. We also
observe a slight performance drop on LSV-PUB
and LONGEVAL-PUB for ALIGNSCORE and IN-
FUSE, potentially due to the different document
structure of scientific articles from the medical do-
main. These observations also suggest potential fu-
ture work for a dynamic weighting algorithm based
on the document structure and domain knowledge.
In Table 5, we ablate the two discourse factors
from the re-weighting algorithm with our best base-
line MC-FT5 (SENT) on a subset of long datasets,
noticing both features are helpful, and the improve-
ment in adding subtree height is greater.11

10More discussions on strong baselines in Appendix F.1.
11We include a more complete table in Appendix F.2.

Model GOV AXV CSM LSV-AXV

MC-FT5 (SENT) 83.24 78.66 59.74 52.73
+ subtree height 84.55 79.09 60.55 55.08
+ depth score 83.65 78.90 59.90 53.80

re-weighting 84.75 79.38 60.06 55.08

Table 5: Ablation results on a subset of datasets from
DIVERSUMM and LONGSCIVERIFY, the top and
bottom rows are rows 11 and 12 in Table 4.

RQ2. Applying document and discourse-
structure-inspired approaches enhances perfor-
mance across different baselines on long document
summarization tasks. We start by applying the
level-1 and level-2 segmentation to preserve the
document structures while segmenting at higher
levels. For example, MC-FT5 (SENT) with
LV1 SEGMENT (row 13) obtains the highest
macro-average AUC on DIVERSUMM, a trend
also observed with ALIGNSCORE. Specifically,
comparing row 11 and row 13, the Lv1 SEGMENT

improved the model’s performance on 7 of 8 long
datasets from QMS to LEGALS (i.e. 78.66 ->
85.22 and 83.24 -> 87.50 on AXV and GOV).
However, the effect of fine-grained segmentation
can vary depending on the document’s length and
structure. For instance, ALIGNSCORE in row 9
with Lv2 segment obtained better performance
than Lv1 on LSV-PUB but was worse on QMS.

RQ3. Combining both approaches is not univer-
sally beneficial across all scenarios. When both in-
dividual approaches contribute positively, the com-
bined STRUCTS generally achieves better perfor-
mance, as seen in row 8 on AXV, CSM, and row
14 on AXV. However, when one component causes
a performance drop, combining both often leads
to weaker overall performance than the stronger
component alone. For instance, on GOV, row 8
performs worse than row 5, likely due to the seg-
mentation in row 7, making the model less accurate.
Similarly, row 14 performs slightly better than row
11 on LSV-PUB, but row 13’s improvement does
not translate into better performance gains when
combined with row 12. Differences in evaluation
metrics (AUC vs. correlation) and dataset sizes
may also have influenced these outcomes (i.e., row
14 does not improve much on LONGEVAL-PUB
while rows 12 and 13 have larger gains).

8 Conclusion

In this work, we approach the factual inconsis-
tency detection of long document summarization
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through the lens of discourse analysis. We find that
discourse factors, with regard to sentence struc-
ture, are related to the factual consistency of sen-
tences. We further propose a framework that lever-
ages the source document structure and introduces
re-weighting the sentence-level predictions on top
of different NLI-based models, achieving perfor-
mance gains across multiple long-document sum-
marization evaluation datasets, including scientific
articles and legal documents.
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Limitations

Our work contributes to the understanding of fac-
tual inconsistency errors in machine-generated
summaries from the lens of discourse analysis.
Here, we discuss several limitations.

Benefits of Discourse-driven Information Our
current approach leaves discourse-relation informa-
tion (i.e., the relation types such as Explanation,
Elaboration, etc.) unused on the system level; it
would be interesting to utilize it to detect and re-
solve inconsistency errors. We also acknowledge
the choices of our current re-weighting algorithm
(exponential) can be further studied with more mo-
tivation. We selected the current configuration that
performed best on the validation splits of DIVER-
SUMM, aligning well with linguistic analysis prin-
ciples. We plan to extend the modeling into a more
complex version, such as applying a graph neu-
ral network to the tree structure and including dis-
course relations for future work.

While large models like GPT-4 and future ar-
chitectures may improve long-context understand-
ing, recent research shows that LLMs still face
challenges with hallucination detection and effec-
tively utilizing extended contexts (Liu et al., 2024a;

Zhu et al., 2024; Luo et al., 2024). Our contribu-
tion, which links linguistic cues to hallucination
detection, remains crucial, especially for summa-
rization tasks. We acknowledge that future LLMs
with expanded context windows may no longer re-
quire input pre-processing. However, we argue
that discourse-based segmentation will still offer
critical benefits (explicitly or implicitly by inject-
ing the discourse analysis into the LLM through
prompting or further finetuning). It will enhance
the precision of factuality detection and evaluation
by leveraging linguistic structures. Additionally,
discourse information can provide interpretability
to the model, which allows us to trace its evalua-
tions to identifiable linguistic relations and features,
which are still lacking in LLMs. In fact, our exper-
imental results with BeSpoke-MC-7B, the SOTA
fact-checking model, support the assumption that
LLM alone still struggles with the factuality evalu-
ation of long summaries.

Computation Cost Our approach’s only addi-
tional computation cost is running the discourse
parser on the source document and the target sum-
mary. The DMRST parser (Liu et al., 2021) can
be run on both CPU and GPU, and the inference
speed is fast (the full test set of DIVERSUMM can
be processed in a few minutes). Once the dis-
course features are computed, the time spent by
segmentation and reweighting algorithms remains
static, introducing minimal overhead compared to
the baselines.

Discourse-driven Analysis on Factual Errors
In our analysis section, discourse analyses were car-
ried out using the annotated portion of the released
dataset, which is limited by the annotation quality
and the dataset sizes. Yet, this is by far the only
dataset that provides the sentence-level annotations
on long document summarizations (i.e., Krishna
et al. (2023) released the fine-grained scores, but
did not clarify how the spans annotations are col-
lected in their document). We verify the effective-
ness of portions of our linguistic-inspired method
on other benchmarks, including LONGSCIVERIFY

and LONGEVAL. Future work would be to analyze
and examine the discourse patterns in other do-
mains, such as story summarization or further book-
length summarization tasks (Chang et al., 2024;
Kim et al., 2024a).

Generalize across Text Domains We tried to
cover most of the recent publicly available factual-
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ity evaluation datasets for long document summa-
rization, including DIVERSUMM, LONGSCIVER-
IFY, and LONGEVAL. While most existing datasets
consist of annotations collected from scientific ar-
ticle summaries, we introduce a novel annotated
dataset, LEGALSUMM, in the legal domain to eval-
uate the robustness of our proposed approaches.
This dataset is curated with careful annotation pro-
cedures to ensure quality (see Appendix B). Our
experimental results, as shown in the last column of
Table 4, demonstrate that our proposed approaches
not only enhance the performances of baseline mod-
els but also surpass those strong LLM-based mod-
els by a large margin.

Dependence on Discourse Parser Performance
Our experiments’ validity and subsequent findings
rely on the parsed discourse trees generated by
a Rhetorical Structure Theory (RST) parser (Liu
et al., 2021), following prior work (Adams et al.,
2023a; Pu et al., 2023; Kim et al., 2024b). It is
important to note that parsed results may be sub-
optimal given the challenges of complex hierar-
chical structures of long documents and the differ-
ences between the model’s training corpora and our
tested domains. We acknowledge that RST parsers
are gradually evolving and posit that better RST
parsing results can further boost the model’s perfor-
mance. However, major obstacles to their broader
adoption are the lack of publicly available mod-
els and user-friendly user guidance. Researchers
recently incorporated LLMs in discourse parsing
and obtained better benchmarking performance in
RST (Maekawa et al., 2024). Unfortunately, no
available inference code exists to parse documents
beyond pre-compiled benchmark datasets. We look
forward to utilizing more robust parsers in future
work.

On long source documents, we notice that the
parser failed on the MNW split of the DiverSumm,
given their input is a concatenation of multiple
individual news articles. We opt for first split-
ting the original document into articles and then
successfully parsing them individually. Regard-
ing paragraph-level discourse parsing, we are con-
cerned that it may disrupt the discourse continuity
at the document level (i.e., where the beginning of
one paragraph is connected to the previous para-
graph). Therefore, we leave this exploration for
future studies. However, this approach might be
viable and beneficial for summarizing extremely
long documents, such as books, where the explicit

division into chapters and sections could enhance
the process.

Applications of Document Structures to Other
Tasks Document structures can and have been
utilized in different tasks, including coherence anal-
ysis (Liu et al., 2024b), machine translation evalua-
tion (Joty et al., 2017), sentiment analysis (Kraus
and Feuerriegel, 2019), machine-generated text de-
tection (Kim et al., 2024b), etc. While applying
document structure and discourse analysis to hal-
lucination detection is still an emerging area of
research, we are keen to explore it further. We are
also interested in extending this approach to other
input sources, such as dialogue, by investigating
the corresponding discourse structures unique to
conversational data.
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ensuring that they are openly available and do not
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A Discourse Analyses

A.1 Short Summary Analysis

Dataset Size Gran Error Tag

AGU_CLIFF 300 word intrin./extrin./other/wld. knowl.
AGU_Goyal’22 150 span intrins./extrin./other

Table 6: Statistics of Sent/Span-level factual inconsis-
tency datasets AGGREFACT-UNIFIED (AGU) (Tang
et al., 2023). We report the size of doc-summary pairs
(Size), the granularity of annotation (Gran), and the
error labels (Error Tag).

We also conduct a discourse analysis on
AGGREFAC-UNITED (Tang et al., 2023), as shown
in Table 6. This dataset includes BART and Pega-
sus summaries from CLIFF (Cao and Wang, 2021)
and Goyal’21 (Goyal and Durrett, 2021).12 In the
Goyal22 split of AGGREFACT-UNITED, a total of
61 errors were detected. Intrinsic errors are found
to appear more often in satellite EDUs (18/31) with
the attribution relation. Regarding extrinsic errors,
the nucleus EDUs take the majority. We further
analyzed the CLIFF dataset (Cao and Wang, 2021),
where span-level annotations of faithful errors are
available. Out of 600 sentences, the parser failed
to parse 131 summaries, likely due to their short
lengths and simplistic structures. Therefore, our
analysis focused on the 469 summaries that were
successfully parsed. We observed that Elementary
Discourse Units (EDUs) containing errors are more
likely to appear at the bottom of the discourse tree.
These findings are similar to the long summary
analysis in §4.

A.2 Discourse Features

Following prior work (Louis et al., 2010), we
analyze the nucleus-satellite penalty score (Ono
penalty) (Ono et al., 1994), the maximum depth
(Depth score) (Marcu, 1998), and the promotion-
based score (Marcu, 1998) for sentence level. The
penalty/score for a sentence is computed as the
maximum of the penalties/scores of its constituent
EDUs. For the normalized version, instead of fol-
lowing Louis et al. (2010), who normalized them
by the number of words in the document, we opt
to divide the scores by the maximum depth of
the discourse tree, which similarly alleviates the
scores’ dependencies on document length. Below,

12AGGREFACT-UNIFIED (AGU_CLIFF) includes addi-
tional error types such as comments, other errors: noise,
grammar and world knowledge (wld. knowl.)

Figure 3: RST for the example sentence, and the
salient units (promotion set) of each text span are
shown above the horizontal line, which represents the
span.The example is taken from Louis et al. (2010).

we provide one example demonstrating the com-
putation of each score (borrowed from Louis et al.
(2010)) and will release our code for reproduction
purposes.

A.2.1 Example
Here, we re-utilize the example from Louis et al.
(2010), which is part of the RSTDT (Carlson et al.,
2002) in Figure 3, which contains four EDUs.

1. [Mr. Watkins said] 2. [volume on Interprovin-
cial’s system is down about 2% since January] 3.
[and is expected to fall further,] 4. [making expan-
sion unnecessary until perhaps the mid-1990s.]

Nucleaus-Satellite Penalty (Ono Penalty) (Ono
et al., 1994): The spans of individual EDUs are
represented at the leaves of the tree. At the root of
the tree, the span covers the entire text. The path
from EDU 1 to the root contains one satellite node.
It is, therefore, assigned a penalty of 1. Paths to
the root from all other EDUs involve only nucleus
nodes; subsequently, these EDUs do not incur any
penalty. Thus, the Ono Penalty scores for EDU 1
to 4 are [1, 0, 0, 0].

Maximum Depth Score Below we cite the origi-
nal texts from (Louis et al., 2010).

Marcu (1998) proposed the method to
utilize the nucleus-satellite distinction,
rewarding nucleus status instead of pe-
nalizing the satellite. He introduced
the notion of promotion set, consist-
ing of salient/important units of a text
span. The nucleus is denoted as the more
salient unit in the full span of a mono-
nuclear relation (i.e., in Elaboration, the
satellite unit is to elaborate on the key
information of the nucleus. Thus, the
latter is more salient). In a multinuclear
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relation, all the nuclei are salient units of
the larger span.

For example, in Figure 3, EDUs 2 and
3 participate in a multinuclear (List) re-
lation. As a result, both EDUs 2 and 3
appear in the promotion set of their com-
bined span (2-3). The salient units (pro-
motion set) of each text span are shown
above the horizontal line which repre-
sents the span. At the leaves, salient units
are the EDUs themselves.

For the purpose of identifying impor-
tant content, units in the promotion sets
of nodes close to the root are hypothe-
sized to be more important than those at
lower levels. The highest promotion of
an EDU occurs at the node closest to the
root, which contains that EDU in its pro-
motion set. The depth of the tree from
the highest promotion is assigned as the
score for that EDU. Hence, the closer to
the root an EDU is promoted, the better
its score. Since EDUs 2, 3 and 4 are pro-
moted all the way up to the root of the
tree, the score assigned to them is equal
to 4, the total depth of the tree. EDU 1
receives a depth score of 3.

Thus, the final maximum depth score based on
the promotion set for EDUs 1-4 are [3, 4, 4, 4].

Promotion Score In the same example, while
EDUs 2, 3, and 4 all have a depth score of 4, EDUs
2 and 3 are promoted to the root from a greater
depth than EDU 4. To account for the difference,
Marcu (1998) further introduced the promotion
score, which is a measure of the number of levels
over which an EDU is promoted. For instance,
EDU 2 is promoted by three levels, while EDU 4
is promoted by two levels. Thus, EDUs 2 and 3
receive a promotion score of 3, while the score of
EDU 4 is only 2. EDU 1, given that it is never
promoted received scores of 0.

Discourse Tree Computation In Section 4 Table
2, we compute the tree depth as follows. We use
a string-matching system to construct a dictionary
that aligns annotated sentences with EDU segments.
For instance, in Figure 3, the sentence is mapped
to EDUs 1-4. We then compute the maximum
depth of the discourse tree from the root node to
the lowest leaf node, which would be 3 in this case.

However, there may be cases where sentences are
segmented into EDUs that are not gathered into a
single node in the parsed discourse tree. In such
instances, we employ the methods described in
Section 4 to approximate the depth.

B LegalSumm Dataset

We utilized a subset of the CanLII Dataset (Xu
et al., 2021), which consisted of 1,049 legal opinion
documents with expert-written summaries.13. We
followed the setting from Elaraby et al. (2024),
where we consider the output of three differ-
ent abstractive models in our annotation process:
(1) Finetuned LED-base (Elaraby and Litman,
2022) which finetuned the pre-trained longformer-
encoder-decoder (Beltagy et al., 2020) (LED) on
the CanLII cases without additional information
about the argument structure of the document (2)
arg-LED-base, which utilizes the LED model but
includes the information about the argument units
(Issues, Reasons, and Conclusions) in its training
phase, and (3) arg-aug-LED-base, a model in-
troduced in Elaraby et al. (2023) that can select
a summary from multiple augmented versions of
generated summaries based on its overlap with the
input case’s predicted argument roles.

Annotation Details We conducted evaluations
with two voluntary legal experts from the research
group, all of whom hold a J.D. degree and possess
at least four years of experience in providing profes-
sional legal services. For each summary, the anno-
tators are asked to select from four choices justify-
ing the factual consistency of the model-generated
summary with the reference summary and source
article. They are also encouraged to provide free-
text rationales justifying their selections.

To guarantee the quality of annotation, we con-
ducted multiple sessions with annotators to refine
the guidelines and continuously monitor the agree-
ments. Ultimately, the first author and the two
annotators held in-person sessions to resolve label
inconsistencies. The labels remained unresolved in
two cases as the annotators identified differing yet
reasonable interpretations of the instructions. We
thus retain the average scores as is. To distinguish
summaries with severe or moderate factual incon-
sistencies from those without, we computed the
average of the two annotators’ ratings and rounded

13Data obtained through an agreement with CanLII
https://www.canlii.org/en/
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based on a threshold of 2. The annotation guideline
is included in Figure 4.

C Discourse Analysis on Fine-grained
Error Types

Error Types Relation Error (PreE) is when the
predicate in a summary sentence is inconsistent
with respect to the document. Entity Error (EntE)
is when the primary arguments of the predicate are
incorrect. Circumstance Error (CircE) is when the
predicate’s circumstantial information (i.e., name
or time) is wrong. Co-reference error (CorefE) is
when there is a pronoun or reference with an in-
correct or non-existing antecedent. Discourse Link
Error (LinkE) is when multiple sentences are in-
correctly linked. Out of Article Error (OutE) is
when the piece of summary contains information
not present in the document. Grammatical Error
(GramE) indicates the existence of unreadable sen-
tences due to grammatical errors.

Fine-grained Error Analysis In Table 7, we
demonstrate the breakdowns of fine-grained error
types and report the t-test results on different dis-
course features.

D Example of Segmentation Failures

This section includes one example of the ALIGN-
SCORE’s chunking method that failed to pre-
serve the document structure, while our discourse-
inspired chunk addresses it.

For example, as shown in Figure 5a, the original
document contains two consecutive sentences: "To
determine the extent ..." and "To develop the SMS"
(highlighted in the orange box). These sentences
are meant to be read together and should not be sep-
arated. However, the default chunking approach in
ALIGNSCORE and MINICHECK breaks this conti-
nuity by placing them in two separate chunks, given
the former chunk is large enough. On the contrary,
our approach maintains the structural integrity of
the documents, keeping the sentences connected as
intended. Similarly, in Figure 6a, the conclusion
section is separated into two chunks by the default
chunking approach, while our method maintains
them in a single chunk.
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Figure 4: The annotation interface for LegalSumm. The left panel displays the instructions and the content to be
annotated. Annotators are then prompted to select one of four options, as shown in the right panel.

RST features GramE LinkE OutE EntE PredE CorefE CircE ALL Errors
Count (83) (35) (48) (117) (15) (9) (13) (320)

Ono penalty -1.166 1.855 0.621 1.647 0.730 0.215 1.627 1.606 (0.1089)
Depth score -5.218** -7.381** -4.628** -3.252** -2.002 0.214 -0.565 -8.249 (0.0000)
Promotion score -6.519** -0.971 -0.440 1.734 -0.195 2.613* 0.629 -0.828 (0.4083)

Normalized penalty -1.742 3.051** 0.695 1.990* 0.673 -0.002 0.493 2.160 (0.0314)
Normalized depth score -6.689** -6.043** -4.823** -3.307** -1.731 -0.153 -1.986 -9.084 (0.0000)
Normalized promotion score -5.754** 0.487 -0.322 1.796 -0.087 2.206 -0.218 -0.303 (0.7617)

Table 7: Two-sided t-test statistic of significant RST-based features comparing unfaithful sentences to faithful
ones in DIVERSUMM annotated split. We report the test statistics and significance levels. For fine-grained errors,
we report the significant level in * (0.01 <= p-value <=0.05) and ** (p-value <=0.01). For All errors, we report
the p-value in parenthesis.
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(a) Example from GovReport of DIVERSUMM.

Figure 5: Example of segmentation failures, left is the output of chunking method used in ALIGNSCORE and
MINICHECK, right is the segments produced by our segmentation method.

2069



(a) Example from ArXiv of DIVERSUMM.

Figure 6: Example of segmentation failures, left is the output of chunking method used in ALIGNSCORE and
MINICHECK, right is the segments produced by our segmentation method.
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E Implementation Details

E.1 GPT4o Prompts

We include our prompt for zero-shot factual consis-
tency evaluation in Table 8.

E.2 Baselines

AlignScore (model size 355M) (Zha et al., 2023)
is an entailment-based model that has been trained
on data from a wide range of tasks such as NLI, QA,
and fact verification tasks. It divides the source
document into a set of sequential chunks at sen-
tence boundaries. For a multi-sentence summary,
it predicts the max scoring value of all combina-
tions of source chunk and target sentence, then
returns the unweighted average of all sentences as
the summary prediction. We follow the original
setting by setting chunk size at 350 tokens and
use the default model alingsocre_large ckpt. The
model outputs a score between 0 and 1. We con-
duct experiments on top of their released codebase
https://github.com/yuh-zha/AlignScore.

MiniCheck-FT5 (model size 770M) (Tang et al.,
2024) is an entailment-based fact checker built
on flan-t5-large. It has been further fine-tuned on
21K datapoints from the ANLI dataset (Nie et al.,
2020) and 35k synthesized data points generated in
(Tang et al., 2024) on the tasks to predict whether
a given claim is supported by a document. We fol-
low the authors’s setting and set the chunk size to
500 tokens using white space splitting. The out-
put score is between 0 and 1. We use the released
code repo from https://github.com/Liyan06/
MiniCheck.

LongDocFactScore (Bishop et al., 2024) is a
reference-free framework for assessing factual con-
sistency. It splits source documents and the gen-
erated summary into sentences, then computes
the pair-wise similarities by computing the cosine
similarities of sentences (they use the sentence-
transformers library initialized with the bert-base-
nmli-mean-tokens model). Afterward, for each in-
dividual summary sentence, K most similar source
sentences are picked. The method extracts the
neighboring source document sentences of the se-
lected sentences as context, then applies a metric
BARTScore to evaluate the score between source
context and summary sentences. The overall sum-
mary score is an unweighted average of all sen-
tences. We follow the authors’ parameters setting

and utilize their released code repo from https:
//github.com/jbshp/LongDocFACTScore.

InfUSE (model size 60M) Zhang et al. (2024a)
uses a variable premise size and breaks the sum-
mary into sentences or shorter hypotheses. Instead
of fixing the source context, it retrieves the best
possible context to assess the faithfulness of an
individual summary sentence by applying an NLI
model to successive expansions of the document
sentences. Similar to prior approaches, it outputs
an entailment score for each summary sentence,
and the summary-level score is the unweighted
average. We follow their settings on INFUSE
with summary sentences instead of INFUSESUB
as the authors only released the code for the for-
mer model. INFUSE outputs scores in the range
0-1. We use the author’s released codebase from
https://github.com/HJZnlp/Infuse.

GPT4o We used the version of gpt-4o-2024-05-
13; we set max_tokens 100, sampling temperature
at 0.7, and top_p as 1.0. We call the OpenAI
API from https://openai.com/api. Given the
lengthy summary, we prompted the LLM to as-
sign a binary label (yes/no) to assess individual
summary sentences’ consistency with the original
article. Then, we reported the percentile of “yes”
answers as the summary-level rating.

BeSpoke-MC-7B We harnessed the SOTA
Llama-3.1-Bespoke-MiniCheck-7B (BeSpoke-
MC-7B) released by Bespoke Labs. The model is
fine-tuned from “internlm/internlm2_5-7b-chat”
(Cai et al., 2024) on the combination of 35K data
points following the approach in MiniCheck (Tang
et al., 2024). We use the suggested code repo
from https://huggingface.co/bespokelabs/
Bespoke-MiniCheck-7B. To calculate the AUC
score, we employed the raw probabilities returned
by the code to determine sentence-level ratings,
and we calculated the summary-level score as the
unweighted average across all sentences.

E.3 Machine Configuration for Models
We use up to 4 NVIDIA RTX 5000 GPUs, each
equipped with 16 GB VRAM, for model infer-
ences on our hardware. According to Lambda14

(RTX5000 is depreciated), a single NVIDIA
Quadro RTX 6000 (the closest to our setting) GPU
costs $0.5 per hour and has 24 GB VRAM. Ad-
ditionally, we loaded the Bespoke-MC-7B model

14https://lambdalabs.com/service/gpu-cloud
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Determine whether the provided claims are consistent with the corresponding document. Consistency in this context
implies that all information presented in the claim is substantiated by the document. If not, it should be
considered inconsistent.

Document: [DOCUMENT]
Claims: [CLAIMS]
Please assess the claim’s consistency with the document by responding with either "yes" or "no".
The CLAIMs are ordered in the format of a dictionary, with { index: CLAIM }. You will need to return the result in JSON format.
For instance, for a CLAIMs list of 4 items, you should return {0:yes/no, 1:yes/no, ...., 3:yes/no}.

ANSWER:

Table 8: Zero-shot factual consistency evaluation prompt for GPT4o.

on a single NVIDIA L40S GPU with 48 GB of
VRAM, provided by the Pitt CRC computing clus-
ter.

F Experimental Results

F.1 Discussion on Performance Compared to
Strong Baselines

Our primary analysis focuses on discussing how
the proposed approach can improve different base-
lines (we utilized three backbone baselines: rows 5,
11, and 17 with their improved versions) in Table
4. We observe several baselines obtained the best
performance on certain tasks and provide a more
careful justification below:

While the improvements may appear marginal in
some baseline models, they are statistically signifi-
cant and consistent across multiple datasets. The
capabilities of baseline models and the character-
istics of testbeds can also affect performance. For
instance, as noted in Section 7, dialogue-based in-
puts in QMS limit the effectiveness of discourse
parsing (RQ2), while short summaries like XSUM
minimize the impact of reweighting (RQ1). On
longer datasets like AXV and CSM, gains are more
substantial, with improvements of up to 7 points
(row 14 vs. row 11 in AXV). This is comparable to,
or even more significant than, prior work (Zhang
et al., 2024a), and it is common to observe varying
levels of performance gains across different tasks
(Tang et al., 2023, 2024).

LongDocFactScore (LDFS) introduced the
LongSciVerify (LSV) dataset (PUB and AXV),
using a different annotation method by subsam-
pling three sentences with human annotations
for factuality. We conjecture this may lead to
less accurate summary-level labels, favoring their
metric, which utilizes the top-k sentence-level
scores. Meanwhile, LDFS underperformed
compared to most other baselines on AggreFact,

QMS, AXV (from DIVERSUMM), and LongEval-
PUB. In contrast, our approach outperformed
LongDocFactScore on most other benchmarks
(e.g., 86.32 vs. 65.36 on AXV), suggesting our
approach is more robust and capable of handling
different long document summarization datasets.
While each baseline may excel in specific tasks,
a more robust benchmarking dataset could better
ensure fair comparisons for future research.

GPT-4o GPT4o is utilized as a comparison be-
tween the SOTA LLMs (GPT4o models have un-
known sizes but could be greater than known
open-sourced LLMs with up to 405B) and our
lightweight model (770M), which in the usual case,
the LLMs can outperform baselines by noticeable
margins (Tang et al., 2024)). In Table 4, regarding
the long document summarization datasets (from
GOV in DiverSumm to LegalSumm), our models
(rows 12, 13) outperformed GPT4o in 5 out of 6 test
sets (the only exception is LongEval PUB). This
confirmed that the discourse-inspired approaches
are beneficial.

BeSpoke-MC-7B is claimed to be the best fact-
checking model publicly available on the LLM-
AggreFact benchmark, which outperformed many
other LLMs with bigger sizes. Compared to our
proposed models, it performed better on QMS,
XSMAG, LSV-AXV, and had the best performance
on LongEval-PUB (similar pattern to GPT-4o).
However, on other benchmarks, our discourse ap-
proaches still demonstrate their benefits (i.e., on
LEGALSUMM, AlignScore + reweighting obtained
76.57 while BeSpoke-MC-7B only scored 55.81).

F.2 Ablation Study
Table 9 presents the ablation results of different
discourse features on our baselines. We cover the
long document summarization tasks starting from
QMS in Table 4.
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Model QMS GOV AXV CSM LSV-PUB LSV-AXV LE-PUB

MC-FT5 (SENT) 60.66 83.24 78.66 59.74 55.7 52.7 30.2
+ subtree height 60.21 84.55 79.09 60.55 53.6 55.1 30.4
+ depth score 60.51 83.65 78.90 59.90 55.7 53.8 33.3

re-weighting 60.36 84.75 79.38 60.06 52.8 55.1 31.4

AlignScore 56.48 87.02 77.46 61.03 54.9 53.9 36.9
+ subtree height 52.91 87.29 81.15 60.47 51.7 55.4 34.1
+ depth score 56.63 87.29 77.66 60.30 54.3 52.4 36.6

re-weighting 53.95 87.29 81.15 60.55 53.0 54.3 34.8

Table 9: Ablation results on long document datasets from DIVERSUMM, LONGSCIVERIFY and LONGEVAL.
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