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Abstract

In human cognitive memory psychology, the
context-dependent effect helps retrieve key
memory cues essential for recalling relevant
knowledge in problem-solving. Inspired by
this, we introduce the context-dependent mem-
ory framework (CDMem), an efficient ar-
chitecture miming human memory processes
through multistage encoding, context-aware
storage, and retrieval strategies for LLM-
centric agents. We propose multistage memory
encoding strategies for acquiring high-quality
multilevel knowledge: expert encoding com-
presses raw trajectories from a domain-expert
perspective, short-term encoding consolidates
experiences from current tasks, and long-term
encoding reflects insights from past tasks. For
memory storage and retrieval, we design a
graph-structured, context-dependent indexing
mechanism that allows agents to efficiently and
accurately recall the most relevant multilevel
knowledge tailored to the current task and envi-
ronmental context. Furthermore, the proposed
CDMem framework is an online learning ar-
chitecture, enabling agents to efficiently learn
and update memory while adapting to novel
environments and tasks in real-world applica-
tions. We conducted extensive experiments on
two interactive decision-making benchmarks
in the navigation and manipulation domain,
ALFWorld and ScienceWorld. Using GPT-4o-
mini, our method surpasses state-of-the-art on-
line LLM-centric approaches, achieving suc-
cess rates of 85.8% and 56.0%, respectively.
We hope this work will serve as a valuable ref-
erence for the academic and industrial commu-
nities in advancing agent-based applications.
The codes are available1.
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1https://github.com/piri-gao/CDMem

Figure 1: Illustrates the storage and retrieval mechanism
in the Context-Dependent Memory (CDMem) frame-
work. Agents can retrieve relevant memories through
key cues (task/environment type) or directly access all
memories, whereas the former is more efficient and
effective. The types of these tasks and environments
are predefined by domain experts. "Mem" encompasses
knowledge at different levels, including trajectories, task
experiences and insights.

1 Introduction

Memory plays a fundamental role in human cog-
nition and brain psychology (Smith and Kosslyn,
2007; Loftus and Loftus, 2019; Xue, 2022), serv-
ing as a critical component for learning, storing,
and retrieving knowledge, which is equally vital
for intelligent agents.

LLM-centric agents have achieved notable suc-
cess in many decision-making tasks. Some studies
have explored the synergy of reasoning traces and
specific actions in an interleaved way to improve
decision performance (Yao et al., 2023b). (Shinn
et al., 2023; Zhao et al., 2024) further introduced a
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reflection mechanism, enabling agents to summa-
rize experiences from past trajectories and apply
them to subsequent trials or tasks. Recently, some
LLM-centric agents have been designed with mem-
ory modules to facilitate information storage and
retrieval by organizing environmental knowledge
into categories or generating state-aware guidelines
(Chen et al., 2024; Fu et al., 2024). Memory stor-
age is often inefficient, hindering quick access and
selective retrieval, which results in slower and less
accurate decisions (Zhong et al., 2024). These
methods often struggle to store and retrieve com-
plex information effectively, especially in dynam-
ically changing contexts, preventing agents from
leveraging relevant information.

The human brain encodes, stores, and retrieves
memories in a context-dependent manner, asso-
ciating them with specific environments or tasks
to quickly identify key cues and activate relevant
memory (Smith and Kosslyn, 2007; Xue, 2022).
Inspired by this, we propose the context-dependent
memory framework (CDMem), an efficient archi-
tecture miming human memory processes through
multistage encoding, context-aware storage, and
retrieval strategies for LLM-centric agents.

We introduce a multistage memory encoding
strategy to learn high-quality, multilevel knowl-
edge. First, expert encoding compresses raw trajec-
tories from a domain-expert perspective, mimick-
ing how human experts effectively organize and
summarize information after completing a trial.
Next, short-term encoding consolidates successes
and failures from recent trials within the current
task. Finally, long-term encoding integrates in-
sights from past tasks and updates memory indexes
to maintain relevance and accuracy. Furthermore,
as illustrated in Figure 1, we propose a context-
dependent storage indexing mechanism that struc-
tures multilevel knowledge within a graph. During
retrieval, the agent identifies the current task and
environment types and then utilizes the key cues to
accurately access relevant exemplars, task experi-
ences, and insights. This precise retrieval process
enhances the LLM-centric agent’s ability to address
and solve the current task effectively. Additionally,
the proposed CDMem is an online learning frame-
work that enables agents to efficiently learn and
update memory while adapting to novel environ-
ments and tasks in real-world applications.

To summarize, our contributions are as follows:

• We propose an efficient online memory

paradigm for LLM-centric agents: a context-
dependent memory learning, storage, and
retrieval framework (CDMem) inspired by
the human memory mechanism, particularly
suited for developing domain-specific agents
in industrial applications.

• We propose an efficient multistage memory
learning method, including expert encoding,
short-term memory encoding, and long-term
memory encoding, to learn multilevel and
high-quality knowledge from past tasks;

• We design a context-dependent graph-based
indexing that allows agents to efficiently and
accurately retrieve the most relevant knowl-
edge through environmental and task-specific
cues;

• We conduct extensive experiments on two in-
teractive decision-making benchmarks (ALF-
World and ScienceWorld), We demonstrate
that our method outperforms state-of-the-art
online LLM-centric memory-based methods,
achieving significant performance improve-
ments.

2 Related Work

2.1 LLM for Reasoning and Decision-Making

The introduction of Chain-of-Thought (CoT) (Wei
et al., 2022) has significantly enhanced the reason-
ing capabilities of LLM. Building on this, several
works (Kojima et al., 2022; Yao et al., 2023b; Wu
et al., 2023) have demonstrated the immense po-
tential of LLM in reasoning and decision-making,
surpassing traditional reinforcement learning meth-
ods in specific scenarios. Tree-of-Thought (Yao
et al., 2023a) and Graph-of-Thought (Besta et al.,
2024) further enhanced CoT by extending the linear
CoT structure to tree-based and graph-based struc-
tures, respectively. Many other works have applied
the reasoning and decision-making capabilities of
LLM to various domains, including robotics (Ahn
et al., 2022; Liang et al., 2023), gaming (Wang
et al., 2024b, 2023; Zhu et al., 2023), and game
theory (Zhang et al., 2024; Guo et al., 2023). In
these complex domains, fully leveraging learned
experiences and dynamically forming new experi-
ences based on real-time environmental feedback
is crucial for decision-making.
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Figure 2: Illustration of the Context-Dependent Memory (CDMem) framework. (a) The agent interacts with
the environment to generate a trial history. (b) The expert encoding module compress the raw trial history and
extract expert history including environment, task goal and expert trajectory description. (c) The short-term memory
encoding based on the compressed output of (b) to generate successful shortcuts, experiences of defined failure
types, and environmental summary. (d) The long-term memory encoding captures cross-task insights, including
environmental insights as well as success- and failure-related task insights, based on accumulated short-term
memories every B tasks. (e) Organize the knowledge learned from the previous steps into a graph-structured storage
index according to task type and environment type. (f) At the inference stage, given a new trial with a description of
the environment and task goal. (g) Retrieve relevant knowledge from the context-dependent memory, including
exemplars, environmental insights, as well as success- and failure-related task insights. (h) Organize the retrieved
knowledge, current trial, and task experiences to form the prompt (similar to working memory in the human brain),
and use it to make action decisions through the LLM.

2.2 Memory Storage and Retrieval of Agents

Designing an effective memory mechanism is es-
sential for improving the performance of decision-
making agents. MemoryBank (Zhong et al., 2024)
proposed a long-term memory mechanism that ad-
dresses the lack of long-term memory in LLM by
incorporating storage, retrieval, and update mecha-
nisms combined with the Ebbinghaus forgetting
curve theory. ChatDB (Hu et al., 2023) intro-
duced databases as symbolic memory for LLM and
proposed the Chain-of-Memory (CoM), enhanc-
ing the complex reasoning capabilities of LLM.
TiM (Liu et al., 2023)improved the performance
of LLM in long-term interactions by storing his-
torical thoughts, updating memory through oper-
ations such as insertion, forgetting, and merging,
and utilizing locality-sensitive hashing for efficient
retrieval. Nevertheless, these works all rely on di-
rect retrieval from the entire memory pool without
constructing more efficient indexing mechanisms,
which leads to inefficient retrieval and insufficient
accuracy.

2.3 Memory Self-Learning of Agents

Reflexion(Shinn et al., 2023) converts environmen-
tal feedback into textual statements and stores them
in memory, allowing the agent to utilize this mem-
ory in subsequent trials to improve task perfor-
mance. Retroformer(Yao et al., 2024) and Reflect-
RL(Zhou et al., 2024) further enhanced Reflexion
by incorporating reinforcement learning to train
specific components, effectively embedding part
of the memory into model parameters to improve
the agent’s reasoning capabilities. In-Memory
Learning(Wang et al., 2024a) proposed a frame-
work that constructs memory and enables agent
self-improvement through induction, revision, and
inference. Expel(Zhao et al., 2024) introduced
an offline learning agent that collects experiences
through trial-and-error interactions with the envi-
ronment during the training phase, storing them
in an experience pool for later extraction of in-
sights. During the evaluation phase, the agent uses
these insights and successful trajectories to assist
decision-making. AutoGuide(Fu et al., 2024) ex-
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tracts a set of state-aware guidelines through of-
fline learning, providing more targeted guidance
to the agent based on the current state during test-
ing. Unlike Expel and AutoGuide, CDMem is an
online memory-based method that continuously
self-improves through real-time memory updates.

3 Method

When humans perform tasks in a specific environ-
ment, they use environment- and task-specific cues
to retrieve relevant memories efficiently. After com-
pleting a task, they organize and consolidate these
memories for future use. Inspired by this process,
we propose the Context-Dependent Memory (CD-
Mem) framework, which includes three key compo-
nents: memory encoding, context-dependent mem-
ory storage, and context-dependent memory re-
trieval. This framework efficiently retrieves rel-
evant exemplars, experiences, and insights based
on the current environment and task instructions.
Memory encoding uses a novel multistage memory
learning strategy, while memory storage and re-
trieval rely on a context-dependent indexing struc-
ture. Detailed method descriptions with pseudo
code are provided in the Appendix.

3.1 Multistage Memory Encoding

3.1.1 Expert Encoding
Memories formed by domain experts are typically
more concise and organized than those of non-
experts. This is because expert encoding efficiently
groups raw trajectories into knowledge chunks. For
instance, a professional chess player will deduce
the tactics used in a game, thereby remembering
the arrangement of the pieces, whereas a novice
would attempt to remember the position of each
chess piece from the outset. Inspired by this, we
introduce the Expert Encoding Module Mexpert

which takes a raw trajectory τ as input and out-
puts compressed expert observations and actions
Eexpert.

Eexpert = Mexpert(τ) (1)

Expert observations provide a concise descrip-
tion of the environment, summarizing object lo-
cations and their properties within the current en-
vironment. Expert actions are well-organized tra-
jectories from an expert’s perspective, which omit
unnecessary details and consolidate similar actions
into a single statement to reduce redundancy.

3.1.2 Short-term Memory Encoding

When an agent repeatedly attempts a task in a spe-
cific environment, it reflects on its actions, creating
memories tailored to that task and environment,
like human short-term memory. To model this pro-
cess, we introduce the Short-term Memory Encod-
ing Module Mshort, which takes raw trajectories
and expert encoding as inputs and generates short-
term memories as output.

Eshort = Mshort(τ, Eexpert) (2)

This module is similar to the reflection process
in Reflexion(Shinn et al., 2023), but with two key
improvements inspired by human memory:

(a) Reflection on Successful and Unsuccessful
Trajectories Unlike Reflexion, which only reflects
on unsuccessful trajectories, our approach sepa-
rately reflects on both successful and unsuccessful
ones. For successful trajectories, the agent reflects
on which actions were necessary and which were
not, removing unnecessary steps to create a "Suc-
cessful Shortcut." This represents the shortest path
to complete the task and helps the agent focus on
essential planning. For unsuccessful trajectories,
the agent analyzes the error type, such as planning,
search, or operation failures, and then adjusts its
plan accordingly.

(b) Environmental Memory. Beyond learning
the experiences through reflection, the short-term
memory encoding module also learns memories
of the current environment via different aspects.
When the agent makes attempts in the same or sim-
ilar environment, the environment memories can
help the agent to effective and efficient understand-
ing of the environment.

3.1.3 Long-term Memory Encoding

When an agent performs different tasks in various
environments, similarities between these tasks and
environments may emerge. These similarities can
be summarized into high-level, abstract memories
spanning tasks and environments. These memories
are recalled not only when the agent encounters the
same task or environment but also when it faces
similar ones, demonstrating strong generalization
and persistence, much like human long-term mem-
ory. To capture this, we designed the Long-term
Memory Encoding Module Mlong, which takes
short-term memories as inputs and generates envi-
ronmental and task insights as output.
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env_insights, task_insights

= Mlong(τ, Eshort)
(3)

(a)Environmental Insights. Using ALFWorld
and ScienceWorld as examples, environmental in-
sights focus on encoding object properties, such as
"a microwave can heat food," rather than summariz-
ing object positions, as in short-term memory. This
approach mirrors human memory patterns, where
object positions are not easily generalized across
environments.

(b)Task Insights. Similar to short-term mem-
ory encoding, task insights separately summarize
positive and negative examples. For successful
memories, the agent combines multiple successful
shortcuts to create a general plan for a task category.
For unsuccessful memories, the agent consolidates
reflections on errors to identify common mistakes
and their remedies across tasks.

3.2 Context-Dependent Memory Storage

We propose the Context-Dependent Memory (CD-
Mem) framework, featuring a context-dependent
indexing structure that includes both environment-
dependent and task-dependent indices. This struc-
ture uses environmental and task-specific cues to
improve long-term memory retrieval. This subsec-
tion outlines the memory storage process.

The context-dependent indexing structure con-
sists of two dictionaries: the Env-Index for index-
ing environmental long-term memories and the
Task-Index for task-related long-term memories.
The Task-Index is further divided into two sub-
dictionaries: Success and Failure, which store sum-
marized successful and unsuccessful short-term
memories. The dictionary keys represent environ-
ment or task descriptions, while the values contain
pairs of short-term memories and their correspond-
ing raw trajectories.

When a new short-term memory is created, the
corresponding dictionary is updated based on the
environment and task. The system searches for
matching environment or task descriptions. If a
match is found, the memory and its trajectory are
added to the list. If no match exists, a new key
is created with an empty list, and the memory is
added. Once the list reaches a batch size, the Long-
term Memory Encoding Module processes the en-
tries into long-term memories, storing environmen-
tal insights in the Env-Index and task insights (Suc-
cess or Failure) in the Task-Index.

3.3 Context-Dependent Memory Retrieval

During inference, the agent retrieves and organizes
information based on the current task and environ-
ment using the context-dependent indexing struc-
ture. To retrieve the corresponding insights and
raw trajectories, we propose a prompt-based Index
Matching Module Mmatch, which takes the cur-
rent task and environment as input and outputs the
best-matching environment and task types. The
next step is determining which insights and raw
trajectories to recall as exemplars.

(a) Retrieval and recall exemplars. The agent
retrieves relevant trajectories (CD-exemplars) from
both the Env-Index and Task-Index, then prioritizes
those in the intersection, where both task and en-
vironment match. If more exemplars are needed,
the system recalls additional trajectories from the
Task-Index or falls back on default exemplars from
Reflexion. The Env-Index is not considered at this
stage.

(b) Retrieval and re-ranking insights. To filter
and rank insights, we propose a non-LLM-based
sorting algorithm. It calculates the cosine similar-
ity between each insight and short-term memories
in the current environment or task, then sums the
scores to prioritize the most relevant insights.

4 Experiments
4.1 Setting

We validated the effectiveness of CDMem and con-
ducted analyses on typical complex interactive rea-
soning tasks, navigation, and manipulation of situ-
ated virtual textual environments: ALFWorld and
ScienceWorld. In ALFWorld, agents interact with
different rooms to complete household tasks. Fol-
lowing the setting in React(Yao et al., 2023b), we
selected 134 environments from ALFWorld as our
test set. These 134 environments are composed of 9
rooms and 6 task types. In ScienceWorld, which is
similar to ALFWorld, the tasks are more complex.
We selected tasks that could be completed within
20 steps to form our test set, which includes a total
of 50 tasks.

4.1.1 Baselines
Since this study primarily focuses on how agents
generate and utilize memory during online interac-
tions, we choose Reflexion, Expel and AutoGuide
as baselines. To ensure a fair comparison, we im-
plemented online versions of Expel and AutoGu-
ide, referred to as "Expel-Online" and "AutoGuide-
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Figure 3: Main Results. Average task success rates on ALFWorld with two model configurations and average scores
on ScienceWorld with the base model configuration.

Method Success Rate%
CDMem w/o expert 72.3

CDMem w/o task-encoding 84.3
CDMem w/o env-encoding 74.3

CDMem w/o CD-Exemplars 80.6
CDMem 85.8

Table 1: Ablation Study on ALFWorld.(a) CDMem w/o
expert: CDMem without expert encoding;(b) CDMem
w/o task-encoding: Removal of task insights from the
long-term encoding; (c) CDMem w/o env-encoding:
Removal of environmental insights from the long-term
memory encoding; (d)CDMem w/o CD-Exemplars: In-
stead of using context-dependent memory for exemplars,
using fixed exemplars in Reflexion(Shinn et al., 2023).

Online". Furthermore, we also selected the React
algorithm, which does not involve memory, as a
baseline to reflect the model’s performance without
using any memory methods.

4.1.2 Implementation
We conducted 5 trials in each environment of ALF-
World and ScienceWorld, with a maximum of 20
interaction steps per trial and environment. All
methods use two exemplars. All experiments were
run three times, and the experimental results were
averaged. We evaluated our model with two con-
figurations:(a) GPT-4o-mini: All components use
GPT-4o-mini. (b) GPT-4o: Memory-related com-
ponents use GPT-4o, while other components use
GPT-4o-mini.

4.2 Main Results

In both ALFWorld and ScienceWorld, CDMem
achieved significant improvements over the base-
lines(see Figure 3).With Configuration 1, CDMem
achieved a success rate of 85.8%, a 9% improve-
ment over the AutoGuide-Online. Similarly, in

Method Score
CDMem w/o task-encoding 40.9
CDMem w/o env-encoding 54.7

CDMem 56.0

Table 2: Ablation Study on ScienceWorld
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Figure 4: The curve of the relationship between success
rate and the number of trials.

ScienceWorld, CDMem scored 56.02, exceeding
AutoGuide-Online’s score of 44.84 by more than
10 points. With Configuration 2, CDMem’s success
rate on ALFWorld reached 90.0%, nearly a 10%
increase over Expel-Online’s 80.3%.

4.3 Ablation Studies

We verified the modules of CDMem contribute to
performance improvement on ALFWorld shown in
Table 1 and on ScienceWorld shown in Table 2. It
can be seen that each component of CDMem plays
an important role.

(a)Role of Expert Encoding Expert encoding
compresses the raw trajectory and allows larger
batch sizes during updates. Second, expert encod-
ing improves the accuracy of successful shortcut
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summarization. Rather than directly extracting
shortcuts from successful trajectories, the agent
first summarizes expert actions. This helps the
agent focus only on identifying unnecessary ac-
tions when summarizing successful shortcuts.

(b)Role of Short-term Memory A well-
designed reflection mechanism enables significant
improvement in an agent’s performance on sub-
sequent trials of the same task. In our tests on
ALFWorld (see Figure 4), CDMem showed a more
substantial improvement between trial 0 and trial 1
compared to other methods.

(c)Role of Environmental Insights In ALF-
World, removing expert encoding and environmen-
tal insights had the largest impact and reduced
about 10-points of SR. However, in the Science-
World environment, removing environmental in-
sights had only a 2-point impact. Moreover, we
found that environmental insights significantly re-
duce hallucinations in the agent’s behavior. For
example, in ALFWorld, these insights provide ac-
curate contextual information for item (such as mi-
crowave) usage.

(d)Role of Task Insights Task insights are sim-
ilar to the status guidelines in AutoGuide. Com-
pared to Expel, which uses all available insights,
task insights are more focused and relevant to the
current task, offering more accurate guidance. Sim-
ilar to the role of environmental insights, task in-
sights are also essential in mitigating hallucina-
tions in the agent’s behavior. For example, in
ALFWorld, successful task insights outline the cor-
rect sequence of actions for a task, helping the
agent avoid performing actions that fall outside the
planned steps due to hallucinations.

(e)Role of CD-Exemplar Although the fixed
exemplars provided by Reflexion are also task-
dependent, CD-Exemplars represent the actual in-
teraction trajectories of the agent with the environ-
ment, making them more valuable as references for
the agent. As a result, this led to an improvement
of nearly 5% in ALFWorld.

4.4 Computational Cost

We compared the computational cost of CDMem
with Reflexion. Specifically, using the GPT-4o-
mini configuration, we conducted five trials across
20 randomly selected environments from ALF-
World to compare the computational cost shown in
Table 3, which includes the number of API calls per
individual sample, the total number of API calls for
the selected dataset, and the corresponding mone-

Computational Cost Reflexion CDMem
API Calls per Sample 2 4

Total API Calls (Dataset) 781 1155
Monetary Cost (Dataset) $0.33 $0.51

Table 3: Comparison of Computational Costs

tary cost for processing the dataset.

5 Conclusion

We introduce CDMem, an efficient online mem-
ory framework for LLM-centric agents inspired
by human memory mechanisms and designed for
domain-specific industrial applications. Our ap-
proach incorporates a multi-stage memory learn-
ing method—expert encoding, short-term memory
encoding, and long-term memory encoding—to
effectively capture and organize knowledge from
past tasks. We also introduce a context-dependent
graph-based indexing structure that allows agents
to retrieve relevant knowledge efficiently. We
demonstrate that CDMem significantly outper-
forms state-of-the-art methods through extensive
experiments, achieving notable performance im-
provements.
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A Appendix

A.1 Environment Details
We conduct experiments on the CDMem algorithm
using two virtual textual environments: ALFWorld
and ScienceWorld. Since the test set for ALFWorld
is the same as those used in Reflexion and Expel,
this section primarily introduces the construction
of the ScienceWorld test set. The tasks in Science-
World are divided into 30 task types, each contain-
ing multiple variants. We select 10 types of tasks
where the average length of the oracle agent’s tra-
jectories is less than 20. For each Task Type, we
choose the top 5 variants, resulting in a total of 50
environments, which are shown in Table 4

A.2 Implementation Details
In Table 5, we provide the specific version of the
models used in the experiments.

Model Version

GPT-4o gpt-4o-2024-05-13

GPT-4o-mini gpt-4o-mini-2024-07-18

Embedding model text-embedding-3-small

Table 5: Version numbers of the models.

A.3 Prompt Templates
We present our prompt templates for different mod-
ules in Figures 5-11.

A.4 Additional Experiments and Analyses
A.4.1 Role of Expert Encoding
We analyze the role of expert encoding and find that
applying expert encoding before short-term mem-
ory encoding results in more accurate summaries of
successful shortcuts than directly using raw trajec-
tories. We believe that the action sequence summa-
rized by the expert encoding provides a reference
for short-term memory encoding, reducing the cog-
nitive load on the LLM when identifying redundant
actions. This appearance is similar to the effective-
ness of the "think step by step" approach. Here is
an example of the appearance in Figure 12.

A.4.2 Effect of batch size
CDMem supports a larger batch size in the insights
extraction phase than Expel and AutoGuide. We
conducted batch size experiments on ALFWorld,
and the results indicate that even with a batch size
as large as 11, insights can still be effectively ex-
tracted. The experimental results are shown in the
Table 6

Batch size Success Rate%

1 85.8

3 84.6

5 86.4

7 86.2

9 83.6

11 84.3

Table 6: Batch size experimental results on ALFWorld

A.5 Pseudo code of methods
The pseudo code for the multistage memory en-
coding and storage, memory retrieval, and results
rerank are shown in Algorithm 1-3
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Task Type Topic Name *Lens # Variations Chosen
1-1 Matter Changes of State (Boiling) 107.7 30
1-2 Matter Changes of State (Melting) 78.6 30
1-3 Matter Changes of State (Freezing) 88.9 30
1-4 Matter Changes of State (Any) 75.2 30
2-1 Measurement Use Thermometer 21.4 540
2-2 Measurement Measuring Boiling Point (known) 35.2 436
2-3 Measurement Measuring Boiling Point (unknown) 65 300
3-1 Electricity Create a circuit 13.6 20 ✓
3-2 Electricity Renewable vs Non-renewable Energy 20.8 20
3-3 Electricity Test Conductivity (known) 25.6 900
3-4 Electricity Test Conductivity (unknown) 29 600
4-1 Classification Find a living thing 14.6 300 ✓
4-2 Classification Find a non-living thing 8.8 300 ✓
4-3 Classification Find a plant 12.6 300 ✓
4-4 Classification Find an animal 14.6 300 ✓
5-1 Biology Grow a plant 69.5 126
5-2 Biology Grow a fruit 79.6 126
6-1 Chemistry Mixing (generic) 33.6 32
6-2 Chemistry Mixing (generic) 15.1 32 ✓
6-3 Chemistry Mixing (generic) 23 36
7-1 Biology Identify longest-lived animal 7 125 ✓
7-2 Biology Identify shortest-lived animal 7 125 ✓
7-3 Biology Identify longest-then-shortest-lived animal 8 125 ✓
8-1 Biology Identify life stages (plant) 40 14
8-2 Biology Identify life stages (animal) 16.3 10 ✓
9-1 Forces Inclined Planes (determine angle) 97 168
9-2 Forces Friction (known surfaces) 84.9 1386
9-3 Forces Friction (unknown surfaces) 123.1 162
10-1 Biology Mendelian Genetics (known plants) 130.1 120
10-2 Biology Mendelian Genetics (unknown plants) 132.1 480

Table 4: Chosen Environments of ScienceWorld benchmark. *Lens is the average length of the oracle agent’s
trajectories.

Figure 5: Our prompt template for inference.
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Figure 6: Our prompt template for expert encoding.

Figure 7: Our prompt template for short-term memory encoding of successful trajectory.
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Figure 8: Our prompt template for short-term memory encoding of failure trajectory.

Figure 9: Our prompt template for long-term memory encoding of successful task insights.

Figure 10: Our prompt template for long-term memory encoding of failure task insights.
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Figure 11: Our prompt template for long-term memory encoding of environmental insights.

Figure 12: Role of Expert Encoding.The left column summarizes the successful shortcuts using only the raw
trajectory, while the right column utilizes both the raw trajectory and expert encoding.
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Algorithm 1 Multistage Encoding and Memory Storage
Input: Task List tasks, Number of tasks K, Maximum number of trials N , Expert encoding module
Mexpert, Short-term memory encoding module Mshort, Long-term memory encoding module Mlong,
Index matching module Mmatch, environment dictionary Env-Index, Task dictionary Task-Index,
Update Batch Size bs
Output:
Updated Env-Index
Updated Task-Index

1: for i = 1 to N do
2: for j = 1 to K do
3: τ i,j = Interact_with_environment()
4: Ei,j

expert = Mexpert(τ i,j)
5: Ei

short = Mshort(τ i,j , Ei−1
short)

6: task_type, env_type = Mmatch(tasks[j])
7: Task-Index[task_type][trajs].add(τ i,j , Ei

short)
8: Env-Index[env_type][trajs].add(τ i,j , Ei

short)
9: if len(Task-Index[task_type] % bs == 0 then

10: task_insightsold

= Task-Index[task_type][insights]
11: task_insightsnew

= Mlong(Ebatch
short , task_insightsold)

12: Task-Index[task_type][insights]
= task_insightsnew

13: end if
14: if len(Env-Index[env_type]) % bs == 0 then
15: env_insightsold

= Env-Index[env_type][insights]
16: env_insightsnew

= Mlong(Ebatch
short , env_insightsold)

17: Env-Index[env_type][insights]
= env_insightsnew

18: end if
19: end for
20: end for
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Algorithm 2 Memory Retrieval
Input: Task task, Index matching module Mmatch, environment dictionary Env-Index, Task dictionary
Task-Index, Number of exemplars needed M , Number of insights needed 2L, Default exemplar list
default_exemplars, Rerank algorithm Rerank
Output:
environmental insights env_insights,
Task insights task_insights,
exemplars CD_exemplars

1: CD_exemplars = ∅
2: task_type, env_type = Mmatch(task)
3: similar_task_trajs, similar_task_short_memories

= Task-Index[task_type][trajs]
4: similar_env_trajs, similar_env_short_memories

= Task-Index[env_type][trajs]
5: task_insights = Task-Index[task_type]
6: env_insights = Env-Index[env_type]
7: task_insights = Rerank(task_insights,

similar_task_short_memories )
8: env_insights = Rerank(env_insights,

similar_env_short_memories )
9: intersection

= similar_task_trajs ∩ similar_env_trajs
10: Add exemplars to CD_exemplars in order of priority:

intersection, similar_task_trajs,
default_exemplars

11: return
task_insights[:L], env_insights[:L],
CD_exemplars

Algorithm 3 Rerank Algorithm
Input:
Insights sorted_insights
Short Memories short_memories
Output:
Sorted insights insights

1: for each insight in insights do
2: similarity_scores

= Faiss(short_memories, insight)
3: ranking_weight = sum(similarity_scores)
4: end for
5: Sort insight in descending order according to their respective the ranking_weight as

sorted_insights
6: return sorted_insights
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