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Abstract

Large language models (LLMs) have demon-
strated remarkable capabilities in handling com-
plex dialogue tasks without requiring use case-
specific fine-tuning. However, analyzing live
dialogues in real-time necessitates low-latency
processing systems, making it impractical to
deploy models with billions of parameters due
to latency constraints. As a result, practition-
ers often prefer smaller models with millions
of parameters, trained on high-quality, human-
annotated datasets. Yet, curating such datasets
is both time-consuming and costly. Conse-
quently, there is a growing need to combine the
scalability of LLM-generated labels with the
precision of human annotations, enabling fine-
tuned smaller models to achieve both higher
speed and accuracy comparable to larger mod-
els. In this paper, we introduce a simple yet
effective framework to address this challenge.
Our approach is specifically designed for per-
utterance classification problems, which en-
compass tasks such as intent detection, dia-
logue state tracking, and more. To mitigate the
impact of labeling errors from LLMs – the pri-
mary source of inaccuracies in student models –
we propose a noise-reduced preference learning
loss. Experimental results demonstrate that our
method significantly improves accuracy across
utterance-level dialogue tasks, including senti-
ment detection (over 2%), dialogue act classifi-
cation (over 1.5%), etc.

1 Introduction

Maintaining high annotation quality, scaling the
size of labeled datasets, and managing annotation
budgets are three critical yet often conflicting ob-
jectives in deploying real-world ML applications.
A widely adopted paradigm involves a two-stage
process: unsupervised pretraining followed by su-
pervised fine-tuning (e.g., Devlin, 2018; Chen et al.,
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2020; He et al., 2020; Raffel et al., 2020). This ap-
proach effectively reduces the size of the labeled
dataset required because, during the pretraining
phase, models learn to generate universal embed-
dings across various modalities. Consequently,
such pretrained models are often straightforward to
adapt to downstream tasks.

In dialogue understanding, moving beyond
BERT-like models is essential, as dialogues possess
unique characteristics compared to the BERT pre-
training corpus (which primarily consists of books
and web pages). These differences arise from sev-
eral factors: First, dialogues involve spoken lan-
guage exchanges between two or more individu-
als and are often structured differently, with one
line per speaker. This format reduces the effec-
tiveness of tasks such as masked token prediction
and next-sentence prediction. Second, the vocab-
ulary in daily dialogues tends to be informal. Fi-
nally, dialogues are frequently transcribed from
voice recordings, introducing ASR errors and back-
ground noise. These distinctive properties have
inspired research into developing specialized unsu-
pervised pretraining algorithms for dialogue data
(Mehri et al., 2019; Zhong et al., 2022; Liu et al.,
2022; Zhou et al., 2022). Benchmark evaluations
on common dialogue tasks – such as intent detec-
tion, next-utterance prediction, summarization, dia-
logue act classification, and dialogue state tracking
– demonstrate the advantages of dialogue-optimized
models. These models generally adhere to the
classical BERT framework, pretraining on large-
scale unsupervised dialogue datasets with dialogue-
specific loss functions, including random mask
filling, utterance swapping, and contrastive learn-
ing. However, it remains unclear whether such pre-
trained embedding models generalize effectively to
specific downstream tasks.

To address this challenge, we require direct
supervision signals that are closely aligned with
downstream tasks. This motivates the use of in-
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struction fine-tuned LLMs as phase-2 supervision
signals, while retaining traditional unsupervised
pretraining as phase-1. However, simply employ-
ing LLMs as data labelers and fine-tuning a student
model using traditional cross-entropy loss proves
suboptimal. The accuracy of LLM-generated la-
bels can be unpredictable, influenced by factors
such as the quality of the LLM, the prompting strat-
egy, and the inherent difficulty of the dialogue task.
Consequently, the knowledge transferred from the
LLM to the student model often deviates from the
intended objective. This paper proposes an alterna-
tive approach based on preference learning, where
pairs of chunks sampled from the same dialogue
session (intra-session pairs) are labeled by ensem-
bled LLMs. Under reasonable assumption on LLM
labeling errors, our method outperforms traditional
training algorithms in both data efficiency and gen-
eralizability.

2 Related work

2.1 Task-oriented dialogue (TOD) system

Task-oriented dialogue understanding lies in the
core of building AI assistants to be deployed in
domain specific scenarios such as restaurant book-
ing, self-service product troubleshooting, and so on.
The objective is to help users achieve their goals in
limited turns by understanding users’ needs, track-
ing dialogue states and figure out next best action.
Unique to TOD system, intent detection, dialogue
act classification, and dialogue state tracking are
three critical components of the system. Traditional
approaches mostly rely on supervised learning on
embedding models (Liu and Lane, 2016), by encod-
ing dialogue contexts and employing deep neural
networks such as RNN/LSTM or Transformers to
infer utterance labels or slot values (Barriere et al.,
2022; Duran, 2021; Chen et al., 2020). In the LLM
age, there is a shift from finetuning TOD model for
a specific domain (Lei et al., 2018) to open domain
in-context learning (Hu et al., 2022; Arora et al.,
2024). Unfortunately, both solutions ignored la-
tency and cost constraints in real-time, commercial
products.

2.2 Synthetic label prompting strategies and
transfer learning

These two techniques are the foundation of our
solution. We discuss the main idea and prior works.
Prompting strategies. It is often non-trivial
prompting LLMs to achieve quality high data la-

beling. For example, prior work (Anagnostidis
and Bulian, 2024; Work; Lu et al., 2021) noticed
that few-shot prompting is surprisingly sensitive
to factors including the number of example, order
of examples, positive / negative sample ratio, or
how similar those examples are to the actual input
query. In this regard, fine-tuning embedding mod-
els on human curated labels are still preferred in
production-ready applications. To strengthen the
robustness of ICL, a promising solution is through
diversified prompting (Li et al., 2023b; Song et al.,
2024b,a), either by starting with a few seeding
prompts, and augment more versions using auto-
mated pipeline (Wang et al., 2022b), or repetitively
refine the prompt from diverse perspectives (Li
et al., 2023a).
Transfer learning. For better instruction follow-
ing ability, a popular approach is fine-tuning on
synthetic datasets produced by larger LLMs (Taori
et al., 2023; Chiang et al., 2023; Xu et al., 2023a).
To foster LLM’s reasoning ability, another line of
work finetune with synthetic rationales collected
from stronger LLMs (Wang et al., 2022a; Shridhar
et al., 2023; Liu et al., 2023; Kang et al., 2024).
Similar approach work for task-specific applica-
tions too, examples like dialogue generation (Xu
et al., 2023b), information extraction (Josifoski
et al., 2023; Jeronymo et al., 2023) and code gen-
eration (Chaudhary, 2023; Roziere et al., 2023).
Our work focus on per-utterance multi-class clas-
sification in TOD system, assuming that even the
most capable LLMs can’t generate highly accurate
labels, so a brand new transfer learning approach
is required.

3 Proposed framework

3.1 Problem scope

We limit our scope to per-utterance classification,
including sentiment detection, dialogue state track-
ing, dialogue act classification (Fig. 1).
Intent detection. Each utterance is mapped to a
binary label has_intent (y = 1) or no_intent
(y = 0). Positive label means utterance deemed a
valid intent (e.g. a question, issue, or complaint).
Take customer support for example, we could apply
intent detection model to monitor customer speech
in real time and figure out whether a customer is
seeking for help rather than chit-chatting.
Dialogue act classification. We could regard this
as an extension of intent detection from binary in-
tent labels to multi-class acts. The objective of
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(a) Intent detection

                                       Utterances                                   

[Assistant] Hi, this is [PII] speaking, how can I help
you today?

[Customer] Hello, I have an issue with this security
camera.

[Assistant] Okay?

[Customer] So, the green light shows it has connected
 to my phone.

[Customer] which says no device found and so I couldn't 
see the recording.

[Assistant] I do apologize to hear the problem. Let me 
find out the solution okay?

Has intent?

No

No

No

No

Yes

No

(b) Dialogue act classification

                                    Utterances

[Doctor] Jackie, how are you?

[Patient] Not too bad, how are you?

[Doctor] Thanks for asking. What's going on there?

[Patient] They think I have a drinking problem. My
family ...

[Doctor] Your family thinks you have a drinking
problem?

[Patient] Yeah. So we started this last weekend.
They picked me up for my bridal shower. I drunk ...

Dialogue Act

Greeting

Greeting

Information Request 

 Information Delivery

Clarification Request

Clarification Delivery

(c) Dialogue state tracking

                                    Utterances

[Assistant] Hi, this is XYZ hotel, how may I help?

[Customer] Hello, I want to book a room for
Thanksgiving in San Francisco.

[Assistant] Sure, happy to help. Any preference
about the location? we have Bridge Garden at North
San Francisco and the other one called Sonesta Inn
close to the airport.

[Customer] Got it, we will stay in the north for 4
nights.

[Assistant] Sure! and do you have an account 
with us?

Dialogue State

N/A

date: "Thanksgiving" 
city: "San Francisco"

N/A

 

num_nights: 4 
hotel: "Bridge Garden"

N/A

Figure 1: Illustrative examples of intent detection, di-
alogue act classification, and dialogue state tracking
problems.

dialogue act classification is finding out the func-
tions that utterances serve in dialogues – such as
commitments, questions, requests, replies, etc. In
contact centers, for example, classifying dialogue
acts can be valuable at providing appropriate and
thoughtful responses to clients adhering to the dia-
logue acts.

Dialogue state tracking (DST). The objective of
DST is extracting and picking up new informa-
tion into dialogue state as the conversation evolves.
This task has great potential in customer service as
it not only provides intent types (e.g. hotel-booking
in Fig. 1c), but also identifies relevant semantic
concepts throughout the slot filling process (e.g.
location = San Francisco).

Challenge. When delivering real world applica-
tions driven by per-utterance classifiers, the chal-
lenges often rooted from obtaining high quality
labels. For example, MultiWOZ (Budzianowski
et al., 2018) is commonly used for benchmarking
DST algorithms. Yet the original dataset contains
numerous labeling errors, and it took 4 future ver-
sions (Eric et al., 2019; Zang et al., 2020; Han et al.,
2021; Ye et al., 2021) (MultiWOZ 2.1-2.4) to cor-
rect them. More importantly, we learned that a
clean dataset not only ensures us precisely track-
ing the progress on good valid/test set, but also
reduces the reliance on robust model training algo-
rithms (Ye et al., 2022). The challenge of labeling
leads us to focus on following question –

Can we design a general solution for per-
utterance classification problems, by jointly
utilizing small amount of clean, human ver-
ified labels and almost unlimited amount of
lower quality LLM annotations?

We share a positive answer in the remainder of
this work. Our work is not a simple extension of
weakly supervised learning or noise-robust super-
vised learning, as we utilize characteristics that are
unique to per-utterance classifications.

3.2 Workflow

Our workflow involves four stages. Goal of stage
1 is to construct a prompt bank containing diversi-
fied prompts that performs well on data annotation
work following prompt tuning strategies outlined
in Schulhoff et al. 2024; Brown et al. 2020; Wei
et al. 2022; Yao et al. 2023; Liu et al. 2021. Pre-
dictions led by various prompts are slightly differ-
ent, we ensemble the outputs together for better
results (Khalifa et al., 2023; Jiang et al., 2021).
Next, we further strengthen the ensemble effect
at stage 2 using top-K/top-P sampling. After re-
peated sampling N times using LLM labeler, we
compute L-dimensional score vector S ∈ [0, 1]L

for dialogue D containing L utterances. Each el-
ement 0 ≤ Si ≤ 1 is the ratio of positive LLM
labels divided by N (e.g. if 3 in 10 ensembles la-
beled i-th utterance as positive, Si = 0.3). For
C-class classification problem, we transform it into
C one-versus-rest binary classification problems so
the same framework still apply.

After we collect LLM labeling scores S, we split
a dialogue into multiple segments using a sliding
window of stride 1. We denote xi as the i-th seg-

88



Stage 3. 
Chunking

Example dialogue as an input:

[Assistant] Hi, this is [PII], how can I help you?

[Customer] Hi, I'm [PII]. I was calling to check the 
order status of my replacement tire.

[Customer] It shows "order in processing" for more than 7
days, I wonder if there is inventory at all.

[Assistant] I'm so sorry to hear that Mr. [PII], let me check it for you,
what's the order number?

[Customer] It's [PII].

[Assistant] Okay, so the order number is [PII], correct?

[Customer] Exactly correct

[Assistant] Let me put you on hold while I'm checking on the system.

After chunking by 3 utterances:

[Assistant] Hi, this is [PII], how can I help you?

[Customer] Hi, I'm [PII]. I was calling to check the 
order status of my replacement tire.

[Customer] It shows "order in processing" for more than 7
days, I wonder if there is inventory at all.

[Customer] Hi, I'm [PII]. I was calling to check the 
order status of my replacement tire.

[Customer] It shows "order in processing" for more than 7
days, I wonder if there is inventory at all.

[Assistant] I'm so sorry to hear that Mr. [PII], let me ...

Stage 1. 
Diversified prompting

Stage 2. 
LLM Scoring

Stage 4. 
Intra-session ranking

Chunk 

Chunk 

Sentence LM 

Prompt engineer

Seeding prompt

In this task, you are asked to annotate customer
 intent for each utterance ...

Auto / Manual
Prompt Iterations

Prompt bank

Prompt bank

Sample prompt

LLM labels

Sample output

llm_scores 
    turn_1: 0.2
    turn_2: 0.0
    turn_3: 0.8
    ...

LLM Annotators

Averaging

 ti
m

es

Training loss:
Good prompts

Figure 2: Overview of our framework to train a small student model using noisy LLM supervision.

ment covering u1 to ui. Finally in stage 4, we
randomly sample two intra-session segments xi
and xj from the same dialogue and train a student
model f minimizing pair-wise ranking loss:

ℓ(xi, xj) = KL
(
Iyi▶yj ∥ Pr(xi ▶ xj)

)
, (1)

where Iyi▶yj = 1 iff. yi = 1 and yj = 0 for binary
labels; Pr(xi ▶ xj) is the probability of xi being
more positive than xj , modeled by network f under
an adaptive margin:

Pr(xi ▶ xj) = σ
(
∆i,jf − α ·∆i,jS

)
, (2)

where σ is the Sigmoid function, ∆i,jf = f(xi)−
f(xj) is the difference of model predicted scores
and ∆i,jS = Si − Sj is the difference of LLM pre-
dicted scores between segment i and j; α ∈ [0, 1]
is a tunable hyper-parameter controlling margin.
We train a student network f over intra-session
pairs to ensure: for any positive+negative pair la-
beled by LLM (positive xi vs. negative xj), the stu-
dent network f has the same preference as teacher
LLM under margin α · ∆i,jS. This idea made
two hidden assumptions: First assuming the LLM
score S is a good estimator of ground-truth correct-
ness probability (aka. confidence calibrated (Guo
et al., 2017)); secondly, single LLM labeler may
be biased and high variance, their difference within
same dialogue session Si − Sj carries dramatically
lower bias and variance due to the differentiation.
Therefore estimation error of Si − Sj is more pre-
cise than Si or Sj alone. We discuss and verify two
assumptions in the following sections.

3.3 Stage 1-2: How well are LLM scores
calibrated to accuracy?

A desirable property of LLM teacher is confidence
scores S calibrated to labeling accuracy, i.e. we
expect higher true-positive rate if LLM score Si

closes to one; and near zero true-positive rate if Si

is closer to zero:

Pr(yi = 1|Si) = Si. (3)

If Eq. (3) is true, we could replace ground truth
label yi with soft label Si without incurring addi-
tional gradient bias and variance (see Appendix F
for a proof). In addition, Eq. (3) implies mono-
tonicity relationship:

Si > Sj =⇒ Pr(yi = 1) > Pr(yj = 1). (4)

(Guo et al., 2017) showed that DNNs are un-
calibrated, in that their accuracy falls behind con-
fidence score (DNNs are over-confident). Same
findings are reported in LLM world (Kapoor
et al., 2024; Huang et al., 2024). Among vari-
ous post-training solutions to calibrate DNNs (e.g.
(Zadrozny and Elkan, 2001; Mozafari et al., 2018)),
one simple and effective technique is ensemble dif-
ferent models (Lakshminarayanan et al., 2017)
which integrates well with our workflow. Remain-
ing question to be answered in this work is -

Does the same ensemble technique work for
LLM predictions? If so, how many ensemble
predictions we need to calibrate the scores?

We design following experiment to answer this
question: We sample an intent detection dataset
containing around 600 transcripts and binary
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has_intent / no_intent per-utterance labels. A
labeling prompt optimized for Claude3-sonnet1

for this task is provided in Appendix E. We apply
the same prompt to ensemble sizes n between 1 and
30. In each setting, we run LLM labeling on each
input pair ⟨xi, xj⟩ for n times and obtain scores
Si and Sj by averaging LLM predictions. Lastly,
we partition the data by value Si into five buck-
ets: Si ∈ (0.0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8],
(0.8, 1.0]. Within each bucket, we compute the per-
centage of positive ground-truth labels. We apply
ECE loss, the standard metric to measure DNN
calibration error (Guo et al., 2017):

ECE =

M∑

m=1

|Bm|
N

∣∣∣acc(Bm)− conf(Bm)
∣∣∣ (5)

where Bm is the m-th bucket partitioned by Si.
acc(Bm) = Pr(yi = 1|si ∈ Bm) is the accuracy of
Bm; and conf(Bm) is the overall confidence score
in Bm. Due to Eq. (3) lower ECE metric means
better calibration. Despite some random fluctua-
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Figure 3: Visualizing the downward trend of ECE loss
as ensemble size increases from 1 to 30.

tions, we could observe in Fig. 3 a decline in ECE
loss (0.22 ↘ 0.17) as ensemble size increases.

The ensemble technique in Stage 1-2 effec-
tively calibrates LLM scores Si by introducing
fewer gradient biases and variances. There-
fore LLM teacher supervisions are good sur-
rogate for ground-truth labels.

3.4 Stage 3-4: Overcoming distribution shifts
by intra-session comparison

We generate ranking pairs in a novel way: we sam-
ple two chunks for ranking from the same con-
versation (intra-session pairs), instead of different

1Available at Anthropic and AWS Bedrock.

conversations. We make two hypothesis (H1 and
H2) explaining why intra-session pairs are more
powerful.
H1: Intra-session pairs are harder. Two chunks
sampled from same dialogue are similar in the con-
text (sharing the same topic with overlapping con-
text). As a result, it is harder to tell which chunk
is positive label against the other. Once training
a student model on top of hard pairs, it forces the
model to learn more discriminative textual features
from text input, rather than just replying on some
keywords. Those intra-session pairs lead to better
generalization.
H2: LLM labeling errors are canceled by the
differentiator. This hypothesis is more concep-
tually involved: LLM labeling errors are not uni-
formly random across all data, instead they cluster
on certain type of transcripts. For example, some
scenarios are not mentioned in the labeling prompt
so LLM has to guess, resulting in more errors in
such cases. Fortunately, this type of error typi-
cally condensed to certain dialogues, equivalent
to a “shifting” effect to the label distribution. By
sampling a pair (xi and xj) from the same dialogue,
their corresponding LLM scores (Si and Sj) are
drifted to roughly the same extent. In the end, the
margin of the loss function (1) ∆ijS = Si−Sj still
accurately tracking ground-truth label difference
yi − yj .

(0.0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]

LLM score difference: ∆ijS=Si −Sj

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
. 
of

 x
i

x
j

All pairs in data

Intra-session pairs

Figure 4: Comparing the correlations between LLM
score difference (also the margin of training loss) w.r.t.
the probability of one label is more positive than the
other. We also include linear fittings to both groups.

We design an experiment to validate H2 on
two groups: the control group consists of pairs
sampled from different dialogues; experimental
group consists of pairs sampled from same dia-
logue. The goal is checking correlation between
∆ijS = Si −Sj with the probability of yi = 1 and
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yj = 0 (yi > yj in binary case). We follow the
same bucketizing method as previous experiment
(5 buckets). We count the percent of yi > yj cases
in each bucket and each group. Result in Fig. 4
shows the ground-truth probability of yi > yj more
sensitive to ∆ijS in experimental group than con-
trol group. Meaning that our intra-session pairs are
indeed less noisy, and a better approximation of
golden supervision signal yi − yj .

4 Experiments

Datasets. We benchmark our method on three
important tasks in task-oriented dialogues (TOD):
intent/sentiment-detection, dialogue act classifi-
cation, and dialogue state tracking. We bench-
mark intent/sentiment detection on MELD (Poria
et al., 2019) and SILICONE (Busso et al.); bench-
mark dialogue act classification on daily-dialog (Li
et al., 2017), MRDA (Shriberg et al., 2004),
BT-OASIS (Duran, 2021) and dyda_da (Chapuis
et al., 2020); benchmark dialogue state tracking
on SGD (Rastogi et al., 2020) and MultiWOZ-
2.2 (Zang et al., 2020). We put statistics and other
details of datasets in Appendix A.
Baselines. We want to see how the accuracy
change after plugging our workflow into some
strong models. We select following baselines ac-
cordingly:
• Claude3-Sonnet: We pick this model as a strong

baseline for measuring LLM annotator perfor-
mance.

• FnCTOD (Li et al., 2024): A recent prompting
strategy achieving strong results on dialogue state
tracking task.

• ToD-BERT (Wu et al., 2020): A strong baseline
for dialogue pretrained small embedding model.
This is also the backbone model of our method.

• FLAN-T5 (Chung et al., 2024): T5-XXL fine-
tuned on large-scale instructions data including
MultiWOZ. We include this model as a natural
baseline for fine-tuned LLM on TOD datasets.

We summarize features of all baselines with our
method in Table 6 of Appendix B.

4.1 Comparing pairwise preference learning
vs. pointwise knowledge transfer

To evaluate the transition from pointwise model dis-
tillation to pairwise preference learning, we com-
pare the intent detection accuracy of the ToD-BERT
model fine-tuned using three approaches: 1) fine-
tuning directly on human-labeled data; 2) super-

Approach
% gold labels

0% 1% 5% 10% 25%

Finetune-only - 27.3 29.5 34.7 69.6

Supervised pretrain → Finetune
Pointwise pretrain - 31.8 33.4 47.2 77.3
Pairwise pretrain - 38.4 45.8 52.1 78.4

Table 1: Effective of our approach under various amount
of labeled data.

vised pretraining with pointwise LLM-generated
labels followed by fine-tuning on human-labeled
data; and 3) supervised pretraining with pairwise
LLM-generated labels followed by fine-tuning on
human-labeled data. To assess the impact of data
scaling, we vary the sampling ratios during evalua-
tion. Table 1 consistently shows that models lever-
aging pairwise supervised pretraining outperform
the alternatives, particularly in low-data regimes.

4.2 Sentiment detection

Next we benchmark our method with baselines on
two sentiment detection datasets. We report clas-
sification accuracy over all sentiments defined in
each datasets. The results are shown in Table 2.
Comparing with ToD-BERT (finetuned directly on
human labeled data) and FnCTOD (finetuned on
LLM synthetic data), our approach (supervised pre-
trained on LLM synthetic data using pairwise loss
then finetuned on human labeled data) performs
better than baselines by around 2% to 8%.

Datasets Claude FnCTOD ToD-BERT FLAN-T5 Ours

MELD 74.25 68.84 80.30 75.72 88.09
IEMOCAP 76.39 61.30 87.88 82.62 90.31

Table 2: Benchmarking intent/sentiment detection task.

4.3 Dialogue act classification

Similarly, we benchmark our method against base-
lines on dialogue act classification problem. Note
we adopted the same backbone model as ToD-
BERT, and ToD-BERT is still the strongest baseline
in this task. Our model out-performed ToD-BERT
by around 1.5% to 10%.

Datasets Claude FnCTOD ToD-BERT FLAN-T5 Ours

DailyDialog 70.39 66.03 72.40 68.08 76.50
MRDA 62.82 81.93 88.4 60.47 89.95
dyda_da 71.25 74.82 79.14 68.66 85.11
BT-Oasis 32.85 52.76 59.24 17.13 69.62

Table 3: Benchmarking dialogue act classification task.
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4.4 Dialogue state tracking
Finally, we benchmark on two dialogue state track-
ing (DST) datasets, SGD and MultiWOZ-2.1. In
this experiment we benchmark the accuracy of joint
prediction of slot/domain/values (aka. Joint-Acc).
The results are shown in Figure 4.

Datasets Claude FnCTOD ToD-BERT FLAN-T5 Ours

SGD 60.7 63.9 42.5 – 47.3
MultiWOZ 27.0 37.9 16.4 – 25.5

Table 4: Benchmarking dialogue state tracking task.

5 Discussion and future work

This paper presents a novel approach to minimiz-
ing human effort in labeling high-quality data for
a class of per-utterance classification problems.
Our method moves beyond traditional LLM label-
ing and knowledge transfer to student models by
leveraging a preference learning and pairwise rank-
ing framework. This framework has been demon-
strated to be both theoretically and empirically ro-
bust against LLM labeling errors. An intriguing
future direction would be to extend this approach
to reward model training in reinforcement learning
with human feedback (RLHF), another critical do-
main characterized by noisy labels and the need for
robust discriminative model training.
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A Summary statistics of experiment
datasets

Data #Classes #Dialogues #Utterances

Intent/Sentiment detection
MELD 3 1, 400 13, 000
IEMOCAP 6 151 10, 039

Dialogue act classification
DailyDialog 5 13, 118 103, 630
MRDA 5 75 108, 202
dyda_da 4 87170 102, 000
BT-Oasis 42 636 15, 067

Dialogue state tracking
SGD 53 (slots) 16, 142 329, 964
MultiWOZ-2.1 24 (slots) 8, 438 42, 190

Table 5: Datasets for each evaluation task and some
statistics.

B Comparing features of baseline models
and our method

Methods TOD finetuned? LLM distilled Small size

Claude (unknown) ✗ ✗

FnCTOD ✗ ✔ ✗

ToD-BERT ✔ ✗ ✔

FLAN-T5 ✔ ✗ ✗

Ours ✔ ✔ ✔

Table 6: Comparing baselines and our method along
three dimension: TOD finetuned means whether the
model is finetuned for TOD tasks; LLM distilled in-
dicates the model is distilled from (imperfect) LLM
synthetic labels; Small size means whether the actual
inference model is small footprint.

C Sample prompts for Claude

Prompt for daily-dialogue:
Dialogue:
{dialogue}

Last utterance:
{last_utterance}

What ’s the best dialogue act of the last
utterance?
Choose from below without further
explain:

Options:
A. Inform
B. Question
C. Directive
D. Commissive
E. None of above

A valid output should be one of: A, B, C,

D, or E
Do not output anything else.

Prompt for MRDA:
Dialogue:
{dialogue}

Last utterance:
{last_utterance}

What ’s the best dialogue act of the last
utterance? Choose from below without
further explain:

Options:
A. Statement or subjective statement
B. Declarative question
C. Backchannel
D. Follow -me
E. Question

A valid output should be one of: A, B, C,
D, or E
Do not output anything else.

Prompt for MELD:
## Task Description

In this task you will receive a short
dialogue. Your goal is to read the whole
dialogue , understand the sentiment of
each utterances , and pick out the utter -
ances with positive sentiment.

## Output format

You need to copy each positive sentiment
utterances to an json array together
with the initial line number.

## Example

Input:

1 [Phoebe] Oh my God , he’s lost it. He’s
totally lost it.
2 [Monica] What?
3 [Ross] Or! Or, we could go to the bank ,
close our accounts and cut them off at
the source.
4 [Chandler] You ’re a genius!
5 [Joey] Aww , man , now we won ’t be bank
buddies!
6 [Chandler] Now , there ’s two reasons.
7 [Phoebe] Hey.
8 [All] Hey!
9 [Phoebe] Ohh , you guys , remember that
cute client I told you about? I bit him.
10 [Rachel] Where?!
11 [Phoebe] On the touchy.

Correct output:
‘‘‘json
{

"positive_utterances": [
"4 [Chandler] You ’re a genius!",
"8 [All] Hey!"

]
}

96



‘‘‘

D Sample prompts for FLAN-T5

Prompt for daily-dialogue:
Dialogue:
{dialogue}

Last utterance:
{last_utterance}

What ’s the best dialogue act of the last
utterance?

Options:
A. Inform
B. Question
C. Directive
D. Commissive
E. None of above

Prompt for MRDA:
Dialogue:
{dialogue}

Last utterance:
{last_utterance}

What ’s the best dialogue act of the last
utterance? Choose from below without
further explain:

Options:
A. Statement or subjective statement
B. Declarative question
C. Backchannel
D. Follow -me
E. Question

Answer:

Prompt for MELD:
Dialogue:
{dialogue}

Last utterance:
{last_utterance}

Is the last utterance in positive
sentiment? Choose "Yes" or "No".

E Intent detection labeling prompt

# Task description
You are given a conversation between user
and assistant. Typically , the user has
some questions / issues / complaints.
Your goal is to find out the utterance
containing the user intent.

# Data description
Each line of the conversation corresponds
to an utterance. You can see the speaker
from according to the beginning of each
line. For example:

‘‘‘
[assistant] Hi, my name is [PII], thank
you for calling [COMPANY ].
[user] Hi, I’m calling because the
shippment arrived damaged and I need a
replacement.
[assistant] I see , I’m sorry to hear
your bad experience about shippment.
‘‘‘

Here the user intent is "Hi , I’m calling
because the shippment arrived damaged
and I need a replacement.".

Now it is your turn , read the
conversation thoroughly and find out all
intent utterances

Conversation:
{conversation}

F Proof of Unbiased Gradients

Theorem 1. Suppose dataset {(xi, yi)} has binary
labels yi ∈ {0, 1}. If we only have access to noise-
corrupted soft labels {xi, ŷi}, ŷi ∈ [0, 1] where the
noisy labels follow the property Pr(yi = 1|ŷi) =
ŷi (perfect confidence calibration). Then if we train
a linear classifier fθ(x) = σ(θTx) on corrupted
dataset the gradients of cross-entropy loss over
parameters θ are unbiased.

Proof. Training on corrupted dataset {xi, ŷi} using
cross-entropy loss with linear model, we have the
loss function:

L
(
θ; (xi, ŷi)

)

= −ŷi log
(
fθ(xi)

)
− (1− ŷi) log

(
1− fθ(xi)

)

(6)
If we compute the gradients of loss over parameters
θ:

∂

∂θ
L
(
θ; (xi, ŷi)

)
=

(
fθ(xi)− ŷi

)
xi. (7)

If we take the expectation over randomness of ŷi
on both sides of Eq. (7), we can further get

E
[
∂

∂θ
L(θ; (xi, ŷi))

]

=
(
fθ(xi)− E[ŷi]

)
xi.

(8)

Furthermore, due to the calibration of ŷi, Pr(yi =
1|ŷi) = ŷi, we have that

ŷi = Pr(yi = 1|ŷi) = E[yi|ŷi]. (9)

Taking expectation on both sides in Eq. (9), and
leveraging the low of total expectation, we get

E[ŷi] = E[E[yi|ŷi]] = E[yi]. (10)
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Finally, we plug Eq. (10) into Eq. (8):

E
[
∂

∂θ
L(θ; (xi, ŷi))

]

=
(
fθ(xi)− E[ŷi]

)
xi

=
(
fθ(xi)− E[yi]

)
xi

E
[
∂

∂θ
L(θ; (xi, yi))

]
.

(11)

Therefore we have proved that well-calibrated train-
ing dataset {xi, ŷi} is unbiased training of the
model.
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