
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Industry Track), pages 949–960

April 30, 2025 ©2025 Association for Computational Linguistics

CodeGenWrangler: Data Wrangling task automation using
Code-Generating Models

Ashlesha Akella
IBM Research, India

ashlesha.akella@ibm.com

Abhijit Manatkar
IBM Research, India

abhijitmanatkar@ibm.com

Krishnasuri Narayanam
IBM Research, India

knaraya3@in.ibm.com

Sameep Mehta
IBM Research, India

sameepmehta@in.ibm.com

Abstract

Assuring the data quality of tabular datasets is
essential for the efficiency of the diverse tabular
downstream tasks (like summarization and fact-
checking). Data-wrangling tasks effectively ad-
dress the challenges associated with structured data
processing to improve the quality of tabular data.
Traditional statistical methods handle numeric data
efficiently but often fail to understand the semantic
context of the textual data in tables. Deep learn-
ing approaches are resource-intensive, requiring
task and dataset-specific training. Addressing these
shortcomings, we present an automated system that
leverages LLMs to generate executable code for
data-wrangling tasks like missing value imputa-
tion, error detection, and error correction. Our
system aims to identify inherent patterns in the
data while leveraging external knowledge, effec-
tively addressing both memory-independent and
memory-dependent tasks.

1 Introduction

Tabular datasets in industrial settings frequently en-
compass extensive data with numerous rows and
columns. Given the pivotal role of this data in
informed business decision-making (via exercis-
ing diverse tabular downstream tasks), maintaining
high data quality has become increasingly crucial.
Data wrangling tasks (like imputing missing val-
ues or correcting errors) are vital in enhancing the
quality of tabular datasets. Such tasks require both
statistical insights and domain-specific semantic
understanding. Statistical methods (Van Buuren,
2018; Gong et al., 2021; Thomas and Rajabi, 2021)
cannot often incorporate semantics or external con-
text (e.g., imputing city from zip code), limiting
their effectiveness in complex industrial datasets.
Deep learning approaches (Lin et al., 2022; Samad

et al., 2022; Huang et al., 2024) can capture in-
tricate patterns but require dataset-specific train-
ing, which is computationally expensive for large
datasets.

Large language models (LLMs) offer new poten-
tial for data wrangling (Iida et al., 2021; Narayan
et al., 2022; Huh et al., 2023; Jaimovitch-López
et al., 2023; Liu et al., 2023b, 2024; Ashlesha et al.,
2024; Li and Döhmen, 2024) tasks by leveraging
broad contextual knowledge. Trained on extensive
datasets, these models hold vast knowledge that
enables contextual insights and supports semanti-
cally informed data wrangling. However, the need
to invoke LLM inference calls independently for
each row (Narayan et al., 2022) incurs high compu-
tational costs and adds latency, making it difficult
to scale for large datasets.

To address these challenges, we introduce
CodeGenWrangler, which leverages code-
generating LLMs for efficient data wrangling.
Tabular datasets often contain inherent patterns
with dependencies between specific columns. Our
system identifies such data patterns, represents
them as concisely formulated rules, and translates
them into executable code for data wrangling tasks
to enhance scalability by eliminating the need for
row-level LLM inference calls.

While existing study (Li and Döhmen, 2024)
has demonstrated the efficacy of code-generating
LLMs in translating data patterns into executable
code for data-wrangling tasks, their system is con-
strained by the language model’s outdated knowl-
edge and lack of the ability to incorporate external
or domain-specific enterprise data. This can be
effectively addressed using Retrieval-Augmented
Generation (RAG) (Lewis et al., 2020; Liu et al.,
2023a) by enhancing the model’s capacity to re-
trieve context-specific knowledge to improve accu-
racy and relevance.

Proposed CodeGenWrangler system employs
a tailored prompt design and two pipeline

949

def task(input_dict, reference_table):
 try:
 city = input_dict['HeadquartersCity']
 city_ascii = input_dict['HeadquartersCity']
 state_id = reference_table.loc[
 (reference_table['city']== city) &
 (reference_table['city_ascii'] == city_ascii),
 'state_id'].values[0]
 return state_id

 except Exception as e:
 return "Unknown"

def task(input_dict):
 """
 Maps input data to the correct output based on
identified patterns.

 Args:
 input_dict (dict): A dictionary containing input
data.

 Returns:
 str: The corresponding output value.
 """
 # Extract the 'Continents' value from the input
dictionary
 continent = input_dict.get('Continents')

 # Check for specific continent patterns and return
corresponding output
 if continent == 'Asia':
 return 'AS'
 elif continent == 'Africa':
 return 'AF'
 elif continent == 'North America':
 return 'NAM'
 elif continent == 'Oceania':
 return 'OC'
 else:
 # if no recognizable pattern is found, return
'Unknown'
 return 'Unknown'

Figure 1: Illustrative examples of code snippets generated by the CodeGenWrangler system, demonstrating its
ability to handle data wrangling for Memory Independent (Left) and Memory Dependent (Right) tasks. A few more
code snippets are shown in Appendix B

routes—one external memory-dependent (to in-
tegrate relevant external knowledge), the other
memory-independent. An iterative refinement pro-
cess further optimizes the generated code, address-
ing challenges such as efficiently selecting sample
data for prompts. Later sections describe the full
technical details of our proposed system (and an
overview of our system demonstration is available
at (Ashlesha and Narayanam, 2025)).

2 Background

Recent studies (Wang and Chen, 2023; Zan et al.,
2023; Jiang et al., 2024) have shown that LLMs are
capable of functioning as code generation models,
which can generate code by interpreting natural lan-
guage instructions (Jiang et al., 2022; Wang et al.,
2023; Dong et al., 2024), complete partially written
code (Barke et al., 2023; Guo et al., 2023), and fix
buggy code (Fan et al., 2023; Joshi et al., 2023;
Zhang et al., 2024) due to their extensive training
on vast source code data. However, we sought to
investigate if these models could also recognize log-
ical patterns in the data without requiring explicit
descriptions to determine their potential for han-
dling data-wrangling tasks. These models when
prompted with sample data and instructions, we
observed that their generated code aligned with
the inherent patterns in the sample data (Figure

1). However, leveraging code-generating LLMs
to automate data wrangling presents several chal-
lenges: (i) addressing tasks that depend on exter-
nal or enterprise-specific knowledge beyond the
dataset for accuracy (ii) correctly handling com-
plex patterns in the data that go beyond simple
one-to-one mappings requires coherent integration
of different control flows in the code (iii) providing
optimal data samples in prompts to ensure compre-
hensive coverage of data patterns (iv) determining
which columns of the given dataset should be pre-
sented to the LLM for effective performance on
specific wrangling tasks. Section 3 explains how
our system addresses these challenges.

3 Method

The CodeGenWrangler system (shown in Figure 2)
takes as input a dataset D = [c1, . . . , cn], where
each ci is an attribute (column) of the dataset, a
target column cT , and a data wrangling task, such
as data imputation (DI), error detection (ED), or
error correction (EC).

For DI, the task is to predict the missing values
of the dataset column D[cT]. For ED, the task is to
identify the erroneous entries in D[cT], and for EC,
the task is to detect erroneous entries in D[cT] and
impute them.

950

Dataset
(D)

Knowledge Base (KB)

Target column
 cT

Reference tables

Retrieve relevant
knowledge for RAG

Column
selection

Generate source code
using

Code Generating LLM

Filtered
dataset

(D̃)

Prompt
Construction

Validated
Code Snippets

Filter snippets
based on executability

and correctness

best
code-snippet

Prompt
- Task instructions
- External knowledge
- Sample data
- Code example

Prompt
- Task instructions
- Sample data
- Code example

Memory-dependent
task

Memory-independent
task

Dataset Filtering

Knowledge Retrieval

Iterative Prompt Optimization

Figure 2: Dataset Filtering and Knowledge Retrieval of CodeGenWrangler system extract relevant information
before it automatically generates a few code snippets in iterations that collectively capture the data wrangling task.

3.1 Datasets

We used datasets from (Narayan et al., 2022; Ashle-
sha et al., 2024), which were collected from various
sources like Kaggle1 and OpenML2. These datasets
span across multiple domains and contain numer-
ous columns and rows. Each dataset is split (as
in (Ashlesha et al., 2024)) into three sets: a train
set for iteratively constructing and improving the
prompt for obtaining the optimal code snippets, a
validation set for validating the performance of in-
termediate code snippets, and a final test set where
we evaluate the performance of our system.

3.2 Dataset Filtering for Relevant Columns

Given D, cT and a task, the system identi-
fies relevant columns by calculating permuta-
tion importances for each column in a learned
Histogram-based Gradient Boosting Classification
Tree (Guryanov, 2019) for predicting the target
column. The relevant columns c̃ = [c∗1, . . . c

∗
k]

with the highest permutation importances are se-
lected to form a subset of the data, denoted as
D̃ = D[c̃, cT], which contains only the relevant
and target columns. This helps reduce noise and
ensures the code generation LLM focuses on essen-
tial data patterns within its limited context length.

1https://www.kaggle.com
2https://openml.org

3.3 Knowledge Retrieval

In addition to the LLM’s parametric memory, the
knowledge required for the LLM to generate source
code can come from multiple other sources: it
may be derived directly from the dataset itself (e.g.,
set the 24_hour_service column in the Starbucks
dataset (Alice, 2017) to ‘True’ if the values of both
the columns opening_time and closing_time
are midnight), or it may come from external or
enterprise datasets (e.g., mapping cities to respec-
tive states or imputing job role based on job title).

To accommodate knowledge inclusion from var-
ied sources, our system employs two parallel mod-
ules for generating code snippets: a memory-
independent module, which relies solely on pat-
terns derived directly from the dataset, and a
memory-dependent module, which incorporates
relevant contextual knowledge from the external
knowledge base KB = {T1, T2, . . . , Tm}, where
each Ti is a tabular data. To retrieve the relevant
knowledge, we compute semantic similarity be-
tween the sample rows of dataset D and each table
Ti ∈ KB.

Let the embedding of a row r of any dataset be
denoted by er, computed as:

er = concat(h1
r ,h

2
r , . . . ,h

n
r),

where hj
r = LLM(r[cj]) is the hidden state

computed by the encoder-only language model
(all-miniLM-L6-v2 in our setup) for the jth col-

951

umn cj of the row r. The similarity score sim(Ti)
for a table Ti is computed as:

sim(Ti) =
∑

rD∈D
rTi∈Ti

e⊺rDerTi ,

where erD and erTi are the embeddings of the
rows rD (sampled from D) and rTi (sampled
from Ti) respectively. We select the top-k tables
T = {T ∗

1 , . . . , T
∗
k } such that the similarity score

sim(T ∗
i) exceeds a fixed threshold.

Further, the memory-independent module has
two types of tasks: row-level tasks, which use
only the data in the current row to generate code
(e.g., imputing the 24_hour_service column us-
ing opening_time and closing_time columns),
and exemplar-based tasks, where patterns are in-
ferred from a small set of examples in the prompt.

3.4 Prompt Construction

For each module above, code is generated by
prompting a code-generating LLM, requiring a
narrowly tailored prompt structure. The prompt
consists of the following components. Task in-
structions: contains a description of the task to
instruct the LLM to detect patterns in the data
and write a Python function corresponding to the
task. External knowledge (reference tables): with
memory-dependent tasks, a set of rows retrieved
from relevant tables from the external knowledge
base. Sample data: a small subset of rows sampled
from the dataset. For exemplar-based tasks, a few
additional rows from the dataset similar to each
sampled row are also added alongside each of the
sampled rows, enabling the LLM to infer context
and patterns effectively. Code example: the latest
and most effective code snippet generated. Figure
3 provides an example of the prompt structure.

3.5 Sample data for the Prompt

The system employs an unsupervised clustering
approach to select diverse rows of the dataset for
inclusion in the prompt. Given a training dataset
split D̃train (containing only the relevant columns),
the process involves the following steps.

For each row r ∈ D̃train, an embedding er is
computed as described in Section 3.3. The set of
embeddings {er} is partitioned into k clusters us-
ing k-means clustering. Each cluster is represented
by its centroid ci (i ∈ {1, 2, . . . , k}). For each
cluster Ci, the row embedding er∗ closest to the

Task instructions:

Given a series of examples, identify the pattern between the input
columns and the output values. Write a Python function to map the input
data to the correct output based on this pattern [...]

External knowledge (reference tables):

name	alpha-2	alpha-3
Afghanistan	AF	AFG
Åland Islands	AX	ALA
...		

Sample data:

Airport Country Code	Country Name
CA	Canada
JP	Japan
GB	United Kingdom
UG	Uganda
...	

Code example:

def task(input_dict, ref_table):
code = input_dict.get('Airport Country Code')
info = ref_table[ref_table["alpha-2"] == code]
if not info.empty:

return info['name'].values[0]
else:

return "Unknown"

Figure 3: Prompt template for code generation

centroid ci is selected as the representative sample:

r∗ = arg min
er∈Ci

∥er − ci∥2.

The corresponding row r∗ is then included in the
prompt as the sample data. For exemplar-based
tasks, along with each row r∗, a set of rows similar
to r∗ (based on semantic similarity of embeddings)
from D̃train is included as additional examples in
the prompt. The resulting set of representative rows
and additional examples ensures semantic diversity
and relevance for the sample data while effectively
covering the training data.

3.6 Iterative Prompt Optimization

The system employs an iterative approach (Wang
et al., 2022) for both memory-dependent and
memory-independent modules. Algorithm 1 out-
lines the process of optimizing prompts iteratively,
incorporating the best-performing code snippets
from previous iterations. At each iteration, prompts
are built using different chunks of the train set,
and multiple outputs are sampled, filtering out non-
executable and low-accuracy code.

This approach tackles two challenges: first, the
iterative process incorporates diverse data samples,
generating a set of code snippets that collectively
capture various patterns. This eases the need for
a single perfect snippet. Second, by including the
best-performing snippet from previous iterations,
the prompt is incrementally refined, improving
code quality and task alignment.

952

def task(input_dict):
 product_name = input_dict['product_name']
 if 'Women Wedges' in product_name:
 return ["Footwear >> Women's Footwear >> Wedges"]
 elif 'Ring' in product_name:
 return ["Jewellery >> Rings"]
 elif 'iPad' in product_name:
 return ["Mobiles & Accessories >> Tablet Accessories >> Cases & Covers >>
DailyObjects Cases & Covers"]
 elif 'Bangles' in product_name:
 return ["JeweLllery >> Bangles, Bracelets & Armlets >> Bracelets"]
 elif 'Mug' in product_name:
 return ["Kitchen & Dining >> Coffee Mugs >> Rockmantra Coffee Mugs"]
 elif 'Towel' in product_name:
 return ["Home Furnishing >> Bath Linen >> Towels"]
 elif 'Apple iPad Air' in product_name:
 return ["Mobiles & Accessories >> Tablet Accessories >> Cases & Covers >> Cases &
Covers"]
 elif 'Bra' in product_name:
 return ["Clothing >> Women's Clothing >> Lingerie, Sleep & Swimwear >> Bras >> Q-
rious Bras"]
 elif 'Router' in product_name:
 return ["Computers >> Network Components >> Routers >> Aeoss Routers"]
 else:
 return "Unknown"

Figure 4: Example of code generated for complex data pattern, for imputing product_category_tree

3.7 Utilizing multiple code snippets

The system generates multiple code snippets, each
independently applied to the dataset. The outputs
from these snippets are evaluated for each row,
and a majority voting approach is employed to de-
termine the final output value for that row. This
approach enhances our solution’s robustness by
bringing consensus among generated code snip-
pets, thereby mitigating the risk of individual code
snippets producing erroneous outputs and improv-
ing the overall reliability and accuracy of the data-
wrangling process.

4 Experiments

We evaluated the CodeGenWrangler system
through controlled experiments, comparing it to
two baselines. The first baseline used a row-wise
LLM approach for missing value imputation, error
detection, and correction, following the method de-
scribed in (Ashlesha et al., 2024). This approach
involves a row-wise application of LLMs. The
second baseline replicated the (Li and Döhmen,
2024) system without external memory (memory-
independent module), as outlined in (Li and Döh-
men, 2024), which operates without leveraging an
external knowledge base, distinguishing it from our
proposed system.

To ensure a rigorous comparison, we employed
three distinct LLM models across the experi-
mental setups. The row-wise LLM baseline
leveraged results derived from flan-t5-xxl and

mixtral-8x7b models, in alignment with the re-
sults reported in (Ashlesha et al., 2024). In con-
trast, the CodeGenWrangler system, both with and
without external memory, utilized state-of-the-art
code models, codellama-34b-instruct (Roziere
et al., 2023) and deepseek-coder-33b-instruct
(Guo et al., 2024), selected for their relevance in
handling code generation tasks. Crucially, to guar-
antee the validity and fairness of the evaluation, all
setups incorporated llama-3.1-70b-instruct as
a common baseline model, controlling for archi-
tectural and computational differences across the
experimental conditions.

For imputation and error detection, we used
datasets from (Ashlesha et al., 2024). For error
correction, 50% of the target column values were
swapped with entries from other rows to simulate
realistic errors.

5 Results and Analysis

We compared performance between
CodeGenWrangler and baselines on various
datasets across DI, ED and EC tasks. In Table 1,
we report results on datasets which reveal some
key insights. Complete results for all datasets can
be found in Appendix A.1. Broadly, we make the
following observations:

Effectively incorporating external data im-
proves performance on knowledge-dependent
tasks: Utilizing external memory to improve per-
formance and consistency by providing a reliable

953

Task Dataset Target Column Row-level CGW with memory CGW w/o memory
flan-t5-xxl mixtral-8x7b llama-3.1-70b codellama-34b deepseek-coder-33b llama-3.1-70b codellama-34b deepseek-coder-33b llama-3.1-70b

DI Airline Country Name 0.97 0.99 0.46 0.98 0.98 0.99 0.67 0.66 0.67
Airline Airport Continent 1.00 1.00 0.81 1.00 1.00 1.00 1.00 1.00 1.00
Airline Airport Country Code 0.90 1.00 0.62 0.98 0.99 0.99 0.70 0.67 0.77
fortune1000_2023 Gained_in_Rank 0.93 0.93 0.67 0.97 0.98 0.98 0.92 0.92 0.98
fortune1000_2023 Dropped_in_Rank 0.94 0.91 0.77 0.98 0.97 0.94 0.94 0.94 0.95
flipkart_com-ecommerce_sample product_category_tree 0.48 0.31 0.06 0.59 0.30 0.49 0.57 0.30 0.49
starbucks_in_california 24_hour_service 0.76 0.79 0.00 0.92 0.50 1.00 0.92 0.65 0.96
finance_sentiment_analysis Sentiment 0.51 0.70 0.69 0.41 0.40 0.57 0.39 0.40 0.57

ED fortune1000_2023 Industry 0.77 0.96 0.90 0.63 0.63 0.62 0.62 0.62 0.63
fortune1000_2023 Sector 0.39 0.99 0.85 0.54 0.54 0.55 0.53 0.51 0.55
shopping_trends Season 0.95 0.96 0.85 0.55 0.55 0.54 0.55 0.55 0.55
starbucks_in_california 24_hour_service 0.93 0.99 0.93 0.94 0.56 1.00 0.99 0.99 1.00
Airline Airport Country Code 0.91 0.99 0.99 0.99 0.98 0.99 0.89 0.88 0.77

EC Airline Airport Continent 1.00 1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.00
Airline Airport Country Code 0.89 1.00 0.65 0.99 0.97 0.97 0.99 0.66 0.90
Airline Country Name 0.97 0.99 0.49 0.98 0.98 0.98 0.98 0.66 0.63
flipkart_com-ecommerce_sample product_category_tree 0.04 0.04 0.06 0.22 0.55 0.50 0.24 0.53 0.54
fortune1000_2023 Dropped_in_Rank 0.92 0.49 0.75 0.99 0.98 0.99 0.98 0.92 0.99
fortune1000_2023 Gained_in_Rank 0.94 0.91 0.63 0.98 0.94 0.99 0.97 0.94 0.99

Table 1: Comparison between CodeGenWrangler (CGW with memory) and baselines on Missing Data Imputation
(DI), Error Detection (ED) and Error Correction (EC). For DI and EC, accuracy is reported. For ED, F1-macro is
reported.

Algorithm 1 Iterative Prompt Optimization

Require: D̃: Dataset with relevant columns, cT : Target col-
umn, task ∈ {DI,ED,EC}, T : External relevant tables,
LLM, s: Number of samples, v: Validation interval

Ensure: Optimized set of source code snippets
code_snippets to perform task

1: D̃train, D̃val ← split(D̃)
2: code_snippets ← {}
3: best_accuracy ← 0, best_snippet ← None
4: for i = 1 to num_chunks do
5: D̃i

train ← Obtain chunk of D̃train

6: prompt ← ⟨D̃i
train, cT , task, T , best_snippet⟩ ▷

(as per Section 3.4)
7: snippets ← Execute LLM(prompt) s times
8: Filter snippets for executable functions
9: outputs ← Apply snippets to D̃i

train

10: accuracies ← Compare outputs with D̃i
train[cT]

11: valid_snippets ← snippets with accuracies > 0
12: Update best_snippet , best_accuracy
13: Append valid_snippets to code_snippets
14: if i mod v = 0 then ▷ Periodic validation
15: val_outputs ← Apply code_snippets to D̃val

16: voted_outputs ← Majority vote of
val_outputs

17: val_accuracies ← Compare voted_outputs
with D̃val[cT]

18: if val_accuracies > 0.9 then
19: return code_snippets
20: end if
21: end if
22: end for
23: return code_snippets

and up-to-date knowledge base, which is partic-
ularly evident for tasks like DI and EC in the
Airline dataset. CodeGenWrangler efficiently
uses a reference table of country and continent
codes, outperforming row-level baselines and vari-
ants relying solely on LLMs’ internal knowledge,
which are prone to errors from hallucinations.

Code generation is an effective strategy when
the data pattern can be expressed in exact log-
ical terms: The generated code outperforms the

row-level baseline by applying precise logic, such
as comparing opening_time and closing_time
for 24_hours_service in the Starbucks dataset
or using the Change_in_rank sign to impute
Gained_in_rank and Dropped_in_rank in the
fortune1000_2023 dataset. In these cases, the
row-level baseline underperforms as it lacks the
ability to apply precise logical decision-making
and must rely on the LLM’s ability to generalize
from a limited number of in-context examples.

Generating code based on diverse data sam-
ples effectively captures complex patterns: For
the row-level baseline, models rely on a small set of
in-context examples, which may not be sufficient
when the data pattern is complex (e.g., determin-
ing the product category taxonomy from the name
alone in the product_category_tree column of
the flipkart_ecommerce dataset as shown in Fig-
ure 4). By generating multiple code snippets over
a diverse set of samples, the code captures infor-
mation across the dataset and distills it into con-
cise heuristics that better represent the pattern. Al-
though these heuristics may not guarantee perfect
accuracy, this approach significantly outperforms
the row-level baseline.

Code generation is less effective on Error De-
tection tasks: CodeGenWrangler competes well in
DI and EC but struggles with ED due to the variety
of errors, like syntactic anomalies or semantic mis-
matches. Such errors are difficult to capture using
concise code snippets. It performs poorly on tasks
like the Industry column in fortune1000_2023
but excels when errors can be captured via logical
rules (e.g., 24_hours_service in starbucks) or
verified with external knowledge (e.g., Airport
Continent / Country Code in Airlines). We
observe that the code generation is not very effec-

954

tive for datasets that need deep semantic under-
standing or probabilistic reasoning or those which
do not follow clear logical patterns.

The number of LLM calls required by row-level
method is proportional to the number of dataset
rows. In contrast, our system reduces the num-
ber of LLM calls by a factor of 10 approximately
compared to row-level method (see Figure 5).

Figure 5: Number of LLM calls
(Llama-3.1-70b-instruct) required for DI task
across 12 datasets: D0-D3 (Airline), D4-D6 (Customer
Support), and D7-D11 (Fortune 1000).

Figure 6: Gain with Iterative Prompt Optimization.
(Legend format <Task Dataset: Target-col>)

Figure 6 demonstrates the effectiveness of Itera-
tive Prompt Optimization, where refining prompts
with the best-performing code improves alignment.
High semantic complexity datasets like Ticket
Type and Ticket Subject required up to 40
iterations, while simpler datasets like Airport
Country Code converged in fewer than 10.

6 Conclusion and Future Work

We proposed a system to perform data wrangling
on tabular datasets using code-generating LLMs.
Our system generates source code by encoding
rules that capture the logical patterns in the datasets.
It generates multiple task-specific code snippets for
each data pattern and chooses the best code snip-
pet via a majority vote for higher reliability. The
generated code snippets are executed to carry out
data-wrangling tasks to replace the expensive row-
wise LLM inference calls by the state-of-the-art
approaches for scaling to large datasets. Our sys-
tem can also handle memory-dependent tasks that
require task-specific additional context provided as
external domain knowledge. It adopts an iterative
prompt refinement strategy to optimize the gener-
ated code for accuracy and efficiency. We plan to
extend our approach for its applicability to other
downstream tasks and different language models.
We plan to evaluate the performance of the system
on more realistic noisy and incomplete datasets.

References
Alice. 2017. Starbucks Dataset. https:

//data.world/alice-c/starbucks/workspace/
file?filename=Starbucks+in+California.csv.
Accessed on 3-Oct-2024.

Akella Ashlesha, Abhijit Manatkar, Brij Chavda, and
Hima Patel. 2024. An automatic prompt generation
system for tabular data tasks. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL): Human Language Technologies (Industry
Track), pages 191–200.

Akella Ashlesha and Krishnasuri Narayanam. 2025.
Data Wrangling task automation using Code-
Generating Language Models. Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI).

Shraddha Barke, Michael B. James, and Nadia Polikar-
pova. 2023. Grounded copilot: How programmers
interact with code-generating models. Proceedings
of the ACM on Programming Languages (OOPSLA),
7(1):85–111.

Cricsheet. 2023. IPL Matches. https:
//www.kaggle.com/datasets/patrickb1912/
ipl-complete-dataset-20082020?select=
matches.csv. Accessed on 3-Oct-2024.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024.
Self-collaboration code generation via chatgpt. ACM
Transactions on Software Engineering and Method-
ology (TOSEM), 33(7):1–38.

955

https://data.world/alice-c/starbucks/workspace/file?filename=Starbucks+in+California.csv
https://data.world/alice-c/starbucks/workspace/file?filename=Starbucks+in+California.csv
https://data.world/alice-c/starbucks/workspace/file?filename=Starbucks+in+California.csv
https://www.kaggle.com/datasets/patrickb1912/ipl-complete-dataset-20082020?select=matches.csv
https://www.kaggle.com/datasets/patrickb1912/ipl-complete-dataset-20082020?select=matches.csv
https://www.kaggle.com/datasets/patrickb1912/ipl-complete-dataset-20082020?select=matches.csv
https://www.kaggle.com/datasets/patrickb1912/ipl-complete-dataset-20082020?select=matches.csv

Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roy-
choudhury, and Shin Hwei Tan. 2023. Automated
repair of programs from large language models. In
Proceedings of the IEEE/ACM 45th International
Conference on Software Engineering (ICSE), pages
1469–1481.

Forbes. 2019. Fortune 1000. https://www.kaggle.
com/datasets/agailloty/fortune1000. Ac-
cessed on 3-Oct-2024.

Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Yilong
Yin, and Yu Zheng. 2021. Missing value imputation
for multi-view urban statistical data via spatial cor-
relation learning. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 35(1):686–698.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Ju-
lian Mcauley. 2023. LongCoder: A long-range pre-
trained language model for code completion. In Pro-
ceedings of the 40th International Conference on
Machine Learning (ICML), pages 12098–12107.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming–
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Aleksei Guryanov. 2019. Histogram-based algorithm
for building gradient boosting ensembles of piece-
wise linear decision trees. In Proceedings of the 8th
International Conference on Analysis of Images, So-
cial Networks and Texts (AIST), pages 39–50.

Buliao Huang, Yunhui Zhu, Muhammad Usman, and
Huanhuan Chen. 2024. Semi-supervised learning
with missing values imputation. Knowledge-Based
Systems (KBS), 284:111171.

Joon Suk Huh, Changho Shin, and Elina Choi. 2023.
Pool-search-demonstrate: Improving data-wrangling
llms via better in-context examples. In NeurIPS 2023
Second Table Representation Learning Workshop.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. TABBIE: Pretrained representations of
tabular data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics (NAACL): Human Lan-
guage Technologies, pages 3446–3456.

Gonzalo Jaimovitch-López, Cèsar Ferri, José
Hernández-Orallo, Fernando Martínez-Plumed, and
María José Ramírez-Quintana. 2023. Can language
models automate data wrangling? Machine Learning
(ML), 112(6):2053–2082.

Ellen Jiang, Edwin Toh, Alejandra Molina, Kristen Ol-
son, Claire Kayacik, Aaron Donsbach, Carrie J Cai,
and Michael Terry. 2022. Discovering the syntax and
strategies of natural language programming with gen-
erative language models. In Proceedings of the 2022
CHI Conference on Human Factors in Computing
Systems (CHI), pages 1–19.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

Harshit Joshi, José Cambronero Sanchez, Sumit Gul-
wani, Vu Le, Gust Verbruggen, and Ivan Radiček.
2023. Repair is nearly generation: Multilingual
program repair with llms. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI),
volume 37, pages 5131–5140.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 33,
pages 9459–9474.

Xue Li and Till Döhmen. 2024. Towards efficient data
wrangling with llms using code generation. In Pro-
ceedings of the Eighth Workshop on Data Manage-
ment for End-to-End Machine Learning (DEEM),
pages 62–66.

Wei-Chao Lin, Chih-Fong Tsai, and Jia Rong Zhong.
2022. Deep learning for missing value imputation of
continuous data and the effect of data discretization.
Knowledge-Based Systems (KBS), 239:108079.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023a. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

Shang-Ching Liu, ShengKun Wang, Tsungyao Chang,
Wenqi Lin, Chung-Wei Hsiung, Yi-Chen Hsieh, Yu-
Ping Cheng, Sian-Hong Luo, and Jianwei Zhang.
2023b. Jarvix: A llm no code platform for tabular
data analysis and optimization. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP): Industry Track,
pages 622–630.

Yilun Liu, Shimin Tao, Xiaofeng Zhao, Ming Zhu, Wen-
bing Ma, Junhao Zhu, Chang Su, Yutai Hou, Miao
Zhang, Min Zhang, et al. 2024. Coachlm: Auto-
matic instruction revisions improve the data quality
in llm instruction tuning. In Proceedings of the IEEE
40th International Conference on Data Engineering
(ICDE), pages 5184–5197.

Yinan Mei, Shaoxu Song, Chenguang Fang, Haifeng
Yang, Jingyun Fang, and Jiang Long. 2021. Cap-
turing semantics for imputation with pre-trained lan-
guage models. In 2021 IEEE 37th International Con-
ference on Data Engineering (ICDE), pages 61–72.

Avanika Narayan, Ines Chami, Laurel Orr, Simran
Arora, and Christopher Ré. 2022. Can Foundation
Models Wrangle Your Data? Proceedings of the
VLDB Endowment (PVLDB), 16(4):738–746.

956

https://www.kaggle.com/datasets/agailloty/fortune1000
https://www.kaggle.com/datasets/agailloty/fortune1000
https://doi.org/10.1109/ICDE51399.2021.00013
https://doi.org/10.1109/ICDE51399.2021.00013
https://doi.org/10.1109/ICDE51399.2021.00013

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Manar D Samad, Sakib Abrar, and Norou Diawara.
2022. Missing value estimation using clustering and
deep learning within multiple imputation framework.
Knowledge-Based Systems (KBS), 249:108968.

Tressy Thomas and Enayat Rajabi. 2021. A system-
atic review of machine learning-based missing value
imputation techniques. Data Technologies and Appli-
cations (DTA), 55(4):558–585.

Stef Van Buuren. 2018. Flexible imputation of missing
data. CRC press.

Boshi Wang, Xiang Deng, and Huan Sun. 2022. Itera-
tively prompt pre-trained language models for chain
of thought. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2714–2730.

Jianxun Wang and Yixiang Chen. 2023. A review on
code generation with llms: Application and evalu-
ation. In Proceedings of the 2023 IEEE Interna-
tional Conference on Medical Artificial Intelligence
(MedAI), pages 284–289. IEEE.

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Jun-
nan Li, and Steven Hoi. 2023. CodeT5+: Open code
large language models for code understanding and
generation. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1069–1088.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu,
Bingchao Wu, Bei Guan, Yongji Wang, and Jian-
Guang Lou. 2023. Large language models meet
nl2code: A survey. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 7443–7464.

Jialu Zhang, José Pablo Cambronero, Sumit Gulwani,
Vu Le, Ruzica Piskac, Gustavo Soares, and Gust
Verbruggen. 2024. Pydex: Repairing bugs in intro-
ductory python assignments using llms. Proceedings
of the ACM on Programming Languages (OOPSLA),
8(1):1100–1124.

A Appendix

A.1 Comprehensive Evaluation
The full results in Table 2 present the performance
of the proposed system on Error Detection and
Missing Value Imputation tasks across 21 datasets
each. These datasets, sourced from (Ashlesha et al.,
2024), originate from publicly available reposito-
ries such as Kaggle and OpenML, ensuring a di-
verse range of real-world data patterns. The results
highlight the system’s effectiveness in handling var-
ious data complexities, demonstrating consistent
performance across multiple datasets and validat-
ing its adaptability to different data quality tasks.

B Example Code snippets

This section presents the example code snippets,
which illustrate different task-specific codes gener-
ated for different datasets. These snippets highlight
the adaptability of our approach in capturing di-
verse data patterns effectively. For example, Figure
7 shows the code generated by our system on two
different datasets, imputing the city column in the
IPM Matches dataset (Cricsheet, 2023), and imput-
ing the Fortune 1000 dataset (Forbes, 2019). The
code generated by the system is used for two tasks:
(i) imputing the ‘24_hour_service‘ column in the
‘Starbucks‘ dataset (Alice, 2017), and (ii) imputing
the ‘city‘ column in the ‘Restaurant‘ dataset (Mei
et al., 2021). These are shown in Figure 8.

C Example Prompts for Diverse Datasets

This section presents example prompts which are
automatically constructed by the system for mem-
ory dependent tasks 9 and memory independent
task 10. These prompts are designed to incorporate
relevant data patterns, external knowledge (when
applicable), and iterative refinements to enhance
the quality of generated code snippets.

957

Task Dataset (# columns) Target column Row-level (flan-t5-xxl) Row-level (mixtral-8x7b) Row-level (llama) cgw (codellama) cgw (deepseek) cgw (llama)

DI Restaurant City 0.82 0.97 0.75 0.63 0.85 0.92

DI Airline Continents 1.00 1.00 0.85 1.00 1.00 1.00

DI customer support tickets Ticket Type 0.21 0.20 0.16 0.19 0.20 0.18
DI customer support tickets Ticket Priority 0.27 0.25 0.00 0.23 0.58 0.24
DI customer support tickets Ticket Subject 0.06 0.05 0.01 0.06 0.07 0.08

DI fortune1000_2023 HeadquartersState 0.88 0.97 0.96 0.93 0.94 0.91
DI fortune1000_2023 Sector 0.89 0.87 0.53 0.79 0.63 0.79
DI fortune1000_2023 Industry 0.23 0.34 0.17 0.32 0.21 0.31

DI flipkart_com-ecommerce_sample brand 0.58 0.20 0.63 0.52 0.40 0.38

DI starbucks_in_california state 1.00 1.00 0.92 0.99 0.76 0.99
DI starbucks_in_california county 1.00 0.99 0.99 1.00 0.69 0.93
DI starbucks_in_california city 0.44 0.86 0.73 0.43 0.22 0.45
DI starbucks_in_california state 1.00 1.00 0.92 0.99 0.76 0.99
DI starbucks_in_california county 1.00 0.99 0.99 1.00 0.69 0.93
DI starbucks_in_california city 0.44 0.86 0.73 0.43 0.22 0.45

DI shopping_trends Category 1.00 0.99 0.69 0.66 0.93 0.96
DI shopping_trends Season 0.28 0.26 0.10 0.23 0.15 0.45

DI AMTRAK City 0.98 0.81 0.83 0.92 0.91 0.92

DI IPM_Matches city 0.85 0.94 0.94 0.80 0.62 0.73

DI BigBasketProducts category 0.92 0.92 0.89 0.73 0.88 0.91

DI SpeedDating race 0.61 0.64 0.48 0.45 0.57 0.50

ED Airline Country Name 0.96 0.96 0.99 0.99 0.99 0.99
ED Airline Airport Continent 0.76 0.99 0.97 1.00 1.00 1.00
ED Airline Continents 0.91 0.91 0.99 1.00 1.00 1.00

ED customer_support_tickets Ticket Priority 0.93 0.99 0.96 0.54 0.53 0.54
ED customer_support_tickets Ticket Subject 0.68 0.98 0.88 0.44 0.43 0.43
ED customer_support_tickets Ticket Type 0.81 0.98 0.92 0.53 0.49 0.53

ED fortune1000_2023 Dropped_in_Rank 0.86 1.00 0.98 0.98 0.97 0.99
ED fortune1000_2023 Gained_in_Rank 0.81 0.99 0.99 0.97 0.98 0.98

ED BigbasketProducts category 0.87 0.95 0.98 0.87 0.88 0.92
ED BigbasketProducts sub_category 0.48 0.45 0.86 0.44 0.34 0.43
ED BigbasketProducts type 0.86 0.88 0.84 0.50 0.56 0.52

ED finance_sentiment_analysis Sentiment 0.37 0.97 0.88 0.71 0.73 0.72

ED flipkart_com-ecommerce_sample brand 0.84 0.87 0.96 0.54 0.45 0.46
ED flipkart_com-ecommerce_sample product_category_tree 0.79 0.70 0.86 0.63 0.49 0.52

ED GlobalPowerPlantDB country_long 0.87 0.98 1.00 1.00 0.97 1.00

ED IPM_Matches city 0.88 0.91 0.87 0.91 0.76 0.79

ED SpeedDating race 0.69 0.53 0.99 0.70 0.69 0.78

ED shopping_trends Category 0.87 0.95 1.00 0.98 0.91 0.98

ED starbucks_in_california city 0.79 0.95 0.97 0.93 0.93 0.94
ED starbucks_in_california county 0.53 0.98 0.94 0.99 0.99 1.00
ED starbucks_in_california state 0.89 1.00 0.97 0.91 0.91 1.00

Table 2: Results for extended datasets on Data Imputation and Error Detection tasks

def task(data):
 venue = data['venue']
 if 'Maharashtra Cricket Association Stadium' in venue:
 return 'Pune'
 elif 'Feroz Shah Kotla' in venue:
 return 'Delhi'
 elif 'Saurashtra Cricket Association Stadium' in venue:
 return 'Rajkot'
 elif 'Barabati Stadium' in venue:
 return 'Cuttack'
 elif 'Eden Gardens' in venue:
 return 'Kolkata'
 elif "St George's Park" in venue:
 return "Port Elizabeth"
 elif "M.Chinnaswamy Stadium" in venue:
 return 'Bengaluru'
 elif "Dubai International Cricket Stadium" in venue:
 return 'Dubai'
 elif 'Punjab Cricket Association Stadium' in venue:
 return 'Chandigarh'
 elif 'Wankhede Stadium' in venue:
 return 'Mumbai'
 else:
 return 'Unknown'

def task(input_dict):
 if input_dict['Change_in_Rank'] < 0:
 return 'yes'
 else:
 return 'no'

Impute dropped_in_rankImpute city in IPM Matches

def task(input_dict):
 change_in_rank =
input_dict['Change_in_Rank']
 if change_in_rank > 0:
 return 'yes'
 else:
 return 'no'

Impute Gained_in_rank

Figure 7: Code Generated by our system 1. to impute ‘city’ column in ‘IPM Matches’ dataset (Cricsheet, 2023). 2.
to impute ‘Gained in rank’ and ‘Dropped in Rank’ columns in ‘Fortune 1000’ dataset (Forbes, 2019)

958

def task(inputs):
 regular_hours = inputs.get('regular

hours')
 saturday_opening_times =

inputs.get('saturday opening times')
 sunday_opening_times =

inputs.get('sunday opening times')

 if regular_hours == 'nan' or

saturday_opening_times == 'nan' or
sunday_opening_times == 'nan':

 return False

 if regular_hours == '12:00 AM to 12:00
AM'

and saturday_opening_times == '12:00
AM to 12:00 AM'
and sunday_opening_times == '12:00 AM
to 12:00 AM':

 return True
 return False

Starbucks dataset impute 24_hour_service

def task(data):
 if data['phone'].startswith('415'):
 return 'san francisco'
 elif data['phone'].startswith('404'):
 return 'atlanta'
 elif data['phone'].startswith('213'):
 return 'los angeles'
 elif data['phone'].startswith('212'):
 return 'new york'
 elif data['phone'].startswith('718'):
 return 'queens'
 else:
 return 'Unknown'

Restaurant dataset impute city

Figure 8: Code Generated by the system: (i) To impute ‘24_hour_service’ column in ‘Starbucks’ dataset (Alice,
2017) (ii) To impute ‘city’ column in ‘Restaurant’ dataset (Mei et al., 2021)

Task instructions:

Given the 2 Tables, Table 1 and Reference Table write a python code to answer the following question.
1. Table1 where the question is to be answered.
2. Reference Table is the reference table which helps to answer the question.
3. Write a python code which takes row dictionary of Table 1 and Table 2 as pandas dataframe input.
4. Make sure to use try and exception for exception handling.
5. In case of excpetion return "Unknown"
6. example function
def task(input_dict, reference_table):
input_dict is a dictionary
reference table is a pandas dataframe
7. User the correct column names from Table 1 and Reference Table
8. Check for string matches, use string functions such as śtartswithór éndswithór ínf́or better pattern match.

Table 1:

HeadquartersCity	HeadquartersState
Redwood City	CA
Chicago	IL
Arlington	VA
Houston	TX

External Knowledge (reference table):

name	alpha-2	alpha-3	region	sub-region
Hong Kong	HK	HKG	Asia	Eastern Asia
Cocos (Keeling) Islands	CC	CCK	Oceania	Australia and New Zealand
Czechia	CZ	CZE	Europe	Eastern Europe
Saint Pierre and Miquelon	PM	SPM	Americas	Northern America
Viet Nam	VN	VNM	Asia	South-eastern Asia
Holy See	VA	VAT	Europe	Southern Europe
Hong Kong	HK	HKG	Asia	Eastern Asia
Bahrain	BH	BHR	Asia	Western Asia

#input_dict contains HeadquarterCity , HeadquarterState
reference table contains name,alpha2,alpha3,region,subregion
the code uses input_dict and table2 to output the HeadquartersState

What is the value of HeadquartersState

CODE:

Figure 9: Example prompt for Memory Dependent task.

959

Task instructions:

Instructions:

Given a series of examples, your task is to identify the pattern between the input columns and their corresponding
output values. Write a Python function named t̀askt̀hat accurately maps the input data to the correct output based on
this identified pattern.

Key Guidelines:
1. Analyze Patterns:
Observe the logical relationships and string patterns within the input data. Focus on identifying consistent connections
between input columns and their corresponding outputs.
2. Optimize the Logic:
- Use regular expressions when necessary to match specific conditions or patterns efficiently.
- Employ methods like s̀tartswithànd èndswithìnstead of generic comparisons for precise string matching.
3. Comprehensive Coverage:
- Ensure your code considers all possible patterns and conditions given in the test examples.
- Write as many ìfs̀tatements as required to handle each identified pattern thoroughly.
4. Relevant Features Only:
Utilize only the columns that show a consistent relationship to the output. Avoid introducing unnecessary complexity by
including irrelevant columns.
5. Default Behavior:
If no recognizable pattern is found, the function should return "̀Unknown".̀

Table 1:

name	county	city
Pacific & Yokuts - Stockton	San Joaquin County	Stockton - San Joaquin County
Washington & Culver	Los Angeles County	Culver City - Los Angeles County
Albertsons - Temecula #6734	Riverside County	Murrieta - Riverside County
Bouquet Canyon & Newhall Ranch, San	Los Angeles County	Santa Clarita - Los Angeles County

Task instructions:

#input_dict contains name, county
What is the value of city

CODE:

Figure 10: Example prompt for Memory Independent task.

960

