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Abstract

Question Answering (QA) and Visual Question
Answering (VQA) are well-studied problems
in the language and vision domain. One chal-
lenging scenario involves multiple sources of
information, each of a different modality, where
the answer to the question may exist in one or
more sources. This scenario contains richer
information but is highly complex to handle.
In this work, we formulate a novel question-
answer generation (QAG) framework in an en-
vironment containing multi-source, multimodal
information. The answer may belong to any
or all sources; therefore, selecting the most
prominent answer source or an optimal combi-
nation of all sources for a given question is
challenging. To address this issue, we pro-
pose a question-guided attention mechanism
that learns attention across multiple sources
and decodes this information for robust and un-
biased answer generation. To learn attention
within each source, we introduce an explicit
alignment between questions and various in-
formation sources, which facilitates identifying
the most pertinent parts of the source infor-
mation relative to the question. Scalability in
handling diverse questions poses a challenge.
We address this by extending our model to a
sparse mixture-of-experts (sparse-MoE) frame-
work, enabling it to handle thousands of ques-
tion types. Experiments on T5 and Flan-T5
using three datasets demonstrate the model’s
efficacy, supported by ablation studies.

1 Introduction

The field of question-answer generation
(QAG) (Touvron et al., 2023; Jiang et al.,
2023) and visual question-answer generation
(VQAG) (Li et al., 2022) holds significant promise
with extensive applications across various domains.
Recent advancements in large-scale language

1Equal contribution.
2This work was done while author was in International

Machine Learning team.

Figure 1: Example of the multi-modal and multi-source
attribute extraction using the proposed question answering
mechanism.

models (Jiang et al., 2023; Taori et al., 2023)
and vision models (Zhang et al., 2023; Li et al.,
2022; Verma et al., 2023) have demonstrated
notable progress. However, current models
are often constrained to QAG tasks that use a
single source of information, generating answers
solely from either language or visual signals. In
practical applications, handling multiple sources
of information is crucial, as answer signals may
exist in any or all sources. For example, when
reading a paper or article, relying solely on textual
content may be insufficient, requiring references to
images for a more comprehensive understanding.
Similarly, in E-commerce platforms, questions
related to attributes such as pattern, fabric, or
material can be answered using diverse sources,
including images, product descriptions, or external
references. Figure 1 illustrates this scenario:
questions about attributes like pattern color can be
inferred from images, while fabric and material are
extracted from text descriptions. Notably, certain
attributes, such as pattern, may be present in both
sources of information.

Recently, various models (Li et al., 2022; Work-
shop et al., 2022; Almazrouei et al., 2023) have
emerged for answer generation, leveraging single-
source information from either images or text. To
handle multi-source information, these models of-
ten rely on separate models for different sources,
integrating their outputs through post-processing.
Novel frameworks, such as PAM (Lin et al., 2021)
and MXT (Khandelwal et al., 2023), have intro-
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duced multi-source, multi-modal generative ap-
proaches, showing promising results in attribute-
related question answering. However, significant
challenges remain in developing efficient mecha-
nisms for training and integrating models to handle
diverse sources of information.

Existing approaches face several limitations that
hinder their effectiveness in answer generation
tasks. Firstly, reliance on textual data introduces
language bias, potentially leading to skewed at-
tribute generation. Additionally, these models of-
ten neglect crucial visual information contained in
product images, relying primarily on textual de-
scriptions, which undermines the benefits of multi-
source and multi-modal data(Verma et al., 2024).
Effective answer generation also requires selec-
tively attending to the most relevant source, fo-
cusing on key visual or textual information within
that source. Furthermore, handling a diverse range
of questions with a single model poses scalability
challenges, necessitating expert models tailored to
specific question types. Unfortunately, models such
as MXT (Khandelwal et al., 2023) and PAM (Lin
et al., 2021) fail to address these limitations.

The proposed model addresses the aforemen-
tioned limitations by incorporating a question-
guided attention (QGA) mechanism and a sparse
mixture-of-experts (MoE) model. The QGA mech-
anism enables the model to autonomously discern
attention patterns across multiple sources in scenar-
ios involving diverse information streams. These
attention patterns are tailored to the specific posed
question. When the answer relies on visual in-
formation, the model focuses its attention on vi-
sual embeddings. Conversely, when the answer is
within the textual context, the model assigns higher
weights to textual information. In cases where
the answer is derived from all available sources,
the model distributes attention appropriately across
each source. While cross-modal attention aids in
aligning different modalities, it is insufficient for
acquiring robust attention patterns within a sin-
gle source. To address this, we introduce sepa-
rate embeddings for the question, context, and im-
age, aligning question-image and question-context
pairs by maximizing their correlation. This align-
ment process allows the model to learn precise
attention patterns within individual sources based
on the given question. Given the diverse nature
of the questions, a single model struggles to han-
dle all question types effectively. To address this,
We incorporate an MoE strategy into our model,

allowing experts to specialize in different ques-
tion types. Experiments on a large-scale multi-
modal dataset show state-of-the-art performance in
attribute-based answer generation. Ablation studies
analyze the contribution of each model component.

2 Related Work
Extensive work has been conducted on attribute
answer extraction, which can be broadly catego-
rized as extractive, predictive, and generative. Ex-
tractive models tag each word in a description
using Named Entity Recognition (NER) and ex-
tract answers based on these tags. Recent works
such as OpenTag (Zheng et al., 2018), LATEX-
numeric (Mehta et al., 2021), and MQMRC (Shri-
mal et al., 2022) leverage NER for answer extrac-
tion. While effective for certain categories, these
models face limitations in predicting novel entities,
and defining entity classes remains challenging.
Furthermore, NER-based approaches rely solely on
unimodal data, ignoring the richer context available
in multi-modal sources such as text and images.

Predictive models form another popular cate-
gory, where answers are predicted from prede-
fined classes using classification models. These
approaches accept unimodal or multimodal data
with a question and predict attributes from a fixed
set. CMA-CLIP (Liu et al., 2021a) is a recent mul-
timodal approach for attribute prediction. However,
these models are limited to predefined attributes
and cannot perform zero-shot inference. Given the
vast diversity and continuous growth of data, defin-
ing a fixed answer set is impractical, and managing
large classifier sizes is challenging.

Generative models offer a more flexible solution
by generating attributes rather than predicting or
extracting them. These models take a question
and unimodal or multimodal information as in-
put. AVGPT (Roy et al., 2021) generates attribute
answers using text data, while PAM (Lin et al.,
2021) and MXT (Khandelwal et al., 2023) intro-
duce multimodal generative frameworks. PAM and
MXT are closely related to our approach, both
employing generative models in multimodal set-
tings. However, MXT uses two image encoders
(ResNet152 (He et al., 2016) and Xception (Chol-
let, 2017)), making image encoding computation-
ally expensive, and relies on a joint encoder for
questions and context. This design prevents direct
interaction between the question and the image,
limiting the model’s ability to focus on relevant im-
age regions. Additionally, MXT uses a cross-modal
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Figure 2: The proposed model architecture consists of two T5 encoders for processing the question and context, along with one
image encoder. The question and context are aligned using the Question Context Alignment Loss while the question and image
are aligned through the Question Image Alignment Loss

mechanism that restricts the question’s ability to
attend to the most relevant source.

Proposed model addresses these limitations by
using a single image encoder and learning patch-
wise attention, enabling efficient and precise focus
on image regions. Furthermore, question-guided
attention facilitates attending to the most relevant
mode across all sources of information. We also
incorporate the MoE (Shazeer et al., 2017), a recent
advancement combining specialized expert models
for specific tasks or modalities. MoE has demon-
strated significant performance improvements in
decoder-only architectures, such as Mixtral (AI,
2023) and MoE-LLAVA (Lin et al., 2024), com-
pared to their non-MoE counterparts.

3 Problem Setting
The proposed model solves the QAG task, unlike
standard VQA or QA tasks, our approach incor-
porates multi-source information, where the an-
swer to a given question may originate from any
of the available sources. We define the dataset as
D = {qi, ci, ii}Ni=1, comprising N samples, each
represented by a triplet of question qi, context ci,
and image ii. Here, qi denotes the question posed
for attribute generation, ci represents the context,
including the question, product type (PT), product
description, and bullet points, while ii corresponds
to the associated image.

4 Proposed Model
To obtain a robust and highly generalizable model,
an approach is needed that can automatically attend
to various sources in a multi-modal information
scenario. To address this, our approach employs
three encoders with unshared parameters for con-
text, image, and question. We have developed a
question-guided attention mechanism to automati-
cally learn weights for different data sources. The

following section provides a detailed discussion of
the proposed model and its components.

4.1 Source Information Embedding
Let us consider a context (ci) and question (qi),
where ci, qi ∈ Rk×d. The context is encoded us-
ing the T5 text encoder model with parameters θc
and θq. Here, ci includes product descriptions, bul-
let points, titles, and other relevant information.
The T5 architecture is based on the transformer
model (Vaswani et al., 2017) and employs self-
attention and multi-head attention (MHA). The en-
coded embeddings of the context and question are
defined as follows:

C = T5θc(ci), Q = T5θq (qi) : Q, C ∈ Rk×d (1)

The image is encoded using the SwinV2 (Liu et al.,
2021b) vision transformer model. Let ii denote
the image, where ii ∈ R3×256×256, and let S repre-
sent the Swin model with parameter θs. The patch
embedding from the model is obtained as:

i′o = Sθs(ii) : qo ∈ Rk′×d (2)

I = repeat(i′o, int(k/k′)) (3)

Here, we return the patch embedding rather
than the final layer logits. The operation I =
repeat(i′o, int(k/k′)) ensures that the image embed-
ding matches the dimensions of the question and
context, i.e., dimension k.

4.2 Question Guided Attention (QGA)
The answer to a question may be derived from one
or more sources of information. To address this, we
developed a QGA mechanism for handling multiple
sources. This generic approach applies to any num-
ber of sources and can be viewed as a dense MoE,
where question-guided attention acts as gating by
attending to all sources via a weighted combination.
Let Q ∈ Rk×d represent the question embedding.
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We transform qo into a c-dimensional embedding
using a fully connected (FC) layer, where c = 2
(representing two sources of information). This
operation is given by:

qa = FCθf (Q), qa ∈ Rk×c (4)

These c-dimensional values for each k are used
to assign weights to the various sources. We then
learn a joint embedding ei as follows:

ei = α ∗ I + β ∗ C, ei ∈ Rk×d (5)

Here, α = qa[:, 0] and β = qa[:, 1] are k-
dimensional vectors. Rather than learning a scalar
weight for each source, we learn token-specific
weights, allowing for finer adjustments compared
to a single weight per source. The joint embed-
ding for the ith sample, ei, is passed to the decoder.
Since it is guided by the question, if the answer ex-
ists in the context, the model learns a higher weight
for the context. If it exists in the image, the image
weight is higher. However, for a solution in both
sources, the model learns a balanced weight value
between sources.

4.3 Sources and Question Alignment
In the previous section, the model attends to infor-
mation from various sources guided by the question
but does not learn to focus on relevant information
within the source data itself. Here, we align the
question with the source data, enabling the model
to attend to the most pertinent parts of the source.
This alignment is performed for both the image
and context relative to the question. The embed-
dings obtained in Equations 4 and 5 are projected
to a single vector of dimension k using a linear
transformation and aligned by maximizing cosine
similarity. Let qp, cp, and ip denote the projected
embeddings. The alignment losses between the
question and sources are defined as:

LQCA = |1− (qp · cp((|qp|2|cp|2)| , (6)

LQIA = |1− (qp · ip)(|qp|2|ip|2)| , (7)

where LQCA and LQIA represent the align-
ment losses for context and image, respectively.
This alignment mechanism improves model perfor-
mance by focusing on the most relevant parts of
the source information.

4.4 Sparse MoE
To handle the diverse set of question and obtained
a highly scalable model we leverages sparse MoE

Figure 3: Illustration of working of the Mixture of Experts
(MoE) Layer (Shazeer et al., 2017)

model (Figure-3), where different expert can han-
dle the various type of questions using a single
model. In an MoE framework, we have a set
of experts {f1, . . . , fn}, each taking the same in-
put x and producing outputs f1(x), . . . , fn(x), re-
spectively. Additionally, there is a gating func-
tion w that takes x as input and produces a vector
of weights (w(x)1, . . . , w(x)n). The gating net-
work is defined by w(x) = softmax(topk(Wx+
noise)). Given an input x, the MoE produces a
single combined output by aggregating the out-
puts of the experts f1(x), . . . , fn(x) according to
the gating weights w(x)1, . . . , w(x)n. At the each
layer we choose only top − k expert which pro-
duce the sparsity to the model and saves the sig-
nificant computations. Load balancing is a key
issue in the MoE model, to overcome the same
we use the load balancing loss. Let n denote
the number of experts, and for a given batch of
queries {x1, x2, . . . , xT }, the auxiliary loss for
the batch is defined as: Laux = n

∑n
i=1 fiPi Here,

fi = 1
T #(queries sent to expert i) represents the

fraction of times where expert i is ranked highest,
and Pi =

1
T

∑T
j=1wi(xj) denotes the fraction of

weight assigned to expert i, where wi(xj) is the
weight assigned by the gating mechanism to expert
i for query xj .

4.5 Joint Objective

Let g is the ground truth token and ĝ is the gen-
erated token, the decoder loss over the generated
token is calculated as follows: Lθd(qi, ii, ci) =
CrossEntropy(ĝ, g). The complete objective
over the decoder and encoder is given as:

Lθq ,θi,θc(qi, ii, ci) = Lθd(qi, ii, ci) + LQCA

+ LQIA + λLaux (8)

The model is jointly optimized with respect to pa-
rameter Θ = [θq, θi, θc, θd, θf ], where θq, θi, and
θc are the encoder parameters, θf is the fully con-
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PT #Top CMA- NER- MXT MoE-
Attr. CLIP MQMRC MoE

Kurta
K=5 60.69 54.53 76.86 76.55

K=10 56.67 49.97 66.86 76.93
K=15 46.49 44.68 57.91 60.31

Shirt
K=5 79.60 71.26 87.89 88.87

K=10 70.47 52.01 76.99 78.17
K=15 56.81 45.09 63.60 69.86

Table 1: Results (Recall@90) on the 30PT dataset for Kurta
and Shirt product types. Results shown for top K attributes
(K = 5, 10, 15).

Attribute CMA- NER- KNN MXT MoE-
CLIP MQMRC MoE

Color Map 48.26 26.54 45.95 34.48 49.61
Dress Style 20.34 20.97 13.27 23.79 20.23
Item Length 66.39 47.13 63.08 65.57 69.92
Neck 30.58 13.09 33.67 31.90 34.81
Pattern 14.48 11.61 23.37 24.83 41.62
Season 67.93 16.45 65.37 73.10 69.43
Sleeve 61.68 35.37 44.71 54.38 65.77

Average 44.23 24.45 41.34 44.01 50.19

Table 2: Attribute-wise results (Recall@90) on the CMA-
CLIP dataset for Dress product type. MoE-MoE outperforms
MXT for most attributes, showing significant improvement on
average.
nected layer parameter for question embedding pro-
jection, and θd is the decoder parameter.
5 Experiment and Results
This section, briefly discusses the datasets, base-
lines and the results obtained using the proposed
model.
5.1 Data Description and Base Model
We utilize the 30PT dataset introduced by
MXT (Khandelwal et al., 2023), comprising 30
selected product types (PTs) and 38 distinct at-
tributes sourced from an online platform. The
CMA-CLIP (Liu et al., 2021a) paper employed
a different dataset with approximately 2.2 million
samples for training and 300 samples for valida-
tion and testing per attribute. To extend our ex-
periments to a larger scale, we collected a more
extensive dataset from the online platform, referred
to as OHLSL. This dataset encompasses data for
the OHL (other hardlines) and SL (softlines) cat-
egories, consisting of 20 million samples for 318
and 145 product types, respectively. The details
descriptions about data, baselines and implementa-
tions are provided in the supplementary material.

5.2 Results
The result over the three standard datasets are dis-
cussed below.

30PT dataset The 30 PT dataset utilized in our
study is a comprehensive dataset containing data
from various marketplaces and diverse PTs. Our

Attr. #Prod CMA-
CLIP

NER-
MQMRC

MXT MoE-
MoE

age range 27.7k 97.67 13.33 99.03 99.35
department 27.0k 98.39 87.92 98.09 98.57
care inst. 23.3k 36.59 24.62 46.04 48.73
neck 22.2k 52.74 48.01 68.99 74.47
color 21.2k 84.04 74.79 86.03 87.65
design 19.4k 24.97 – 32.69 35.41
occas. 17.3k 19.93 29.67 50.58 52.63
pattern 13.7k 25.83 – 31.92 32.61
season 12.9k 5.07 0.19 33.20 27.15
fit 8.0k 94.66 41.59 95.61 95.72
closure 7.7k 5.05 – 9.33 18.48
collect. 7.3k 0.00 – 30.02 46.87
sleeve 5.7k 60.53 47.99 75.63 80.75

Table 3: Recall@90P% on Kurta PT. MoE-MoE shows su-
perior performance on visual attributes (neck, color, design),
reducing bias towards textual descriptions.

Figure 4: Results on the OHLSL dataset over the Flan-T5
architecture. We report the average Accuracy and Recall@90
metric for the OHL and SL category for all the attribute.

trained model underwent evaluation on two PTs,
namely, Kurta and Shirt, encompassing 16 and 19
attributes, respectively. A detailed breakdown of
attribute information is available in the supplemen-
tary section. Attributes in our evaluation are as-
sociated with either visual information or product
descriptions. We employed Recall@90 (recall with
precision ≥ 90) as our evaluation metric for the
top k attributes, where k = 5, 10, 15. The results,
as presented in Table-1, unveil a notable improve-
ment in our proposed approach compared to the re-
cent work MXT (Khandelwal et al., 2023). Specifi-
cally, our method, MoEMoE, exhibits an absolute
improvement of 6.26% and 2.4% over the top 15
attributes for the Shirt and Kurta datasets, respec-
tively. Our analysis indicates that the majority of
the improvement over the MXT model stems from
attributes related to visual information. In terms of
product description-related attributes, both MXT
and MoEMoE yield competitive results.

CMA-CLIP dataset The dataset employed in
this study aligns with the one utilized in the CMA-
CLIP paper (Liu et al., 2021a). Training was
conducted using this standardized dataset, and
subsequent inference focused on the "dress" cate-
gory, comprising nine distinct attributes outlined
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Figure 5: The figure shows the ablation over the various component of the proposed model. We can observe that without
question guidance (WoQG) or without alignment (WoAL) the model performance significantly drops. Also, single encoder
(S-Enc) shows degraded result.

in Table-2. Notably, the proposed model show-
cases superior performance in six out of the nine
attributes when compared to its most competitive
counterpart, MXT. Specifically, MoEMoE demon-
strates an average absolute improvement of 6.18%.
In appendix we provide further discussions regard-
ing current model challenges.

OHLSL dataset OHLSL constitutes a large-
scale dataset, with each of the OHL and SL cat-
egories containing 20 million samples, while the
test set encompasses 1 million samples. The results
for the OHLSL dataset are evaluated using the Flan-
T5 architecture. In Figure-4, the MoEMoE results
are compared with those of the Flan-T5 architec-
ture. Notably, we observe an absolute performance
improvement of 2.5% and 5.8% for accuracy and
recall@90, respectively, over the Flan-T5 archi-
tecture in the OHL category. Similarly, for the
SL category, we note an absolute improvement of
2.4% and 3.8% over the same architecture.

6 Ablations
We conducted the extensive ablation over the vari-
ous proposed components and Figure-5 shows the
results for the same. Notably, we observed that the
presence of question-guided attention and align-
ment loss had a substantial impact on the model’s
performance. In the absence of question guidance
(WoQG), the performance dropped from 59.9 to
58.1 for Kurta PTs and from 69.4 to 68.1 for Shirt
PTs. When leveraging the joint encoder (S-Enc),
where the question and context are merged, the
application of question-guided attention was not
feasible, leading to a significant performance drop
and the lowest results for both Kurta and Shirt prod-
uct types. The alignment loss emerged as a cru-
cial factor in directing attention within the source
information, enabling the model to focus on the
most relevant parts of the image or context. In-
corporating the alignment loss further enhanced
the model’s performance, raising it from 59.4 and
68.8 to 59.9 and 69.4 for the Kurta and Shirt PTs,

Table 4: Results on the Softlines Dataset (1500 PT-attribute
test set)

Model Acc. R@90

MXT 63.94 53.52
QGA (Question Guided Attention) 66.04 56.69
QGA Enc-Dec MoE Full Training 62.45 54.19
QGA Enc-Dec MoE Odd* 62.14 52.96
QGA Enc-Dec MoE Even* 62.30 53.18
QGA Encoder MoE Full Training 52.33 41.70
QGA Decoder MoE Full Training 63.81 55.08
QGA Decoder Last MoE 64.29 55.70
QGA Decoder Last-2 MoE 63.67 55.07
QGA Decoder Even MoE* 66.29 57.13
QGA Decoder Odd MoE† 64.79 55.50
MoEMoE (QGA Dec. Odd MoE, Expert Train-
ing)

66.57 57.03

*Expert Training Only †MoE Frozen, Backbone Training

respectively. The MoE model further helps to im-
prove the model’s performance, while maintaining
the model’s complexity.

6.1 MoE Ablations

We conducted extensive experiments over various
settings discussed in the Section-5. To the best
of our knowledge, there is no existing literature
that has conducted experiments for the encoder-
decoder architecture. Most recent works on MoE
(AI, 2023) (Lin et al., 2024) focus on the decoder
only architecture. In our experiment we have tried
to explore all the experimental scenarios for the
encoder-decoder architecture. We measure the re-
sults on the Softlines test dataset across 1500 PT-
attributes and showcase the results in Table 4. This
is a challenging dataset and has a huge, diverse
output space across all the product-types. In our
experiments, we investigate the application of the
Mixture of Experts (MoE) architecture within the
QGA Model over the previously discussed scenar-
ios and our key observations are as follows:

MoE in Decoder: Applying the MoE architec-
ture exclusively to the decoder layers of the model
yields superior performance compared to incorpo-
rating it in the encoder layers or across the entire
model. This finding suggests that the MoE mech-
anism is particularly effective in leveraging spe-
cialized experts during the output generation phase.
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Table-4 shows detailed results over the encoder-
decoder architecture. The addition of the MoE
layer to the full network degrades the model per-
formance and is unable to outperform the base ar-
chitecture. However, adding the MoE layer to the
decoder layer only helps improve the model accu-
racy and recall@90 by 0.53% and 0.34% absolute
gain, respectively. However adding the MoE to the
encoder-decoder layer degrades the model accuracy
and recall@90 by 3.59% and 2.50% respectively
in the absolute value. Similarly, adding the MoE
to the encoder layer only shows the worst perfor-
mance and the decrease in the baseline accuracy by
13.71% absolute value. We also observe that train-
ing the whole model along with the experts slightly
degrades the model performance, however training
only the MoE layer helps and outperforms the other
baselines. Therefore we can conclude that adding
the MoE layer to the decoder only and training the
MoE expert only, while freezing the basemodel pa-
rameters shows the highest improvement and no
other setting works as well. In the future it will be
interesting to explore how the internal MoE experts
are selected if there are there any intrinsic patterns
in the question, context and data that helps to select
the MoE expert. In the future we will explore the
same.
Layer Distribution: We observe that the choice of
applying MoE to even or odd decoder layers does
not significantly impact the model’s performance,
indicating a degree of flexibility in the layer-wise
distribution of experts.
Training Strategy: The optimal training strategy
involves selectively training only the expert mod-
ules and the routing network responsible for assign-
ing inputs to experts, while keeping the remaining
model parameters frozen. This focused training
approach outperforms the conventional end-to-end
training of the entire model, including the MoE
components. Interestingly, our experiments reveal
that fully training the entire model, encompassing
the MoE components (experts and routing network)
alongside the rest of the model parameters, tends to
degrade the overall performance. This observation
highlights the potential challenges of jointly opti-
mizing the MoE architecture and the base model in
an end-to-end fashion.

6.2 Auxiliary Loss Ablations

We conducted the ablation for the MoE loss, the
results are shown in the Table 5. The ablations
are conducted over the best model obtained in the

Table 5: Impact of Auxiliary Loss Weight on Model Accuracy

Model Type Accuracy

Enc-Dec (wt=0.01) 40.34%
Enc-Dec (wt=0.1) 48.60%
Decoder Only (wt=0.01) 62.73%
Decoder Only (wt=0.1) 66.57%
Decoder Only (wt=0.5) 62.95%

Table-4.
We observe that while Enc-Dec MoE with dif-

ferent weights shows degraded results, the decoder-
only model demonstrates significant improvement.
The MoE loss weight tuning further enhances per-
formance, with w = 0.1 outperforming other base-
lines. Too low a weight causes the model to ig-
nore the MoE component, while too high a weight
overly prioritizes the MoE loss at the expense of
the base model’s learning. Thus, the weight must
be carefully balanced to enable effective learning
of both components.

However, it is important to note that these ob-
servations are derived from experiments conducted
on a specific task, model architecture, and dataset.
The optimal training strategies and deployment of
the MoE architecture may vary depending on the
problem domain, model characteristics, and data
properties.

7 Conclusions
In this work, we introduce MoEMoE, a robust
model designed for question answering from multi-
source, multi-modal information. Our approach
leverages automatic attention learning across di-
verse information sources, facilitating the identi-
fication of the most reliable source for robust an-
swer generation. The proposed question-guided
attention mechanism employs a dense-MoE archi-
tecture combined with alignment loss and sparse-
MoE training in the intermediate layer, which sig-
nificantly enhances the model’s ability to extract
robust features in a scalable manner. The MoE-
MoE model achieves state-of-the-art results com-
pared to recent baselines. The proposed attention
mechanism, operating both between and within
multiple sources, is versatile and applicable to vari-
ous contexts. By incorporating alignment loss be-
tween question-context and question-image pairs,
the model effectively explores attention within each
source, enabling it to focus on the most pertinent
parts of the image or context based on the given
question. Extensive experiments on a large-scale
dataset, coupled with ablation studies, validate the
efficacy of our approach.
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