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Abstract
Effective customer support requires domain-
specific solutions tailored to users’ issues.
However, LLMs like ChatGPT, while excelling
in open-domain tasks, often face challenges
such as hallucinations, lack of domain com-
pliance, and generic solutions when applied
to specialized contexts. RAG-based systems,
designed to combine domain context from un-
structured knowledge bases (KBs) with LLMs,
often struggle with noisy retrievals, further lim-
iting their effectiveness in addressing user is-
sues. Consequently, a sanitized KB is essential
to ensure solution accuracy, precision, and do-
main compliance. To address this, we propose
AutoKB, an automated pipeline for building
a domain-specific KB with a hierarchical tree
structure that maps user issues to precise and
domain-compliant solutions. This structure fa-
cilitates granular issue resolution by improv-
ing real-time retrieval of user-specific solutions.
Experiments in troubleshooting and medical
domains demonstrate that our approach signifi-
cantly enhances solution correctness, precise-
ness, and domain compliance, outperforming
LLMs and unstructured KB baselines. More-
over, AutoKB is 75 times more cost-effective
than manual methods.

1 Introduction

Customer Support Agents (CSAs) are chatbots
(Nuruzzaman and Hussain, 2018; Xu et al., 2017)
designed to resolve domain-specific user issues by
providing customized, rule-compliant solutions1

aligned with domain standards. The advent of
LLMs like ChatGPT (OpenAI, 2024; Ouyang et al.,
2022) has revolutionized conversational AI, en-
abling it to handle diverse, open-domain queries
with exceptional fluency. However, CSAs, such
as product troubleshooting bots or medical assis-
tants, face distinct challenges that demand precise,

*Equal contribution
1In CSAs, we refer user queries as issues and responses

as solutions

Issue:  Headphones not 
connecting to  device
Metadata: 
Connectivity: Wired, Wireless
Secondary Device: Laptop, Phone
Secondary Device OS: Any

Issue:  Wired headphones not 
connecting to windows laptop
Metadata: 
Connectivity: Wired
Secondary Device: Laptop
Secondary Device OS: Windows

Issue:  My headphones do 
not connect to my phone

Issue:  Wireless headphones 
not connecting to mac laptop
Metadata: 
Connectivity: Wireless
Secondary Device: Laptop
Secondary Device OS: Mac

Parent

Child

Seed

Child

Figure 1: Illustration of an issue subtree for the seed
issue My headphones do not connect to phone with two
child issues shown along with their respective metadata

context-aware solutions for provided issues. While
LLMs offer remarkable general-purpose capabili-
ties, relying solely on them risks producing incor-
rect or generic solutions, limiting their effective-
ness in these specialized roles.

To address these shortcomings, RAG (Lewis
et al., 2021) has emerged as a promising framework
for building CSAs, by grounding LLM responses
in retrieved domain-specific knowledge. However,
the performance of RAG applications is largely de-
pendent on the quality of the backend KB being
used. Unstructured KBs, while covering a wide
range of topics, are prone to noise and irrelevant
information. In contrast, structured KBs resolve
these issues by incorporating specific solutions and
supporting domain constraints, enabling more pre-
cise and reliable knowledge grounding. RAG using
unstructured KBs face additional challenges like
token length limitations in LLMs, and difficulties
in dynamically enforcing domain rules (because of
unverified content in KB).

A significant limitation of existing approaches is
their inability to provide solutions with the appro-
priate granularity. For instance, in troubleshooting
scenarios, addressing a generic issue like Bluetooth
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connectivity problem is insufficient when the user
faces a specific problem, such as Bluetooth not
pairing with a device running an older Android
version. Generic solutions that fail to address the
user’s exact issue often result in dissatisfaction.

Additionally, ensuring compliance with domain-
specific policies—such as safeguarding rules for
medical guidance or hardware safety instructions
in product support—remains challenging in real-
time solution generation. However, techniques like
Chain-of-Thought (Wei et al., 2023) and Reflexion
(Shinn et al., 2023) can enhance rule adherence
but they may exacerbate input length constraints
and increase latency, thereby complicating their
practical application.

To address issues with solution accuracy, speci-
ficity, and domain compliance in existing sys-
tems, this paper introduces AutoKB, an automated
pipeline for constructing a structured KB for any
domain. As shown in Figure 1, the proposed KB
employs a hierarchical tree structure where nodes
represent issues at varying levels of granularity.
Root nodes cover broad, generic issues, while child
nodes capture more specific ones, each linked to
solutions tailored to their level of detail. Node re-
lationships are defined by metadata differences,
ensuring coverage of both generic and specific user
issues.

Following are the contributions of our work:

• We propose AutoKB, an automated pipeline
that builds a KB, mapping issues to solu-
tions, enriches them with domain knowledge,
and ensures domain compliance through safe-
guarding rules.

• We introduce a two-level tree-structured KB,
categorizing issues into generic and specific
levels, differentiated using metadata. Each
issue node is linked to solutions that match its
required level of granularity.

• We develop a hybrid retrieval strategy
that combines semantic and metadata-based
search, significantly enhancing retrieval qual-
ity within CSAs utilizing the KB structure.

2 Related Work

Knowledge-based support systems aim to pro-
vide accurate, specific, and safe responses to user
queries. The existing approaches can be broadly
categorized into two main types: Prompting tech-

niques for LLMs and RAG systems, which rely on
underlying KBs.

Various prompting techniques have been devel-
oped to enhance LLM performance, particularly in
rule-following, reducing hallucinations, and pro-
viding specific solutions. Chain-of-Thought (CoT)
prompting (Wei et al., 2023) and its variants like
CoT with In-Context Learning (CoT-ICL) (Dong
et al., 2024) have shown promise in improving rea-
soning and rule-following capabilities. However,
these methods still rely heavily on the LLM’s pre-
trained knowledge and may not provide grounded,
specific, and safeguarded responses (Zhao et al.,
2024). RAG systems (Lewis et al., 2021) combine
the power of pre-trained language models with ad-
ditional information, typically using retrieval meth-
ods to fetch relevant content and augment LLM
responses. While RAG systems can improve re-
sponse grounding and quality, their effectiveness
is highly dependent on the quality and structure of
the underlying KB.

KB construction approaches can be broadly cat-
egorized into two types: Unstructured and Struc-
tured. Unstructured KBs, built using web crawlers
(Huang et al., 2024) on popular search engines
(Caramancion, 2024) and Databases (Jing et al.,
2024), cover a wide range of topics but often suffer
from noise and irrelevant information. Structured
KBs (Hu et al., 2024; Kommineni et al., 2024) excel
at representing domain-specific factual information
and relationships between entities. However, both
types face challenges in addressing specific user
issues. Our KB framework develops a hierarchical
tree-based structure capable of accommodating spe-
cific complex user issues and their solution knowl-
edge, bridging the gap between issue representation
and solution retrieval.

3 Proposed Methodology

3.1 Knowledge Base Structure

We propose a hierarchical KB structured (Figure 1
as a two-level tree, where the root node represents
generic issues, and child nodes represent more gran-
ular and specific issues. We term such a tree an
Issue Subtree, which comprises a Parent Issue and
its corresponding Child Issues (issues and nodes
used interchangably). Each issue in the subtree is
linked to a solution tailored to its granularity level.
This structured approach enables the effective han-
dling of highly specific customer issues while also
addressing broader, more generic user concerns.
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Figure 2: The KB creation pipeline comprising of 1)
Domain Knowledge Chunking (DKC), 2) Issue Process-
ing (IP), and 3) Solution Generation (SG).

To differentiate between the granularity of parent
and child issues, we utilize Metadata which is de-
fined as a mapping of attributes to their respective
values, capturing the key characteristics of an issue.
For instance, for the troubleshooting example in
Figure 1, the metadata for the child issue, Wired
headphones not connecting to Windows laptop is
{Connectivity: Wired, Secondary Device: Laptop,
Secondary Device OS: Windows}. These metadata
keys (referred to as attributes), along with their pos-
sible value sets are predefined by domain experts
for a given domain and referred to as the attribute
configuration as shown in Table 4 in Appendix.

For any issue, metadata is extracted based on
the attributes defined in the attribute configuration
using an LLM (see Prompt G.2). The extracted
metadata helps differentiate between parent and
child issues wherein parent issues exhibit broader
attribute values, while child issues have more spe-
cific attribute values.

3.2 Knowledge Base Creation

The automated KB creation process requires four
key inputs for a given domain: 1) Raw Issues,
which are historically observed user issues; 2) At-
tribute Configuration, defining attribute keys and
their plausible values (detailed in Table 4 in Ap-
pendix); 3) Domain Rules, which outline the guide-
lines and constraints the KB must follow (examples
in Table 5 in Appendix); and 4) Domain Knowl-
edge, comprising unstructured documents such as
user manuals and FAQs that can be utilized to build
the KB.

KB creation pipeline consists of 3 modules, as
illustrated in Figure 2 and outlined in Algorithm 1.

3.2.1 Domain Knowledge Chunking (DKC)
To effectively utilize domain knowledge for issue
resolution, we process unstructured documents and
store it in a database. Initially, documents are di-
vided into fixed-length chunks of 2048 characters,
following Finardi et al. (2024). However, recogniz-
ing the limitations of traditional chunking methods,
such as loss of coherency and context (Dong et al.,
2023), we introduce a novel technique called Con-
textualized Chunking.

Existing approaches, such as context-aware
chunking and semantic chunking (Pinecone, 2025),
focus on optimizing chunk boundaries but do not
enrich individual chunks with additional contextual
information critical for retrieval. Our approach,
in contrast, generates a contextualized version for
each chunk by incorporating information from pre-
ceding chunks using an LLM. The process, detailed
in Prompt G.5, involves inputting the previous con-
textualized chunk as context and current chunk to
the LLM to create an enriched, contextualized ver-
sion. This method ensures that each chunk contains
both local knowledge and a global understanding of
the document, thereby enhancing retrieval accuracy.
The original chunk and its contextualized version
are then concatenated and encoded using a text en-
coder and stored in a VectorDB, as illustrated in
Figure 2 and Algorithm 1.

3.2.2 Issue Processing (IP)
To address the presence of duplicates in Raw Issues,
we employ a two-step process of theme-based clas-
sification and clustering for de-duplication. First,
we use Prompt G.6 to identify unique issue themes
and Prompt G.7 to assign themes to each raw issue.
Within each theme, we apply a clustering algorithm
(detailed in Appendix D) to group similar issues,
selecting cluster centroids as representative Seed
Issues. This approach ensures a diverse and non-
redundant set of issues for further processing.

Each Seed Issue is then transformed into an is-
sue subtree using LLM Prompt G.8, which takes
the seed issue and domain attribute configuration
as input. This hierarchical structure, comprising
a parent issue and its corresponding child issues,
allows for a more nuanced representation of spe-
cific issues and their potential solutions. Figure
1 illustrates this process for a troubleshooting do-
main issue demonstrating how the initial seed issue
is expanded into an issue subtree, while Figure 2
(bottom-left) and Algorithm 1 Lines 6-20 outline
the complete workflow.
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(Parent-Child search)

no-match
(Sibbling search)

exact-match no-match

Figure 3: Hybrid search strategy that utilises the pro-
posed tree structure to perform metadata search on top
of the node identified by the semantic search. The green
node represents the exact-match , grey node represents
the subset-match and the node with red glow repre-
sents the node matched using semantic search .

3.2.3 Solution Generation (SG)
The solution generation process employs RAG to
link each node in the Issue Subtree to its corre-
sponding solution. This approach treats issues in
issue nodes as queries for retrieval from the pre-
viously constructed contextualized VectorDB and
employs cosine similarity of retrieval. The top-5
retrieved chunks serve as input to an LLM prompt
(G.9) to generate relevant solutions. To ensure
the quality and appropriateness of the generated
solutions, we focus on three key aspects: (1) Cor-
rectness, achieved through RAG and contextual-
ized chunking, which improves retrieval recall and
grounds the solutions in retrieved information;(2)
Domain Rule Compliance, ensured by incorporat-
ing domain-specific rules into the prompt, guiding
the model to adhere to defined constraints; and (3)
Granularity Alignment, maintained by providing
the issue and its metadata as input to the prompt,
explicitly guiding the model to generate solutions
that correspond to the issue’s level of granularity.
The steps is detailed in Algorithm 1 Lines 21-28.

3.3 Hybrid Retrieval

We propose a retrieval strategy to integrate a struc-
tured KB with a CSA for resolving real-time user is-
sues. The KB, organized with issue nodes linked to
solutions, enables issue-issue matching. Solutions
associated with the matched issue are retrieved and
presented to the user. This strategy combines soft
semantic search for relevance with hard metadata-
based search for precision. Semantic search com-
putes cosine similarity between text embeddings
to identify the most semantically relevant nodes,
while metadata-based search matches the query’s
metadata with the node metadata, ensuring precise
retrieval. The goal is to find a node where the
metadata closely matches the query—ideally an
exact-match. If no exact match is found, nodes

with metadata forming a superset of the query’s
(parent node) are considered subset-matches. How-
ever, if there is any conflict between the query and
node metadata, the node is considered a mis-match
and excluded from the results. This strategy en-
sures 1) precise retrieval of solutions that match the
query’s granularity (in the case of exact match), and
2) broader solutions when a subset-match occurs.

To perform retrieval, as described in Algorithm
2 in the Appendix, each issue node (parent and
child) in the KB is indexed using a text encoder
and stored in a VectorDB, along with its metadata
and solutions. When the CSA receives a real-time
customer query, it extracts the metadata using an
LLM with the prompt G.2. We make the assump-
tion here that the CSA fully understands the issue
by querying the customer effectively to establish
the relevant metadata attributes before initiating
KB retrieval. Once this is achieved, the query is en-
coded, and a semantic search is conducted over the
indexed issues in the VectorDB. Based on the top k
retrieved issues from the semantic search (referred
to as the target issue), the following scenarios are
handled:

1. exact-match: If a target issue’s metadata is
same as the query’s metadata, the target issue
is accepted.

2. subset-match: If the target issue is a Parent
Issue and a subset-match, all its child nodes
are traversed for an exact-match. If an exact-
match is found, the the child issue is accepted
else the parent issue is accepted.

3. no-match: If the target issue is a Child Issue
and a no-match, its parent and siblings are
traversed. If an acceptable match is found
(exact-match or subset-match), the respective
issue is accepted. Else, the target issue is
discarded.

This hybrid retrieval strategy, illustrated in Fig-
ure 3, improves recall by addressing inaccuracies in
semantic search. Metadata matching ensures exact
alignment with the query, while the search among
siblings and children enhances recall by covering
overlooked matches by the semantic search.

4 Experimental Setup

4.1 Datasets
We evaluate our approach on two distinct domains:
Troubleshooting and Medical Assistance. For
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Domain #RI #PI #CI #Sol

Troubleshooting 265 49 482 2595
Medical 302 70 866 5196

Table 1: Knowledge Base Statistics. RI: Raw Issue, PI:
Parent Issues, CI: Child Issues, Sol: Solutions

the troubleshooting domain, the KB is built us-
ing historical customer-reported issues from an e-
commerce store, supplemented with domain knowl-
edge extracted from user guides and product manu-
als. Due to proprietary constraints, we utilize a sam-
pled subset of data from a real-world e-commerce
store to mitigate any risks associated with sensitive
information.

For the Medical Assistance domain, we treat pa-
tient symptoms as customer issues and correspond-
ing treatments as solutions. The user symptoms
are sourced from Kaggle (2016) and the domain
knowledge is sourced from the dataset introduced
in Shah et al. (2021). For both the domains, we gen-
erate the attribute configuration and domain rules
using claude-3-haiku (Anthropic, 2023) as shown
in Table 4 in Appendix.

We utilized these data sources for the KB cre-
ation process described in Section 3.2. Table 1
summarizes the details of the datasets and relevant
statistics from the KB, including the number of raw,
parent, child issues and total solutions.

4.2 KB Creation Baselines
To evaluate the effectiveness of our KB creation
process, we established baselines and ablated dif-
ferent modules: 1) LLM-WK, where the KB is
created using the world knowledge of LLMs with
the prompt in G.1 and user issues as input; 2)
Raw, utilizing raw unstructured content from do-
main knowledge in chunks; 3) Raw+CC, leverag-
ing contextualized chunks derived from domain
knowledge; and 4) AutoKB, constructed using our
proposed Issue Processing (IP) approach (Section
3.2.2), including both vanilla semantic search on
child issues and a hybrid retrieval (HR) strategy
on parent and child issues. We leverage claude-3-
haiku LLM for all of our KB creation tasks and
cohere.embed-multilingual-v3 (Cohere, 2023) as
text-encoder.

4.3 Evaluation Setup and Metrics
Our evaluation setup assesses the quality of the
KB independently. Additionally, we evaluate the
retrieval performance when the KB is integrated

with a CSA for serving real time user issues. Due to
confidentiality in the troubleshooting domain, we
present relative improvements rather than absolute
numbers.

4.3.1 KB Quality Assessment
To assess the quality of our KB, we employed three
metrics corresponding to the aspects presented in
solution generation (see Section 3.2.3).

1. Correctness (QC): Measures the percentage
of KB solutions that are correct with respect
to the issues using human annotations (details
in Appendix B).

2. Domain Compliance (QD): Evaluates the
percentage of KB solutions that adhere to
domain rules. This is done using claude-3-
sonnet (Anthropic, 2023) with Prompt G.3.

3. Metadata Granularity (QM ): Quantifies the
granularity of solution based on its metadata
in the KB. It uses an Attribute Granularity
Score (AGS) computed as the reciprocal of
the number of possible values for a particular
attribute of an issue. As an example the set of
values for the attribute "Connectivity" of the
Parent node in Figure 1 is Laptop and Phone
and the AGS is thus equal to 0.5. The overall
QM is the average AGS across all attributes:

QM =
1

n

n∑

i=1

(
1

#valuesi

)

where n is total number of attributes as
defined in the attribute configuration and
#valuesi is number of possible values for the
i-th attribute for the solution.

4.3.2 Retrieval Performance
To evaluate the retrieval effectiveness of our KB,
we tested the retrieved content against a set of
queries. We curate different variations of inputs
from child issues using an LLM. These variations
simulate different levels of ambiguity when inter-
acting with the KB. Examples of these variations
are shown in Table 6 in Appendix. To generate
these variations, we employed a claude-3-haiku
LLM using the prompt illustrated in G.4.

To evaluate the KB’s ability to retrieve relevant
content, we employ the HitRate@k metric. This
metric measures proportion of queries for which the
relevant content is retrieved within the top k results.
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Domain KB CC IP HR HitRate@1 HitRate@3 HitRate@5 HitRate@10

Troubleshooting

Raw - - - -
✓ +0.6 +5.0 +1.4 +0.9

AutoKB ✓ ✓ +7.5 +14.1 +13.2 +15.0
✓ ✓ ✓ +12.5 +17.3 +16.3 +18.0

Medical
Raw 52.0 57.2 63.9 75.7

✓ +6.7 +8.1 +8.1 +6.1

AutoKB ✓ ✓ +18.0 +18.3 +19.7 +14.5
✓ ✓ ✓ +20.0 +22.3 +25.6 +18.8

Table 2: Comparison of retrieval performance for different KB configurations. CC: Contextualized Chunking, IP:
Issue Processing, HR: Hybrid Retrieval. Results show incremental improvements relative to the first baseline in
each domain.

We calculate HitRate@k for k ∈ {1, 3, 5, 10}, us-
ing the child issue or chunk from which the query
is derived, as the ground truth.

Domain KB QC QD QM

Troubleshooting
LLM-WK - - -

Raw +22.9 +2.8 +0.22
AutoKB +24.8 +5.0 +0.57

Medical
LLM-WK 67.5 96.8 0.21

Raw +24.6 -0.1 +0.13
AutoKB +25.7 +1.3 +0.50

Table 3: Comparison of KB Quality Metrics. Incremen-
tal improvements are shown relative to the first baseline
in each domain.

5 Results and Analysis

Retrieval Performance Analysis: Table 2 sum-
marizes the retrieval performance across various k
values for different KB variations. The results indi-
cate that contextualized chunking (CC) enhances
HitRate by providing improved context for iden-
tifying the issue during retrieval. Structuring the
KB using our approach (IP) significantly boosts re-
trieval performance by enabling direct embedding
comparisons within the issue space rather than the
issue-chunk space. Additionally, employing hybrid
retrieval (HR) over the issue subtree, which com-
bines semantic and metadata-based search, further
improves retrieval outcomes.

KB Quality Results: Table 3 presents a compar-
ison of different KBs across various quality metrics.
AutoKB approach consistently outperforms both
the LLM-WK and Raw KB baselines. In terms
of correctness (QC), our KB achieves the high-
est scores, attributed to its groundedness enabled
by RAG. Raw KB performs moderately well, par-
ticularly in the troubleshooting, while LLM-WK
solutions lead to the most incorrect results due to

their reliance on world knowledge, which can result
in hallucinations. For domain compliance (QD),
our approach achieves near-perfect scores, outper-
forming both Raw KB and LLM-WK. This indi-
cates that our KB provides responses that are do-
main compliant. Furthermore, the high Metadata
Granularity metric (QM ) of our KB compared to
other baselines showcases the superior granularity
of solutions in our KB. Figure 4 provides a qualita-
tive comparison, highlighting how LLM-WK gen-
erates a generic and domain-noncompliant solution
(marked in red), whereas AutoKB offers a more
specific and domain-compliant solution (marked in
green) for the issue of AirPods.

6 Industry Impact

AutoKB demonstrated practical effectiveness and
scalability in a large e-commerce context. (1) In
self-serve troubleshooting, the KB offered curated
solutions for 7K issue-solution pairs across 6 prod-
ucts, achieving a 95% acceptance rate from human
annotators. (2) During a 4-week A/B test with a
Troubleshooting CSA across 6 product categories,
AutoKB helped reduce the return rate and improved
chatbot adoption compared to an internal baseline
using manually curated KB.

Cost comparisons revealed significant savings.
Creating a KB for 265 troubleshooting issues with
claude-3-haiku cost $6.69 (details in Appendix
C), while human experts, at $3.75/hour and 0.5
hours per issue, would cost $496.87. This demon-
strates that our approach is 75 times more cost-
effective, showcasing its potential to lower costs in
knowledge-based support systems.

7 Conclusion

In this paper, we propose AutoKB, an automated
strategy for curating structured KBs to deliver cor-
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rect, domain-compliant, and issue-specific solu-
tions. Our approach introduces a hierarchical KB,
organized into parent and child issues, effectively
addressing varying levels of granularity in user con-
cerns using metadata. By leveraging contextualized
chunking and RAG-based solution generation, we
enhance the correctness of KB solutions. Exper-
imental evaluations in troubleshooting and medi-
cal domains demonstrate that our approach outper-
forms traditional methods in solution quality and
retrieval performance within a CSA.
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A Algorithm

Algorithm 1 outlines the step-by-step process of
implementing the KB creation process. The algo-
rithm consists of three main steps: Domain Knowl-
edge Chunking, Issue Processing, and Solution
Generation. It takes as input raw issues, attribute
configurations, domain information, domain rules,
and domain knowledge. The output is a structured
Knowledge Base consisting of issue subtrees with
associated solutions.

Algorithm 2 presents a hybrid retrieval strategy
for integrating KB, combining semantic search
with metadata-driven refinement. It takes a cus-
tomer query, performs semantic search to retrieve
top-k results, and then refines these results based
on metadata matching. It navigates through parent-
child relationships in the knowledge base, aim-
ing to find the most relevant nodes that match the
query’s metadata.

B Human Annotation Documentation

B.1 Correctness Evaluation
We employed human experts as annotators for mea-
suring the Correctness (QC) of our KB data. Anno-
tators were provided with the instruction "Your task
is to check if the given solution is correct for the
user issue. If the given solution is correct, respond
with YES, otherwise NO." along with the user is-
sue and the solution from the KB. We recorded
the responses from human experts using a binary
scoring system (1 for YES, 0 for NO) and report
the average measure of correctness in Table 3.

B.2 Validation of Automated LLM Evaluation
To validate our automated LLM evaluation ap-
proach for Domain Compliance Evaluation and
Metadata Extraction Tasks, we conducted a com-
parative study between LLM-based evaluations and
human assessments. We calculated the accuracy
between the LLM-based evaluations and human as-
sessments for each task. The results demonstrated
high overall accuracy of 97% for Domain Com-
pliance Evaluation task and 94% for Metadata Ex-
traction task. The high accuracy numbers under-
score the strong alignment between LLM-based
evaluations and human judgment, supporting the
reliability of LLM based evaluation.

B.3 Annotation Details
Our annotation process varied by domain to ensure
high-quality data. For the Troubleshooting domain,

we recruited domain experts with experience in
creating product troubleshooting content. For the
medical domain, we utilized Amazon Mechanical
Turk workers who met relevant qualification cri-
teria. To measure inter-annotator agreement, we
followed the standard protocol of performing dual
annotations on a sample set of 10% of the data. We
observed an agreement rate of 97% demonstrating
the reliability of our annotations across all domains.

C Cost Calculation

We calculate the cost and latency of generating a
KB for the troubleshooting domain, comprising of
265 raw issues.

Breakdown of LLM Calls
The total number of LLM calls is as follows:

• Issue Deduplication: 266 calls (1 for issue
theme identification and 265 for issue theme
assignment)

• Issue Processing: 49 calls (for issue subtree
creation)

• Contextualized Chunking: 1, 000 calls (ap-
prox 100 documents with 10 chunks each)

• Solution Generation: 531 calls (49 for parent
issues and 482 for child issues)

• Solution-Metadata Detection: 832 calls
(one per generated solution)

Thus, the total number of LLM calls = 2678

Cost Calculation
The cost of KB generation is calculated using the
following formula:

Total cost = N ×
(

Tin

1000
· Cin +

Tout

1000
· Cout

)

where:

• N : Total number of LLM calls

• Tin: Average number of input tokens per LLM
call (5K)

• Tout: Average number of output tokens per
LLM call (1K)

• Cin: Cost per 1000 input tokens (0.00025$)

• Cout: Cost per 1000 output tokens (0.00125$)

Substituting the values, the total cost of KB gen-
eration totals to 6.695$
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Algorithm 1 KB Creation (Section 3.2)
Input: Raw Issues I , Attribute Configuration A, Domain D, Domain Rules R, Domain Knowledge K
Output: KB (set of IssueSubtrees)

1: KB← {} ▷ Initialize empty Knowledge Base
2: ##### Step 1: Domain Knowledge Chunking #####
3: Chunks← FixedChunking(K) ▷ Split domain knowledge into chunks
4: Contextualized-Chunks← LLM(Prompt G.5, Chunks) ▷ Adding context to chunks
5: VectorDB← TextEncoder(ContextualizedChunks) ▷ Create vector representations
6: ##### Step 2: Issue Processing #####
7: Issue Themes← LLM(Prompt G.6, D, I) ▷ Generate issue themes
8: for issue ∈ I do ▷ Theme based Classification
9: RawIssueThemes[issue]← LLM(Prompt G.7, D, Issue Themes, issue)

10: end for
11: SeedIssues← {}
12: for theme ∈ IssueThemes do ▷ Clustering for de-duplication
13: themeRawIssues← {issue ∈ RawIssues : RawIssueThemes[issue] = theme}
14: SeedIssues← SeedIssues ∪ Cluster-Centeroids(theme, themeRawIssues)
15: end for
16: IssueSubtrees← {}
17: for seedIssue ∈ SeedIssues do ▷ Issue subtrees creation
18: Parent, Children← LLM(Prompt G.8, D, A, seedIssue)
19: IssueSubtrees← IssueSubtrees ∪ {<Parent, Children>}
20: end for
21: ##### Step 3: Solution Generation #####
22: for subtree ∈ IssueSubtrees do ▷ Generate solution for subtree nodes
23: for issue ∈ {subtree.Parent.issue} ∪ subtree.children.issues do
24: RelevantChunks← RetrieveTopKChunks(issue, VectorDB, K=5)
25: issue.Solutions← LLM(Prompt G.9, issue, issue.metadata, RelevantChunks, R)
26: end for
27: KB← KB ∪ {subtree}
28: end for

D Issue Clustering Details

We provide more details about the issue de-
duplication algorithm along with the specific hyper-
parameters being used.

1. We generate the issue embeddings using open-
source (Cohere, 2023).

2. We use UMAP along with HDBCAN to clus-
ter the issues within each themes. UMAP is
used for dimensionality reduction.

3. UMAP : n_neighbors=15, min_dist=0.1,
n_components=20, and metric=’euclidean’

4. HDBSCAN : min_cluster_size=5 and met-
ric=’euclidean’

E Additional Tables

Table 4 presents the pre-defined attribute configura-
tions for the troubleshooting and medical domains.
The attributes are designed to capture key infor-
mation relevant to each domain, facilitating better
issue diagnosis and solution recommendation.

Table 5 outlines the domain-specific rules ap-
plied in our system for troubleshooting and medi-
cal domains. These rules are crucial for ensuring
that the system provides safe, ethical, and practi-
cal recommendations. They guide the system to
avoid potentially harmful or unhelpful suggestions,
maintaining user safety and enhancing the overall
quality of assistance provided.

Table 6 demonstrates various phrasings of the
same user input utilized in analyzing the perfor-
mance on retriever.
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LLM-WK: AirPods may be out of battery or not charged: 
Ensure your AirPods are charged by placing them in the 
charging case and checking the LED indicator. If the 
AirPods are still unresponsive, charge the case with the 
AirPods inside for at least 15-20 minutes. After charging, 
try reconnecting them to your laptop. Try visiting the Apple 
service center if this does not work.

AutoKB: Check Battery Level and Charge AirPods: 
• Place AirPods in the charging case and close the lid. 
• Wait a few minutes, then open the lid. 
• Check the status light: 

• Green: Fully charged. 
• Amber: Needs charging. 

• If amber, connect the case to power until the light turns 
green.

Issue: Airpods won't turn on when  connected to a laptop.

Figure 4: Qualitative comparison of the response for the Issue: Airpods won’t turn on when connected to a laptop
for LLM-WK and the proposed AutoKB.Violations in domain compliance are highlighted in red and the granularity
of the solutions is highlighted in green.

F Qualitative Results

Figure 4 presents a comparative analysis of trou-
bleshooting responses generated by AutoKB and
LLM-WK. Our system demonstrates superior per-
formance by providing more granular, step-by-step
solutions (highlighted in green). In contrast, the
baseline LLM-WK offers a less structured, all-at-
once response. Additionally, our framework effec-
tively identifies and filters out non-compliant infor-
mation (highlighted in red) that violates domain-
specific rules and should not be presented to cus-
tomers.
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Attribute Name Type Classes/Values

Troubleshooting
Type of Headphone Closed-attribute Earphone, Earbud, Headphone

Connectivity to Secondary
Device

Closed-attribute Wired, Wireless

Secondary Device Closed-attribute Laptop, Phone, Tablet

Device OS of Secondary
Device

Closed-attribute Android, iOS, Windows, Mac

Medical

Age Closed-attribute Infant, Child, Adolescent,
Adult, Elderly

Sex Closed-attribute Male, Female, Other

Pre-existing Conditions Open-attribute Diabetes, Hypertension,
Asthma, Heart Disease, etc.

Symptom Onset Closed-attribute Immediate, Recent, Ongoing,
Prolonged, Chronic

Table 4: Pre-defined attribute configurations for various domains

Dataset Rule # Description

Troubleshooting

1 Avoid solutions that suggest use of abrasive cleaners or chemical solu-
tions.

2 Avoid solution that point the user to refer to the user manual.
3 Avoid recommending solutions that asks the user go to the service center

for repair or replace.
4 Avoid recommending steps such as contacting product support and cus-

tomer support.

Medical

1 Do not recommend high-risk procedures.
2 Avoid giving definitive medical diagnoses;
3 Refrain from recommending treatments that lack strong scientific evi-

dence.
4 Ensure recommendations consider user-reported allergies to avoid sug-

gesting harmful treatments.

Table 5: Domain specific rules for the different domains

Variations

I’ve an issue with my phone
I’m facing a problem with my mobile.
There seems to be a problem with the device I use for communication, specifically my phone.

Table 6: Examples of different variations of User Input "I have an issue with my phone"
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Algorithm 2 Hybrid Retrieval Strategy for KB Integration (Section 3.3)
Input: Customer Query Q, Vector Database (VectorDB), k retrieval value
Output: AcceptedNodes (Set of Accepted Issue Nodes)

1: QueryMetadata← ExtractMetadata(Q) ▷ Extract metadata using an LLM Prompt G.2
2: QueryEmbedding← Encode(Q) ▷ Compute query embedding
3: TopKResults← SemanticSearch(QueryEmbedding, VectorDB, k) ▷ Retrieve top-k issues from

VectorDB
4: AcceptedNodes← {}
5: for TargetIssue ∈ TopKResults do
6: TargetMetadata← TargetIssue.metadata
7: if QueryMetadata = TargetMetadata then
8: AcceptedNodes← AcceptedNodes ∪ {TargetIssue} ▷ Exact match found
9: else if QueryMetadata ⊆ TargetMetadata then

10: if TargetIssue.type = Parent then
11: found← False
12: for ChildIssue ∈ GetChildren(TargetIssue) do
13: if QueryMetadata = GetMetadata(ChildIssue) then
14: AcceptedNodes← AcceptedNodes ∪ {ChildIssue} ▷ Exact match in children
15: found← True
16: break
17: end if
18: end for
19: if found = False then
20: AcceptedNodes← AcceptedNodes ∪ {TargetIssue} ▷ Accept parent
21: end if
22: end if
23: else
24: if TargetIssue.type = Child then
25: Parent← GetParent(TargetIssue)
26: if QueryMetadata ⊆ GetMetadata(Parent) then
27: found← False
28: for Sibling ∈ GetChildren(Parent) do
29: if QueryMetadata = GetMetadata(Sibling) then
30: AcceptedNodes← AcceptedNodes ∪ {Sibling} ▷ Accept sibling
31: found← True
32: break
33: end if
34: end for
35: if found = False then
36: AcceptedNodes← AcceptedNodes ∪ {Parent} ▷ Fallback to parent
37: end if
38: end if
39: end if
40: end if
41: end for
42: return AcceptedNodes
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G Prompts

Prompt G.1:LLM-WK Prompt

Instruction
You are a solution provider for a given user issue whose
task it to provide solutions for a particular domain.
You will be given as input the following pieces of
information:
1. Domain Information: This is the information about the
domain enclosed within the XML tags <domain_info>.
2. Issue: This is the issue the customer is facing . This is
enclosed within the XML tags <issue>.
Instructions:
1. Enclose your response within the XML tags <response>.
2. Provide multiple possible solutions.
3. Enclose each solution within the XML tags <solution>.

In-context examples:
Here are some examples:
<example> ... </example>
<example> ... </example>

Input:
Now here is the input to you:
<domain_info> {domain_info} </domain_info>
<issue> {issue} </issue>

Prompt G.2: Metadata Extraction Prompt

Instruction:
You are an Attribute Extractor for a given inputted domain.
Your task is to identify the attributes values of a piece
of user issue specific to the domain for the given set of
attributes configuration.
<instructions>
- Analyze the attributes within the attributes con-
figuration presented to you within the XML tags
<attr_config></attr_config>.
- Analyze the issue presented to you within the XML tags
<issue></issue>.
- You will respond within the XML tags <a></a>
- The response will be in the format:
ATTRIBUTE1=VALUES;ATTRIBUTE2=VALUES;
- If an attribute takes no values (or is not valid to the issue),
detect it as NONE.
- If an attribute can take all possible values (mentioned
explicitly or implicitly), detect it as Any.
- If an attribute value can be inferred implicitly (as in not
mentioned), detect it.
- Start your attribute detection by stating your reasoning
within the XML tags <thinking></thinking>.
</instructions>

In-context examples:
Here are some examples:
<example> ... </example>
<example> ... </example>

Input:
Now here is the input to you:
<domain> {domain_info} </domain>
<attr_config> {attribute_configuration} </attr_config>
<issue> {issue} </issue>

Prompt G.3: Domain Compliance Evaluator

Instruction:
You are an evaluator of solutions provided by a Customer
Support Agent (CSA) for a specific user issue in a specific
domain.

You will be given the following inputs:
1. Domain Information: Information about the domain
within the XML tags <domain_info>.
2. User Issue: The issue faced by the user within the XML
tags <issue>
3. Solution: This is the suggested solution for the user
issue within the XML tags <solution>.
5. Domain Rules: These are the set of domain rules to be
followed by the prescribed solutions within the XML tags
<domain_rules>.

Instructions for output:
<rule>
1. Enclose your response within the XML tags <response>
</response>.
2. Thoroughly analyze the predefined rules.
3. Provide a detailed analysis of the user issue and the
proposed solution.
4. Use the scratchpad <scratchpad> to jot down brief
notes, presented in bullet points.
5. Assign a score ranging 0 or 1 for each rule to indicate
the level of adherence, with 0 indicating non-compliance
and 1 indicating full compliance. The scores should be
within the XML tags <scores>.
6. Enclose each score within XML tags like <score1>,
<score2>, and so on for each respective rule.
7. For each score, provide a reason within XML tags
like <reason1>, <reason2>, and so forth, explaining the
rationale behind the assigned score.
8. If a rule is not applicable to the steps provided, assign a
score of -1 and state the reason as "Not applicable".
</rule>

In-context examples:
Here are some examples:
<example> ... </example>
<example> ... </example>

Input:
Now here is the input to you:
<domain_info> {domain_info} </domain_info>
<issue> {issue} </issue>
<solution> {issue} </solution>
<domain_rules> {domain_rules} </domain_rules>
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Prompt G.4: User Input Variation

Instruction:
As a text modifier, your role involves introducing subtle
changes to a provided text snippet. This task requires
adherence to specific types of alterations, categorized by
difficulty levels.
The types of permissible variations are as follows:
- Easy Variations: 1. Addition or removal of punctuation
marks. 2. Utilization of different variants of the same
lemma.
- Medium Variations: 1. Employment of synonyms for any
word. 2. Phrase modifications: either by substituting a
single word with a phrase or vice versa.
- Hard Variations: 1. Structural transformation of the text,
entailing a complete reformulation while preserving the
original message.
Under no circumstances should changes deviate from these
guidelines. The core message and structural integrity of
the text must remain intact.
The provided text will be enclosed within <original_text>
tags. Your task is to generate five variations for each diffi-
culty level:
- For easy variations, enclose each variant within
<easy_variations> tags, with individual variations wrapped
in <variation> tags.
- For medium variations, use <medium_variations> for the
group and <variation> for individual entries.
- For hard variations, group them under <hard_variations>,
with each distinct variant in a <variation> tag.

In-context examples:
Here are some examples:
<example> ... </example>
<example> ... </example>

Input:
Now here is the input to you:
<context> {context} </context>
<original_text> {original_text} </original_text>

Prompt G.5: Chunk Contextualizer

Instruction:
You are a text chunk contextualizer in the domain of Medi-
cal Assistance / E-Commerce Product Troubleshooting.
Task: Contextualization of Document Chunks with
Pre-contextualized Input
Description: The objective is to produce a contextualized
version of the current chunk of text, using the contex-
tualized version of the previous chunk as a reference.
This task aims to maintain coherence, sensibility, and
information integrity across document segments. By
integrating context from the pre-contextualized previous
chunk, the model should generate a continuation that
flows smoothly and logically, enhancing the reader’s or
conversational AI agent’s comprehension and engagement.
Input
<PreviousChunkContextualized>
The pre-contextualized version of the previous chunk,
serving as the backdrop and context for the current chunk.
</PreviousChunkContextualized>
<CurrentChunk>
The current chunk of text to be contextualized, ensuring a
coherent and logical flow from the previous chunk.
</CurrentChunk>
Instructions
1. Review the contextualized version of the previous chunk
to grasp the established context, themes, and details.
2. Identify the main message, key information, and any
implicit or explicit links between the current chunk and
the contextualized previous chunk.
3. Contextualize the current chunk by weaving in relevant
context from the previous chunk, ensuring a natural and
logical progression of ideas and information.
4. Ensure the original content and intent of the current
chunk are preserved, making adjustments only to enhance
coherence and continuity.
5. Verify the coherence, flow, and accuracy of the
contextualized current chunk, making any necessary
revisions to optimize readability and comprehension.
6. Make sure to preserve the overall broad crux of
the document. This will mostly be mentioned in the
PreviousChunkContextualized. For example: Do preserve
the Product being talked about, the title of the document,
the Issue being talked about but yes the king should be the
current chunk.
7. You should try to keep the output short in max 2-3
sentences.
Output Instructions
A coherent and contextualized version of the current
chunk that naturally follows from the pre-contextualized
previous chunk, maintaining a seamless narrative or
informational flow. Preserve information like Product
Type, The issue being talked about. You should output
the current chunk contextualized within the XML
tags.<ContextualizedChunk>.
Input:
Now here is the input to you:
<PreviousChunkContextualized> {prev_chunk} </Previ-
ousChunkContextualized>
<CurrentChunk> {current_chunk} </CurrentChunk>
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Prompt G.6: Issue Theme Generator

Instruction:
Your are an issue themes identifier for a list of issues
related to a particular domain. You will be given as input
the following pieces of information:
1) Domain Information: This is the domain related to
which the user issues are provided, enclosed within the
XML tags <domain_info>.
2) Issues List: These are the list of issues encountered
by users. This will be enclosed within the XML tags
<issues_list>.

Here are some general rules to keep in mind while creating
the themes:
<rules>
1. Detect broad themes over the issues.
2. Keep the theme title information dense. Include topics
(exact keywords) from the issues into the title
3. If some issues do not fall into a broad theme per say,
create a miscellaneous theme and along with it include the
topics as well.
4. Analyse all the possible theme. Do not over generalise
please. Look into the example to clearly understand the
granularity.
</rules>

Before outputting think within the XML tags <think-
ing></thinking>. Within <thinking></thinking> do the
following:
1. Analyse the issues. Do some rough work
2. Come up with no of themes you have identified within
<num_themes>.
You will output the issue themes within the XML tags
<response>. Each issue theme will be enclosed within the
XML tags <theme>.

In-context examples:
Here are some examples:
<example> ... </example>
<example> ... </example>

Input:
Now here is the input to you:
<domain_info> {domain_info} </domain_info>
<issues_list> {issues} </issues_list>

Prompt G.7: Classify Theme

Instruction:
Your task it to classify a user encountered issue related to
a particular domain.
You are given as input the following:
1) Domain Information: This is the information about the
domain for which the issue is provided within the XML
tags <domain_info>.
2) Issue: This is the user issue within the XML tags
<issue>.
3) Issue themes: These are the list of issue themes you
need to classify the issue into. This will be enclosed
within the XML tags <themes>.
Here are the output rules:
You will output the issue theme within the XML tags
<output>.
You will output the actual issue theme within the XML
tags <t>.
You will output the issue theme index within the XML
tags <index>.

In-context examples:
Here are some examples:
<example> ... </example>
<example> ... </example>

Input:
Now here is the input to you:
<domain_info> {domain_info} </domain_info>
<issue> {issue} </issue>
<themes> {themes} </themes>
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Prompt G.8: Issue SubTree

Instruction:
You are a Issue Tree Generator whose task it to create a
issue tree based on issue attributes. You will be given as
input the following:
1. Domain Information: This is the information about the
domain within the XML tags <domain_info>.
2. Customer Issue: The issue related to the domain within
<issue> XML tags.
3. Attributed Configuration: The various attributes and its
possible values in general within <attr_config> XML tags.
The root of the tree is a Parent Issue while the children of
the parent issues are Child Issues.
In order to create the issues, you should do the following:
<general_instructions>
1. Analyse the attributes of the fed issue and within
<thinking></thinking> try to find the generic version (in
terms of attributes) of the issue known as the Parent Issue.
2. Create a Parent Issue which is more applicable to
all kind of attribute values within <g></g>. Detect the
attributes as well within <a></a>.
3. Now think within <thinking></thinking> again, what
child issues which will be attribute specific are possible
out of the generic issue. Each of the attribute keys should
now take a single value.
4. You will create this specific attribute variations within
<i></i>. Also predict the attributes of the issues within
<a></a>.
5. Only create the valid candidates whose attribute
combinations makes sense as per the attribute constraints.
6. Make sure that each of the attribute values reflect in the
issues being created.
</general_instructions>
In-context examples:
Here are some examples:
<example> ... </example>
<example> ... </example>
Input:
Now here is the input to you:
<domain_info> {domain_info} </domain_info>
<attr_config> {attribute_configuration} </attr_config>
<issue> {issue} </issue>

Prompt G.9: Solution Generation Prompt

Instruction:
You are a Solution Provider for a Customer Support
Agent (CSA) advised at providing domain-compliant
solutions for an user issue for a given domain. Note that
the definition of issue and solutions can change as per
the definition of the domain. For Eg: In case of medical
assistance domain, issues can correspond to symptoms
while solutions can correspond to treatments. While in the
case of product troubleshooting, issues could be product
malfunctions and solutions could be troubleshooting steps.
<input>
1. Domain Information: This is the information of the
domain for which the issue is provided. This is enclosed
within the XML tags <domain_info>.
2. Attribute Configuration: These are the specific
attributes, along with their definitions and values within
the XML tags <attr_config>.
3. Domain Rules: These are the domain rules over which
the solutions should be compliant. This is enclosed within
the XML tags <domain_rules>.
4. User Issue: This is the issue provided by the user within
the XML tags <issue>.
5. Issue Metadata: This is the metadata related to the user
issues within the XML tags <metadata>.
6. Relevant Chunks: These are the relevant pieces of
information that can help you in curating a solution within
the XML tags <relevant_chunks>.
</input>

<instructions>
1. Create solutions only relevant to the user issue.
2. Consider the metadata of the issue in order to provide
custom solutions of similar specificity. Never output
solutions contrary to the metadata.
3. The definition of the individual attributes within meta-
data are fed to you within the XML tags <attr_config>.
4. Provide solutions following the do’s and don’t
mentioned to you within the XML tags <domain_rules>.
5. Start your response within the XML tags <response>
XML tags.
6. Provide the solutions within the XML tag <solutions>.
Each of the treatments should be enclosed within
<solution>.
7. Before providing the solutions think within the XML
tags <thinking>.
8. The treatments should be curated grounded on the
relevant chunks provided as input to you.
</instructions>

In-context examples:
Here are some examples:
<example> ... </example>
<example> ... </example>

Input:
Now here is the input to you:
<domain_info> {domain_info} </domain_info>
<attr_config> {configuration} </attr_config>
<domain_rules> {rules} </domain_rules>
<issue>{issue}</issue> <metadata> {metadata} </meta-
data>
<relevant_chunks> {chunks} </relevant_chunks>
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