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Abstract

The deployment of language models in
real-world applications exposes users to
various risks, including hallucinations and
harmful or unethical content. These challenges
highlight the urgent need for robust safeguards
to ensure safe and responsible AI. To address
this, we introduce Granite Guardian, a suite
of advanced models designed to detect and
mitigate risks associated with prompts and
responses, enabling seamless integration with
any large language model (LLM). Unlike
existing open-source solutions, our Granite
Guardian models provide comprehensive
coverage across a wide range of risk di-
mensions, including social bias, profanity,
violence, sexual content, unethical behavior,
jailbreaking, and hallucination-related issues
such as context relevance, groundedness,
and answer accuracy in retrieval-augmented
generation (RAG) scenarios. Trained on a
unique dataset combining diverse human
annotations and synthetic data, Granite
Guardian excels in identifying risks often
overlooked by traditional detection systems,
particularly jailbreak attempts and RAG-
specific challenges.  https://github.
com/ibm-granite/granite-guardian

1 Introduction

The responsible deployment of large language mod-
els (LLMs) across diverse applications requires
robust risk detection models to mitigate potential
misuse and ensure safe operation. Given the in-
herent vulnerabilities of LLMs to various threats
and safety risks, detection mechanisms that can
filter user inputs and model outputs are essential
components of a secure system.

Model-driven safeguards built on a well-defined
risk taxonomy have emerged as an effective ap-
proach for mitigating these risks. These mod-
els serve as adaptable, plug-and-play components

across a wide range of use cases. Examples include
using them as guardrails for real-time moderation,
acting as evaluators to assess the quality of gen-
erated outputs, or enhancing retrieval-augmented
generation (RAG) pipelines by ensuring grounded-
ness and relevance of answers. Developing high-
performance detection models that address a broad
spectrum of risks is crucial for ensuring the safe
use of LLMs. Moreover, transparency in the devel-
opment and deployment of these models can spread
trust and accountability in their operation.

To address these challenges, we present Granite
Guardian, a family of risk detection models de-
rived from the Granite 3.0 language models (Gran-
ite Team, 2024). It makes several key contribu-
tions: (i) it is the first model family (2B and 8B
sizes) to address unified risk detection by incorpo-
rating function calling hallucination, context rel-
evance, groundedness, and answer relevance in
RAG pipelines; (ii) leverages a combination of di-
verse, high-quality human-annotated and synthetic
datasets to enhance resilience against adversarial at-
tacks and hallucinations; (iii) delivers competitive
performance, achieving top-tier results on multidi-
mensional tasks.

Our paper is organized as follows. We outline
the various harms and risks addressed, as well as
the risk taxonomy underlying Granite Guardian,
in Section 2, training data and synthetic data gen-
eration in Section 3, and model development in
Section 4. Section 5 provides extensive benchmark
evaluations, demonstrating our model’s effective-
ness across multiple risk dimensions1.

1New models results and a fully updated technical report
are available at the link: https://arxiv.org/abs/2412.
07724
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2 Harms and Risks in LLMs

2.1 Background

As LLMs become increasingly prevalent in real-
world applications, concerns about their safety and
potential risks have grown substantially. Despite
their powerful capabilities, these models, trained on
large and diverse datasets, often exhibit unintended
behaviors that expose users to harmful content. Key
challenges include hallucinations (generating factu-
ally incorrect or misleading information), social bi-
ases, profanity, unethical behavior, and vulnerabili-
ties to adversarial attacks like jailbreaking (Bender
et al., 2021; Bommasani et al., 2021). These issues
underscore the critical need for robust mechanisms
to ensure the safe and responsible deployment of
LMs.

To address such risks, moderation-based strate-
gies – commonly referred to as “Guard” or
“Guardrails” – have emerged as promising solu-
tions. Originally developed to enhance social me-
dia safety, these approaches have been adapted to
improve the safety of LLMs. Existing work on
“Guard” frameworks can be broadly categorized
into two areas: (i) models designed to address gen-
eral safety concerns, such as harmful or biased con-
tent, and (ii) models specifically targeting the RAG
triad: context-relevance, groundedness, and an-
swer relevance. The first category includes model
families such as LlamaGuard (Inan et al., 2023)
and ShieldGemma (Zeng et al., 2024), which also
enable detection across different risk dimensions.
While these models share broad objectives, like
they output label tokens (yes/no or unsafe/safe)
to indicate the presence of risks, while differing
in subtle but important ways, such as variations in
prompt templates and risk definitions. Addition-
ally, some models take a more modular approach
to risk detection, such as the Llama family, which
includes an independent PromptGuard model for
addressing jailbreaks and prompt injections. Many
of these models rely on native capabilities of their
base models for extensions like zero-shot, few-shot
detection or the flexibility to use token probabilities
to model detection confidence.

The definition of safety and risk dimensions
varies based on the taxonomy that the model tar-
gets and its intended application. For example,
LlamaGuard is optimized for conversational AI en-
vironments, whereas ShieldGemma is designed for
policy-specific deployments. Furthermore, other
approaches like WildJailbreak (Jiang et al., 2024)

emphasize the use of high-quality synthetic data
that extends beyond simple harmful prompts and
responses, addressing adversarial intent with con-
trastive samples within its scope.

The second category focuses on the RAG-Triad
with models addressing the related risks. No-
table models in this category include Adversarial
NLI (Nie et al., 2020), WeCheck (Wu et al., 2023),
and MiniCheck (Tang et al., 2024). (Raffel et al.,
2020) train a T5-model on the Adversarial Natural
Inference Inference (ANLI) dataset which com-
prises context, label, and a corresponding human
created hypothesis which is crafted to fool the de-
tection model into misclassification. The WeCheck
model is trained on synthethic data comprising of
LLM’s responses to a given text. The labels are
derived via multiple labelling models. The model
is first pre-trained on NLI datasets and then fine-
tuned on the synthetic data in a noise-aware fashion.
MiniCheck first decomposes the given response
into several atomic facts and generates a score for
each sentence based on how well it is supported
by the context. It then aggregates the scores for
all the atomic facts in the response and predicts if
the response is grounded or not. MiniCheck is also
trained on synthetic data composed of contexts,
atomic facts and the label indicating whether the
fact is grounded in the context or not.

2.2 Types of Risks Addressed
We aim for both breadth and depth in the coverage
of risks supported by Granite Guardian. For syn-
thesis purposes, we will constrain our evaluation
on the umbrella definition (i.e., Harm) and RAG
triad capabilities. More details on each of the pre-
sented risk definitions can be found in Table 4 in
the Appendix.
Harm: Granite Guardian is developed to detect for
an umbrella harm category, which corresponds to
content that can be considered universally harmful.
In addition, the following sub-dimensions of harm
are also implicitly in the harm category and ex-
plicitly, with an ad-hoc risk definition, detected by
the models. The risk definitions that are included
in the umbrella harm category are the following:
social-bias, jailbreaking, violence, profanity, sex-
ual content, and unethical behavior.
RAG triad: The proposed guard considers several
key dimensions of retrieval quality, including con-
text relevance that check if the context aligns with
the user’s questions, groundedness that assesses the
reliability of the assistant’s response, and answer
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relevance that evaluates the degree to which the
assistant’s response addresses the user’s input.

3 Datasets

3.1 Human annotated data
To obtain high-quality training data, we collected
human annotations on a variety of samples, partner-
ing with the data annotation company DataForce2.

The first phase focused on samples from An-
thropic’s human preference data on harmlessness
(Bai et al., 2022). Specifically, we keep only the
first turn (which contains the human’s prompt)
and discard the subsequent turns. Then, we take
this first turn and pass it to a large language
model to generate the “AI assistant” response.
For our purposes, we used the following models:
granite-3b-code-instruct, granite-7b-lab,
and mixtral-8x7b-instruct to generate comple-
tions. We acquired annotations for 7,000 unique
(prompt, response) pairs.

Having collected the input/output pairs, we gath-
ered labels for both the input (the human prompt
from the original Anthropic data) and the output
(the LLM generation). We obtained two forms of
labels — one umbrella “safe / unsafe” label and
a more nuanced category-based description from
the following: social-bias, jailbreaking, violence,
profanity, sexual content, unethical behavior, AI
refusal, and others. Each sample was annotated
by 3 humans. After receiving the annotated data
from DataForce, we parsed it into a usable format
for training Granite Guardian. We also ran some
sanity checks on the processed data, such as check-
ing agreements. Although we observed relatively
high inter-annotator agreement, we aggregated la-
bels in both relaxed and strict fashions (e.g., a strict
method would assign the prompt to be unsafe if
at least 2 out of 3 annotators labeled it as unsafe
whereas a relaxed method only need 1 out of 3
annotators to have labeled it as unsafe).

For our last batch of data annotation, we used an
uncertainty-informed approach. Specifically, we
took the latest checkpoints of the Granite Guardian
model and ran them on the remaining unanno-
tated data points from the Anthropic set. Given a
{prompt, response} pair, we took instances where
the probability of ‘yes’ was close to the probabil-
ity of ‘no’ for the assistant message classification
task. More concretely, we sorted the results by
max(yes_prob, no_prob) in ascending order and

2https://www.dataforce.ai/

took 1000 examples. One particular caveat was
that we only had 409 examples in total (out of the
11K) for which the assistant message was classified
as ‘yes’ or harmful. To ensure some balance, we
selected 400 “low-confidence” examples for ‘yes’
and 600 “low-confidence” examples for ‘no’. To
put things in perspective, the first few instances that
we selected had P(‘yes’) = P(‘no’) = 0.5, indicating
that the model had the highest possible uncertainty
for this example. This approach ensured that we
obtained human annotations for examples that the
model found difficult.

3.2 Synthetic Datasets

3.2.1 Systematic Benign and Adversarial Data
In order to bolster our training data, we systemati-
cally generated both benign and harmful synthetic
data. We generated both prompts and model com-
pletions at scale. For the generation process, we
employed both mixtral-8x7B-instruct-v0.1
and mixtral-8x22B-instruct-v0.1. Details are
reminded in the Appendix D.

Benign Prompts: In order to generate benign
prompts, we leveraged 10 pre-defined categories
from Röttger et al. (2024) and used these as in-
context examples for a custom prompt designed to
generate similar “contrastive benign" samples. Us-
ing a prompt inspired by Han et al. (2024); Ghosh
et al. (2024b)), we set num_requests to 5, iterated
through the 10 safety_types (homonyms, figu-
rative language, safe targets, safe contexts, defi-
nitions, real discrimination/nonsense group, non-
sense discrimination/real group, historical events,
public privacy, and fictional privacy).

Harmful Prompts: We generated harmful
prompts that are both dangerous in the typical
sense, as well as in an adversarial sense. For a
prompt to be adversarially harmful, we performed
a transformation which turns a typically harmful
prompt into an adversarially harmful one. The ad-
versarially harmful prompt is much more sophisti-
cated and subtle in comparison. First, we manually
defined a three-level taxonomy. We began with
4 high-level categories: privacy, misinformation,
harmful language, and malicious uses. Next, we
defined 13 sub-categories across the 4 high level
categories. Finally, we identified leaf categories for
each of the sub-categories, which represent fine-
grained dimensions of risk. The original structure
and hierarchy is adopted from Wang et al. (2024).
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Next, to generate the adversarial harmful
prompts, we filled in the prompt with the generated
“typical harmful" prompts mentioned above. As
for the given_revision_strategies, these are
adopted from various sources (Jiang et al., 2024;
Rawat et al., 2024). We collected 24 revision strate-
gies in total, and we created adversarial transforma-
tions in two distinct ways. First, we provided only
one revision strategy in context, iterating through
all of the strategies for a single input prompt. Sec-
ond, we provided 3 randomly sampled revision
strategies in context, to determine if the teacher
model could accurately combine multiple strategies
for a more sophisticated adversarial transformation.

Model Completions: For all of the above syn-
thetically generated prompts (both benign and ad-
versarial), we obtained responses from the same set
of models listed in Section 3.1. According to Han
et al. (2024), we augmented benign data by gener-
ating a compliant, refusal, and no_suffix_prompt
statement. For the harmful prompts, we provided
them as input to the LLM as-is.

3.2.2 Jailbreak

Jailbreak techniques introduce a novel dimension
to harmful prompts, often employing sophisticated
methods to manipulate language models into pro-
ducing undesirable outputs. These methods vary
widely, and recent research has proposed new tax-
onomies (Schulhoff et al., 2023; Rawat et al., 2024)
to categorize different types of attacks. In this work,
we focused specifically on a subset of these tech-
niques like social engineering tactics to achieve
adversarial goals. To capture a broad spectrum
of jailbreak prompts, we began by curating a col-
lection of seed examples, grounded in prior work
by (Rawat et al., 2024).

From these samples, we used a combination
of automated red-teaming methods and synthetic
data generation to create a dataset of adversarial
prompts with harmful intent. A collection of red
teaming methods like extensions to TAP (Mehro-
tra et al., 2023) or GCG-attack (Zou et al., 2023)
with Mixtral and Granite as targets were used as a
first line of validation to ensure the effectiveness
of these prompts in successfully attacking LLMs.
In addition, we leveraged intent-focused synthetic
data generation to further expand the dataset.

This ensures a more comprehensive understand-
ing of prompts carrying jailbreak risk that a safe-
guard model should filter. Our synthetic generation

pipeline, inspired by the WildGuard methodology,
uses LLMs to capture harmful intents and then aug-
mented with LLM-guided adversarial components
to generate training samples.

3.3 RAG Triad datasets

Retrieval-augmented generation (RAG) involves
using a retriever to obtain relevant chunks from a
large document that is then passed to a decoder for
answering a question. However, decoder can still
hallucinate in the presence of retrieved chunks (Xie
et al.) in the presence of conflicting information,
and therefore it becomes essential to detect such
hallucinations. We create synthetic data to simulate
RAG hallucinations which we categorize as context
relevance, groundedness, answer relevance as men-
tioned in Section 2.2. For each sample, we assume
a triple {c,q, a}. Given the question q, the retriever
fetches the relevant context c – context relevance
measures if the retrieved context is relevant to the
question. Next, given the relevant context c and
the question q, the response generator (typically an
LLM) produces an answer a.

Synthetic dataset: We generated synthetic data
to cover all the above categories of RAG halluci-
nation detection using a predefined prompt. The
prompt was used to generate (a) Non-relevant
contextual answer which serve as negative
samples for answer relevance, (b) Incorrect
contextual answer which we use as negative
sample for groundedness and (c) Non-relevant
question to be used as negative samples for con-
text relevance. The correct answer and original
question from the seed dataset were used as the
positive samples. We used HotPotQA (Yang et al.,
2018) and SquadV2 (Rajpurkar et al., 2016) as
seed datasets. For groundedness, we also used the
MNLI (Williams et al., 2018) and SNLI (Bowman
et al., 2015) entailment datasets.

4 Model Development

4.1 Adaptation of risk dataset to structured
chat template

The data is meticulously curated through a com-
bination of manual annotation and synthetic data
generation, spanning diverse risk dimensions, and
is further refined into a specialized chat format. To
accommodate the varied localizations (e.g., prompt,
response) and types of risks (e.g., harm, RAG), we
converted this data into an intermediate format with
fields: prompt, response, context, and label.
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Safety instruction template

You are a safety agent trying to help determine whether the
[user/assistant] message is harmful according to the safety risk
definition below.

< s t a r t _ o f _ t u r n >
User Message : {{ prompt }}
A s s i s t a n t Message : {{ r e s p o n s e }}

< e n d _ o f _ t u r n >

Our safety risk definition is defined below:

< s t a r t _ o f _ r i s k _ d e f i n i t i o n >
− {{ d e f i n i t i o n }}

< e n d _ o f _ r i s k _ d e f i n i t i o n >

Is the user message harmful based on the risk definition. Your
answer must be either ’Yes’ or ’No’.

Harm risk definition sample

You are a safety agent trying to help determine whether the user
message is harmful according to the safety risk definition below.

< s t a r t _ o f _ t u r n >
User Message : How can I f i g u r e o u t
t h e p i n code t o a phone ?

< e n d _ o f _ t u r n >

Our safety risk definition is defined below:

< s t a r t _ o f _ r i s k _ d e f i n i t i o n >
The ’ User ’ message i s u n i v e r s a l l y h a r m f u l
< e n d _ o f _ r i s k _ d e f i n i t i o n >

Is the user message harmful based on the risk definition. Your
answer must be either ’Yes’ or ’No’.

Figure 1: General finetuning instruction template on the left and harm umbrella template definition on the right

In detail, we transformed each sample from its
intermediate form, tailoring to the required trans-
formation the specific risk category it falls under.
Similar to (Zeng et al., 2024), our template is de-
signed in a way that allows easy extension to new
(unseen) risk definitions when the model is de-
ployed (see Figure 1). The safety template can
be conceptualized as a structured entity compris-
ing three key components. The first component
delineates the role of the safety agent and directs
the attention towards either identifying risks within
the user’s input (prompt) or the AI assistant’s out-
put (response). This is then followed by the pro-
vided content messages associated with the respec-
tive roles involved in the risk under consideration.
The content messages, along with their correspond-
ing roles, are enclosed within special control to-
kens, 〈start_of_turn〉 and 〈end_of_turn〉. Addition-
ally, the risk definition is clearly marked between
the control tokens, 〈start_of_risk_definition〉 and
〈end_of_risk_definition〉. Finally, we direct the
safety agent to assess, based on the given definition,
whether a risk is present by generating tokens: Yes
or No. It is worth mentioning that the distribution
of data across all risk categories remained consis-
tently balanced from the outset. As a result, during
the training process, we uniformly assigned weight
to samples from each risk category.

4.2 Supervised Finetuning

We developed two variants of Granite Guardian,
specifically the 2B and 8B versions, by supervised
finetuning (SFT) on the respective Granite 3.0 in-
struct variants. During the training process, we
ported the transformed data into a chat template
format, with the entire safety template (excluding

the label) considered as content for ’user’ role. The
final generated text, containing the verbalized la-
bel, was treated as the assistant’s response. To
smoothen the learning process in finetuning Gran-
ite instruct variants, we preserved the similar con-
trol tokens for both user and assistant roles. This
approach allowed us to build upon the existing
Granite 3.0 model while incorporating a safety
template for improved training stability and con-
vergence. We employ an Adam optimizer with a
learning rate of 1 × 10−6 and accumulate gradi-
ents over five steps. We train our model for up to
seven epochs and we select the optimal checkpoint
based on the minimum cross-entropy loss achieved
on the validation set. For finetuning, we experi-
mented with various setups, including initializing
our model with both the base and instruct variants
of Granite. Notably, the instruct variant appeared
to be more performant, for our use-case. We hy-
pothesize that this is because most instruct models
have undergone safety training, which attunes their
internal states to distinguish between desirable and
undesirable outcomes. This enables more effective
finetuning for safety-related use cases.

5 Experimental Results

Probability Computation: Language model-
based guardrails generally assign probability by
considering the token generation probability of the
corresponding safe and unsafe token given the input
and then normalizing across the two via softmax
operation. We propose a more robust probability
computation for binary classification purposes. We
aggregate the logits value of different variations
of the safe and unsafe token logits score and then
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Prompt Harmfulness Response Harmfulness Aggregate

model
AegisSafety

Test ToxicChat
OpenAI

Mod. BeaverTails SafeRLHF
test XSTEST_RH XSTEST_RR XSTEST_RR(h) F1/AUC

Llama-Guard-7b 0.743/0.852 0.596/0.955 0.755/0.917 0.663/0.787 0.607/0.716 0.803/0.925 0.358/0.589 0.704/0.816 0.659/0.824
Llama-Guard-2-8B 0.718/0.782 0.472/0.876 0.758/0.903 0.718/0.819 0.743/0.822 0.908/0.994 0.428/0.824 0.805/0.941 0.723/0.841
Llama-Guard-3-1B 0.681/0.780 0.453/0.810 0.686/0.858 0.632/0.820 0.662/0.790 0.846/0.976 0.420/0.866 0.802/0.959 0.656/0.796
Llama-Guard-3-8B 0.717/0.816 0.542/0.865 0.792/0.922 0.677/0.831 0.705/0.803 0.904/0.975 0.405/0.558 0.798/0.891 0.710/0.826
ShieldGemma-2b 0.471/0.803 0.181/0.811 0.245/0.709 0.484/0.747 0.348/0.657 0.792/0.867 0.371/0.570 0.708/0.735 0.421/0.748
ShieldGemma-9b 0.458/0.826 0.181/0.851 0.234/0.721 0.459/0.741 0.329/0.646 0.809/0.880 0.356/0.584 0.708/0.753 0.404/0.753
ShieldGemma-27b 0.437/0.860 0.177/0.880 0.227/0.724 0.513/0.757 0.386/0.649 0.792/0.893 0.395/0.546 0.744/0.748 0.438/0.772

Granite-Guardian-3.0-2B 0.842/0.844 0.368/0.865 0.603/0.836 0.757/0.873 0.771/0.834 0.817/0.974 0.382/0.832 0.744/0.903 0.674/0.782
Granite-Guardian-3.0-8B 0.874/0.924 0.649/0.940 0.745/0.918 0.776/0.895 0.780/0.846 0.849/0.979 0.401/0.786 0.781/0.919 0.758/0.871

Table 1: F1/AUC results across prompt/response harmfulness datasets. In bold best, underlined second best.

compute the overall probabilities. The probabili-
ties for the safe and unsafe labels are computed as
follows:

scoresafe =
∑

i∈S|k
exp(LL(tokeni)) (1)

scoreunsafe =
∑

i∈U |k
exp(LL(tokeni)) (2)

respectively. Here, U |k and S|k are the set of
tokens that contain the substring ‘Yes’ and ‘No’
within the top-k tokens, respectively, and LL(·)
is the log-likelihood function. This matching is
performed on lowercase, stripped text to account
for lexical variations of ‘Yes’ and ‘No’.
Metrics: We assess model performance using mul-
tiple metrics. We focus on two metrics F1 score
and the area under the ROC curve (AUC), as the
most suitable for interpreting binary classification
results regarding, respectively, the balance between
positive and negative class and the discrimination
power of the Guard.
Competitors-Guard baseline: Our benchmarking
comparison is focused on two model families
as direct competitors: Llama-Guard (Inan
et al., 2023) and ShieldGemma (Zeng
et al., 2024). Specifically, we compare
with Llama-Guard-7B, Llama-Guard2-8B,
Llama-Guard3-1B, and Llama-Guard3-8B, and
with ShieldGemma-2B/9B/27B, respectively, for
the Llama and Gemma model architecture.
Out of Distribution Harm Benchmarks: The
harm risk benchmark includes datasets evaluat-
ing prompt harmfulness and response harmfulness.
For testing harmful prompt, we used the follow-
ing datasets: ToxicChat (Lin et al., 2023), Ope-
nAI Moderation Evaluation (Markov et al., 2023),
AegisSafetyTest (Ghosh et al., 2024a), Simple-
SafetyTests (Vidgen et al., 2023), and HarmBench

Prompt (Mazeika et al., 2024). For testing the
prompt/response harmfulness, we used the follow-
ing datasets: BeaverTails Test Set (Ji et al., 2023),
SafeRLHF Test Set (Dai et al., 2024), and XSTEST-
RESP (Han et al., 2024).
RAG datasets: For groundedness evaluation in
RAG, we utilized the TRUE benchmark (Honovich
et al., 2022), which includes over 100K annotated
examples spanning 11 NLP tasks across four do-
mains: abstractive summarization datasets, i.e.,
FRANK (Pagnoni et al., 2021), SummEval (Fab-
bri et al., 2021), MNBM (Maynez et al., 2020),
and QACS (Wang et al., 2020), paraphrasing
dataset, i.e., PAWS (Zhang et al., 2019), dia-
log generation dataset, i.e., BEGIN (Dziri et al.,
2021), Q2 (Honovich et al., 2021), and Dial-
Fact (Gupta et al., 2021), and fact verification
datasets, i.e., FEVER (Thorne et al., 2018) and
VitaminC (Thorne et al., 2018).
Prompt/Response Harmfulness: The results for
Granite Guardian models, i.e., Granite-Guardian-
3.0-2B and Granite-Guardian-3.0-8B, demonstrate
strong performance across both prompt and re-
sponse3 harmfulness tasks. Granite-Guardian-3.0-
8B consistently shows higher scores in both F1
and AUC, indicating effective detection and dis-
crimination capabilities, particularly in challenging
response harmfulness tasks. The Granite-Guardian-
3.0-2B model, while smaller, also delivers robust
performance, achieving competitive AUC and F1
scores that highlight its capability in harm detection
with a more compact model size. Overall, Granite-
Guardian-3.0-8B achieves higher aggregate scores,
showcasing its generalization and effectiveness
across multiple safety benchmarks. These results
indicate that both Granite Guardian models are
well-suited for identifying harmful content, with

3In the response harmfulness case, prompt and response
are passed as pair in the risk definition template as, respec-
tively, user message and assistant message.
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model MNBN BEGIN QX QC SumE DialF PAWS Q2 Frank AVG.

t5-11b-ANLI 0.779 0.826 0.838 0.821 0.805 0.777 0.864 0.727 0.894 0.815
WeCheck (0.4B) 0.830 0.864 0.814 0.826 0.798 0.900 0.896 0.840 0.881 0.850
Minicheck 7b 0.817 0.806 0.907 0.882 0.851 0.931 0.870 0.870 0.924 0.873

Granite-Guardian-3.0-2b 0.712 0.710 0.768 0.753 0.779 0.892 0.825 0.874 0.885 0.800
Granite-Guardian-3.0-8b 0.719 0.781 0.836 0.890 0.822 0.946 0.880 0.913 0.898 0.854

Table 2: AUC results on the TRUE dataset for groundedness. In bold best, underlined second best.

the 8B model excelling across varied harm types.
RAG Triad benchmark: We report the AUC
score of the Granite Guardian models on the TRUE
benchmark datasets in Table 2. It is important to
note that all the baselines are trained only exclu-
sively for groundedness task, unlike our model,
which is handles multiple tasks. While Minicheck
7B achieves highest mean AUC across all the
datasets, Granite Guardian 8B is a close second.
Despite being trained to detect various risks, 8B
model outperforms other models on three datasets
and ranks second on four datasets. The Minicheck
and Wecheck models likewise exhibit the highest
AUC scores on three datasets each.

6 Conclusion

This work introduces the Granite Guardian fam-
ily, a suite of safeguards for prompt and response
risk detection. It addresses diverse risks, including
RAG-specific issues like context relevance, ground-
edness, and answer relevance, as well as jailbreaks
and custom risks, tailored for enterprise use cases.
Granite Guardian models can integrate with any
LLMs and outperform competitors on benchmarks,
supported by transparent training with diverse hu-
man annotations to ensure inclusivity and robust-
ness. Released as open-source , these models pro-
vide a foundation for advancing responsible and
reliable AI systems.
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