
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Industry Track), pages 544–557

April 30, 2025 ©2025 Association for Computational Linguistics

SuperRAG: Beyond RAG with Layout-Aware Graph Modeling
Jeff Yang1, Duy-Khanh Vu1, Minh-Tien Nguyen2∗, Xuan-Quang Nguyen1,

Linh Nguyen1, Hung Le3
1Cinnamon AI, 10th floor, Geleximco building, 36 Hoang Cau, Dong Da, Hanoi, Vietnam.

{jeff.yang, klein, albert, linh}@cinnamon.is
2Hung Yen University of Technology and Education, Hung Yen, Vietnam.

tiennm@utehy.edu.vn
3Deakin University, Australia.
thai.le@deakin.edu.au

Abstract

This paper introduces layout-aware graph mod-
eling for multimodal RAG. Different from tra-
ditional RAG methods that mostly deal with flat
text chunks, the proposed method takes into ac-
count the relationship of multimodalities by us-
ing a graph structure. To do that, a graph mod-
eling structure is defined based on document
layout parsing. The structure of an input doc-
ument is retained with the connection of text
chunks, tables, and figures. This representation
allows the method to handle complex questions
that require information from multimodalities.
To confirm the efficiency of the graph modeling,
a flexible RAG pipeline is developed using ro-
bust components. Experimental results on four
benchmark test sets confirm the contribution
of the layout-aware modeling for performance
improvement of the RAG pipeline.

1 Introduction

Retrieval Augmented Generation (RAG) (Guu
et al., 2020; Lewis et al., 2020; Borgeaud et al.,
2022; Izacard et al., 2023) is a new paradigm that
helps to reduce the hallucination of large language
models (LLMs) (Cao et al., 2020; Raunak et al.,
2021; Ji et al., 2023) by providing additional con-
texts for prompting LLMs (Su et al., 2021; Chen
et al., 2024). Recently, the approach has gained
considerable attention due to its effectiveness in en-
hancing the capabilities of LLMs (Guu et al., 2020;
Lewis et al., 2020; Su et al., 2021; Xiao et al., 2021;
Borgeaud et al., 2022; Izacard et al., 2023). Within
this domain, graph-based RAG has emerged, intro-
ducing a novel perspective that leverages structured
knowledge to improve further performance and in-
terpretability (Panda et al., 2024; Besta et al., 2024;
Li et al., 2024; Edge et al., 2024; Sun et al., 2024).

Unlike non-graph-based RAG methods that di-
rectly use raw data as individual chunks of text
for downstream reasoning or question-answering

∗∗Corresponding Author.

tasks, the graph-based RAG approach can repre-
sent input data as a graph that considers the rela-
tionship among text chunks (Panda et al., 2024;
Li et al., 2024; Edge et al., 2024). We argue that
while most RAG-based pipelines perform effec-
tively within the text modality, handling multi-
modal inputs—common in real-world business ap-
plications—poses substantial challenges to these
systems, potentially limiting their broader applica-
bility and impact. The challenge comes from two
main reasons. First, input documents contain di-
verse layouts, structures, and multimodalities that
need to be captured in a RAG pipeline. The in-
formation on the layout plays an important role,
helping LLMs understand the document. Also, the
document contains text, tables, and figures which
should be encoded into prompts for LLMs’ reason-
ing (Zhao et al., 2023). Second, an input question
may require information in different modalities.
Let’s consider the question: “Please list the stan-
dard steps for creating Internet Navigware teaching
materials". It requires information in the flow chart
on page 27, and text on pages 28, and 29.1

This paper introduces a novel graph-based RAG
scheme that addresses the two challenges above for
actual multimodal QA cases. The pipeline includes
four steps: document parsing, data modeling, ad-
vanced information retrieval, and reasoning. The
document parsing can handle multiple input types
using in-house and third-party readers. For data
modeling, we introduce a new knowledge graph
(KG) that retains the layout and structure of input
documents. This is because the layout and struc-
ture are important to comprehend the meaning of
input documents which enhances the performance
of the information retrieval (IR) step. Data model-
ing in the form of a KG is combined with full-text
and vector search to create an advanced IR module

1https://software.fujitsu.com/jp/manual/manualfiles/
m150016/b1ww9681/07z000/tutorial.pdf

544



that uses re-ranking to retrieve the most relevant
contexts. The combination of multiple retrievers al-
lows the proposed pipeline to retrieve more relevant
information from the contexts. The reasoning step
combines an input query and the relevant contexts
to form a prompt feed to an LLM for achieving the
final answer. In summary, this paper makes three
main contributions as follows.

• It introduces a new Layout-Aware Graph Mod-
eling (LAGM) structure to represent input doc-
uments for RAG. The structure is created to
retain the layout of input documents which is
combined with full-text and vector search to
improve the quality of the IR step.

• It utilizes state-of-the-art and robust tech-
niques for building a unified RAG pipeline.
Experimental results on public benchmark
datasets show that the proposed SuperRAG
achieves promising results compared to strong
other RAG baselines.

• It offers a system where users can experience
the proposed RAG pipeline (Appendix 7).

2 Related Work

RAG RAG is a new method that supports LLMs
to fill the gap of out-of-date knowledge (He et al.,
2022) and hallucination (Cao et al., 2020; Raunak
et al., 2021; Ji et al., 2023). By using relevant infor-
mation retrieved from external knowledge, RAG
can help LLMs to generate more accurate and reli-
able responses (Guu et al., 2020; Lewis et al., 2020;
Borgeaud et al., 2022; Izacard et al., 2023; Ren
et al., 2023; Shi et al., 2024). With the aid of RAG,
LLMs have achieved promising results in many
tasks such as code generation (Zhou et al., 2022),
domain-specific QA (Cui et al., 2023; Dahl et al.,
2024; Pu et al., 2024), or open-domain QA (Izacard
and Grave, 2021; Trivedi et al., 2023; Kim et al.,
2024; Wang et al., 2024; Yu et al., 2024).

Graph-based RAG The graph structure has been
adapted to capture relationships among concepts
such as Connected Papers tool,2 a tree of summary
nodes for long context (Chen et al., 2023), or mul-
timodal KGs for storing text, diagrams, and source
code (Kannan et al., 2020). The graph has also
been used to improve the quality of RAG in differ-
ent ways such as hyper-relational KG (Panda et al.,
2024), graph-based agents for long contexts (Li

2https://www.connectedpapers.com

et al., 2024), KG for summarization (Edge et al.,
2024), or graph neural networks (Mavromatis and
Karypis, 2024). However, we observed that most
of these efforts have focused on the text modelity.

We follow the direction of building multimodal
KGs for RAG (Sun et al., 2024; Wang et al., 2024).
While prior works have explored hierarchical docu-
ment parsing for RAG, SuperRAG differentiates by
emphasizing structured granularity and document
layout analysis. We introduce a modern, general-
ized data model, incorporating Table of Contents
(ToC) and master sections to improve retrieval for
large documents. These enhancements preserve
document structure, enhancing retrieval accuracy
and effectiveness. We also share the idea of using
the structure of documents for RAG (Saad-Falcon
et al., 2023); however, our method empowered by
an in-house reader that can handle diverse doc-
ument types with table and chart understanding
rather than only processing the text structure of
PDF files as Saad-Falcon et al. (2023).

3 Layout-Aware Graph Modeling

Layout-aware Graph Modeling (LAGM) is de-
signed to effectively represent input documents
while preserving their original layout and struc-
ture. This approach is motivated by the need to
enhance the comprehensibility and manageability
of property graphs, particularly for applications
involving multimodal and complex data. For ex-
ample, if the query asks for information in a table
or chart, the RAG pipeline needs to know which
section or subsection it belongs to.

3.1 Document Layout Parsing

The first step in constructing LAGM is parsing
input documents using specialized readers for dif-
ferent modalities, including text, tables, diagrams,
and images. This step outputs a structured for-
mat that forms the foundation for graph creation.
We leverage an in-house document parser with the
enhancement from Azure DI to ensure robust pro-
cessing across diverse layouts.

The In-House Document Parser Our in-house
parser is designed as a modular pipeline to pro-
cess each page independently (Figure 1). It be-
gins with a loader layer for format conversion
and pre-processing, followed by AI models for
extracting layouts, table structures, OCR, and fig-
ure content. The processed data undergoes post-

545



processing, such as reading order sorting and rela-
tion extraction, and is output in JSON/Markdown.

Key components of the in-house parser include
Document Layout Analysis (DLA), reading order
detection, table structure recognition, and figure
and table classification. The DLA module is pre-
trained on DocLayNet (Pfitzmann et al.) and fur-
ther fine-tuned with 5773 in-house annotated PDF
pages, enabling the model to recognize 9 distinct
layout labels like titles, tables, and figures.

Figure 1: The pipeline of the in-house parser.

For reading order detection, the parser employs
the method proposed by Wang et al. (2021), lever-
aging 5010 annotated document images to extract
natural reading sequences. Table structure recog-
nition is implemented using an in-house library
designed to identify diverse table formats accu-
rately. Lastly, figure and table classification rely
on a curated dataset to categorize tables into sub-
types (e.g., full-lined, borderless) and figures into
specific types (e.g., charts, diagrams), ensuring pre-
cise extraction of visual elements. Table 1 reports

Table 1: Document reading performance.

Methods NID TEDS TEDS-S
Amazon Textract 96.71 88.05 90.79
LlamaParse 92.82 74.57 76.34
Unstructured 91.18 65.56 70.00
Google Layout Parser 90.86 66.13 71.58
Azure DI 87.69 87.19 89.75
Our reader DI 92.43 89.76 91.14

the comparison of the in-house reader with orther
strong reading methods. NID stands for Normal-
ized Indel Distance for layout and order reading.
TEDS is Tree Edit Distance-based Similarity for

text and table structure recognition. TEDS-S is
Tree Edit Distance-based Similarity-Struct for table
structure recognition only. We can observe that the
in-house reader achieves competitive results which
are good to implement actual RAG pipelines.

Azure DI for PDF Parsing Enhancement
Azure DI enhances the parser by excelling in
section-header and paragraph detection. It supports
searchable and non-searchable PDFs and aids in
creating ToC. To generate the ToC, we use Azure
DI outputs for tables, sections, and diagrams, per-
forming the following: (1) Match physical and
printed page numbers. (2) Detect ToC based on
keywords. (3) Replace printed page numbers with
physical page numbers. This integration ensures su-
perior layout-aware graph modeling and improves
ToC generation for structured navigation.

3.2 Data modeling

After parsing, each document page can be decom-
posed into title, header, sections, text chunks, tables
and diagrams, etc. The data modeling step aims
to create a granular-level design for the property
graph. Figure 2 shows the definition of LAGM.

Company

Document

Table of
Content Page

Master-
Section Section

TableDiagram

Section
Chunk

Table 
Chunk

IS_UNDER

IS_NEXT

Relation Type

Figure 2: The knowledge graph used for data modeling.

The Company node serves as the root, repre-
senting the overarching entity or corpus, such as
a company, and capturing metadata like the com-
pany’s name. Each Document node, linked to the
Company, represents an individual document with
attributes such as document name, type, and path.

Documents connect to Page nodes, which rep-
resent individual pages and include attributes like
page index, headers, footers, and textual content.

546



The TableOfContents node, also linked to Docu-
ment, provides a structural overview of the docu-
ment and connects to MasterSection nodes. Mas-
terSections organize the content hierarchically and
link to Section, Table, and Diagram nodes.

Section nodes represent logical divisions within
a document and include attributes like section
headers and content. Sections are connected se-
quentially via “has_next" relationships, ensur-
ing the flow of content. They can also link to finer-
grained SectionChunk nodes, capturing texts un-
der the section. Table nodes, representing tabular
data, and Diagram nodes, representing visual ele-
ments, provide additional structure. Tables may be
further connected TableChunk nodes for storing
textual contents inside the table. These explicit
“is_under" and “has_next" relationships re-
flect the natural hierarchy and flow of documents.
This design supports layout-aware graph modeling
and efficient information retrieval, enhancing ap-
plications like RAG pipelines by enabling precise
navigation and knowledge extraction.

3.3 The SuperRAG Framework
Building on layout-aware graph modeling (LAGM),
we introduce an advanced retrieval expansion
framework combining LLM-based and heuristic-
driven approaches for flexible and efficient infor-
mation retrieval. This framework enhances RAG-
based pipelines by improving adaptability and scal-
ability across applications.

LLM-Based Graph Traversal. This approach
leverages a Large Language Model (LLM) to per-
form context-aware graph traversal. Using the
graph schema (visualized in Fig. 2) as input, the
LLM dynamically generates Cypher queries, en-
abling intelligent and relationship-driven retrieval.
It is particularly effective for complex, multimodal
data and intricate document structures encoded in
the graph. Detailed information of the prompt for
the LLM is mentioned at the end of the appendix.

Heuristic-Based Retrieval. Complementing the
LLM-based approach, the framework processes
ToC, tables, and diagrams as heuristics for IR en-
hancement. For ToC, the framework uses struc-
tured output from the LLM with prompt engineer-
ing (Fig. 4) and heuristics to extract the ToC during
indexing. This is because ToC contains impor-
tant structured information for retrieval. During
retrieval, it computes semantic similarity scores
between section titles and the query for targeted

content retrieval. Additionally, few-shot prompt-
ing is used to ask the LLM to directly extract the
relevant page based on a given query. For table pro-
cessing, the DETR model (Carion et al., 2020) for
table detection and recognition is used, followed
by an OCR engine to reconstruct the table struc-
ture before indexing. This ensures that tables are
accurately captured and searchable within the Su-
perRAG pipeline. For diagram processing, OCR
models are used to extract text from diagrams and
feed both images and text information into a multi-
modal LLM (e.g., GPT-4o) for better interpretation.
This allows context-aware understanding of visual
elements, ensuring better integration of diagrams in
retrieval and reasoning. These methods are compu-
tationally efficient, effective, and robust for dealing
with structured content.

Comparative Insights. The dual framework bal-
ances flexibility and efficiency, with LLM-based
traversal excelling in unstructured, exploratory
tasks, and heuristics providing predictable perfor-
mance for high-throughput systems. Together, they
enable scalable and adaptive RAG pipelines, lever-
aging graph structures for optimal retrieval.

3.4 Graph Augmentation

To enrich the LAGM, we employ the K-Nearest
Neighbors (KNN) (Cover and Hart, 1967) as
a graph augmentation technique to create new
is_similar relationships between nodes within
the graph. The KNN algorithm calculates similar-
ity between nodes based on their properties, using
metrics such as cosine similarity, Jaccard similarity,
or Euclidean distance, depending on the data type.
Also, has_stem relationships are generated using
synonyms or words sharing the same stem, linking
nodes representing conceptually related terms.

4 Applications

Figure 3 shows the pipeline of LAGM that inte-
grates multiple retrievers and re-rankers, combin-
ing heuristic graph traversal, similarity search, and
language model-based techniques for efficient re-
trieval and ranking. The pipeline is flexible in sev-
eral ways. First, it merges cross-page context using
the graph representation. Second, a TOC retriever
is included for documents with structured informa-
tion, improving context quality for specific queries.
Additionally, the pipeline uses diagram/table ex-
pansion for queries needing information from ta-
bles and diagrams, with a self-reflection layer to

547



Documents

Document Parsing

AzureDI

 DocReader

Simple
Parser

Layout Read
We leverage metadata from each parser to structure
information using our data model. Our goal is to preserve the
original document's layout while constructing a semantic
framework, where layout elements are represented as nodes
and their relationships are utilized to enhance retrieval.

Layout Knowledge Graph

Node

Relationship

Company Document Table of
Content

Master
Section

Section Diagram Table Section
Chunk

Table
Chunk

Page

IS_UNDER IS_NEXT

Layout-aware Database

Milvus
Our current choice for VDB,
performing vector search retrieval.

ElasticSearch Performs full-text search retrieval

Neo4J
Our current choice for graph DB,
performing retrieval expansion through
the data model.

Upload/Indexing

Retrieval/Reasoning Retrieval Pipeline

Default Combines hybrid retrieval (vector
search + BM25) with graph
traversal for retrieval expansion.

Rerank
Uses Rerank in final layer,
supported by Cohere Reranker.

LLM Generation
Retrieved context is combined
with generation prompt to
provide answers.

Answer

Question

Query

RetrieveContext

Read

Figure 3: The proposed SuperRAG framework.

evaluate whether table or diagram information is
necessary based on the query intent. It selectively
integrates these elements only when they contribute
to a more accurate answer, reducing irrelevant con-
tent retrieval. Notably, LAGM is pipeline-agnostic
and can integrate into any RAG pipeline.

5 Experimental Settings

5.1 Datasets

We examine the following datasets for evaluation.

DOCBENCH is a benchmark designed to eval-
uate LLM-based document reading systems (Zou
et al., 2024). It features 1,102 questions and 229
PDF documents from five domains: academia, fi-
nance, government, laws, and news, with an aver-
age of 66 pages and 46,377 tokens per document.

SPIQA includes 27K research papers in three
tasks: direct QA with figures and tables, direct
QA with full papers, and CoT QA. The evaluation
contains test-A (666 filtered questions), test-B (228
human-written questions from QASA), and test-C
(493 from QASPER), all emphasizing reasoning
with figures and tables.

5.2 Detailed Implementation

Milvus was used as a vector database. Elastic-
Search was used for full-text search. Neo4J was
implemented as a graph database. The embed-
ding model uses embedding-v3-large from Open
AI. LLM for completion uses GPT-4o with version
2024-05-01. The hyper-parameters include select-
ing the top 3 tables and diagrams, the top 20 for
relevant contexts, and the top 10 for re-ranking.

5.3 Evaluation Metrics

All models were assessed using a GPT-4-based
evaluator, which has demonstrated a 98% agree-
ment with human annotators, ensuring robust and
reliable accuracy measurement (Zou et al., 2024).

6 Results and Discussion

This section first reports the performance compar-
ison of SuperRAG with other strong RAG-based
methods, and then shows the ablation study, output
observation. It finally describes the demo system.

6.1 Performance on RAG Tasks

Layout-aware vs. non-layout-aware The first
comparison includes two settings: layout-aware
and non-layout-aware. The layout-aware approach
leverages document structure—such as headers, ta-
bles, figures, and sections—to provide contextual
cues that are often critical for accurately under-
standing and retrieving information across varied
domains. In contrast, the non-layout-aware model
only uses Hybrid Search for IR with a flat structure.

The first part of Table 2, and Table 3, demon-
strate that layout-aware modeling significantly en-
hances performance across domains and tasks. On
DOCBENCH, the layout-aware model achieves
an average accuracy of 75.8%, outperforming the
non-layout model’s 68.5% by 7.3 points. Notably,
in academia and finance, gains are 11.9 and 9.8
points, respectively, showing the value of structural
cues in complex documents. On SPIQA in Table
3, the layout-aware model improves Test-A accu-
racy by 4.5 points (59.% vs. 55.4%) and Test-B
by 1.3 points (63.1% vs. 61.8%). In the challeng-
ing Test-C, it achieves an average accuracy gain
of 9 points (57.2% vs. 48.2%), with notable im-

548



Table 2: The comparison on DOCBENCH.

System Aca Fin Gov Laws News Text Multi Meta Una Avg. Acc
Layout-aware vs. non-layout-aware data modeling

Non-layout 64.0 70.1 64.2 62.8 83.7 77.7 74.4 46.1 70.2 68.5
Layout-aware 75.9 79.9 71.6 65.4 83.7 84.7 85.1 50.4 75.8 75.8

Layout-aware vs. SOTA RAG methods
GPT4 (API) 65.7 65.3 75.7 69.6 79.6 87.9 74.7 50.8 37.1 69.8
GPT-4o (API) 56.4 56.3 73.0 65.5 75.0 85.0 62.7 50.4 17.7 63.1
KimiChat (Web) 62.4 61.8 77.0 78.5 87.2 87.6 65.3 50.4 71.8 70.9
Claude 3 Opus (Web) 73.9 40.6 70.3 79.1 86.6 80.8 64.6 54.3 58.9 67.6
SuperRAG (Ours) 75.9 79.9 71.6 65.4 83.7 84.7 85.1 50.4 75.8 75.8

provement in table handling. These results confirm
layout awareness as a key factor in improving con-
textual understanding and retrieval accuracy.

Table 3: Layout-aware vs. non-layout-aware on SPIQA
Test-B and Test-C. ColPali is used for Qwen 2B, 7B,
Claude, and GPT-o4.

System Figure Table Avg. Acc
Test-A

Non-layout 53.9 57.2 55.4
Layout-aware 57.4 63.7 59.9

Test-B
Non-layout 62.4 61.0 61.8
Layout-aware 66.1 58.9 63.1

Test-C
Non-layout 57.5 44.6 48.2
Layout-aware 58.2 56.7 57.2

Comparison with SOTA methods The proposed
data modeling was compared to state-of-the-art
RAG methods. On DOCBENCH, we compare
our method against state-of-the-art LLM-based
document reading systems, including proprietary
pipelines like GPT-4, KimiChat, and Claude-3. For
SPIQA, since the benchmarked results only mea-
sure baseline QA performance using full gold con-
text without including the IR component of the
RAG system, a direct comparison would be unfair.
To address this, we reran several strong baselines
using a full IR pipeline instead of relying on re-
ported numbers from original papers. Addition-
ally, we evaluated ColPali (Faysse et al., 2024), an
open-source retrieval model that generates contex-
tualized embeddings from document page images,
contrasting with our layout-focused method.

As shown in the second part of Table 2 and Ta-
ble 4, our approach SuperRAG consistently outper-
forms other systems across both DOCBENCH and

SPIQA benchmarks. On DOCBENCH, SuperRAG
achieves the highest overall accuracy (75.8%), par-
ticularly excelling in the Financial and multi-type
questions. In comparison, proprietary systems like
GPT-4 and KimiChat perform strongly in specific
categories, but their overall accuracies fall short
by at least 6% compared to our method. Notably,
SuperRAG’s ability to handle a wide range of ques-
tion types, especially complex multi-type and una-
type questions, highlights its superior document
comprehension capabilities.

Table 4: The performance on SPIQA Test-B and Test-C.
ColPali is used for Qwen 2B, 7B, Claude-3.5 Sonnet.

System Figure Table Avg. Acc
Test-A

GPT-4o (API) 51.6 54.2 52.7
Qwen 2-7B 48.3 40.5 45.9
Claude-3.5 Sonnet 58.1 56.8 57.6
SuperRAG (Ours) 57.4 63.5 59.9

Test-B
GPT-4o (API) 63.1 53.6 59.2
Qwen 2-7B 41.3 45.2 42.9
Claude-3.5 Sonnet 53.3 44.2 49.5
SuperRAG (Ours) 66.2 58.9 63.2

Test-C
GPT-4o (API) 43.1 40.9 41.5
Qwen 2-7B 40.2 28.5 31.8
Claude-3.5 Sonnet 46.0 42.3 43.4
SuperRAG (Ours) 58.2 56.7 57.2

For SPIQA, SuperRAG demonstrates superior
performance across all three test sets, excelling in
both figure and table-based QA tasks. In Test-A,
it achieves the highest average accuracy (59.9%),
with a notable 63.5% on table-based questions, out-
performing the best baseline by 7%. For Test-B,
SuperRAG again leads with an average accuracy of

549



63.2%, surpassing the strongest baseline Claude3.5
Sonet (49.5%). It achieves 66.2% on figure-related
tasks and 58.9% on table-based tasks, showcasing
balanced strengths across modalities. In Test-C,
SuperRAG achieves 57.2% overall, with standout
performances in both figures (58.2%) and tables
(56.7%). In comparison, the runner-up Claude-3.5
Sonnet trails at 46.0%, marking a substantial gap of
12.2%. These results underscore SuperRAG’s abil-
ity to handle multimodal inputs effectively, even
when competing with enterprise systems.

6.2 Ablation Study
We investigate the flexibility of the pipeline by
testing with three settings. The first setting is the
non-layout method which uses the hybrid search +
cross-page context merger (1). The second setting
is the layout-aware method which uses the hybrid
search + cross-page context merger + TOC inte-
gration + table-diagram expansion (2). The TOC
integration is to extract the Table-of-Content in
documents. The table-diagram expansion expands
the context with tables and diagrams relevant to
the input query. The final setting is also our pro-
posed layout-aware method which is similar to the
second setting but using self-reflection (3). Self-
reflection means that the pipeline decides whether
to use information from tables and diagram expan-
sion based on the input query.

Table 5 presents the accuracy results across vari-
ous settings. Our method, equipped with all func-
tionalities, consistently achieves the highest accu-
racy, highlighting the effectiveness of each compo-
nent in enhancing overall system performance.

Table 5: Component contribution. DOC: DOCBENCH.

Setting DOC Test-A Test-B Test-C
1 68.5 55.4 61.8 48.2
2 71.7 53.0 60.9 53.1
3 75.8 59.9 63.1 57.2

6.3 Output Observation
The performance of RAG pipelines was observed
to show their behavior on raw samples. To do
that, the observation was done with three meth-
ods: non-layout, layout-aware, and ColPali (using
Sonnet). Tables 6 and 7 show the outputs of the
three pipelines. For the first sample in Table 6, the
non-layout-aware pipeline could not output correct
answer. This is because it could not retrieve cor-
rect relevant context for RAG. The ColPali method

gives an uncertain answer because the rank of the
paper retriever page image from Colpali (topk=1 or
topk=3) does not contain enough information and
the reasoning capability on the image of VLM still
have some disadvantage. The layout-aware gives
the correct answer (retrieval information from both
images (in page 2 - Reference 2 in Page 3) and text
content from page 3 and another page). It shows the
efficiency of the proposed layout-aware method for
retrieving relevant context. For the second sample
in Table 7, both layout and non-layout model are
all based on the benchmark tables for accuracy data
and cannot retrieve information about test errors
in figure d. The ColPali method can not retrieve
extract page contain figure dwith top 1 or top 3. As
the result, it could not output a correct answer. In
this case, all the RAG pipelines could not retrieve
the figure d. I suggests that the retrieval of visual
components in documents should be improved.

6.4 The Demo System

Figure 5 provides an interface where users can ex-
perience the system. The right panel includes set-
tings for uploading files, IR types, and other set-
tings. The central panel consists of a text box for
inputting queries. After putting a query, the system
retrieves relevant context based on the layout-aware
graph modeling and responses the final answer.
The right panel provides evidence of the answer,
that contains confidence scores and relevant chunks.
Related information is highlighted in the relevant
chunks. The open source version can be found at
https://github.com/Cinnamon/kotaemon.

7 Conclusion

The paper introduces layout-aware graph model-
ing for multimodal data construction used by RAG.
The modeling takes into account the structure of
input documents for building a graph that contains
the relationship among text chunks, tables, and fig-
ures. A RAG pipeline has also been developed to
confirm the efficiency of the modeling. Experimen-
tal results on four public test sets show two impor-
tant points. First, layout-aware modeling is benefi-
cial for improving the performance of RAG com-
pared to non-layout-aware and strong other RAG
pipelines. Second, the designed RAG pipeline
is flexible, and adding more sophisticated RAG-
related components improves the performance of
the system. The modeling and RAG pipeline are
practical for business scenarios.

550



Limitations

First, our approach relies heavily on accurate doc-
ument layout parsing and high-quality data mod-
eling. If these components are misaligned or if
document structure extraction tools are limited, the
pipeline’s effectiveness may be reduced. In par-
ticular, noisy layouts or variations in document
structures across domains could impact the quality
of information retrieval (IR) and subsequently the
reasoning performance of the pipeline. Moreover,
integrating tables, figures, and non-text elements
into a coherent graph structure may introduce com-
putational overhead, making the pipeline resource-
intensive. This can affect scalability, especially in
real-world applications requiring high throughput
or settings with limited computational resources.

Ethics Statement

Our framework presents no major ethical concerns,
as it has been designed with a genuine focus on
improving the accuracy of information retrieval in
LLM-based systems. Our method does not gen-
erate or alter content independently but instead
organizes multimodal information from existing
documents, ensuring that outputs remain faithful
to the source material. Privacy risks are minimized
by following data protection regulations and im-
plementing strict anonymization protocols where
needed, particularly for sensitive data.

References
Maciej Besta, Ales Kubicek, Roman Niggli, Robert

Gerstenberger, Lucas Weitzendorf, Mingyuan Chi,
Patrick Iff, Joanna Gajda, Piotr Nyczyk, Jürgen
Müller, et al. 2024. Multi-head rag: Solving
multi-aspect problems with llms. arXiv preprint
arXiv:2406.05085.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International conference on ma-
chine learning, pages 2206–2240. PMLR.

Meng Cao, Yue Dong, Jiapeng Wu, and Jackie Chi Kit
Cheung. 2020. Factual error correction for abstrac-
tive summarization models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6251–6258.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with

transformers. In European conference on computer
vision, pages 213–229. Springer.

Howard Chen, Ramakanth Pasunuru, Jason Weston, and
Asli Celikyilmaz. 2023. Walking down the mem-
ory maze: Beyond context limit through interactive
reading. arXiv preprint arXiv:2310.05029.

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun.
2024. Benchmarking large language models in
retrieval-augmented generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 17754–17762.

Thomas Cover and Peter Hart. 1967. Nearest neighbor
pattern classification. IEEE transactions on informa-
tion theory, 13(1):21–27.

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and
Li Yuan. 2023. Chatlaw: Open-source legal large
language model with integrated external knowledge
bases. arXiv preprint arXiv:2306.16092.

Matthew Dahl, Varun Magesh, Mirac Suzgun, and
Daniel E Ho. 2024. Large legal fictions: Profiling le-
gal hallucinations in large language models. Journal
of Legal Analysis, 16(1):64–93.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130.

Manuel Faysse, Hugues Sibille, Tony Wu, Gautier Vi-
aud, Céline Hudelot, and Pierre Colombo. 2024. Col-
pali: Efficient document retrieval with vision lan-
guage models. arXiv preprint arXiv:2407.01449.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929–3938. PMLR.

Hangfeng He, Hongming Zhang, and Dan Roth. 2022.
Rethinking with retrieval: Faithful large language
model inference. arXiv preprint arXiv:2301.00303.

Gautier Izacard and Édouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 874–880.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-
Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2023. Atlas: Few-shot learning with retrieval
augmented language models. Journal of Machine
Learning Research, 24(251):1–43.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1–38.

551



Amar Viswanathan Kannan, Dmitriy Fradkin, Ioan-
nis Akrotirianakis, Tugba Kulahcioglu, Arquimedes
Canedo, Aditi Roy, Shih-Yuan Yu, Malawade Arnav,
and Mohammad Abdullah Al Faruque. 2020. Mul-
timodal knowledge graph for deep learning papers
and code. In Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge
Management, pages 3417–3420.

Jaehyung Kim, Jaehyun Nam, Sangwoo Mo, Jongjin
Park, Sang-Woo Lee, Minjoon Seo, Jung-Woo Ha,
and Jinwoo Shin. 2024. Sure: Summarizing re-
trievals using answer candidates for open-domain
qa of llms. arXiv preprint arXiv:2404.13081.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Shilong Li, Yancheng He, Hangyu Guo, Xingyuan Bu,
Ge Bai, Jie Liu, Jiaheng Liu, Xingwei Qu, Yang-
guang Li, Wanli Ouyang, et al. 2024. Graphreader:
Building graph-based agent to enhance long-context
abilities of large language models. arXiv preprint
arXiv:2406.14550.

Costas Mavromatis and George Karypis. 2024. Gnn-
rag: Graph neural retrieval for large language model
reasoning. arXiv preprint arXiv:2405.20139.

Pranoy Panda, Ankush Agarwal, Chaitanya Devagup-
tapu, Manohar Kaul, et al. 2024. Holmes:
Hyper-relational knowledge graphs for multi-hop
question answering using llms. arXiv preprint
arXiv:2406.06027.

B Pfitzmann, C Auer, M Dolfi, AS Nassar, and
PWJ Staar. Doclaynet: A large humanannotated
dataset for document-layout analysis (2022). URL:
https://arxiv. org/abs/2206, 1062.

Hongxu Pu, Xincong Yang, Jing Li, and Runhao Guo.
2024. Autorepo: A general framework for multi-
modal llm-based automated construction reporting.
Expert Systems with Applications, page 124601.

Vikas Raunak, Arul Menezes, and Marcin Junczys-
Dowmunt. 2021. The curious case of hallucinations
in neural machine translation. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1172–1183.

Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin
Zhao, Jing Liu, Hao Tian, Hua Wu, Ji-Rong Wen,
and Haifeng Wang. 2023. Investigating the fac-
tual knowledge boundary of large language mod-
els with retrieval augmentation. arXiv preprint
arXiv:2307.11019.

Jon Saad-Falcon, Joe Barrow, Alexa Siu, Ani Nenkova,
David Seunghyun Yoon, Ryan A Rossi, and Franck

Dernoncourt. 2023. Pdftriage: Question answer-
ing over long, structured documents. arXiv preprint
arXiv:2309.08872.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Richard James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. 2024. Replug: Retrieval-
augmented black-box language models. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), pages 8364–8377.

Yixuan Su, Yan Wang, Deng Cai, Simon Baker, Anna
Korhonen, and Nigel Collier. 2021. Prototype-to-
style: Dialogue generation with style-aware editing
on retrieval memory. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 29:2152–
2161.

Qiang Sun, Yuanyi Luo, Wenxiao Zhang, Sirui Li,
Jichunyang Li, Kai Niu, Xiangrui Kong, and Wei Liu.
2024. Docs2kg: Unified knowledge graph construc-
tion from heterogeneous documents assisted by large
language models. arXiv preprint arXiv:2406.02962.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2023. Interleaving retrieval
with chain-of-thought reasoning for knowledge-
intensive multi-step questions. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
10014–10037.

Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi
Zhang, and Tyler Derr. 2024. Knowledge graph
prompting for multi-document question answering.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 19206–19214.

Zilong Wang, Yiheng Xu, Lei Cui, Jingbo Shang, and
Furu Wei. 2021. Layoutreader: Pre-training of text
and layout for reading order detection. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 4735–4744.

Fei Xiao, Liang Pang, Yanyan Lan, Yan Wang, Huawei
Shen, and Xueqi Cheng. 2021. Transductive learning
for unsupervised text style transfer. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 2510–2521.

Shi Yu, Chaoyue Tang, Bokai Xu, Junbo Cui, Junhao
Ran, Yukun Yan, Zhenghao Liu, Shuo Wang, Xu Han,
Zhiyuan Liu, et al. 2024. Visrag: Vision-based
retrieval-augmented generation on multi-modality
documents. arXiv preprint arXiv:2410.10594.

Ruochen Zhao, Hailin Chen, Weishi Wang, Fangkai
Jiao, Xuan Long Do, Chengwei Qin, Bosheng Ding,
Xiaobao Guo, Minzhi Li, Xingxuan Li, et al. 2023.
Retrieving multimodal information for augmented
generation: A survey. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
4736–4756.

552



Shuyan Zhou, Uri Alon, Frank F Xu, Zhiruo
Wang, Zhengbao Jiang, and Graham Neubig. 2022.
Docprompting: Generating code by retrieving the
docs. arXiv preprint arXiv:2207.05987.

Anni Zou, Wenhao Yu, Hongming Zhang, Kaixin Ma,
Deng Cai, Zhuosheng Zhang, Hai Zhao, and Dong
Yu. 2024. Docbench: A benchmark for evaluating
llm-based document reading systems.

Appendix

Prompt for LLM-based Graph Traversal The
ToC prompt example is shown in Fig. 4.

Figure 4: The proposed SuperRAG framework.

An example prompt for LLMs to generate
Cypher graph queries is included at the end of the
appendix (7).

The output observation The examples of output
observation are shown in Tables 6 and 7.

The demo system The user interface of the sys-
tem is shown in Fig. 5.

553

http://arxiv.org/abs/2407.10701
http://arxiv.org/abs/2407.10701


Figure 5: The demo system with the sample from the DOCBENCH dataset. The input question is “How many
persons were convicted for money laundering offenses in Cyprus in 2018?" and the answer is “26 persons".

554



Table 6: Output observation on two samples of SPIQA.

Question: Which of the two approaches, density estimation or mixture of classifiers, is more robust to outliers?
(https://arxiv.org/pdf/1805.06431v4)
Correct answer: Mixture of classifiers
Evidence: The figure shows that the mixture of classifiers approach is able to correctly classify the data points even
when there are outliers present. This is because the mixture of classifiers approach is able to learn the different modes of
the data distribution, while the density estimation approach is not.
Non-layout: Based on the provided context, particularly from References 4, 6, and 7, the proposed method (ChoiceNet)
incorporates a mixture of densities to robustly learn the underlying target distribution in the presence of noisy (corrupt)
training data, whereas the mixture of classifiers is also discussed but seems to face challenges in distinguishing clean and
corrupt patterns independently.
In the regression tasks and synthetic examples described in References 4 and 7, it is shown that the proposed method,
which is based on a mixture density network, outperforms or shows comparable results with low outlier rates and
demonstrates superior performance with high outlier rates (greater than 50%). This is evident from the comparison with
other methods, including a standard mixture density network (MDN) and other robust loss methods. Specifically, Figures
6(a)-(c) in Reference 8 illustrate that the proposed method maintains lower average fitting errors across different outlier
rates, and Figures 6(d)-(f) in Reference 8 show better fitting results even with 60% outliers.
On the other hand, the mixture of classifiers approach, while theoretically sound, faces practical challenges. As stated in
Reference 3, the mixture of classifiers might not work well in practice because both classifiers can independently learn
corrupt patterns, leading to a mixture weight adhering to 1/2 and making it hard to distinguish clean from corrupt data
without additional dependencies or regularization.
Therefore, based on the empirical evidence and detailed explanations given in the provided context, the density estimation
approach (specifically the proposed mixture density network method) is more robust to outliers compared to the mixture
of classifiers approach.
Claude 3 Opus: Based on the information provided in the image, it’s difficult to definitively state which approach -
density estimation or mixture of classifiers - is more robust to outliers. The figure shows both approaches being used as
part of a process for binary classification on corrupt data, but doesn’t explicitly compare their robustness to outliers.
However, we can make some inferences:
1. The mixture of classifiers approach (part b of the figure) seems to separate the data points more clearly, with distinct
decision boundaries (shown as red lines labeled W). This could potentially make it more robust in handling outliers or
corrupt data points.
2. The density estimation approach (part a) shows overlapping distributions of data points. While this may capture the
overall distribution well, it might be more susceptible to being influenced by outliers.
3. The text mentions that the mixture of classifiers approach (using Ŵ ) is "expected to reveal the reverse patterns by
minimizing the following mixture classification loss". This suggests that this approach might be designed to better handle
corrupt data or outliers.
4. The motivation section discusses how the mixture approach aims to "discriminate the corrupt data by using another
linear classifier Ŵ ", which could imply better handling of outliers.
Given these points, there’s a slight indication that the mixture of classifiers approach might be more robust to outliers.
However, to make a definitive statement, we would need more specific information about how each method handles
outliers, which isn’t explicitly provided in the image or text.
Layout-aware: The approach described in the document for handling outliers involves two primary methods: density
estimation and mixture of classifiers. Based on the provided references, the robustness to outliers can be inferred from
the empirical results and the theoretical framework described.
1. **Density Estimation Approach**: - The density estimation approach leverages a mixture density network (MDN) to
model the target conditional density using a parameterized distribution, typically a Gaussian distribution (Reference
3). - The robustness of this approach is evaluated in regression tasks with synthetic data and real-world datasets like
the Boston Housing dataset (Reference 4). The results show that while the proposed method, built on top of an MDN,
outperforms or shows comparable results with low outlier rates, it exhibits superior performance with high outlier rates
(> 50%) (Reference 4). - Additionally, the MDN’s performance degrades severely with extreme noise levels (60%),
indicating that without dependencies among different mixture components, the MDN struggles to allocate high mixture
probability correctly (Reference 4).
2. **Mixture of Classifiers Approach**: - The mixture of classifiers approach involves modeling the choice probability
of different classifiers and estimating the corruption probability using the mixture weight Tw(x) (Reference 2). - This
method employs a linear functional with negative correlation between classifiers to help distinguish clean and corrupt
patterns (Reference 3). - An illustrative example in a binary classification task using the MNIST dataset shows that
ChoiceNet (which uses a mixture of classifiers) successfully infers the clean data distribution and effectively handles
corrupted labels (Reference 7). - The final test accuracies reported (81.7% train accuracy and 98.1% test accuracy)
suggest that this approach can robustly handle noisy labels (Reference 7).
**Comparison and Conclusion**: - The density estimation approach shows that it can handle high outlier rates, but
its performance degrades significantly with extreme noise levels. - The mixture of classifiers approach, particularly as
implemented in ChoiceNet, demonstrates strong performance in distinguishing clean from corrupted data and maintains
high accuracy even with a significant proportion of noisy labels.
Based on the empirical results and the robustness demonstrated, **the mixture of classifiers approach appears to be more
robust to outliers** compared to the density estimation approach. The mixture of classifiers method effectively identifies
and manages corrupted data through its correlation-guided mechanism, leading to better handling of noisy datasets.

555



Table 7: Output observation of the second sample from SPIQA.

Question: Which model performs the best in terms of test error? (https://arxiv.org/pdf/1805.06431v4)
Correct answer: CDAN (M)
Evidence: Figure (d) shows the test error for different models. CDAN (M) has the lowest test error.
Non-layout: Based on the provided context, the model that performs the best in terms of test error is the "CDAN+E (w/o
random sampling)" model. This model achieves the highest average accuracy across all transfer tasks, as shown in the
table in Reference 8. Specifically, it achieves an average accuracy of 87.7%, which is higher than the other variants of
CDAN+E (with Gaussian sampling and with uniform sampling).
The performance across specific tasks such as A -> W, D -> W, W -> D, A -> D, D -> A, and W -> A also supports
this conclusion, where the CDAN+E (w/o random sampling) consistently shows superior or comparable performance in
comparison to the other models. Therefore, it can be concluded that "CDAN+E (w/o random sampling)" performs the
best in terms of test error among the models listed.
Claude 3 Opus: I apologize, but I don’t see any information in this image about model performance or test errors.
The image contains technical details about generalization error analysis, domain adaptation theory, and descriptions of
various datasets used in experiments. It does not show any results or comparisons of model performance. To answer
which model performs best in terms of test error, we would need to see actual experimental results or performance
metrics, which are not provided in this particular image.
Layout-aware: Based on the provided context, particularly from Reference 1 (page 7), the model that performs the
best in terms of test error across various datasets and tasks is the **CDAN+E** model. This can be observed from the
consistently high classification accuracies reported for CDAN+E across multiple benchmark datasets when compared to
other models.
Here is a detailed breakdown from the tables:
1. **Office-31 Dataset (AlexNet and ResNet-50 backbones):** - CDAN+E achieves the highest average accuracies of
77.7% (AlexNet) and 87.7% (ResNet-50).
2. **ImageCLEF-DA Dataset:** - CDAN+E records an average accuracy of 80.3% (AlexNet) and 87.7% (ResNet-50),
again being the top performer.
3. **Office-Home Dataset:** - CDAN+E shows the highest average accuracy of 65.8% (ResNet-50).
4. **Digits Dataset (MNIST, USPS, SVHN):** - CDAN+E achieves an average accuracy of 94.3%, outperforming other
methods.
5. **VisDA-2017 Synthetic to Real Dataset:** - CDAN+E achieves an accuracy of 70.0%, which is higher than other
comparison methods.
Therefore, across these datasets, CDAN+E consistently outperforms other domain adaptation methods, indicating it has
the lowest test error and is the best-performing model overall.

556



CYPHER_QUERY_TEMPLATES = """You are required to construct a Cypher query to
retrieve the requested information from the graph database. The graph schema
is provided below for reference.
{graph_schema}
Instructions for Cypher Query Generation:
1. Schema Adherence:
- Use only the provided relationship types and properties.
2. Response Guidelines:
- Generate a Cypher query as plain text without any additional formatting.
- Include only the Cypher statement; exclude any explanations, apologies, or
unrelated content.
3. Conditions for Query Construction:
- Use pageIdx and parentPageIdx to identify the page. Do not use pageNumber.
- Use the docType attribute to identify the document type.
- If docName is provided, use it to filter nodes.
4. Handling Uncertainty:
- If unsure about the user’s request or if no Cypher query is applicable,
return nothing.
5. Things to Avoid:
- Do not generate generic queries. If the request lacks specifics, return
nothing.
- Do not use or infer any additional relationship types or properties.
- Don’t generate overly complex queries. Keep the queries simple and focused
on the user’s request.
- Don’t generate keyword queries unless explicitly requested.
- Don’t write queries that could return all SECTION, TABLE, or DIAGRAM nodes
from the document.
Good Examples:
---
MATCH (s)-[:S_IS_UNDER_P]->(p:PAGE)
WHERE toString(p.pageIdx) IN $pages AND s.parentDocName IN $doc_id
RETURN s;
---
Bad Examples:
---
MATCH (s:SECTION)
WHERE s.parentDocName IN [’<dir>’, ’<doc_name>’]
RETURN s;
---
MATCH (s:SECTION)-[:S_IS_UNDER_P]->(p:PAGE)
WHERE s.parentDocName IN [’<dir>’, ’<doc_name>’]
RETURN s;
---
User Request: {user_request}
docName: {doc_name}
Cypher Query (Generate a Cypher query as plain text without any additional
formatting):"""

557


