
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Industry Track), pages 506–514

April 30, 2025 ©2025 Association for Computational Linguistics

Can Post-Training Quantization Benefit from an Additional QLoRA
Integration?

Xiliang Zhu∗, Elena Khasanova∗, Cheng Chen∗

Dialpad Inc.
{xzhu,elena.khasanova,cchen}@dialpad.com

Abstract

Large language models (LLMs) have trans-
formed natural language processing but pose
significant challenges for real-world deploy-
ment. These models necessitate considerable
computing resources, which can be costly and
frequently unavailable. Model compression
techniques such as quantization are often lever-
aged to alleviate resource demand, but they
may have a negative impact on the generation
quality. In this study, we explore the integra-
tion of 4-bit Post-training Quantization (PTQ)
with QLoRA (Dettmers et al., 2023) to address
these issues. We demonstrate through extensive
experiments that this integration outperforms
standard PTQ, and in some cases even 16-bit
full-parameter fine-tuning on LLMs, validated
across proprietary and public datasets with dif-
ferent quantization algorithms. The results
demonstrate the efficacy of PTQ-QLoRA in-
tegration, offering a viable solution for deploy-
ing powerful LLMs in resource-constrained en-
vironments without compromising on perfor-
mance.

1 Introduction

Large language models (LLMs) have undeniably
revolutionized the field of natural language pro-
cessing and keep growing in both popularity and
size. However, the “large” in LLMs is both their
benefit and their curse. As the models are becom-
ing more powerful, they are increasingly harder to
train, deploy and serve in real-life applications in
industry. They require substantial computing re-
sources which are not only expensive but also not
always readily available.

Obtaining resources for training LLMs is a chal-
lenge of its own, but deploying LLMs in customer-
facing applications poses a new set of challenges.
Specifically, LLM inference in real-life scenarios

*Equal Contributions. Sorted by Last Name in reverse
order.

comes with certain challenges. It must meet la-
tency requirements to ensure a smooth user expe-
rience for end users. It is also subject to memory
constraints from accessible hardware, which is not
always optimized for LLMs. Additionally, it needs
to allow for frictionless scaling as the number of
requests to LLMs grows with the number of users
or features it serves. Therefore, there exists a need
for optimization techniques that would allow for
deployment of the most powerful LLMs regardless
of the number of parameters but also address these
issues without significant loss in performance.

One of the popular techniques to optimize mem-
ory usage and computational efficiency is quantiza-
tion, which reduces the precision of the numerical
representation of data and thereby the model’s size
and the computational resources required for infer-
ence by a large margin, but often results in mean-
ingful accuracy loss (Dettmers and Zettlemoyer,
2023). At the same time, quantized large models
can outperform full-precision models of smaller
size (Lee et al., 2024), making quantized models
a potentially preferred option and recovering accu-
racy loss a particularly important task.

In this study, we explore the integration of
Post-training Quantization (PTQ) and QLoRA
(Dettmers et al., 2023), which utilizes parameter-
efficient fine-tuning (PEFT) on a quantized model,
to mitigate the loss in accuracy due to quantization.
We focus solely on 4-bit quantization because it
provides an optimal balance of memory footprint,
latency and accuracy for our specific use cases,
where the model is deployed1 to handle business
conversations such as support calls or meetings.
We show through extensive experiments that this
integration outperforms simple PTQ and in certain
cases even the 16-bit fully fine-tuned model.

Our contributions are the following:

• We explore the integration of 4-bit Post-
1Served by Nvidia T4

506



training Quantization (PTQ) with QLoRA, de-
livering task performance that matches or sur-
passes 16-bit full fine-tuning on LLMs.

• We examine the proposed integration with ex-
tensive experiments involving multiple base
LLMs and quantization methods, accompa-
nied by a detailed performance comparison.

• To ensure a robust evaluation of this integra-
tion, we perform experiments using:

(i) a proprietary dataset with real-world
Automatic Speech Recognition (ASR)-
generated transcription data from real-
world business conversations

(ii) three public datasets from the business
domain. We test our approach in both
the generation and classification tasks.

2 Background

Traditionally, deep neural network models utilize
high-precision floating point numbers to represent
weights and activations, which requires significant
memory and computational resources. Quantiza-
tion has emerged as a powerful technique to ad-
dress this challenge by quantizing floating-point
representations into a lower bit-width, effectively
reducing the model’s memory footprint and com-
putational cost.

Quantization techniques generally fall into two
main categories: Post-training Quantization (PTQ)
and Quantization-Aware Training (QAT). The for-
mer quantizes a model after the training is com-
plete, without the need for retraining. Early work
like (Jacob et al., 2018) proposed a quantization
schema that uses integer arithmetic to approximate
the floating point. (Nagel et al., 2020) computes a
layer-wise local loss and optimizes this loss with a
soft relaxation. (Li et al., 2021) proposed BRECQ
framework which achieves a good balance between
cross-layer dependency and generalization error
by reconstructing at the block granularity. More
recently, LLM.int8() from (Dettmers et al., 2024)
demonstrated for the first time that multi-billion
parameter transformers can be effectively quan-
tized to Int8. Moreover, (Frantar et al., 2022)
introduced GPTQ which can accurately quantize
LLMs of billions of parameters to 3-4 bits per
component. Activation-aware Weight Quantiza-
tion (AWQ) from (Lin et al., 2024a) employs per-
channel scaling to reduce the quantization loss of
salient weights.

Conversely, QAT techniques typically involve
retraining the model with quantized parameters
so that the model can converge to a point with
better loss (Gholami et al., 2021). (Nagel et al.,
2021) presented a standard QAT pipeline that leads
to near-floating-point accuracy results for a wide
range of models.

Another efficient approach to adapting
pre-trained models with minimal overhead is
Parameter-Efficient Fine-tuning (PEFT). One
direction is the adapter-based method, which
injects small adapter modules into pre-trained
models (Pfeiffer et al., 2020)(Houlsby et al.,
2019). More recently, Low-Rank Adaptation
(LoRA) (Hu et al., 2022a) has become increasingly
popular, greatly reducing the number of trainable
parameters by introducing rank decomposition
matrices. Moreover, QLoRA (Dettmers et al.,
2023) backpropagates gradients through a quan-
tized model into LoRA while preserving high task
performance. Although (Dettmers et al., 2023)
shows that QLoRA can match the accuracy of
16-bit full fine-tuning in T5 (Raffel et al., 2023)
and RoBERTa (Liu et al., 2019), the comparison of
QLoRA and 16-bit tuning in other larger language
models has not been studied to the best of our
knowledge.

3 Methodology

3.1 Overview

Figure 1 illustrates the PTQ-QLoRA integration.
Our steps are as follows:

1. We first employ full-parameter supervised
fine-tuning (SFT) using a mixture of general
instruction-following data and our internal
tasks’ training data on a pre-trained model,
to obtain the fine-tuned model (in 16-bit).

2. We then apply 4-bit Post-training Quantiza-
tion (PTQ) on the 16-bit fine-tuned model, to
obtain the quantized 4-bit model.

3. Lastly, we leverage the QLoRA (Dettmers
et al., 2023) approach to do another round
of SFT on the quantized 4-bit model through
a LoRA (Hu et al., 2022b).

3.2 Models

In this study, we employ three commonly-adopted
pre-trained open models:

507



16-bit 
pre-trained 

model

4-bit fine-tuned 
model

16-bit 
fine-tuned model

4-bit fine-tuned 
model 

16-bit 
fine-tuned LoRA

Fine-tuning 
datasets

Fine-tuning 
datasets

Full-param
SFT

Post-training
Quantization QLoRA

Figure 1: Diagram of the PTQ-QLoRA integration. Note that we apply the same fine-tuning datasets twice during full-parameter
SFT and QLoRA fine-tuning respectively.

• LLaMA2-7B2: The LLaMA2 series of LLM
models (Touvron et al., 2023) developed by
Meta.

• Qwen2-7B3. The Qwen2 series LLMs (Bai
et al., 2023; Yang et al., 2024) from Alibaba,
supporting long context lengths with strong
performance on various benchmarks.

• Mistral-7b-v0.34. The Mistral series mod-
els (Jiang et al., 2023) are proposed by Mis-
tral AI. It leverages grouped-query and sliding
window attention to effectively handle long
sequences.

Pre-trained base versions of the three models
are selected for our experiments rather than their
instruction-tuned variations for several reasons.
Firstly, it is often easier to “steer" the behavior of
the base models using limited in-domain training
data, and our internal findings indicate that when
fine-tuned for our internal downstream tasks, the
base models consistently demonstrate superior per-
formance (about 5% better across all tasks). Sec-
ondly, instruction-tuned variants often have exten-
sive preference alignment done on external datasets
which may not represent the preference for our use
cases. Lastly, specific chat template is often ap-
plied to the instruction-tuned variants. We can
design our own simplified templates during fine-
tuning the base models to save formatting tokens
in inference. Therefore, the detailed comparison of

2https://huggingface.co/meta-llama/Llama-2-7
b-hf, accessed August 2024

3https://huggingface.co/Qwen/Qwen2-7B, accessed
August 2024

4https://huggingface.co/mistralai/Mistral-7
B-v0.3, accessed August 2024

the instruction-tuned variants is out of the scope of
this work.

The weights of the models are sourced from Hug-
gingFace (Wolf et al., 2020b). In addition, we opted
for the 7B model size due to its ability to strike a fa-
vorable balance between performance and latency,
especially when deployed in production contexts
with 4-bit quantization.

3.3 Quantization Methods

We adopt quantization methods that support fine-
tuning LoRA adapters added to a quantized and
freezed base model (i.e. QLoRA (Dettmers et al.,
2023)) as of June 2024, which are bitsandbytes
(BNB) 5 and GPTQ (Frantar et al., 2023). We
choose 4-bit quantization for all models. AWQ (Lin
et al., 2024b) seems to have a compatibility issue
with CUDA environment at the time and thus is not
included in our experiments.

4 Experiment

4.1 Datasets

To demonstrate the effectiveness of the PTQ-
QLoRA integration, we perform experiments on
both our internal and public benchmarks. While
we cannot release the internal datasets nor reveal
their details, we provide description on how we
curate external datasets, which are publicly avail-
able and the results can be reproduced. In ad-
dition, as we utilize the pre-trained base model,
instruction-following samples from the general do-
main (General Instruction Dataset) are also incor-
porated in our fine-tuning processes to ensure the

5https://github.com/bitsandbytes-foundation/
bitsandbytes

508

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/Qwen/Qwen2-7B
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://github.com/bitsandbytes-foundation/bitsandbytes
https://github.com/bitsandbytes-foundation/bitsandbytes


Dataset train dev test

General Instruction 50000 3000 N/A
Summarization 6000 700 700
Action Items 6000 700 700
Call Purpose 2000 300 300
Call Outcome 2000 300 300
DialogSum 7000 900 900
banking77 4500 600 600
bitext_customer_support 4500 600 600

Table 1: Size of the datasets in our experiments.

general instruction-following capability of the re-
sulting models. The General Instruction Dataset is
produced by the self-instruct methodology (Wang
et al., 2023) using GPT-4 to obtain diverse task
instructions and corresponding responses. More
details of our General Instruction Dataset curation
process can be found in Appendix A.1.

4.1.1 Internal Task Datasets
The internal data source used in this study is real
business conversation transcripts generated from
our in-house ASR engine. We create four task
datasets which include two text generation tasks
and two text classification tasks based on our tran-
scription data:

• Summarization: Our summarization task
is to generate a coherent and concise sum-
mary of a given conversation transcript, with
varying summary length requirements (long,
medium or short) or format (e.g. bullet points)
specified in the prompt.

• Action Items: We define our Action Items
task as generating a list of unfinished, action-
able tasks based on a conversation transcript.
Each task is a one-sentence summary of an ac-
tivity that should occur after the conversation
has ended.

• Call Purpose: The Call Purpose task aims to
classify the conversation’s purpose into one
of the pre-defined categories.

• Call Outcome: The Call Outcome is another
classification task that categorizes the out-
come of a business conversation into one of
the pre-defined categories.

Details about the prompts used for our internal
tasks can be found in Appendix A.2. The labels of

our internal task datasets are generated by GPT-4,
which are manually reviewed and post-processed
to remove samples identified with minor issues.
The remaining samples are deemed of high quality
overall.

4.1.2 External Tasks Datasets
Since we cannot reveal our internal datasets, we
select a set of public datasets to validate our results
and to show that our observations can be repro-
duced using publicly available datasets:

• knkarthick/dialogsum6: This dataset (Chen
et al., 2021) is a large-scale dialogue sum-
marization dataset, consisting of 13,460 dia-
logues with corresponding manually labeled
summaries and topics. To make it similar to
our internal summarization task, we use the
long/medium/short prompts for each dialogue
and use GPT-4 to generate summaries. We
set the number of samples of train/dev/test as
7000/900/900.

• PolyAI/banking777: This dataset (Casanueva
et al., 2020) consists of online banking queries
annotated with their corresponding intents.
There are 77 fine-grained intents. The orig-
inal dataset only has train and test sets. We
use a randomly sampled 10% of the train split
as the development set. We randomly shuf-
fle the intents in the task prompts, and we
set the number of samples of train/dev/test as
4500/600/600. These pre-processing steps are
done to make it more similar to our internal
tasks.

• bitext/Bitext-customer-support-llm-
chatbot-training-dataset8: This hybrid
synthetic dataset has 27 intents assigned to 10
categories. The categories and intents have
been selected from Bitext’s collection of 20
vertical-specific datasets, covering the intents
that are common across all 20 verticals. The
original dataset only has a train split. We
divide it into train/dev/test following 8/1/1
split ratio, and set the number of samples of
train/dev/test as 4500/600/600. The intents in

6https://huggingface.co/datasets/knkarthick/d
ialogsum, accessed August 2024

7https://huggingface.co/datasets/PolyAI/banki
ng77, accessed August 2024.

8https://huggingface.co/datasets/bitext/Bitex
t-customer-support-llm-chatbot-training-dataset,
accessed August 2024

509

https://huggingface.co/datasets/knkarthick/dialogsum
https://huggingface.co/datasets/knkarthick/dialogsum
https://huggingface.co/datasets/PolyAI/banking77
https://huggingface.co/datasets/PolyAI/banking77
https://huggingface.co/datasets/bitext/Bitext-customer-support-llm-chatbot-training-dataset
https://huggingface.co/datasets/bitext/Bitext-customer-support-llm-chatbot-training-dataset


Summarization Action Items Call Purpose Call Outcome

Models R1 R2 RL RLsum AlScore R1 R2 RL RLsum F1-micro F1-micro
Qwen2-7b + SFT-16bit 0.5534 0.2798 0.392 0.42 0.883 0.5428 0.3408 0.4156 0.5081 0.5953 0.7984
Qwen2-7b + PTQ-BNB-4bit 0.5534 0.2774 0.3919 0.4194 0.886 0.5387 0.3371 0.4151 0.5061 0.6031 0.7963
Qwen2-7b + PTQ-BNB-4bit + QLoRA 0.5701 0.2925 0.4103 0.4352 0.89 0.5469 0.3548 0.427 0.5128 0.6381 0.835
Qwen2-7b + PTQ-GPTQ-4bit 0.5493 0.2659 0.3831 0.4081 0.887 0.5404 0.3397 0.4199 0.5084 0.5875 0.8004
Qwen2-7b + PTQ-GPTQ-4bit + QLoRA 0.5654 0.2865 0.4034 0.4271 0.888 0.5322 0.335 0.4097 0.4984 0.6304 0.835

Llama2-7b + SFT-16bit 0.5755 0.3038 0.421 0.4465 0.889 0.541 0.3567 0.4205 0.5121 0.6848 0.8554
Llama2-7b + PTQ-BNB-4bit 0.5597 0.2885 0.4091 0.4352 0.887 0.5175 0.3411 0.4023 0.4855 0.6537 0.8554
Llama2-7b + PTQ-BNB-4bit + QLoRA 0.5695 0.2936 0.4098 0.4349 0.875 0.5395 0.3435 0.4103 0.5057 0.6887 0.8697
Llama2-7b + PTQ-GPTQ-4bit 0.5716 0.2973 0.4136 0.4393 0.883 0.5507 0.3631 0.4281 0.5202 0.6926 0.8554
Llama2-7b + PTQ-GPTQ-4bit + QLoRA 0.5727 0.2978 0.4129 0.4398 0.885 0.5638 0.366 0.4299 0.5308 0.6926 0.8493

Mistral-7b + SFT-16bit 0.5738 0.3056 0.418 0.4423 0.894 0.5459 0.34 0.4154 0.513 0.6576 0.831
Mistral-7b + PTQ-BNB-4bit 0.572 0.2998 0.4128 0.4393 0.889 0.5367 0.3423 0.4157 0.5064 0.7198 0.8635
Mistral-7b + PTQ-BNB-4bit + QLoRA 0.5758 0.3075 0.4242 0.4466 0.891 0.5373 0.3432 0.4118 0.5068 0.7237 0.8554
Mistral-7b + PTQ-GPTQ-4bit 0.5772 0.3057 0.4175 0.4427 0.895 0.4196 0.2808 0.327 0.3967 0.6576 0.833
Mistral-7b + PTQ-GPTQ-4bit + QLoRA 0.5821 0.3114 0.4217 0.4495 0.891 0.5465 0.3554 0.4267 0.5153 0.7082 0.8534

Table 2: Performance of different models on our internal task benchmark. R1, R2, RL and RLsum refer to ROUGE-1, ROUGE-2,
ROUGE-L and ROUGE-L SUM respectively. AlScore refers to AlignScore.

bitext_custcomer_support banking77 DialogSum summarization

Models Precision Recall F1-micro Precision Recall F1-micro R1 R2 RL RLsum AlScore

Qwen2-7b + SFT-16bit 0.975 0.975 0.975 0.8367 0.8367 0.8367 0.5249 0.2825 0.4312 0.4313 0.921
Qwen2-7b + PTQ-BNB-4bit 0.975 0.975 0.975 0.8383 0.8383 0.8383 0.5264 0.2819 0.4303 0.4303 0.923
Qwen2-7b + PTQ-BNB-4bit + QLoRA 0.995 0.995 0.995 0.905 0.905 0.905 0.5466 0.302 0.4523 0.4523 0.934
Qwen2-7b + PTQ-GPTQ-4bit 0.9767 0.9767 0.9767 0.8417 0.8417 0.8417 0.522 0.2829 0.4289 0.4288 0.924
Qwen2-7b + PTQ-GPTQ-4bit + QLoRA 0.995 0.995 0.995 0.905 0.905 0.905 0.5474 0.3021 0.4533 0.4534 0.933

Llama2-7b + SFT-16bit 0.9967 0.9967 0.9967 0.8817 0.8817 0.8817 0.5816 0.3383 0.4875 0.4879 0.942
Llama2-7b + PTQ-BNB-4bit 0.9967 0.9967 0.9967 0.8883 0.8883 0.8883 0.5739 0.3331 0.4813 0.4814 0.94
Llama2-7b + PTQ-BNB-4bit + QLoRA 0.9983 0.9983 0.9983 0.9167 0.9167 0.9167 0.5737 0.3293 0.4801 0.4803 0.938
Llama2-7b + PTQ-GPTQ-4bit 0.9967 0.9967 0.9967 0.8817 0.8817 0.8817 0.5676 0.3226 0.4733 0.4736 0.934
Llama2-7b + PTQ-GPTQ-4bit + QLoRA 0.9983 0.9983 0.9983 0.8983 0.8983 0.8983 0.5704 0.3266 0.4757 0.4757 0.938

Mistral-7b + SFT-16bit 0.9983 0.9983 0.9983 0.9067 0.9067 0.9067 0.569 0.3331 0.4799 0.48 0.946
Mistral-7b + PTQ-BNB-4bit 0.9983 0.9983 0.9983 0.905 0.905 0.905 0.5789 0.3394 0.487 0.487 0.948
Mistral-7b + PTQ-BNB-4bit + QLoRA 0.9983 0.9983 0.9983 0.9033 0.9033 0.9033 0.5716 0.33 0.4786 0.4786 0.932
Mistral-7b + PTQ-GPTQ-4bit 0.9983 0.9983 0.9983 0.9033 0.9033 0.9033 0.5695 0.3312 0.4767 0.4766 0.947
Mistral-7b + PTQ-GPTQ-4bit + QLoRA 0.9983 0.9983 0.9983 0.91 0.91 0.91 0.5678 0.3261 0.4749 0.4754 0.935

Table 3: Performance of different models on the external task benchmark. R1, R2, RL and RLsum refer to ROUGE-1, ROUGE-2,
ROUGE-L and ROUGE-L SUM respectively. AlScore refers to AlignScore.

the task prompts are also randomly shuffled.
Again, these pre-processing steps are done to
make it more similar to our internal tasks.

4.1.3 Dataset Compilation
To assemble the datasets for training and evaluation,
both internal and external task datasets are com-
bined with the General Instruction Dataset respec-
tively. This is to ensure the model develops general
instruction-following capability during both inter-
nal and external task fine-tuning processes.

For evaluation purposes, as this study is focused
on specific task performance, the General Instruc-
tion Dataset is thus excluded from the test split.
Table 1 presents detailed information on the sizes
of all the datasets curated and used in our experi-
ments.

4.2 Training Hyperparameters and Setup

For all three models and datasets, the maximum
input context length is set to 3200 tokens and out-
put to 800 tokens. Necessary filtering is applied
to ensure our datasets fit with this context length
limitation. Each fine-tuning job is conducted with

two epochs on the dataset. Appendix A.3 details
other hyperparameters we apply for the fine-tuning
process.

The fine-tuning and evaluation processes in our
experiments are conducted using the Hugging-
Face’s transformers (Wolf et al., 2020a) frame-
work on a single node instance with 8 Nvidia A100
GPUs.

4.3 Results
Accuracy performance is evaluated at three differ-
ent stages of the PTQ-QLoRA integration:

1. 16-bit fully fined-tuned model after SFT, noted
as SFT-16bit

2. 4-bit quantized model on top of SFT, noted as
PTQ-{quant-method}-4bit

3. A LoRA with the 4-bit quantized model af-
ter the QLoRA fine-tuning, noted as PTQ-
{quant-method}-4bit+QLoRA

We present our evaluation results on both inter-
nal and public datasets in Table 2 and Table 3 re-
spectively. We perform Wilcoxon signed-rank test

510



(p<=0.05) (Dror et al., 2018) to compare whether
the performance differences between PTQ-QLoRA
and PTQ results for different models are statisti-
cally significant and find that they are significant for
both classification (p=0.00047) and text generation
tasks (p=0.004, 0.018, 0.034, 0.016 for ROUGE-1,
-2, -L and -L SUM respectively). The performance
difference between PTQ-QLoRA and 16-bit SFT
is statistically significant for classification tasks
(p=0.005) but not text generation tasks. The differ-
ence in performance between SFT and PTQ models
is not statistically significant. In addition, we apply
AlignScore (Zha et al., 2023) on the summarization
tasks to validate the factual consistency. The differ-
ences in factual consistency (based on AlignScore)
are found not to be statistically significant. Further,
we did not observe significant discrepancy between
the models in format following or instruction fol-
lowing and therefore we omit the results of this
evaluation. Based on this, our observations and
findings can be summarized as follows:

(i) The best accuracy performance is generally
achieved by either the PTQ-QLoRA integra-
tion or the 16-bit full fine-tuning. This is con-
sistent across all three base LLMs in our ex-
periments. In other words, the PTQ-QLoRA
integration can match and in many cases out-
perform 16-bit full fine-tuning in our target
task performance.

(ii) Applying quantization with or without addi-
tional QLoRA step does not significantly af-
fect factual consistency on text generation
tasks.

(iii) In nearly all tasks, incorporating the QLoRA
process enhances the accuracy of PTQ, re-
gardless of the base model or the quantization
method employed.

(iv) Between the two quantization methods used
in our experiments (BNB and GPTQ), we do
not find a clear advantage of one method over
the other. The relative performance difference
can be affected by the base pre-trained model
or the target task.

5 Conclusion

In this study, we explore the PTQ-QLoRA that inte-
grates 4-bit post-training quantization with QLoRA
to optimize the deployment of LLMs in resource-
limited environments. Through extensive experi-
mentation, we demonstrate that this integration can

match or surpass the performance of 16-bit full
parameter fine-tuning, across various base LLMs,
quantization methods and tasks.

The results highlight that combining PTQ with
QLoRA enhances model efficiency without sacri-
ficing task-specific accuracy. This effective solu-
tion allows high-performing LLMs to be deployed
with fewer resources. Overall, our findings under-
score the potential of this integration to improve the
practical deployment of LLMs, offering a scalable
approach for future applications.

6 Limitations

A notable limitation of this work is that we do
not compare the performance of applying QLoRA
fine-tuning to a quantized base model prior to fine-
tuning on the target dataset. In our limited experi-
ments with this setting the resulting models consis-
tently underperformed in comparison to both PTQ
and PTQ-QLoRA, therefore we left this compari-
son out of the scope of this paper.

Further, we do not experiment with other bit pre-
cision levels and only use 4-bit quantization. Sim-
ilarly to the above, our limited experiments have
shown that currently 4-bit quantization is the most
promising in terms of a trade-off between accuracy,
inference performance, and available supporting
infrastructure. In addition, we do not consider
other quantization methods besides bitsandbytes
and GPTQ for the reasons we explain in 3.3. A
more fine-grained look into different quantization
methods and bit precision levels can be beneficial.

We also only experiment with several decoder-
only models of the same size (7B) in this work
as explained in 3.2 and are not considering the
effects of quantization on the models with different
architectures or number of parameters.

Finally, we benchmark the models on a limited
number of tasks relevant to our business require-
ments and use autometrics for comparison. While
we complement standard for text generation tasks
ROUGE scores with a factual consistency metric
AlignScore, a human review can reveal meaningful
differences in performance between the models. In-
clusion of other tasks as well as detailed evaluation
of the outputs may be advantageous to understand-
ing the benefits and limitations of our proposed
technique.

511



7 Ethical Considerations

We maintained the licensing requirements accord-
ingly while using open-source models and other
tools from the providers (e.g. OpenAI, Meta, Al-
ibaba, Mistral, HuggingFace, etc.). Publicly avail-
able external datasets were used in our experiments
only for evaluation and reproducibility purposes.

References
Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,

Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A frontier large
vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966.

Iñigo Casanueva, Tadas Temcinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulic. 2020. Ef-
ficient intent detection with dual sentence en-
coders. In Proceedings of the 2nd Workshop
on NLP for ConvAI - ACL 2020. Data avail-
able at https://github.com/PolyAI-LDN/task-specific-
datasets.

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang.
2021. DialogSum: A real-life scenario dialogue sum-
marization dataset. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 5062–5074, Online. Association for Computa-
tional Linguistics.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2024. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale. In Proceedings
of the 36th International Conference on Neural In-
formation Processing Systems, NIPS ’22, Red Hook,
NY, USA. Curran Associates Inc.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Tim Dettmers and Luke Zettlemoyer. 2023. The case
for 4-bit precision: k-bit inference scaling laws. In
Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi
Reichart. 2018. The hitchhiker’s guide to testing sta-
tistical significance in natural language processing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1383–1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. GPTQ: Accurate post-training
compression for generative pretrained transformers.
arXiv preprint arXiv:2210.17323.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2023. OPTQ: accurate quantization for
generative pre-trained transformers. In The Eleventh
International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W. Mahoney, and Kurt Keutzer. 2021. A
survey of quantization methods for efficient neural
network inference. ArXiv, abs/2103.13630.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. ArXiv,
abs/1902.00751.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022a. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022b. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Jemin Lee, Sihyeong Park, Jinse Kwon, Jihun Oh, and
Yongin Kwon. 2024. A comprehensive evaluation
of quantized instruction-tuned large language mod-
els: An experimental analysis up to 405b. Preprint,
arXiv:2409.11055.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu,
Qi Zhang, Fengwei Yu, Wei Wang, and Shi Gu. 2021.
Brecq: Pushing the limit of post-training quantization
by block reconstruction. ArXiv, abs/2102.05426.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024a.
Awq: Activation-aware weight quantization for on-
device llm compression and acceleration. In Proceed-
ings of Machine Learning and Systems, volume 6,
pages 87–100.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,

512

https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2021.findings-acl.449
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://api.semanticscholar.org/CorpusID:232352683
https://api.semanticscholar.org/CorpusID:232352683
https://api.semanticscholar.org/CorpusID:232352683
https://api.semanticscholar.org/CorpusID:59599816
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2409.11055
https://arxiv.org/abs/2409.11055
https://arxiv.org/abs/2409.11055
https://api.semanticscholar.org/CorpusID:231861390
https://api.semanticscholar.org/CorpusID:231861390
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf


Xingyu Dang, Chuang Gan, and Song Han. 2024b.
AWQ: activation-aware weight quantization for on-
device LLM compression and acceleration. In Pro-
ceedings of the Seventh Annual Conference on Ma-
chine Learning and Systems, MLSys 2024, Santa
Clara, CA, USA, May 13-16, 2024. mlsys.org.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen,
Christos Louizos, and Tijmen Blankevoort. 2020. Up
or down? adaptive rounding for post-training quanti-
zation. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML’20. JMLR.org.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad,
Yelysei Bondarenko, Mart van Baalen, and Tijmen
Blankevoort. 2021. A white paper on neural network
quantization. ArXiv, abs/2106.08295.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020a. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020b. Transformers: State-of-the-art natu-
ral language processing. In Proceedings of the 2020
conference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Zeyu Cui, Zhenru
Zhang, and Zhihao Fan. 2024. Qwen2 technical re-
port. Preprint, arXiv:2407.10671.

Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu.
2023. AlignScore: Evaluating factual consistency
with a unified alignment function. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 11328–11348, Toronto, Canada. Association
for Computational Linguistics.

A Appendix

A.1 General Instruction Dataset

We adopt a similar approach as self-instruct (Wang
et al., 2023) to generate instruction-following sam-
ples in the general domain. We start from manually
creating 200 seed questions and generate 50k in-
structions through bootstrapping as described in
(Wang et al., 2023) using GPT-4. After necessary
post-processing and filtering, GPT-4 is leveraged
again to generate responses for each of the instruc-
tions. We provide some examples of the instruc-
tions in our General Instruction Dataset as follows:

• Brainstorm a list of possible New Year’s reso-
lutions.

• Plan a weekly lunch menu for a school. Write
down a main dish, a carbohydrate side dish,
a vegetable side dish, and a dessert for each
day.

• Translate the English sentence into Chinese:
She went to school on Monday but found no
other students, so she realized that Monday
was actually a national holiday.

513

https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://api.semanticscholar.org/CorpusID:235435934
https://api.semanticscholar.org/CorpusID:235435934
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://aclanthology.org/2023.acl-long.634
https://aclanthology.org/2023.acl-long.634


A.2 Prompt Format for Internal Tasks

The prompts we utilize for our internal tasks are as
follows:

Summarization:
Write a short and concise summary of the

following conversation transcript fo-

cusing only on work or business-related

topics without assessing its quality.

Transcript: {}

Note that we apply various summary length and
style requirements in the prompt, such as long,
medium, short, or bullet points.

Action Items:
You are provided with some text enclosed

by curly brackets "{}", generate a

newline-separated list of work, busi-

ness or service-related TODO tasks that

are still not done at the end of the

conversation and should be completed

after the conversation. Each task is a

one-sentence summary of the action to be

taken.

Transcript: {}

Call Purpose:
For the conversation below, identify a

single category for the purpose of the

conversation chosen from this list: Ac-

count Management, Appointment, Billing

Questions, Callback, Cancellation, Claim,

Complaint.

Transcript: {}

Note that this is not the exhaustive list of the
call purpose categories we support.

Call Outcome:
For the conversation below, apply the

appropriate category from the list pro-

vided below to describe the outcome of

the conversation. Respond with "Other"

if no category applies.: Call back, Un-

successful contact, Voicemail Success,

Payment / Billing, Status update, Sched-

uled appointment, Cancellation.

Transcript: {}

Note that this is not the exhaustive list of the call

outcome categories we support.

A.3 Training Hyperparameters
We provide the detailed hyperparameters we em-
ploy to fine-tune the LLMs in Table 4.

Learning rate Scheduler

Models Int Ext Int Ext

Qwen2-7B-SFT 3e-5 3e-5 linear cosine
+ BNB-4bit + QLoRA 3e-5 3e-5 cosine cosine
+ GPTQ-4bit + QLoRA 3e-5 3e-5 cosine cosine

Llama2-7B-SFT 6e-6 6e-6 linear linear
+ BNB-4bit + QLoRA 2e-4 5e-4 cosine linear
+ GPTQ-4bit + QLoRA 5e-4 5e-4 cosine linear

Mistral-7B-v0.3-SFT 6e-6 6e-6 linear linear
+ BNB-4bit + QLoRA 5e-4 5e-4 linear linear
+ GPTQ-4bit + QLoRA 5e-4 5e-4 linear linear

Table 4: Training hyperparameters for internal (Int) and ex-
ternal (Ext) datasets.

514


