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Abstract
We propose the Mixture of Frozen Ex-
perts (MoFE) architecture, which integrates
Parameter-efficient Fine-tuning (PEFT) and the
Mixture of Experts (MoE) architecture to en-
hance both training efficiency and model scal-
ability. By freezing the Feed Forward Net-
work (FFN) layers within the MoE framework,
MoFE significantly reduces the number of train-
able parameters, improving training efficiency
while still allowing for effective knowledge
transfer from the expert models. This facilitates
the creation of models proficient in multiple do-
mains. We conduct experiments to evaluate the
trade-offs between performance and efficiency,
compare MoFE with other PEFT methodolo-
gies, assess the impact of domain expertise in
the constituent models, and determine the op-
timal training strategy. The results show that,
although there may be some trade-offs in per-
formance, the efficiency gains are substantial,
making MoFE a reasonable solution for real-
world, resource-constrained environments.

1 Introduction

Large Language Models (LLMs) showcase signifi-
cant advancements in natural language understand-
ing and generation. LLMs are characterized by
their immense size, often consisting of at least one
billion parameters. The substantial size of LLMs
is understandable given the scaling law suggested
by Kaplan et al. (2020), which indicates that per-
formance on the cross-entropy loss improves pre-
dictably with increased model size, data, and com-
putational power. However, their immense size
poses a resource challenge, requiring substantial
computational memory and vast amounts of data,
making development and deployment difficult to
afford.

To address this, developing efficient LLMs that
maintain high performance has become crucial. Ef-
forts include (1) Efficient Training Methodolo-
gies like Parameter-efficient Fine-tuning (PEFT)

and (2) Efficient Model Scaling Methodologies
such as the Mixture of Experts (MoE) architecture.

In this research, we propose the Mixture of
Frozen Experts (MoFE) architecture, combining
both approaches for a more efficient and affordable
model. MoFE leverages MoE’s benefits while re-
ducing computational requirements through freez-
ing the FFN blocks. Our experiments demonstrate
that, despite a trade-off between performance and
efficiency compared to full fine-tuning, MoFE out-
performs other PEFT methods, requiring the least
training time while achieving the highest perfor-
mance. Additionally, MoFE shows effective knowl-
edge transfer from its constituent models, high-
lighting the potential for using pre-existing domain
expertise models with minimal further training.

2 Related Work

Primary strategies for efficient model training are
PEFT and quantization. PEFT includes techniques
like prompt-tuning (Lester et al., 2021), adapters
(Houlsby et al., 2019; Tomanek et al., 2021), LoRA
(Hu et al., 2021), and DoRA (Liu et al., 2024),
all designed to reduce computational demands.
Quantization (Jacob et al., 2017) maps model
weights to lower-precision formats for efficiency,
and Dettmers et al. (2023) introduced QLoRA,
combining LoRA with quantization.

The Mixture of Experts (MoE) architecture (Fe-
dus et al., 2022; Shazeer et al., 2017; Komatsuzaki
et al., 2023) is another efficient scaling method
that gained attention with Mixtral 8X7B (Jiang
et al., 2024), which integrates eight Mistral 7B
models (Jiang et al., 2023) and outperforms Llama-
2 70B (Touvron et al., 2023) despite being smaller.
Following Mixtral 8X7B, other MoE-based mod-
els, including OpenMoE (Xue et al., 2024), Jamba
(Lieber et al., 2024), BiMediX (Pieri et al., 2024),
and BioMistral (Labrak et al., 2024), have been
developed.
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Figure 1: Mixture of Frozen Experts Architecture. In this example figure, the router uses 2 Feed Forward Network
(FFN) blocks at each time step (m = 2), and there are 4 FFN blocks, or expert models, used (n = 4). In MoFE, the
FFN blocks are frozen, so only the remaining parameters are updated. This makes the training process significantly
more lightweight, regardless of the number of expert models integrated into the architecture.

3 MoFE

3.1 Architecture
We create a MoE model through the Mixtral archi-
tecture using mergekit (Goddard et al., 2024). The
Mixtral architecture includes three components:
the base model, the expert model, and the router.
Here, the expert model provides the Feed For-
ward Network (FFN) layers, while the base model
supplies other components like self-attention lay-
ers. In our experiments in Section 4, the models
used as the base and expert models all have TinyL-
lama (Zhang et al., 2024), a pretrained model with
1.1 billion parameters, as the foundational model.
As shown in Figure 1, the router (or gate) deter-
mines the number of FFN blocks used per time step,
set to 2 (m = 2) in all experiments. In the proposed
MoFE architecture, FFN blocks are frozen, while
only the router and other parts are updated, keeping
the trainable parameter size fixed regardless of the
number of FFN blocks.

3.2 Main Components
Base Model
The base model provides the trainable parameters
within the MoFE architecture, including the
embedding and self-attention layers of the entire
architecture. TinyLlama, employed as the base
model in the following experiments, features an
embedding size of (32000, 2048) and 22 attention
layers. In the MoFE architecture, the parameters
provided by the base model are updated in contrast
to the FFN blocks which remain frozen during the
entire training process.

Expert Model
The FFN layers in the MoE architecture are

provided from the expert models. These FFN
layers, which follow the attention layers in the
Transformer architecture (Vaswani et al., 2023),
primarily serve to maintain the isotropy of token
embeddings (Sonkar and Baraniuk, 2023). As the
FFN layers of TinyLlama comprise 0.76 billion
parameters, integrating one expert model adds 0.76
billion, rather than the entire 1.1 billion parameters.
As the FFN layers are frozen in MoFE, only the
parameters located before the FFN blocks, which
include the embeddings and self-attention layers
provided by the base model, and the router, are
updated.

Router
The router, or gate, includes a linear layer that
determines which FFN block to activate for each
token at every time step. This research uses a
common gating method that leverages hidden
state representations of positive and negative
prompts, assigned during model merging. Routing
assigns scores to each expert via a single matrix
multiplication, computing dot products between a
vector and the model’s hidden states to select the
top two experts. Positive prompts are averaged,
and negative prompts are subtracted to identify
vectors that maximize these dot products.

4 Empirical Analysis

4.1 Experimental Setting
The experiments are implemented using three
NVIDIA A100 80GB GPUs. The hyperparame-
ters are set as follows: batch size of 4, learning
rate of 3e-5 with a linear learning rate scheduler,
gradient accumulation of 512, and weight decay of
0.01.
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Model Fine-tuning Trainable Parameters Training Time(hr) MMLU MedMCQA

Small
✘ 0.2441 0.2678

Full 1.86B 14 0.3331 0.3554
MoFE 0.34B 6 0.3163 0.3431

Medium
✘ 0.2443 0.2661

Full 3.38B 19 0.3231 0.3648
MoFE 0.34B 6 0.3255 0.3297

Large
✘ 0.2448 0.2680

Full 6.42B 26 0.3243 0.3459
MoFE 0.34B 6 0.3130 0.3514

Table 1: Performance on MMLU and MedMCQA when the FFN blocks are updated and frozen, compared to before
fine-tuning. All frozen models, regardless of size, have only 0.34 billion trainable parameters.

4.2 What is the trade-off between efficiency
and performance?

To assess the impact of freezing FFN blocks on
performance, we build MoFE models in three dif-
ferent sizes using the Mixtral architecture outlined
in Section 3, with TinyLlama serving as both the
base and expert models. We construct three mod-
els: a small model with 2 experts, a medium model
with 4 experts, and a large model with 8 experts.
Each model size is instruction-tuned using datasets
from two distinct domains: MMLU (Hendrycks
et al., 2021) for the general domain, and MedM-
CQA (Pal et al., 2022) for the medical domain.
Since the MedMCQA training dataset contains ap-
proximately 18K rows, we randomly sample 18K
rows from the MMLU dataset to ensure a balanced
representation of both domains. We then train the
models and compare their performance when the
FFN blocks are either frozen or updated. The task
performances are evaluated using lm-evaluation-
harness (Gao et al., 2024).

Table 1 shows the number of trainable parame-
ters, training time, and performance on MMLU and
MedMCQA for models of each size when fully fine-
tuned versus fine-tuned with FFN blocks frozen,
referred to as MoFE. When fully fine-tuning, the
number of trainable parameters increases with the
number of expert models. However, in MoFE, the
number of trainable parameters remains constant
regardless of the number of expert models. This
results in a fixed training time for MoFE models,
while training time increases with model size for
models with fully updated FFN blocks. Notably,
even for the small model with 2 expert models,
MoFE requires less than half the training time com-
pared to fully updating the model.

To better understand the impact of each fine-
tuning method, we also evaluate model perfor-

mance before fine-tuning. Both approaches im-
prove performance, with full fine-tuning generally
outperforming MoFE. However, exceptions exist:
MoFE surpasses full fine-tuning on MMLU for the
medium model and on MedMCQA for the large
model. These findings suggest that while MoFE is
slightly less effective overall, it remains competi-
tive, offering significant efficiency gains in train-
able parameters and training time. Appendix A
further shows performance does not consistently
correlate with the number of updated FFN blocks.

4.3 How good is MoFE compared to other
PEFT methods?

Although MoFE demonstrates greater efficiency
than full fine-tuning, it is important to compare
MoFE with other PEFT methods to validate its
effectiveness as an alternative training approach for
low-resource environments. To this end, we utilize
the same three model sizes—small, medium, and
large—to compare the resource requirements and
performance of various PEFT methods, including
LoRA, QLoRA, and DoRA.

Table 2 demonstrates that among the four fine-
tuning methods, MoFE consistently achieves the
best performance on both MMLU and MedMCQA
across all three model sizes. Despite having the
highest number of trainable parameters, MoFE re-
quires the least training time. These findings indi-
cate that freezing the FFN blocks of MoE models
can be an efficient fine-tuning approach, outper-
forming other PEFT methods by minimizing train-
ing time while maintaining strong performance on
downstream tasks. Training time is a critical con-
sideration in real-world scenarios, as it directly
impacts computational costs, which scales linearly
with GPU usage time.
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Model Fine-tuning Trainable Parameters Training Time(hr) MMLU MedMCQA

Small

✘ 0.2441 0.2678

LoRA 2.3M 13 0.2935 0.2838

QLoRA 2.3M 14 0.2953 0.2525

DoRA 2.4M 15 0.2970 0.2682

MoFE 0.34B 6 0.3163 0.3431

Medium

✘ 0.2443 0.2661

LoRA 2.3M 15 0.2836 0.3053

QLoRA 2.3M 15 0.2972 0.2608

DoRA 2.4M 17 0.2934 0.3148

MoFE 0.34B 6 0.3255 0.3297

Large

✘ 0.2448 0.2680

LoRA 2.3M 18 0.2754 0.3091

QLoRA 2.3M 22 0.2909 0.2682

DoRA 2.4M 21 0.2935 0.2639

MoFE 0.34B 6 0.3130 0.3514

Table 2: The number of trainable parameters, training time required, and performance on MMLU and MedMCQA
using various fine-tuning methods. MoFE requires the least training time and achieves the best performance.

4.4 What effect does the domain expertise of
consisting models have?

The MoFE architecture consists of two types of
models: a base model and expert models, raising
a key research question: How does the domain ex-
pertise of these models influence the overall perfor-
mance of the MoFE model? To investigate this, we
conduct a series of experiments focused on knowl-
edge transfer from the consisting models.

4.4.1 Expert Model
Single Domain
To assess the impact of domain-specific knowledge
in expert models, we build two separate models
using TinyLlama: one trained on the MedMCQA
dataset (medical expert model) and the other on
the MMLU dataset (general model). We then con-
struct several medium-sized MoFE models, each in-
corporating four expert models, where each expert
is either a medical expert model or a general
model. By varying the composition of these ex-
pert models, we aim to examine whether domain-
specific knowledge from the expert models trans-
fers to the overall MoFE model, with a particular
focus on the medical domain. Since this experi-
ment focuses on the impact of medical expert
models, the base model is kept fixed as a general
model without domain-specific expertise.

As shown in Table 3, performance on MedM-
CQA improves as the number of medical expert

Model MedMCQAMedical Expert General

0 4 0.3488
2 2 0.3536
4 0 0.3636

Table 3: The performance of MoFE models with various
expert model compositions.

models increases. The model with four medical
expert models achieves the highest performance,
while the model without any medical expert
models performs the lowest. This suggests that
the presence of domain-specific expert models
positively impacts the overall performance of
the MoFE model, indicating that knowledge
transfer from the expert models—specifically the
FFN blocks—occurs within the MoFE architecture.

Multi-Domain

Building on the previous experiment confirm-
ing knowledge transfer in the medical domain, we
investigate whether knowledge transfer across mul-
tiple domains is possible and how the number of
domain-specific expert models affects the MoFE
model’s domain knowledge. For this, we develop
a finance expert model by training TinyLlama
on the Sujet-Finance-Instruct-177k dataset1, split

1https://sujet.ai/
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Model Task Performance
Finance Expert Medical Expert General Medicine Finance

0 0 4 0.3488 0.9087
0 2 2 0.3536 0.9237
0 4 0 0.3636 0.928
3 1 0 0.3603 0.936
2 2 0 0.3764 0.9327
1 3 0 0.3717 0.9401

Table 4: The performance of MoFE models with different numbers of finance expert models and medical
expert models incorporated.

Base Model Task Performance
Medicine Finance

General 0.3763 0.9327
Medical Expert 0.3698 0.9326
Finance Expert 0.3598 0.9417

Table 5: Task performance of the MoFE models with
different base models.

9:1 for training and testing. We then construct
medium-sized MoFE models with varying numbers
of medical expert models and finance expert
models and evaluate them on MedMCQA and the
Sujet-Finance-Instruct-177k test set. Finally, we
compare these models with those from the Single
Domain Section across both tasks.

As shown in Table 4, the MoFE model with
two finance expert models and two medical
expert models achieves the highest perfor-
mance on MedMCQA, while the model with
one finance expert model and three medical
expert models performs best on Sujet-Finance-
Instruct-177k. These findings suggest two key in-
sights: incorporating domain-specific expert mod-
els enhances domain knowledge and task perfor-
mance, but the number of domain expert models
does not necessarily predict or linearly improve
performance.

4.4.2 Base Model
The MoFE architecture requires not only expert
models but also a base model that provides layers
other than the FFN blocks, raising an additional
research question: What is the impact of the base
model’s domain expertise? Since our previous find-
ings showed that including at least one domain
expert model is crucial for domain-specific per-
formance, we aim to isolate the influence of the
base model in this experiment. To do so, we build
three medium-sized MoFE models, each with a dif-

ferent base model: a general model, a medical
expert model, and a finance expert model,
while keeping the expert composition constant with
two medical expert models and two finance
expert models. We then evaluate these models
on both medical and finance tasks.

As shown in Table 5, the MoFE model with the
general model as the base performs best on the
medical task and second best on the finance task.
This suggests that using a general model as the
base is a reasonable choice when building a MoFE
model aimed at expertise across multiple domains.

4.5 What is the optimal training strategy?

Building on earlier experiments that demonstrated
the potential for creating domain-specific exper-
tise in MoFE models by incorporating pre-existing
expert models, the next step is to determine the op-
timal training strategy for maximizing downstream
task performance. Unlike prior experiments us-
ing only instruction-tuning, this section explores
post-pretraining, where a pretrained model under-
goes additional pretraining before fine-tuning. The
goal is to assess whether a pretrained or instruction-
tuned model as the expert is more effective and if
post-pretraining adds value or instruction-tuning
alone is sufficient for MoFE models.

For testing in the medical domain, the pre-
training datasets include English data from
the Multilingual-Medical-Corpus (García-Ferrero
et al., 2024) for the medical domain and Multi-
News data (Fabbri et al., 2019) for the general
domain. Due to dataset distribution balance, a
random sample of 0.2 million rows from each
dataset, totaling 0.4 million rows, is used for train-
ing. The MedMCQA instruction dataset is used for
instruction-tuning across all strategies. Medium-
sized MoFE models with four expert models are
tested under the following training strategies:
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Expert Model Training Strategy MedMCQA PubMedQA

TinyLlama Instruction-tuning 0.3529 0.6
Post-pretraining → Instruction-tuning 0.2589 0.188

Medical Expert Instruction-tuning 0.3655 0.584

Table 6: Task performance across various training strategies.

1. Using TinyLlama, as the expert models, fol-
lowed by instruction-tuning the MoFE model.

2. Using TinyLlama as the expert models, post-
pretraining, and then instruction-tuning the
MoFE model.

3. Using the medical expert model, as the
expert models, followed by instruction-tuning
the MoFE model.

For evaluation, we use two medical tasks:
MedMCQA and PubMedQA (Jin et al., 2019). Pub-
MedQA, derived from PubMed abstracts2, serves
as an additional benchmark since the medical
expert models were trained with MedMCQA
data, which could inflate performance by resem-
bling additional training epochs. To ensure a
fairer comparison, we evaluate the models on Pub-
MedQA, an unseen dataset, to test medical knowl-
edge.

We compare MoFE models using TinyLlama
as expert models under both instruction-tuning
alone and post-pretraining followed by instruction-
tuning, but only test the MoFE model with
medical expert models under instruction-tuning.
This is because the medical expert models are
already instruction-tuned, and post-pretraining an
instruction-tuned model leads to catastrophic for-
getting, reducing performance, as noted by Luo
et al. (2024).

Table 6 shows that performance on both MedM-
CQA and PubMedQA is worst with the second
strategy, involving post-pretraining followed by
instruction-tuning with TinyLlama as expert mod-
els. The best strategies differ: for MedMCQA,
the third strategy, using medical expert models
followed by instruction-tuning, is optimal, while
for PubMedQA, the first strategy, using TinyLlama
as expert models and instruction-tuning without
post-pretraining, yields the best performance.

The superior performance of the third strat-
egy for MedMCQA is expected, as the medical
expert model is TinyLlama instruction-tuned with

2https://pubmed.ncbi.nlm.nih.gov/

MedMCQA data resulting in the same effect of un-
dergoing an additional training epoch. Since Pub-
MedQA is a completely unseen task, it serves as a
more objective performance indicator. The results
suggest that the first strategy, using TinyLlama as
expert models and instruction-tuning the MoFE
model directly, is the optimal approach.

The results indicate that post-pretraining signifi-
cantly decreases performance on both tasks, which
can be explained by the characteristics of the MoFE
architecture. Integrating new knowledge effec-
tively requires updating all layers of the model,
but FFN blocks remain frozen in MoFE. Given
that FFN layers constitute a significant portion of
the model’s parameters, they likely play a crucial
role in knowledge integration.Language models pri-
marily acquire knowledge during pretraining, with
instruction-tuning focused on adapting to specific
task formats rather than acquiring new knowledge
(Zhao et al., 2023). Therefore, post-pretraining
a model with frozen FFN layers, where only the
parameters before these layers are updated, may
result in misalignment among the various model
layers. This misalignment could possibly explain
the observed decrease in performance when using
post-pretraining.

5 Conclusion

Given the enormous computational costs of train-
ing and serving LLMs, we propose MoFE as an
efficient model training and scaling strategy. While
there is a trade-off between efficiency and perfor-
mance, MoFE significantly reduces the size of train-
able parameters and training time, demonstrating
superiority over other PEFT methods in both train-
ing time and task performance. Furthermore, the
transfer of domain expertise from the constituent
models enables the creation of multi-domain profi-
cient models by leveraging existing domain experts.
We believe MoFE presents a viable option for
resource-constrained environments in real-world
scenarios.
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Limitation

The base and expert models used in this work is
relatively small, with only 1.1 billion parameters.
For lightweight experiments, we utilized a limited
amount of data from a few domains. Consequently,
the experimental results cannot be fully generalized
to larger models or all domains.

Ethics Statement

Given that computational costs entail not only mon-
etary issues but also environmental concerns, we
strive to provide as much information as possible
to facilitate the reproduction of our experiments.
Further, although we refer to the models instruction-
tuned with medical data and finance data as medi-
cal expert model and finance expert model respec-
tively, these names are for simplicity in reference
only. These models should not be considered ac-
tual domain experts capable of providing clinical
or financial advice.
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A Does the number of frozen FFN blocks
affect performance?

FFN Blocks MedMCQAFrozen Updated

4 0 0.3529
3 1 0.3407
2 2 0.3524
1 3 0.3541
0 4 0.3705

Table 7: The effect of the number of frozen FFN blocks
on task performance.
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To examine how performance shifts with varying
numbers of frozen FFN blocks, we use a medium-
sized model with four expert models. TinyLlama
serves as the base and expert models, as in previ-
ous experiments. Five versions of the model are
constructed: one with all expert models frozen, one
with three frozen, one with two frozen, one with
one frozen, and one with none frozen. Each model
is instruction-tuned on the MedMCQA training
dataset and evaluated on its test set.

As shown in Table 7, the fully updated model
demonstrated the best performance. However, the
results reveal that performance does not consis-
tently correlate with the number of frozen FFN
blocks as expected.
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