
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Industry Track), pages 329–339

April 30, 2025 ©2025 Association for Computational Linguistics

Octopus: On-device language model for function calling of software APIs

Wei Chen†*, Zhiyuan Li†, Mingyuan Ma†

Nexa AI
alexchen@nexa.ai, zack@nexa.ai, mingyua_ma@nexa.ai

Abstract

Large Language Models (LLMs) are pivotal
for advanced text processing and generation.
This study presents a framework to train a se-
ries of on-device LLMs optimized for invok-
ing software APIs. Using a curated dataset
of 30,000 API function calls from software
documentation, we fine-tune LLMs with 2B,
3B, and 7B parameters to enhance their pro-
ficiency in API interactions. Our approach
improves the understanding of API structures
and syntax, leading to significantly better ac-
curacy in API function calls. We also propose
a conditional masking technique to enforce
correct output formats, significantly reducing
generation format errors while maintaining
inference speed. This technique is specifi-
cally tailored for API tasks. Our fine-tuned
model, Octopus, outperforms GPT-4 in API
calling tasks, showcasing advancements in au-
tomated software development and API inte-
gration. The model checkpoints are publicly
available.

1 Introduction

The advent of Large Language Models (LLMs)
has revolutionized artificial intelligence, enabling
transformative applications in natural language
processing and specialized domains such as math-
ematics (Imani et al., 2023; He-Yueya et al., 2023),
healthcare (Jo et al., 2023; Thirunavukarasu et al.,
2023), and legal analysis (Cui et al., 2023; Fei
et al., 2023). Despite their advancements, LLMs
face challenges in adapting to real-time updates
and performing domain-specific tasks like im-
age/video editing (Fu et al., 2023) or complex
tax filings. Integrating LLMs with external APIs
offers a solution, enabling real-time access to spe-
cialized resources and fostering innovations such
as code interpreters (Vaithilingam et al., 2022;
Chen et al., 2021). Research on ToolAlpaca (Tang

*Corresponding author, † equal contribution

et al., 2023) and NexusRaven (Srinivasan et al.,
2023) demonstrates the potential of open-source
LLMs in function-calling scenarios, extending
their utility to IoT, edge computing, and auto-
mated software development.

Enhancing LLM integration with APIs requires
balancing large-scale model capabilities and effi-
ciency. While large models like GPT-4 (Brown
et al., 2020; Wu et al., 2023; Chen et al., 2024)
are powerful, they are computationally expensive
for tasks using only a subset of APIs. Smaller,
task-specific LLMs offer a cost-effective alterna-
tive (Shen et al., 2024b; Pallagani et al., 2024; Xu
et al., 2024) but risk increased errors or "halluci-
nations" (Yao et al., 2023; Ji et al., 2023). Precise
output formatting is critical for software reliabil-
ity (Jiang et al., 2023), emphasizing the need for
innovations that combine accuracy, efficiency, and
reliability.

To address these challenges, we propose a
framework for training and inference tailored
to task-specific LLMs. Using a curated dataset
of over 30,000 APIs from Rapid API Hub (rap,
2024), we employ curriculum learning (Liu et al.,
2024) to improve precision in selecting appro-
priate API functions. Fine-tuning smaller mod-
els like Codellama7B (Roziere et al., 2023),
Google’s Gemma (Gemma Team, Google Deep-
Mind, 2023), and Stable Code 3B (Pinnaparaju
et al., 2023) demonstrates superior performance
over GPT-4 on specific benchmarks. The frame-
work also supports deployment on resource-
constrained platforms such as mobile devices
(team, 2023), ensuring broad applicability.

To ensure output consistency, we introduce a
conditional masking technique tailored for API
function calls. Unlike generic constrained decod-
ing, this approach dynamically restricts token pre-
dictions to valid options based on the API schema,
such as permissible parameter types and argument
names. This guarantees syntactic and semantic

329

correctness, significantly reducing errors while
preserving inference speed. Mathematical vali-
dation further demonstrates consistent improve-
ments in accuracy, making this technique reliable
for diverse real-world API interactions.

In summary, this paper makes the following key
contributions:

• Task-Specific Framework: We introduce a
training and data-cleaning framework, with
a high-quality dataset of over 30,000 APIs
from RapidAPI Hub, to fine-tune smaller,
task-oriented LLMs for API function calls.
This reduces operational costs while main-
taining high accuracy, enabling on-device
inference for resource-constrained environ-
ments like mobile devices and IoT systems.

• Conditional Masking Technique: A tai-
lored technique ensuring syntactic and se-
mantic correctness in API calls, addressing
formatting errors and hallucinations. It dy-
namically enforces schema adherence with-
out compromising inference speed.

• Superior Performance and Model Check-
point: Leveraging curriculum learning and
innovative dataset engineering, our models
surpass GPT-4 in API function accuracy. Our
Octopus series models are publicly available.

These contributions collectively advance the
field of automated software development by ad-
dressing critical inefficiencies in LLM deploy-
ment for API interactions, providing open re-
sources for the community, and setting a foun-
dation for further research in task-specific LLM
optimization and application.

2 Related Work

Enhancing LLMs with Tools The integration
of external tools into Large Language Models
(LLMs) like GPT-4, Alpaca, and Llama signif-
icantly enhances their capabilities. Early efforts
focused on model-specific fine-tuning (Lin et al.,
2024; Hu et al., 2023; Schick et al., 2024; Zhang
et al., 2023b), which faced challenges in flexibil-
ity. The adoption of prompt-based approaches
broadened accessibility, enabling models to use
code interpreters and retrieval frameworks (Zhou
et al., 2023; Zhang et al., 2023a). Developments
in simulated tool environments (Shen et al., 2024a;

Du et al., 2024; Xi et al., 2023) and API interac-
tion frameworks (Li et al., 2023) have further ex-
panded tool capabilities. Additionally, advanced
reasoning strategies (Valmeekam et al., 2022; Hao
et al., 2023; Lewkowycz et al., 2022) improve
the efficiency of solving complex tasks. Some
existing works demonstrate some solutions. For
example, language models can teach themselves
to use external tools via simple APIs and achieve
the best of both worlds(Schick et al., 2023).

Dataset Format Optimizing datasets
(Zhuang et al., 2024; Kong et al., 2023) is critical
for fine-tuning LLMs. Multi-stage refinements
with models like GPT-4 and Alpaca iteratively
improve prompts and develop advanced chain-
of-thought processes (Wang et al., 2023; Zhang
et al., 2022; Shridhar et al., 2023; Zheng et al.,
2023a; Wei et al., 2022). These refinements
significantly enhance function-calling accuracy
and establish benchmarks for dataset quality
and model training, shifting the focus toward
improved output precision.

Robustness in LLM Generation Unlike arti-
cle generation, software applications require strict
adherence to structured output formats, such as
JSON (Zheng et al., 2023b). Format consistency
issues in LLM outputs (Vaswani et al., 2017; Ack-
erman and Cybenko, 2023) have driven research
into rigid format enforcement. Frameworks like
LangChain (Harrison, 2022) introduce parsers for
formats like YAML, JSON, CSV, but such tools
often fail for complex cases like function call re-
sponses, where precise argument and schema ad-
herence is critical.

Constrained Decoding The use of con-
strained decoding techniques has been explored
to address format consistency in LLM outputs.
Grammar-constrained decoding (Geng et al.,
2023) enforces grammar rules, finite-state ma-
chines (FSM) (Zhang et al., 2024) ensure syn-
tax compliance, and monitor-guided decoding
(Agrawal et al., 2023) restricts vocabulary to pre-
defined subsets. While effective for structured text
generation, these methods struggle with API func-
tion calls due to their inability to capture nuanced
API-specific requirements. Grammar-constrained
decoding fails to adapt to diverse schemas, FSMs
lack scalability for large argument spaces, and
monitor-guided decoding cannot enforce struc-
tural or type-specific constraints.

Our proposed conditional masking technique
overcomes these limitations by dynamically adapt-

330

ing token predictions to API schemas. It integrates
context-sensitive constraints at runtime, enforcing
syntactic and semantic correctness to ensure out-
puts align with API specifications. This tailored
approach addresses the gaps in existing methods,
making it uniquely suited for reliable and accurate
API function generation.

3 Methodology

In this section, we outline our approach to dataset
collection, preparation, and model development,
detailing the steps taken to optimize the training
process for API function calling tasks. We in-
troduce the workflow designed to curate, format,
and refine the dataset to ensure its suitability for
effective model fine-tuning. Furthermore, we de-
scribe the architecture and training process of our
model, Octopus, including the innovative tech-
niques applied to enhance inference accuracy and
efficiency.

3.1 Dataset Collection and Refinement

The initial dataset was sourced from RapidAPI
Hub, a prominent repository with extensive and
diverse API documentation, selected for its large
developer base and relevance to real-world appli-
cations. We focused on approximately 30,000
frequently utilized APIs to ensure broad applica-
bility.

The dataset preparation process involved two
main stages. In the initial collection phase, we
systematically gathered raw API documentation,
capturing function names, descriptions, argument
types, and return formats. This provided an unpro-
cessed view of widely used APIs. The refinement
phase focused on optimizing the dataset for train-
ing through standardization, validation, and error
correction. Formats across APIs were standard-
ized for consistency in naming conventions and
schema representations. Large language models
such as GPT-3.5 and CodeLlama 70B were em-
ployed to fill in missing details, validate accuracy,
and align descriptions with Google Python Style
guidelines. Errors, duplicates, and overly verbose
descriptions were corrected to create a concise
and informative dataset.

This structured approach ensured high-quality
data inputs, critical for the effective fine-tuning of
the Octopus model.

3.2 Single API Data Preprocess
From our detailed exploration of RapidHub’s API
documentation, we derived a comprehensive un-
derstanding of how API usage examples are struc-
tured and utilized. The preprocessing approach
involves meticulously extracting API usage exam-
ples, which include the API’s name, description,
argument names, and their respective descriptions,
and formatting this information in JSON. This data
is then reorganized using OPENAI GPT-3.5 and
CodeLlama 70B models to align with standard-
ized organizational guidelines.

Function names are refined based on their de-
scriptions to ensure they are concise and informa-
tive, and arguments’ names and descriptions are
carefully captured. To mitigate potential inaccu-
racies (“hallucinations”) from smaller LLMs, we
adopt the Python coding format. This strategic
decision leverages the inherent code reasoning ca-
pabilities of models such as CodeLlama7B and
StableCode3B, which are pretrained on extensive
code datasets. This process streamlines API in-
formation for enhanced usability while leveraging
advanced AI models to present the information
in a structured and accessible manner. By pri-
oritizing function descriptions for renaming and
thoroughly detailing argument names and descrip-
tions, we ensure that essential elements of API
usage are conveyed effectively, enabling develop-
ers to integrate these APIs seamlessly into their
projects.

Example Converted Function:

def get_flight_details(flight_id):
"""
Get detailed information on
specific flights, including real-
time tracking,

departure/arrival times, flight
path, and status insights.

Args:
flight_id (string): The flight_id
represents the ID of a flight.

"""

In our methodology, we deliberately excluded
the function body from the final dataset compila-
tion. Through a meticulous selection process, we
aggregated approximately 30,000 APIs, employ-
ing OPENAI GPT-4 for a comprehensive examina-
tion to identify and remove APIs with deficiencies,
such as missing arguments or inconsistencies be-
tween function descriptions and their parameters.

331

This stringent selection criterion was pivotal in as-
suring the dataset’s quality. Each API underwent
this rigorous scrutiny, culminating in the compila-
tion of Dataset A, which serves as the foundation
for subsequent data processing.

3.3 Dataset Refinement
Dataset Refinement To enhance the decision-
making capabilities of Large Language Models
(LLMs) for real-world API usage, we propose a
sophisticated dataset construction approach. This
process is central to our study, as it ensures the
model’s ability to effectively handle diverse and
challenging scenarios. Our methodology begins
by integrating various functions, intentionally in-
corporating irrelevant ones to create a complex
training environment for the LLM. Inspired by
curriculum learning, we gradually introduce hard
negative samples, incrementally increasing the dif-
ficulty of selecting the most relevant function. Fig-
ure 1 illustrates the detailed pipeline for compiling
the dataset. Below, we outline the key techniques
employed in this process.

1. Negative Samples: To improve the model’s
reasoning capabilities and applicability, we
incorporate both positive and negative exam-
ples into the dataset. The ratio of positive to
negative samples is represented as M

N in Fig-
ure 1, where we set M and N both equal to 1.
This balance ensures a robust training setup,
enabling the model to distinguish between
correct and incorrect API calls effectively.

2. Similar Function Clustering: To further
challenge the model, we introduce semanti-
cally similar functions into the training data.
For each data point, three similar functions
are selected based on their vector embed-
dings, computed from function descriptions.
Milvus is used to facilitate this similarity
search, and functions ranked between 5 and
10 by similarity scores are chosen to avoid re-
dundancy while maintaining diversity. This
approach cultivates a model capable of differ-
entiating between closely related functions
in real-world applications.

3. GPT-4 Generated Queries: High-quality
queries are essential for effective training.
Positive queries are generated using GPT-4,
ensuring each query is solvable by a single
API. To further enhance training, we include

Chain of Thought (CoT) reasoning for these
queries. CoT annotations have been shown to
significantly improve model reasoning abili-
ties and performance (Srinivasan et al., 2023).
This step ensures that the training data not
only covers diverse scenarios but also sup-
ports advanced reasoning.

4. GPT-4 Verification: While GPT-4 is highly
capable, its outputs are not immune to er-
rors. To address this, we implemented a
self-verification workflow using GPT-4 to
identify and rectify inaccuracies. After com-
piling the initial dataset (Dataset A), GPT-
4 was employed to meticulously verify the
data, eliminating approximately 1,000 data
points that failed to meet our stringent qual-
ity standards. This rigorous process resulted
in Dataset B, a highly optimized dataset for
training.

One data point
from dataset A

Data point with
multiple similar

functions, shuffle
the order

Dataset A

Sample the query
that can’t be

answered; add
irrelevant function

body

GPT-4

Dataset B
Sample the query

that can be
answered; generate
response and chain

of thoughts

GPT-4

x N times

x M times

semantic search

GPT-4 verification

Figure 1: Refining Dataset A into Dataset B through a
rigorous workflow. This process involves three critical
steps: generating positive queries solvable by specific
APIs and corresponding Chain of Thoughts (CoT);
introducing unsolvable queries and augmenting them
with irrelevant function bodies; and incorporating se-
mantically similar functions using vector embeddings.
Following GPT-4’s verification, Dataset B emerges as
an optimized dataset for training, designed to enhance
model performance significantly.

Using this methodology, we compiled a ro-
bust training dataset consisting of approximately
150,000 data points. Each API is associated with
five positive queries it can resolve. To provide
a comprehensive understanding of the dataset, a
sample of the complete dataset is included in the
Appendix (B.1), showcasing its detailed structure
and composition.

3.4 Octopus
To validate the efficacy of our framework, we fine-
tuned four open-source models: CodeLlama7B,

332

Google Gemma 2B & 7B, and Stable Code LM
3B. A standardized training template, detailed in
Appendix (B.1), was applied across all models.
We employed LoRA with 8-bit quantization and
allocated GPU hours on A100 80GB as follows:
90h for CodeLlama7B and Google Gemma 7B,
30h for Google Gemma 2B, and 60h for Stable
Code LM 3B. The learning rate was set at 5×10−5

with a linear scheduler for optimization. During
inference, user queries trigger function retrieval
and execution by mapping generated functions
and arguments to corresponding APIs, ensuring
accurate responses.

Experiments with different LoRA setups
revealed that the optimal configuration uses
a LoRA rank of 16 applied to the layers
"q_proj", "v_proj", "o_proj", "up_proj",
"down_proj". Training followed a curriculum
learning strategy, progressively introducing data
points with more similar examples. Training and
validation losses for selected models are shown in
Figure (2).

0 200 400 600 800
Step

0

1

2

3

4

L
os

s

(a) Training Loss

Gemma 2B

Stable Code 3B

Gemma 7B

Codellama 7B

0 200 400 600 800
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L
os

s

(b) Validation Loss

Gemma 2B

Stable Code 3B

Gemma 7B

Codellama 7B

Figure 2: The training and validation loss for selected
pretrained models

3.5 Inference using conditional mask
The utilization of smaller-parameter Large Lan-
guage Models (LLMs) has a pivotal challenge:
a noticeable decrement in robustness when gen-
erating outputs. This challenge is also observed
in our model, which necessitates the need to en-
force the response with precise function names
along with their corresponding arguments. The ex-
pected output format demands that arguments be
encapsulated within parentheses, function names
align with a pre-defined repository, and argument
values conform to their designated types. Dis-
crepancies, such as typographical errors in func-
tion names or misalignment in argument types,
critically undermine the integrity of the output,
rendering it susceptible to errors. For instance,
both in GPT-4 and our model, deviations in the

function name—whether through misspelling or
elongated expressions—can lead to unintended
corrections that fail to map back to the original
function names, thereby distorting the intended
output. The original LLM, denoted as π, genera-
tion process to sample the next token is

P (xt+1|x1:t) = P (xt+1|x1:t;π),
xt+1 = argmaxP (xt+1|x1:t;π)

(1)

where x1:t is all the current tokens, with the se-
quence length as t, and xt+1 is the next token to be
sampled. What we do here is to introduce another
dynamic mask dependent on x1:t so that

xt+1 = argmax [P (xt+1|x1:t;π)⊙mask(x1:t)] .
(2)

In constructing the dynamic mask, we desig-
nate all tokens, which are not aligned with correct
format, to be masked by assigning a value of 0
to their respective positions, and a value of 1 to
all other positions. For example, if we already
know the next token represents integers, we will
only unmask the tokens that are used for integers.
Therefore, the formulation of an accurate mask
is paramount for achieving the desired outcome.
In this context, we delineate several methodolo-
gies that were investigated for the derivation of
the mask.

• enum data type Function names are usu-
ally already known, and will not change dur-
ing inference. We can treat them as enumer-
able data variables. To efficiently manage
these names, a Trie tree can be constructed,
facilitating the retrieval of the mask with a
time complexity of O(D), where D denotes
the Trie tree’s depth, equivalent to the max-
imum length of a function name, which in
our case is approximately 20. This result in
the constant time complexity. As an alterna-
tive approach, storing all prefixes of poten-
tial function names within a dictionary could
further reduce the complexity to O(1). The
implementation of the Trie class is provided
in the Appendix (B.2).

• string, float, dict, int type Regular expres-
sions can be employed to analyze subsequent
tokens and generate the conditional mask.

Therefore, we can confirm that the output result
is free from formatting errors. Our experimental

333

findings indicate that the application of the condi-
tional mask significantly enhances the robustness
of the Large Language Model (LLM) in the con-
text of function calls.

4 LLM Evaluation for Function Calling

We evaluated the Octopus model’s ability to inter-
pret and execute API function calls, comparing its
performance to GPT-4 and GPT-3.5-turbo. The
evaluation focused on function name recognition
and parameter generation, with and without the
use of conditional masking. The test set contains
a vast diversity of APIs in the real world.

4.1 Evaluation Dataset and Benchmark

To benchmark function calls for commonly used
APIs, we constructed an evaluation dataset and
sampling queries tailored to these APIs. Queries
were generated using the same prompt template as
training (Appendix B.1). Solvable queries, requir-
ing a single API to resolve, were balanced with
unsolvable queries in a 1:1 ratio to test model ro-
bustness against ambiguous inputs. Human anno-
tations ensured accurate ground truth, and minor
format discrepancies (e.g., JSON issues) were over-
looked for models not fine-tuned on this dataset
to focus on semantic correctness.

G
PT-3

.5

O
ct

op
us

-c
od

ell
am

a7
B

O
ct

op
us

-g
em

m
a7

B

O
ct

op
us

-s
ta

bl
ec

od
e3

B

O
ct

op
us

-g
em

m
a2

B

G
PT-4

0

20

40

60

80

100

A
cc

u
ra

cy
,

%

50

92 93 93 93
96

Function call accuracy without conditional mask

Figure 3: Accuracy comparison between GPT-3.5,
GPT-4, and Octopus models without conditional mask-
ing.

4.2 Without Conditional Masking

In the initial evaluation, responses were gener-
ated without conditional masking. Greedy decod-
ing was used across all models to prioritize preci-
sion in function name and argument selection. As

shown in Figure 3, GPT-4 achieved the highest ac-
curacy among pre-trained models. However, it ex-
hibited common issues such as correcting typos in
function names (e.g., send_emil to send_email),
which deviated from input queries, and generating
invalid parameters like Australian instead of a
valid country name. While GPT-3.5 and GPT-4
performed well in function name recognition, their
accuracy declined when generating contextually
appropriate parameters.

4.3 With Conditional Masking

To address these challenges, we applied condi-
tional masking during inference for Octopus mod-
els. This technique constrained token predictions
to align with API schema requirements, such as
valid parameter types and enumerations. As il-
lustrated in Figure 4, conditional masking sig-
nificantly improved parameter generation accu-
racy, particularly for structured inputs like country
names. By enforcing schema adherence, the Octo-
pus models avoided errors observed in pre-trained
models. However, since GPT-3.5 and GPT-4 APIs
do not expose logits, conditional masking could
not be applied, leaving their metrics unchanged.
With this enhancement, Octopus variants matched
or surpassed GPT-4’s accuracy, demonstrating
the efficacy of conditional masking in improving
model reliability.

G
PT-3

.5

O
ct

op
us

-c
od

ell
am

a7
B

O
ct

op
us

-g
em

m
a7

B

O
ct

op
us

-s
ta

bl
ec

od
e3

B

O
ct

op
us

-g
em

m
a2

B

G
PT-4

0

20

40

60

80

100

A
cc

u
ra

cy
,

%

50

97 97
95 94

96

Function call accuracy with conditional mask

Figure 4: Accuracy comparison between GPT-3.5,
GPT-4, and Octopus models with conditional masking.

4.4 Discussion and Key Insights

GPT-4 demonstrated high accuracy in function
name recognition but lacked schema constraints,
leading to frequent parameter errors. Conditional
masking significantly enhanced Octopus models,

334

ensuring robust parameter generation for real-
world API tasks. Without masking, parameter
errors were prevalent, particularly for ambiguous
or complex queries. These findings underscore
the importance of schema-aware mechanisms like
conditional masking for improving LLM perfor-
mance in structured tasks.

5 Conclusion

This study introduces a novel framework for train-
ing large language models on practical software
APIs and evaluates their performance in API call-
ing tasks, surpassing GPT-4 in specific scenarios.
Our approach includes a refined dataset prepara-
tion methodology, leveraging negative sampling
and curriculum learning to enhance model perfor-
mance. Additionally, we propose a conditional
masking technique to address mismatched out-
put formats, significantly improving accuracy and
robustness in API function generation.

References
2024. Rapidapi hub. Accessed on February 29, 2024.

Joshua Ackerman and George Cybenko. 2023. Large
language models for fuzzing parsers (registered
report). In Proceedings of the 2nd International
Fuzzing Workshop, pages 31–38.

Lakshya A Agrawal, Aditya Kanade, Navin Goyal,
Shuvendu K. Lahiri, and Sriram K. Rajamani. 2023.
Guiding language models of code with global con-
text using monitors. Preprint, arXiv:2306.10763.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information process-
ing systems, 33:1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf 3 Girish
Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles

Brundage, Mira Murati, Katie Mayer, Peter Welin-
der, Bob McGrew, Dario Amodei, Sam McCan-
dlish, Ilya Sutskever, and Wojciech Zaremba. 2021.
Evaluating large language models trained on code.
arXiv:2107.03374.

Wei Chen, Zhiyuan Li, and Shuo Xin. 2024. Omnivlm:
A token-compressed, sub-billion-parameter vision-
language model for efficient on-device inference.
arXiv preprint arXiv:2412.11475.

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and
Li Yuan. 2023. Chatlaw: Open-source legal large
language model with integrated external knowledge
bases. arXiv preprint arXiv:2306.16092.

Yu Du, Fangyun Wei, and Hongyang Zhang.
2024. Anytool: Self-reflective, hierarchical
agents for large-scale api calls. arXiv preprint
arXiv:2402.04253.

Zhiwei Fei, Xiaoyu Shen, Dawei Zhu, Fengzhe Zhou,
Zhuo Han, Songyang Zhang, Kai Chen, Zongwen
Shen, and Jidong Ge. 2023. Lawbench: Bench-
marking legal knowledge of large language models.
arXiv preprint arXiv:2309.16289.

Tsu-Jui Fu, Wenze Hu, Xianzhi Du, William Yang
Wang, Yinfei Yang, and Zhe Gan. 2023. Guid-
ing instruction-based image editing via multi-
modal large language models. arXiv preprint
arXiv:2309.17102.

Gemma Team, Google DeepMind. 2023. Gemma:
Open models based on gemini research and technol-
ogy.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and
Robert West. 2023. Grammar-constrained decod-
ing for structured NLP tasks without finetuning. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
10932–10952, Singapore. Association for Computa-
tional Linguistics.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Chase Harrison. 2022. Langchain. Accessed on Febru-
ary 29, 2024.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and
Noah D Goodman. 2023. Solving math word prob-
lems by combining language models with symbolic
solvers. arXiv preprint arXiv:2304.09102.

Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-
Peng Lim, Roy Ka-Wei Lee, Lidong Bing, and Sou-
janya Poria. 2023. Llm-adapters: An adapter family
for parameter-efficient fine-tuning of large language
models. arXiv preprint arXiv:2304.01933.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398.

335

https://rapidapi.com/hub
https://arxiv.org/abs/2306.10763
https://arxiv.org/abs/2306.10763
https://goo.gle/GemmaReport
https://goo.gle/GemmaReport
https://goo.gle/GemmaReport
https://doi.org/10.18653/v1/2023.emnlp-main.674
https://doi.org/10.18653/v1/2023.emnlp-main.674
https://www.langchain.com/

Ziwei Ji, YU Tiezheng, Yan Xu, Nayeon Lee, Etsuko
Ishii, and Pascale Fung. 2023. Towards mitigating
llm hallucination via self reflection. In The 2023
Conference on Empirical Methods in Natural Lan-
guage Processing.

Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen
Li, Junjie Huang, Yintong Huo, Pinjia He, Jiazhen
Gu, and Michael R Lyu. 2023. Llmparser: A
llm-based log parsing framework. arXiv preprint
arXiv:2310.01796.

Eunkyung Jo, Daniel A Epstein, Hyunhoon Jung, and
Young-Ho Kim. 2023. Understanding the bene-
fits and challenges of deploying conversational ai
leveraging large language models for public health
intervention. In Proceedings of the 2023 CHI Con-
ference on Human Factors in Computing Systems,
pages 1–16.

Yilun Kong, Jingqing Ruan, Yihong Chen, Bin Zhang,
Tianpeng Bao, Shiwei Shi, Guoqing Du, Xiaoru Hu,
Hangyu Mao, Ziyue Li, et al. 2023. Tptu-v2: Boost-
ing task planning and tool usage of large language
model-based agents in real-world systems. arXiv
preprint arXiv:2311.11315.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy
Gur-Ari, and Vedant Misra. 2022. Solving quan-
titative reasoning problems with language models.
Preprint, arXiv:2206.14858.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehen-
sive benchmark for tool-augmented llms. In The
2023 Conference on Empirical Methods in Natural
Language Processing.

Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli
Feng, Yinwei Wei, and Tat-Seng Chua. 2024. Data-
efficient fine-tuning for llm-based recommendation.
arXiv preprint arXiv:2401.17197.

Yinpeng Liu, Jiawei Liu, Xiang Shi, Qikai Cheng, and
Wei Lu. 2024. Let’s learn step by step: Enhancing
in-context learning ability with curriculum learning.
arXiv preprint arXiv:2402.10738.

Vishal Pallagani, Kaushik Roy, Bharath Muppasani,
Francesco Fabiano, Andrea Loreggia, Keerthiram
Murugesan, Biplav Srivastava, Francesca Rossi,
Lior Horesh, and Amit Sheth. 2024. On the
prospects of incorporating large language models
(llms) in automated planning and scheduling (aps).
arXiv preprint arXiv:2401.02500.

Nikhil Pinnaparaju, Reshinth Adithyan, Duy Phung,
Jonathan Tow, James Baicoianu, and Nathan Cooper.
2023. Stable code 3b.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi

Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al.
2023. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì,
Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas
Scialom. 2024. Toolformer: Language models can
teach themselves to use tools. Advances in Neural
Information Processing Systems, 36.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì,
Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. 2023. Tool-
former: Language models can teach themselves to
use tools. Preprint, arXiv:2302.04761.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming
Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei
Huang. 2024a. Small llms are weak tool learners: A
multi-llm agent. arXiv preprint arXiv:2401.07324.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2024b. Hugging-
gpt: Solving ai tasks with chatgpt and its friends
in hugging face. Advances in Neural Information
Processing Systems, 36.

Kumar Shridhar, Koustuv Sinha, Andrew Cohen,
Tianlu Wang, Ping Yu, Ram Pasunuru, Mrinmaya
Sachan, Jason Weston, and Asli Celikyilmaz. 2023.
The art of llm refinement: Ask, refine, and trust.
arXiv preprint arXiv:2311.07961.

Venkat Krishna Srinivasan, Zhen Dong, Banghua Zhu,
Brian Yu, Damon Mosk-Aoyama, Kurt Keutzer,
Jiantao Jiao, and Jian Zhang. 2023. Nexusraven: a
commercially-permissive language model for func-
tion calling. In NeurIPS 2023 Foundation Models
for Decision Making Workshop.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases. arXiv preprint arXiv:2306.05301.

MLC team. 2023. MLC-LLM.

Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. 2023. Large language
models in medicine. Nature medicine, 29(8):1930–
1940.

Priyan Vaithilingam, Tianyi Zhang, and Elena L Glass-
man. 2022. Expectation vs. experience: Evaluating
the usability of code generation tools powered by
large language models. In Chi conference on human
factors in computing systems extended abstracts,
pages 1–7.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedha-
ran, and Subbarao Kambhampati. 2022. Large lan-
guage models still can’t plan (a benchmark for llms
on planning and reasoning about change). arXiv
preprint arXiv:2206.10498.

336

https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://huggingface.co/stabilityai/stable-code-3b
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://github.com/mlc-ai/mlc-llm

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30.

Hongru Wang, Rui Wang, Fei Mi, Zezhong Wang,
Ruifeng Xu, and Kam-Fai Wong. 2023. Chain-
of-thought prompting for responding to in-depth
dialogue questions with llm. arXiv preprint
arXiv:2305.11792.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits
reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–
24837.

Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li,
Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng,
Qingyun Wu, and Chi Wang. 2023. An empirical
study on challenging math problem solving with
gpt-4. Preprint, arXiv:2306.01337.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. 2023. The rise and
potential of large language model based agents: A
survey. arXiv preprint arXiv:2309.07864.

Jiajun Xu, Zhiyuan Li, Wei Chen, Qun Wang, Xin Gao,
Qi Cai, and Ziyuan Ling. 2024. On-device language
models: A comprehensive review. arXiv preprint
arXiv:2409.00088.

Jia-Yu Yao, Kun-Peng Ning, Zhen-Hui Liu, Mu-Nan
Ning, and Li Yuan. 2023. Llm lies: Hallucinations
are not bugs, but features as adversarial examples.
arXiv preprint arXiv:2310.01469.

Kechi Zhang, Ge Li, Jia Li, Zhuo Li, and Zhi Jin.
2023a. Toolcoder: Teach code generation models
to use API search tools. CoRR, abs/2305.04032.

Kechi Zhang, Huangzhao Zhang, Ge Li, Jia Li, Zhuo
Li, and Zhi Jin. 2023b. Toolcoder: Teach code
generation models to use api search tools. arXiv
preprint arXiv:2305.04032.

Kexun Zhang, Hongqiao Chen, Lei Li, and
William Yang Wang. 2024. Tooldec: Syntax error-
free and generalizable tool use for LLMs via finite-
state decoding.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhen-
guo Li, and Yu Li. 2023a. Progressive-hint prompt-
ing improves reasoning in large language models.
Preprint, arXiv:2304.09797.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff
Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonza-
lez, et al. 2023b. Efficiently programming large
language models using sglang. arXiv preprint
arXiv:2312.07104.

Xuanhe Zhou, Guoliang Li, and Zhiyuan Liu. 2023.
Llm as dba. arXiv preprint arXiv:2308.05481.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2024. Toolqa: A dataset for llm
question answering with external tools. Advances
in Neural Information Processing Systems, 36.

A Mathematical Derivation

A.1 Impact of conditional masking on
inference performance

In this appendix, we examine the effect of ap-
plying a conditional mask during inference on a
causal language model’s accuracy and validation
loss. Consider the validation loss without masking
defined as:

Lnon-mask
val =

∑

i∈V
−yi log(ŷi), (3)

where V denotes the vocabulary set, and yi is
a binary indicator (0 or 1) if class label i is the
correct classification for the current observation.

Introducing a conditional mask allows us to
partition the vocabulary V into two subsets: V1,
containing indices not masked, and V2, containing
indices that are masked. Given that the true label
yi belongs to V1 during inference, and considering
that for all i,

−yi log(ŷi) > 0, (4)

the validation loss with masking can be ex-
pressed as:

Lmask
val =

∑

i∈V1

−yi log(ŷi) < Lnon-mask
val , (5)

indicating that the validation loss is reduced
when a conditional mask is applied during infer-
ence.

Accuracy, particularly precision in this context,
for the non-masked scenario is determined by the
alignment between the ground truth label’s index
and the index of the maximum value in the pre-
dicted distribution:

Precisionnon-mask = 1[argmaxi(yi) = argmaxi(ŷi)],
(6)

337

https://arxiv.org/abs/2306.01337
https://arxiv.org/abs/2306.01337
https://arxiv.org/abs/2306.01337
https://doi.org/10.48550/ARXIV.2305.04032
https://doi.org/10.48550/ARXIV.2305.04032
https://openreview.net/forum?id=27YiINkhw3
https://openreview.net/forum?id=27YiINkhw3
https://openreview.net/forum?id=27YiINkhw3
https://arxiv.org/abs/2304.09797
https://arxiv.org/abs/2304.09797

where 1[·] is the indicator function, returning 1 if
the condition is true, and 0 otherwise.

With conditional masking, the prediction ŷi is
constrained to V1, effectively reducing the search
space for argmaxi(ŷi) and increasing the likeli-
hood of matching argmaxi(yi), given that yi ∈ V1.
Hence,

Precisionmask ≥ Precisionnon-mask, (7)

demonstrating that conditional masking during
inference not only reduces validation loss but also
enhances the model’s precision by focusing on a
more relevant subset of the vocabulary.

B Dataset and code illustration

B.1 Dataset template

"""
You are an assistant, and you need to

call find appropriate functions
according to the query of the
users. Firstly, find the relevant
functions, then get the function
arguments by understanding the

user's query. The following
functions are available for you
to fetch further data to answer
user questions:

Function:

def no_relevant_function(user_query):
'''
Call this when no other provided
function can be called to answer
the user query.

Args:
user_query (str): The user_query
that cannot be answered by any
other function calls.

'''

def youtube_downloader(videourl):
'''
Get direct video URL for youtube to

download and save for offline
viewing or sharing.

Args:

videourl (string): The URL of the
video being accessed as a string.

'''

def facebook_dl_link(url):
'''
Get downloadable link for facebook,

allowing convenient offline
viewing and sharing.

Args:
url (string): The URL string for
the function argument.

'''

def pinterest_video_dl_api(url):
'''
Get download feature for videos
from Pinterest enabling users to
save videos for offline viewing.

Args:
url (string): The URL string
represents the web address of the
resource being accessed.

'''

def insta_download_url(url):
'''
Get download access to Instagram
content by inputting the URL,
enabling users to save and view
content offline.

Args:
url (string): The URL string.

'''

Obtain download access for viewing a
recent Instagram post offline
using the URL https://www.
instagram.com/p/
CODEinstantiate123/

Response:insta_download_url('https://
www.instagram.com/p/
CODEinstantiate123/')<im_end>

Thought:To acquire download access
for Instagram content for offline

338

viewing, 'insta_download_url' is
called with the post's URL as

the argument, ensuring the
content specified by the URL is
fetched for download.

"""

B.2 Trie class to process the enum variable

class TrieNode:
def __init__(self) -> None:

self.children: Dict[str,
TrieNode] = {}

self.isEndOfWord: bool =
False

class Trie:
def __init__(self) -> None:

self.root: TrieNode =
TrieNode()

def insert(self, word: str) ->
None:

node = self.root
for char in word:

if char not in node.
children:

node.children[char] =
TrieNode()

node = node.children[char
]

node.isEndOfWord = True

def is_prefix(self, prefix: str)
-> bool:

node = self.root
for char in prefix:

if char not in node.
children:

return False
node = node.children[char

]
return True

def get_all_prefixes(self) ->
List[str]:

prefixes: List[str] = []
self._dfs(self.root, "",

prefixes)
return prefixes

def _dfs(self, node: TrieNode,
prefix: str, prefixes: List[str])
-> None:

if node != self.root:
prefixes.append(prefix)

for char, next_node in node.
children.items():

self._dfs(next_node,
prefix + char, prefixes)

def search(self, prefix: str,
include_prefix: bool = True) ->
List[str]:

node = self.root
for char in prefix:

if char not in node.
children:

return []
node = node.children[char

]

initial_string: str = prefix
if include_prefix else ""

return self.
_find_words_from_node(node,
initial_string)

def _find_words_from_node(self,
node: TrieNode, current_string:
str) -> List[str]:

words: List[str] = []
if node.isEndOfWord:

words.append(
current_string)

for char, next_node in node.
children.items():

words.extend(self.
_find_words_from_node(next_node,
current_string + char))

return words

339

