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Abstract

Semantic matching plays a pivotal role in e-
commerce by facilitating better product dis-
covery and driving sales within online stores.
Transformer models have proven exceptionally
effective in mapping queries to an embedding
space, positioning semantically related entities
(queries or products) in close proximity. De-
spite their effectiveness, the high computational
demands of large transformer models pose chal-
lenges for their deployment in real-time scenar-
ios. This paper presents RTSM, an advanced
knowledge distillation framework designed for
Real-Time Semantic Matching. Our approach
develops accurate, low-latency student models
by leveraging both soft labels from a teacher
model and ground truth generated from pair-
wise query-product and query-query signals.
These signals are sourced from direct audits,
synthetic examples created by LLMs, user inter-
action data, and taxonomy-based datasets, with
custom loss functions enhancing learning effi-
ciency. Experimental evaluations on internal
and external e-commerce datasets demonstrate
a 2-2.5% increase in ROC-AUC compared to
directly trained student models, outperform-
ing both the teacher model and state-of-the-art
knowledge distillation benchmarks.

1 Introduction

Precise real-time semantic matching, which in-
volves the identification of semantic similar en-
tities (e.g., queries or products) for a user query,
has become increasingly crucial for e-commerce
product search. In order to bridge the semantic
gap between the user query and the semantic sim-
ilar entities, this matching process typically per-
formed in two ways, as depicted in Figure 1: (1)
Semantic Query Reformulation (SQR), where a
user’s poorly constructed query (e.g., containing
code-mixed language or misspellings) is mapped
to semantically similar, well-structured queries that
produce a broader range of products. (2) Semantic
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Figure 1: A Semantic Matching Model that transforms
a user query into an n-dimensional representation in
real-time while precomputing embeddings for queries
and products offline, enabling the retrieval of relevant
products efficiently.

Product Retrieval (SPR), involving the retrieval
of matching direct products for the given user query.
In this paper, our focus lies in enhancing a real-
time representation model for both query-query
and query-product to enhance performance in both
SQR and SPR tasks.

State-of-the-art (SOTA) approaches for seman-
tic matching often utilize Siamese network archi-
tectures (Ranasinghe et al., 2019), which involve
two identical sub-networks that generate seman-
tic embeddings for query-query or query-product
pairs. Transformer-based models such as BERT
and DistilBERT (Devlin et al., 2018) (Sanh et al.,
2019) have achieved outstanding results in this con-
text. However, the high computational require-
ments of these models make them unsuitable for
large-scale e-commerce applications, where latency
under 5 milliseconds is paramount. On the other
hand, smaller encoder models like 3 layers MiniLM
(Wang et al., 2020), designed for low-latency sce-
narios, often underperform in terms of accuracy.
A widely adopted solution to bridge this trade-
off is knowledge distillation (KD) (Hinton et al.,
2015), where a smaller student model learns from
a larger teacher model using soft labels. While
this approach enhances the performance of student
models compared to direct training, the resulting
models frequently fall short of the teacher model’s
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accuracy and struggle to address its inherent er-
rors. Contributions. This work focuses on tack-
ling the challenge of real-time semantic matching
in e-commerce by proposing an efficient KD frame-
work, RTSM, which improves semantic matching
for both query-query and query-product tasks. Our
method leverages soft relevance labels from one or
more teacher models alongside ground truth, allow-
ing the student model to learn fine-grained insights
while also correcting errors in the teacher model.
Although e-commerce companies commonly uti-
lize expert teams to annotate query-product pairs,
ensuring the gradual accumulation of noise-free
data, obtaining human-annotated Query-Query (Q-
Q) data, crucial for SQR tasks, remains a significant
challenge. To address this challenge and enhance
semantic query reformulation (SQR) alongside se-
mantic product retrieval (SPR), we leverage Large
Language Models (LLMs) to generate precise Q-
Q data, and also incorporating various sources of
similarity and dissimilarity signals. Our key con-
tributions include:
1. We propose a novel KD algorithm RTSM for
real-time semantic matching that utilizes soft labels
from one or more teacher models and ground truth
to train an accurate student model. To meet the re-
quirements of SQR and SPR tasks, we incorporate
various similarity and dissimilarity signals, along
with synthetic data generated from LLMs, and use
customized loss functions to capture relevance and
similarity nuances efficiently.
2. Extensive experiments on both internal and ex-
ternal e-commerce datasets demonstrate a 2-2.5%
improvement in ROC-AUC for query-product rel-
evance tasks over directly trained student models.
The inclusion of LLM-generated query-query data
significantly enhances query reformulation perfor-
mance.
Note that our method can be used with any small
encoder based models which support fast inferenc-
ing constraints under real-time semantic matching,
and has wide applicability beyond product search.

2 Related Work

Semantic Matching: Transformer-based models,
such as BERT (Devlin et al., 2018), DistilBERT
(Sanh et al., 2019), have gained increasing popular-
ity with the advancement of NLP tasks. Sentence-
BERT (Reimers and Gurevych, 2019) develops
upon the BERT algorithm by integrating a siamese
network, typically employed for semantic match-

ing tasks. However, this requires significant com-
putational resources during inference, rendering it
unsuitable for real-time applications. In an effort
to reduce inference costs, several BERT variants
have been suggested, such as PowerBERT (Goyal
et al., 2020) and DistilBERT (Sanh et al., 2019).
However, despite these innovations, these models
are not optimal for real-time applications. MiniLM
(Wang et al., 2020), a transformer-based model
consisting of three layers, provides a less complex
option than BERT and its variants. It is better suited
for real-time applications due to its faster inference
time, though its performance suffers due to the lim-
ited number of layers.
In Appendix E, Figure 3 shows the architecture of
a teacher model, Siamese BERT (S-BERT), and a
low latency model Siamese MiniLM (S-MiniLM).

Knowledge Distillation (KD): Several efforts
have focused on knowledge distillation (KD) to
enhance the efficacy of student models (Agrawal
et al., 2025a), (Kim et al., 2021) (Agrawal et al.,
2025b). The concept was introduced by Hinton
et al. (Hinton et al., 2015), wherein the output
of a complex network serves as a soft target for
training a simpler network, facilitating the trans-
fer of knowledge from complex to simple models.
Consequently, KD has been widely adopted across
various learning tasks (Yim et al., 2017; Chen et al.,
2017). KD-Boost (Agrawal et al., 2023b) intro-
duces a KD technique for real-time semantic sourc-
ing, distilling BERT relevance knowledge into a
low-latency MiniLM model. However, its per-
formance on query reformulation (Agrawal et al.,
2023a) task suffers due to limited query-query data.
Advancements in LLMs offer potential for gener-
ating more query-query pairs. Our approach lever-
ages these LLMs to produce effective query-query
data, enhancing the real-time semantic matching
model further.

3 Problem Statement

Our main objective is to enhance the performance
of the student model in both semantic query re-
formulation (SQR) and semantic product retrieval
(SPR) tasks by creating effective representations
of queries and products within a shared semantic
space, all while substantially reducing inference
time. Achieving this versatility would enable us
to minimize the expenses associated with mainte-
nance and production.

We will now formally define the problem in
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terms of the four available input signals. (i) hu-
man annotated labels on query-product pairs:
Let DQP = {(qi, pi, yi)}i denote human annota-
tions on query-product pairs. Here, qi and pi rep-
resent the query and product entities respectively,
and yi represents the ground truth label belonging
to one of the three classes: (a) Strict relevant, (b)
Standard relevant, or (c) Irrelevant. (ii) Synthetic
Data from LLMs: LLMs have made synthetic
data generation more accessible, significantly re-
ducing the expertise and time required. With a
user query qi and a label yi (relevant or irrelevant)
provided through a prompt, we generate k reformu-
lations and construct pairs DLLMs

QQ = (qi, q
′
i, yi)i

(see Section 4.1.2). (iii) User Behavioral data:
Let Dpurchase

QP = {(qi, pi, ci)}i denote customer
purchase behavior data. Here, ci denotes the to-
tal number of purchases of product pi after fir-
ing query qi. While this data may be too noisy
for direct modeling of query-product matches, it
can be utilized to identify highly similar queries
based on the overlap in associated product pur-
chases. Specifically, we define the distribution over
query pairs as the Gram matrix corresponding to
the normalized query-product purchase counts and
identify query pairs DQQ+ = {(qi, q′

i)}i that ex-
hibit significantly higher occurrence relative to ran-
dom chance using Normalized Pointwise Mutual
Information (NPMI)-based criteria (refer to Section
4.1.3). (iv) Product Browse Taxonomy: Given
a set of queries and classifiers capable of map-
ping queries to a product browse taxonomy, one
can determine the taxonomy labels for all queries
and construct pairs DQQ− = {(qi, q′

i)}i with non-
matching labels, which can be regarded as hard-
negatives (refer to Section 4.1.4).

With these signals at hand, the aim is to train
an effective model M so that for any user query
q, product p, and another query q′, the similarity
of their corresponding embeddings M(q), M(p),
M(q′) closely aligns with the relationships con-
veyed in the input signals.

4 Proposed Method

Our solution strategy involves two primary phases.
Initially, we develop a teacher model considering
the diverse signals outlined in Section 4.1. Subse-
quently, we train an effective student model, which
not only replicates the soft labels of the teacher
model but also integrates the original ground truth
(Section 4.2). In Sec. 4.3, we elaborate on practical

adjustments aimed at enhancing model efficacy.

4.1 Teacher Training Objective
During the training of the teacher model, we utilize
human annotated query-product pairs DQP as well
as similar and dissimilar query-query pairs from
the DQQ+, DQQ− and DLLMs

QQ datasets. To estab-
lish a comprehensive framework for training the
teacher model, we define custom loss functions that
account for the complexity of the task at hand.

4.1.1 Ranking Loss
In this step, we will use the data (DQP ) generated
by human annotators who classify query-product
pairs into three classes: i) Strict Relevant, ii) Stan-
dard Relevant, and iii) Irrelevant. We design our
ranking loss (see eq 1) to leverage the ordinal na-
ture of these ground truth labels. This gradation of
relevance ensures that strictly relevant products are
prioritized above standard relevant ones.

LQP =
∑

(qi,pi,yi)∈DQP

(1yi=strict(ŷi − 1)2+

1yi=standard((min(0, ŷi − θsmin))
2+

(max(0, ŷi − θsmax))
2) + 1yi=irrelevant(max(ŷi, 0))

2)

(1)

Here, θsmin and θsmax denote hyperparameters,
1yi=. is an indicator function, and ŷi represents the
model’s prediction score.

4.1.2 Synthetic Generated data Loss
In section 4.1.1, we possess enough of noise-free
human-annotated query-product pairs. However,
acquiring query-query data presents a challenge
in enhancing the model’s performance for the se-
mantic query reformulation task. Given the recent
evolution of LLMs, which have emerged as a dom-
inant and crucial tool for synthetic data generation,
we aim to automatically reformulate user queries
using LLMs, by prompting them with a carefully
engineered prompt. Following this, the data (i.e.,
DLLMs

QQ ) is refined using a relevance model (see
Appendix B.4) before being utilized in training
both student and teacher models. Leveraging the
DLLMs

QQ dataset, we devise a loss function to delve
into query-query semantics.

LLLMs
QQ =

∑

(qi,q′i,yi)∈DLLMs
QQ

1yi=1 (min(0, ŷi − θsmin))
2

+ 1yi=0 (max(ŷi, 0))
2

(2)

When yi = 1, it denotes that the query and its
reformulation is relevant, whereas yi = 0 indicates
that they are not relevant.
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Further details on LLMs can be found in Ap-
pendix B.3, and the prompt for reformulating rele-
vant user queries, inspired from (Yan et al., 2023),
is outlined in Algorithm 1. We’ve adopted a few-
shot learning approach, supplying a handful of
query examples alongside their reformulations in
the prompt.

4.1.3 User Behaviour Data Loss
Collecting human-annotated relevance data is both
time-consuming and expensive. It’s impractical
to cover the entire semantic scope of e-commerce
with audit data. Conversely, customer behavior
data (Dpurchase

QP ), which includes implicit relevance
signals, is abundant but noisy. To construct a robust
relevance model, this data must be used alongside
relevance audit data.
Lau et al. (Lau et al., 2014) utilized Normalized
Point-wise Mutual Information (NPMI) to gauge
topic co-occurrence, a method we employ to create
semantically similar query pairs. We assess the
likelihood of two queries co-occurring based on
their individual probabilities and compare it to the
scenario where the queries are independent. Nor-
malizing the purchase count from Dpurchase

QP across
queries allows us to derive a probability distribu-
tion. By examining their shared products, we can
determine the joint distribution of any two queries.
Utilizing this definition, we generate semantically
similar query pairs, DQQ+, from Dpurchase

QP data
with NPMI scores exceeding τnpmi (equation 3).
Appendix D includes Table 6, provides examples
of QQ positive pairs derived using this method.

NPMI(qi, qj) =
log

P (qi,qj)
P (qi)P (qj)

−logP (qi, qj)
(3)

where P (qi, qj) =∑Z
k=0

PC(qi,pk)∑Z
y=0 PC(qi,py)

.
PC(qj ,pk)∑Z

y=0 PC(qj ,py)
and

P (qi) =
∑Z

j=0 PC(qi,pj)∑Y
i=0

∑Z
j=0 PC(qi,pj)

. Y and Z de-

note the total count of unique queries and products
in Dpurchase

QP . PC(qi, pj) retrieves the purchase

count from Dpurchase
QP for a specific query qi and

product pj . With the utilization of DQQ+ data, we
formulate the following loss function to acquire
knowledge of query-query semantics.

LQQ+ =
∑

(qi,q
′
i)∈DQQ+

((min(0, ŷi − θsmin))
2

(4)

Unlike the loss function described for standard
relevant pairs in Equation 1, the cosine score in
Equation 4 has no upper limit. The reasoning be-
hind this loss function is that relevant query pairs
within DQQ+ do not denote a particular level of
relevance, whether standard or strict.

4.1.4 Taxonomy Based Loss
Most e-commerce companies structure their exten-
sive product inventories using predefined multilevel
taxonomies or browse nodes. These product tax-
onomies encode relationships between products
and can be utilized to derive various connections.
In this work, we utilize query classification mod-
els developed by various e-commerce companies,
which assign a distribution score to a query based
on the taxonomy tree. Consequently, two queries
expressing different intents within the taxonomy
tree will receive distinct scores. The appendix C
contains Table 5 which provides some example
cases of query-query (Q-Q) hard negative pairs that
were generated using the approach. This dataset en-
ables us to effectively distinguish irrelevant query-
query pairs in the embedding space, even if they
share some common words. Similar work con-
ducted by the authors (Ankith et al., 2022) utilized
the taxonomy and achieved success. We define
taxonomy loss as follows, where DQQ− represents
the query-query hard negative dataset.

LQQ− =
∑

(qi,q
′
i)∈DQQ−

(max(ŷi, 0))
2

(5)

4.1.5 Teacher Training
To develop semantic understanding within the
teacher model, we initiate the process by initializ-
ing our BERT model with pre-trained weights. Dur-
ing the initial epochs, we utilize DQP and DQQ+

to train the model parameters, optimizing the loss
terms in equation 6. The relative importance of the
loss terms LQP and LQQ+ is controlled by α1 and
α2, respectively.

L1 = α1 ∗ LQP + α2 ∗ LQQ+ (6)

In subsequent epochs, we also incorporate the
other two losses, LLLMs

QQ and LQQ−, aiming to op-
timize in equation 7. Regarding LQQ−, we gener-
ate hard negatives using a taxonomy tree encoding
product relevance. For each epoch, we identify
query pairs that are semantically similar but do
not share a common browse node, which are then
added to the dataset DQQ− as hard negatives.
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Figure 2: The training procedure for the student model
adheres to the methodology outlined in our proposed
approach, RTSM.

L2 = α1LQP + α2LQQ+ + α3L
LLMs
QQ + α4LQQ−(7)

Where α3 and α4 are the weight scalars that
controls the importance of synthetic data loss and
taxonomy loss.

4.2 Student Training using RTSM Method

Figure 2 showcases the framework of our proposed
approach, which introduces a KD algorithm cus-
tomized for real-time semantic matching. This ap-
proach leverages soft labels obtained from one or
more teacher models, along with ground truth data,
to enhance the accuracy of a precise student model.
The formulation of our loss function for training
the student model parameters is as follows:

LRTSM = β

[ ∑

(qi,pi,yi)∈Dlabel
PQ

(ŷTi − ŷSi )
2+

∑

(qi,q
′
i)∈DQQ+∪DQQ−∪DLLMs

QQ

(ŷTi − ŷSi )
2

]
+ (1− β)L2

(8)

Where ŷTi signifies a soft label derived from
the teacher model T, whereas ŷSi represents the
prediction score from the student model S. The
scalar β (where 0 < β < 1) dictates the relative
importance of soft and hard labels.

4.3 Practical Modifications

To improve the model’s performance in practical
applications, we implement several adjustments:
(1) Initially, during the teacher training phase out-
lined in Section 4.1.5, we train the model using
Equation 6, followed by Equation 7. This sequen-
tial training approach ensures the stability of the
model, enabling it to learn from the data consis-
tently and effectively.
(2) Furthermore, we extend our approach to multi-
teacher knowledge distillation, enabling the dis-
tillation of knowledge from multiple teachers si-
multaneously. This strategy, motivated by the aim

to leverage diverse perspectives, enables the stu-
dent model to access a wider range of insights and
information. The multi-teacher RTSM algorithm
integrates m soft labels through m MSE loss func-
tions.

5 Experiments and Results

We report our findings on the benefit of our pro-
posed method for real-time semantic matching
tasks. We start by presenting the dataset details.
Datasets: 1. E-commerce datasets from regions in
India for evaluating query-product relevance. All
datasets used in our analysis are anonymized, ag-
gregated, and do not represent production distribu-
tion. 2. The publicly available ESCI dataset from
Amazon for the US (English) market. More details
on the generation and construction of these datasets
can be found in Appendix A.
Reproducibility and Hyperparameters: For de-
tails regarding the reproducibility of our exper-
iments and the hyperparameter configurations,
please refer to Appendix B.

5.1 Algorithm Baselines
In this paper, our proposed method is compared
against several baselines, all of which are trained
on the same dataset to ensure equitable compari-
son.
(i) DSSM-KD (Nigam et al., 2019) involves train-
ing the low-latency DSSM model using soft labels
derived from the SBERT model.
(ii) S-MiniLM Direct (Wang et al., 2020) involves
direct training of the S-MiniLM model without em-
ploying any KD.
(iii) Soft-KD (Hinton et al., 2015) focuses on train-
ing the S-MiniLM model exclusively using soft
labels obtained from a teacher model.
(iv) HISS (Ankith et al., 2022) introduces a KD
method for real-time semantic matching, incorpo-
rating an additional alignment loss.
(v) Teacher-only (Devlin et al., 2018): Teacher
model undergoes direct training using a training
dataset.
(vi) Ensemble Baseline is evaluated within context
of our proposed Multi-teacher KD method, which
combines multiple teachers into an ensemble.
Evaluation Metric We use ROC-AUC (Brown and
Davis, 2006) as a performance metric.

5.2 Results
We present the outcomes of our proposed tech-
nique on an proprietary Amazon dataset in Ta-
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Model ROC-AUC/Gain% Precision/Recall/F1

DSSM-KD 0.8759(±0.0008) / 0% 0.9516/0.7931/0.8651
S-MiniLM Direct 0.9252(±0.0005) / 5.63% 0.9736/0.8063/0.8820

Teacher: S-DistilBERT, Student: S-MiniLM

Teacher-only 0.9410(±0.0011) / 7.43% 0.9780/0.8265/0.8958
Soft-KD 0.9353(±0.0008) / 6.78% 0.9778/0.8120/0.8872

HISS 0.9386(±0.0013) / 7.16% 0.9801/0.8033/0.8829
RTSM 0.9437(±0.0006) / 7.74% 0.9805/0.8295/0.8987

Teacher: S-BERT, Student: S-MiniLM

Teacher-only 0.9471(±0.0005) / 8.13% 0.9816/0.8297/0.8982
Soft-KD 0.9378(±0.0009) / 7.07% 0.9782/0.8286/0.8972

HISS 0.9457(±0.0010) / 7.97% 0.9802/0.8276/0.8974
RTSM 0.9482(±0.0005) / 8.25% 0.9818/0.8367/0.9034

Multi-Teachers, Student: S-MiniLM

Ensemble 0.9483(±0.0006) / 8.27% 0.9809/0.8369/0.9031
Soft-KD 0.9420(±0.0012) / 7.55% 0.9794/0.8264/0.8964

HISS 0.9424(±0.0009) / 7.59% 0.9814/0.8313/0.9001
RTSM 0.9502(±0.0007) / 8.48% 0.9820/0.8427/0.9070

Table 1: ROC-AUCs for several models on proprietary
DQP test dataset. Precision, Recall, and F1 scores are
calculated at a threshold of 0.7. As DSSM-KD acts
as the baseline, the gain% remains at 0. In the Multi-
teachers section, "Ensemble" denotes the combined per-
formance of several teachers. Mean & std. (±) error for
ROC-AUCs are reported based on 5 trials runs.

ble 1, comparing it with both the existing produc-
tion model (DSSM-KD) and strong SOTA baseline
methods. We demonstrate the effectiveness of our
approach employing two distinct teacher models,
namely S-BERT and S-DistilBERT. Furthermore,
we utilize S-BERT and S-DistilBERT to verify the
efficacy of multi-teacher RTSM algorithm. Our
experiments reveal that our approach achieves su-
perior performance compared to all baseline meth-
ods, notably surpassing the IN production model
by a significant margin. The summarized results
for the External Amazon Shopping Dataset are
presented in Table 2, with the S-BERT model act-
ing as the teacher model. When evaluated against
all baseline approaches, our method emerges as the
superior option, outperforming them by a signifi-
cant margin, thereby demonstrating its dominance
over the current state-of-the-art techniques. For an
in-depth latency evaluation of our models in an
online context, refer to Appendix G. Furthermore,
for a detailed analysis of how the losses LLLMs

QQ ,
LQQ+, and LQQ− affect model performance, refer
to Appendix F.

5.3 Simulated Realtime A/B Experiments

To evaluate the efficacy of our proposed approach,
we conducted a simulated A/B test on real-time
SQR (refer to Section H for SQR system). we as-
sessed the performance of the A/B test based on

Model ROC-AUC / Gain% Precision / Recall / F1

DSSM-KD (baseline) 0.8457(±0.0011) / 0% 0.9326 / 0.7634 / 0.8396
S-MiniLM Direct 0.8738(±0.0008) / 3.19% 0.9432 / 0.7712 / 0.8485

Teacher: S-BERT, Student: S-MiniLM

Teacher-only 0.8881(±0.0007) / 4.93% 0.9487 / 0.7768 / 0.8542
Soft-KD 0.8778(±0.0008) / 3.71% 0.9442 / 0.7738 / 0.8505

HISS 0.8828(±0.0010) / 4.30% 0.9468 / 0.7755 / 0.8526
RTSM 0.8922(±0.0006) / 5.00% 0.9536 / 0.7842 / 0.8606

Table 2: AUC scores on Amazon Shopping Public
Dataset. Precision, Recall, and F1 scores are calculated
at a threshold of 0.7. Mean & std. (±) error for ROC-
AUCs are reported based on 5 trials runs.

two primary metrics: (i) Increase in product cov-
erage: An increase in product coverage is achieved
by showing more relevant products in response to
user queries. (ii) Reduction in irrelevancy: A
sample of impressed query and product title pairs
is sent for human labeling, where they are classified
as strictly relevant, standard relevant, or irrelevant.
Reducing the number of irrelevant classifications
decreases overall irrelevancy. Our proposed ap-
proach exhibited a notable enhancement in product
coverage along with a reduction in irrelevancy.

6 Conclusion

In this paper, we introduce a KD approach for real-
time semantic matching, where siamese student
models acquire nuanced semantic representations
by emulating both (i) the soft relevance labels from
the siamese teacher model and (ii) the hard rel-
evance labels annotated by humans. To address
the needs of query reformulation and product re-
trieval tasks, we integrate a variety of similarity
and dissimilarity signals, along with synthetic data
generated from LLMs, and employ tailored loss
functions to efficiently capture relevance and simi-
larity intricacies. By leveraging both internal and
public datasets, we demonstrate the superior ef-
fectiveness of our proposed method compared to
existing SOTA KD benchmarks.

14



References
Sanjay Agrawal, Faizan Ahemad, and Vivek Varadara-

jan Sembium. 2025a. Rationale-guided distilla-
tion for e-commerce relevance classification: Bridg-
ing large language models and lightweight cross-
encoders. In Proceedings of the 31st International
Conference on Computational Linguistics: Industry
Track, pages 136–148.

Sanjay Agrawal, Srujana Merugu, and Vivek Sem-
bium. 2023a. Enhancing e-commerce product search
through reinforcement learning-powered query refor-
mulation. In Proceedings of the 32nd ACM Inter-
national Conference on Information and Knowledge
Management, pages 4488–4494.

Sanjay Agrawal, Deep Nayak, and Vivek Varadarajan
Sembium. 2025b. Multilingual continual learning
using attention distillation. In Proceedings of the
31st International Conference on Computational Lin-
guistics: Industry Track, pages 91–99.

Sanjay Agrawal, Vivek Sembium, and MS Ankith.
2023b. Kd-boost: Boosting real-time semantic
matching in e-commerce with knowledge distillation.
In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing: Industry
Track, pages 131–141.

MS Ankith, Sourab Mangrulkar, and Vivek Sembium.
2022. Hiss: A novel hybrid inference architecture in
embedding based product sourcing using knowledge
distillation.

Junjie Bai, Fang Lu, Ke Zhang, et al. 2019. Onnx:
Open neural network exchange. https://github.
com/onnx/onnx.

Christopher D Brown and Herbert T Davis. 2006. Re-
ceiver operating characteristics curves and related
decision measures: A tutorial. Chemometrics and
Intelligent Laboratory Systems, 80(1):24–38.

Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and
Manmohan Chandraker. 2017. Learning efficient
object detection models with knowledge distillation.
Advances in neural information processing systems,
30.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh
Raje, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Ashish Verma. 2020. Power-bert: Accelerating
bert inference via progressive word-vector elimina-
tion. In International Conference on Machine Learn-
ing, pages 3690–3699. PMLR.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7).

Taehyeon Kim, Jaehoon Oh, NakYil Kim, Sang-
wook Cho, and Se-Young Yun. 2021. Comparing
kullback-leibler divergence and mean squared er-
ror loss in knowledge distillation. arXiv preprint
arXiv:2105.08919.

Jey Han Lau, David Newman, and Timothy Baldwin.
2014. Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality.
In Proceedings of the 14th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 530–539.

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient
and robust approximate nearest neighbor search us-
ing hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelli-
gence, 42(4):824–836.

Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lak-
shman, Weitian Ding, Ankit Shingavi, Choon Hui
Teo, Hao Gu, and Bing Yin. 2019. Semantic product
search. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining, pages 2876–2885.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Tharindu Ranasinghe, Constantin Orǎsan, and Rus-
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A Dataset Generation

1. Proprietary Amazon Dataset: We gathered
customer behavior data, denoted as Dpurchase

QP ,
from historical logs of the IN marketplace span-
ning from January 2024 to June 2024. To en-
sure data quality, pairs with fewer than 15 pur-
chases were filtered out. For data generation based
on taxonomy, we utilized an internal service to
acquire browse node associations for 200K ran-
domly chosen queries from the Dpurchase

QP dataset.
Subsequently, DQQ− was generated using browse
node mappings to maintain the separation of ir-
relevant query-query pairs within the embedding
space. For DLLMs

QQ , we compiled a dataset com-
prising 200k search queries. We used an Instruct
LLM to generate the top 10 positive and negative
reformulations for each user query. Additionally,
we utilized a relevance model (see Section B.4 on
relevance model details) and browse node asso-
ciations to refine DLLMs

QQ further. Regarding the
DQP dataset, we collected a sample of 5.6 mil-
lion human-annotated <query, product title> pairs
from five English-speaking marketplaces. Since
our experiments focus on the Indian marketplace,
we constructed validation and test datasets by ran-
domly selecting 50K query-ad pairs each from the
IN marketplace, removing these 100K pairs from
training. In our performance evaluation, strict and
standard relevance are treated as positive classes,
while irrelevance is considered a negative class.

2. Aicrowd ESCI Amazon Public Dataset:
This dataset contains 460K training samples and
91K test samples. For validation and test, 20% of
the training data (10% each) is randomly selected
and removed from the training set. Each query-
product pair is labeled as E (Exact), S (Substitute),
C (Complement), or I (Irrelevant). In the search
context, pairs labeled as Exact and Substitute are
considered relevant (positive class), while those la-
beled as Complement and Irrelevant are considered
irrelevant (negative class). This can be framed as a
binary classification problem, where the goal is to
evaluate the performance using ROC-AUC.

B Reproducibility and Hyperparameters

In this section, we present the hyperparameters
and training methodologies used in our experi-
ments. All experiments are conducted using Py-
Torch (Paszke et al., 2019) and HuggingFace (Wolf
et al., 2019) frameworks. We use a consistent set
of hyperparameters for both the Teacher and Stu-
dent models during training, which were optimized
through a series of preliminary trials and are de-
tailed in Table 3. Further details on the training
of the Teacher and Student (RTSM) models are
provided in subsections B.1 and B.2, respectively,
with model specifications outlined in Table 4. Ad-
ditional information on using LLMs for query gen-
eration is available in subsection B.3.

Hyperparameter Value
Batch Size 256
Learning Rate 1e-5
Number of Epochs 5
Weight Decay 0.0
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Gradient Clipping 0.1
θsmax 0.75
θsmin 0.6
GPU p3.2xlarge EC2

Table 3: Hyperparameters used for training the models.

B.1 Teacher Training:
Two teacher models, namely S-BERT and S-
DistilBERT, are employed, both utilizing identi-
cal hyperparameter configurations. S-BERT em-
ploys the bert-base-uncased1 EN model, while S-
DistilBERT utilizes the distilbert-base-uncased2

EN model (Sanh et al., 2019). During the train-
ing phase, we leverage pre-trained checkpoints and
train for 5 epochs with early-stopping criteria.

B.2 RTSM Architecture Training:
As outlined in Section 4.2, we have frozen the
weights of the trained teacher models. To facilitate
the training of a student model (S-MiniLM), we ini-
tialize with a pre-trained checkpoint from sentence-
transformers/paraphrase-MiniLM-L3-v23 (Wang

1https://huggingface.co/bert-base-uncased
2https://huggingface.co/

distilbert-base-uncased
3https://huggingface.co/sentence-transformers/

paraphrase-MiniLM-L3-v
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Model Variant Layers Hidden Size Parameters
S-BERT bert-base-uncased 12 768 110M
S-DistilBERT distilbert-base-uncased 6 768 66M
S-MiniLM paraphrase-MiniLM-L3-v2 3 384 22M

Table 4: Details of the Models Used in the Experiments

et al., 2020), and conduct training for 5 epochs,
employing early-stopping criteria.

B.3 LLM-Based Query Generation Model:

To generate queries using LLMs, we utilized an
Instruct model, which is available under the Apache
2.0 license. The open-source nature and permissive
licensing of instruct model allow other researchers
to use it in their work. For generating semantically
similar queries, we applied the prompt template
outlined in Algorithm 1.

B.4 Relevance Model for of LLM-Generated
Query Reformulations:

The purpose of the relevance model is to evalu-
ate the quality of a reformulated query q

′
i, gener-

ated by an LLM, based on the input query qi. We
developed a relevance model based on bert-base-
uncased4 with 12 transformer layers, pre-trained
on English. It was fine-tuned on our dataset of hu-
man judgments, consisting of triplets {(qi, q′

i, yi)}i,
where yi represents the human judgments provided
by annotators. We employed binary cross-entropy
as the loss function. The scores provided by the
trained relevance model is used to evaluate the qual-
ity of the generated reformulations.

C Hard Negative Q-Q Pairs from
Taxonomy Browse Nodes

Table 5 showcases a set of challenging hard nega-
tive query-query (Q-Q) pairs, generated by utilizing
taxonomy browse node information. This method
enables the efficient distinction of irrelevant Q-Q
pairs within the embedding space, despite the pres-
ence of shared common terms between the queries.

D NPMI-based Query-Query Pairs using
Customer Purchase Data

Table 6 presents the results of various positive
query-query (Q-Q) pairs derived by applying Nor-
malized Pointwise Mutual Information (NPMI) on

4https://huggingface.co/bert-base-uncased

Query1 Query2

watch band smart watch
laptop sleeve long-sleeve sweater
black shoes shoe rack

digital camera camera lens filter
cotton bedsheet cotton candy maker

Table 5: Instances of hard negative Q-Q pairs produced
utilizing taxonomy browse node information.

customer purchase data. This approach allows cap-
turing semantic associations between entities, even
if they do not share any common terms.

Query1 Query2

travel backpack outdoor backpack
wireless mouse cordless computer mouse
fitness tracker activity monitor

portable charger mobile power bank
travel pillow neck support cushion

Table 6: Instances of Q-Q pairs identified as semanti-
cally akin through NPMI analysis.

E Teacher and Student Model
Architectures: S-BERT vs. S-MiniLM

Figure 3 illustrates the model architecture for two
different models: a teacher model and a low-latency
student model.

Entity1

w1 w2 w3 .....

w1' w2' w3' .....

BERT

Pooling layer

EmbeddingBERTEntity1

Entity2

w1 w2 w3 .....

w1' w2' w3' .....

BERT

Pooling layer

EmbeddingBERTEntity2

Cosine Score

Ranking Loss, Synthetic Data
Loss, NPMI Loss and

Taxonomy Loss

Entity1

w1 w2 w3 .....

w1' w2' w3' .....

MiniLM

Pooling layer

EmbeddingMiniLM
Entity

1

Entity2

w1 w2 w3 .....

w1' w2' w3' .....

MiniLM

Pooling layer

EmbeddingMiniLM
Entity

2
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Ranking Loss, Synthetic Data
Loss, NPMI Loss and

Taxonomy Loss

Figure 3: Model Architectures
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Model roc-auc Q-Q Irrelevance

S-BERT w/o 0.9492 21.5%
S-BERT w/ 0.9471 9.9%

S-MiniLM w/o 0.9287 23.8%
S-MiniLM w/ 0.9252 11.3%

RTSM w/o 0.9534 19.8%
RTSM w/ 0.9482 8.2%

Table 7: ROC-AUCs and Q-Q irrelevance statistics of
different models with (w/) and without (w/o) all LLLMs

QQ ,
LQQ+ and LQQ− losses.

F Combined Impact of Losses LLLMs
QQ ,

LQQ+ and LQQ−

We gathered a total of 15K Q-Q samples, which un-
derwent auditing by our in-house human auditing
team. Table 7 illustrates the AUCs of various mod-
els on test datasets (human-audited query-product
pairs) with (w/) and without (w/o) LLLMs

QQ , LQQ+

and LQQ−, alongside Q-Q irrelevance statistics for
the 15K audited Q-Q samples. Our examination in-
dicates that optimizing for these three losses leads
to a slight reduction in the AUC but significantly
diminishes Q-Q irrelevance. Maintaining low Q-Q
irrelevance is critical as query reformulation relies
on retrieving products from other queries that are
semantically similar.

G Latency Within an Online Context

We evaluated the retrieval latency of BERT, Distil-
BERT, and MiniLM models for embedding-based
semantic matching in an online environment. To
accomplish this, we developed all models using
PyTorch and then converted them to ONNX format
(Bai et al., 2019). In the online scenario, we utilized
Java deep library to load the ONNX models and
generated embeddings for user queries. Using the
HNSW library (Malkov and Yashunin, 2018) with
parameters mlinks=32 and ef_construction=128,
we performed real-time mapping of user queries
to the k-nearest neighbor products (k=200). The
latency analysis was conducted by measuring the
average retrieval time for 10,000 queries using only
CPU cores (on m5.4xlarge instance). According
to our findings, BERT and DistilBERT exhibited
higher inference latencies of 10.24ms and 6.23ms,
respectively, compared to MiniLM’s latency of
1.17ms.

H Current SQR System Deployed in IN
Marketplace

In the IN marketplace, our current real-time SQR
semantic strategy relies on DSSM, trained with
Knowledge Distillation utilizing Siamese BERT.
Through SQR, our system surfaces relevant ads
corresponding to a query Q = q1, q2, ..., qk, where
q1,...,qk represent query reformulations. Our online
SQR system comprises:
(1) PCQC (Pre-Curated Query Cache) - Our pro-
posed model generates semantic representations
for a pre-curated list of queries and stores them in
a cache. These queries are curated based on past
instances where a high number of products were
retrieved for them.
(2) Query Processor - Upon a user query request,
our proposed model converts it into a semantic rep-
resentation in real-time.
(3) K-Nearest Neighbor (KNN) Search - The
user’s query undergoes matching against seman-
tically similar queries (reformulated queries) in
PCQC using KNN search based on their semantic
representations. The resulting reformulated queries
are then utilized to retrieve relevant products from
the search index for customers.
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Algorithm 1 Prompt for Reformulations Generations
Below is an instruction that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request.
### Instruction:
You are Sam, a super intelligent assistant that help users reformulate a search query of an e-commerce
website.
Your reformulated query will be used by a product sourcing assistant, who sources products based on
the search query. The more informative, legible, human interpretable the reformulated query is, better
products will be sourced. Your task is to maximize the efficiency so that better products are sourced.
You are
- helpful and friendly
- can easily correct grammatical and language errors
- good at understanding the search query’s intent and extract the core meaning hence reformulating it to
a better query
- make sure that the output queries are strictly relevant to the input search query and Fenix has no
difficulty in interpreting query
- strictly output only the reformulated query
You have to output 10 reformulated queries for a given search query in decreasing order of relevance to
the search query. Make sure all of the reformulated queries are highly relevant to the search query.
Here are some examples:
Example 1:
query: headset below 1000
output: headphone under 2000
Example 2:
query: 3 years girls dresses modern
output: baby girls 3-4 years dress
Example 3:
query: kitchen decoration saman
output: home decor items for kitchen
Example 4:
query: dog chain+belt for large dogs
output: dog chain collar
Example 5:
query: men gift for man
output: wallet set for men gift
Example 6:
query: jewllwey set for girls simple
output: set jewellery for girls stylish
Example 7:
query: caramboard for kids avanzure pic
output: gift for girls 10 years
Example 8:
query: mala
output: laddu gopal mala
Now reformulate this query: "{User_query}"
Output 10 reformulated queries for a given search query. Strictly output only the reformulated queries
in order 1 to 10. Do not include any explanation or any other stuff in your response.
### Response:
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