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Abstract
As the prevalence of phishing attacks contin-
ues to rise, there is an increasing demand for
more robust detection technologies. With re-
cent advances in AI, we discuss how to con-
struct a reliable and practical phishing detection
system using language models. For this sys-
tem, we introduce the first large-scale Korean
dataset for phishing detection, encompassing
six types of phishing attacks. We consider mul-
tiple factors for building a real-time detection
system for edge devices, such as model size,
Speech-To-Text quality, split length, training
technique and multi-task learning. We evalu-
ate the model’s ability twofold: in-domain, and
unseen attack detection performance which is
referred to as zero-day performance. Addition-
ally, we demonstrate the importance of accu-
rate comparison groups and evaluation datasets,
showing that voice phishing detection performs
reasonably well while smishing detection re-
mains challenging. Both the dataset and the
trained model will be available upon request.

1 Introduction

Phishing is an act of deceiving individuals into
disclosing sensitive information or installing mali-
cious software. With a huge amount of global finan-
cial damage, the demand for advancing phishing
detection is larger than ever before. For instance, in
2022, the total loss amounts to 107 million dollars
in South Korea (KISA, 2022) and a total loss of 52
million dollars was reported in the US (FBI, 2022).

Phishing poses significant detection challenges
due to their subtle mimicry of legitimate communi-
cations and their ability to adapt rapidly, evading
traditional defenses. Addressing these challenges
requires detection systems that excel in two critical
capabilities: (1) distinguishing nuanced differences
between phishing and legitimate samples (imitation
detection) and (2) generalizing to novel and unseen
attack types (zero-day detection (Al-Rushdan et al.,
2019)). These requirements highlight the need for

robust datasets and development of methodologies
that bridge the gap between academic research and
practical deployment.

While previous research has advanced phishing
detection, challenges remain for real-world applica-
tion. Existing datasets lack size and diversity, with
only 609 voice phishing samples available in Ko-
rean (Boussougou and Park, 2021) and 638 smish-
ing instances in English (Mishra and Soni, 2022b).
Moreover, current approaches often overlook prac-
tical issues, such as the need for real-time detection
during calls, rather than post-call decisions, and
other deployment challenges. Additionally, these
methods fail to address zero-day attacks—new and
unseen phishing techniques—which are critical for
building robust detection systems.

In this paper, we present a comprehensive ap-
proach to building reliable phishing detection sys-
tems, underpinned by the introduction of the first
large-scale dataset for smishing and vishing detec-
tion. This dataset comprises 94,602 phishing sam-
ples and 205,870 non-phishing samples, spanning
six distinct attack types across multiple modalities.
Each phishing type reflects the diverse strategies
attackers employ, such as impersonating govern-
ment agencies, financial institutions, parcel ser-
vices, and even personal contacts. The dataset not
only enables high-fidelity imitation detection but
also includes carefully curated non-phishing sam-
ples to enhance robustness. These non-phishing
examples are collected through crowdsourcing and
are designed to mirror phishing characteristics, ad-
hering to criteria such as thematic alignment, exclu-
sion of impersonation targets, and the inclusion of
phishing-related keywords to prevent overfitting.

To enable real-world deployment, we investigate
practical considerations in system design. We fo-
cus on edge-compatible, small to medium-sized
language models, such as DISTILKOBERT (Park,
2019) and MBERT-BASE (Pires et al., 2019), in con-
junction with automatic speech recognition (ASR)
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models like WAV2VEC2 (Baevski et al., 2020)
and WHISPER (Radford et al., 2022). Advanced
training techniques, including parameter-efficient
fine-tuning (PEFT) and task-adaptive pretraining
(TAPT), are applied to enhance performance while
maintaining computational efficiency. We also ad-
dress the challenge of handling real-time streaming
data, a critical aspect of vishing detection, where
timely detection can prevent significant harm.

We evaluate the models using a robust frame-
work that prioritizes imitation and zero-day de-
tection performance, as well as recall rates. The
dataset and detection systems will be made avail-
able for further research, with the potential to gen-
eralize insights across languages and regions. This
study not only advances the state of phishing detec-
tion but also contributes broadly to fraud prevention
and cybersecurity.

2 Dataset Construction

We constructed a dataset comprising 94,602 phish-
ing samples and 205,870 non-phishing samples.
Each sample includes the following attributes: (1)
text, (2) collection date, (3) phishing type, (4) label
(phishing/non-phishing), and (5) modality (text or
voice). Table 1 provides a detailed breakdown of
the dataset.

2.1 Phishing Data Collection

Phishing Types. To capture diverse phishing tac-
tics, we categorized phishing samples into five
types:

• GOVERNMENT: Messages impersonating
government entities such as police or pros-
ecutors.

• FINANCE: Text messages and Voice calls im-
personating financial institutions.

• PARCEL: Messages mimicking parcel deliv-
ery services.

• CREDIT: Messages related to payment fraud
or fake purchase alerts.

• RELATIVE: Messages impersonating family
members or acquaintances.

These categories span two modalities: text (smish-
ing) and voice (vishing). FINANCE is further dis-
tinguished by modality (FINANCE-V for voice and
FINANCE-M for text), ensuring nuanced analysis
of phishing techniques. Detailed explanations for
each phishing type are provided in Appendix B.

Label Modality Type # of samples # of tokens
Phishing message FINANCE-M 10,313 2,478,233
Phishing message PARCEL 42,381 1,681,603
Phishing message CREDIT 32,650 1,317,691
Phishing message RELATIVE 4,508 146,490

Subtotal 91,629 6,268,112
Non-phishing message FINANCE 7,541 1,869,223
Non-phishing message PARCEL 7,597 779,646
Non-phishing message CREDIT 15,172 2,575,857
Non-phishing message RELATIVE 168,047 2,140,401

Subtotal 198,357 7,365,127
Phishing voice GOVERNMENT 1,297 1,265,206
Phishing voice FINANCE-V 1,672 328,038

Subtotal 2,973 1,593,244
Non-phishing voice FINANCE 2,170 537,267
Non-phishing voice ETC 5,343 272,877

Subtotal 7,513 810,144
Total 300,436 16,036,627

Table 1: Total count of data for each type. Non-phishing
data and duplicates are removed from the collected
dataset. We use MECAB to count the total number of
tokens.

2.2 Phishing Data Collection
For the phishing class, we collaborated with the
Korea Internet & Security Agency and the Korean
National Police Agency to collect data from August
2022 to June 2023, at two-week intervals. The
dataset includes 449,118 reported phishing phone
calls and text messages from the public. After
dropping duplicates, 94,602 samples were retained.

2.3 Filtering Process.
To ensure the quality of phishing samples, a rig-
orous filtering process was essential, as the data
collected from public reports may include non-
phishing events. The filtering began by removing
duplicate entries to eliminate redundancy. Next, a
keyword consistently appearing in phishing mes-
sages was identified, and data containing this key-
word were selected for further review. The selected
data were then manually reviewed to verify their
relevance as phishing samples. This process was
repeated iteratively, with new keywords being iden-
tified and applied until no phishing messages re-
mained in the unfiltered dataset. While this method
was labor-intensive and required significant human
effort, it ensured a highly accurate and reliable
dataset for phishing detection.

2.4 Non-Phishing Data Collection
Designing Robust Non-Phishing Samples The
use of invalid non-phishing datasets can lead
to misleading classification performance, where
attacks often involve impersonation. Despite
the importance of well-constructed non-phishing
datasets, most existing approaches focus on phish-
ing datasets and rely on publicly available general
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Modality Non-phishing Set Eval Acc.
Vishing AIHub 0.42
Vishing Ours 85.21

Smishing AIHub 56.79
Smishing Ours 71.56

Table 2: Accuracy on phishing classification task using
DISTILKOBERT. With a pre-defined evaluation set, the
performance drops significantly when using the AIHub
conversation dataset.

Type Artifact Candidates
FINANCE 대출,지원,신청,상환,보증,저금리
PARCEL 배송지,택배,발신,고객,문의,오류
CREDIT 결제,완료,문의,본인,주문,신고

RELATIVE 문자,폰,액정,엄마,수리,아빠

Table 3: Potential artifacts for each type of smishing.

conversation datasets, such as those from AIHub
(AIHub, 2021b, 2020), for non-phishing examples.
However, as shown in Table 2, using only the AI-
Hub dataset results in significantly lower accuracy
on a pre-defined evaluation set (See Section 2.6),
underscoring the need for a carefully curated non-
phishing dataset.

To address this issue, we establish three key cri-
teria for constructing a robust non-phishing dataset:
(1) Impersonation Target – Exclude commonly
impersonated entities in phishing, ensuring non-
phishing samples remain relevant and realistic. (2)
Theme and Domain – Align non-phishing samples
with phishing themes, such as legitimate financial
offers, for balanced representation. (3) Potential
Artifacts – Include frequently used phishing-related
words in non-phishing samples to prevent overfit-
ting and enhance detection accuracy.

By applying these criteria, we ensure that the
non-phishing dataset closely mirrors the phishing
dataset in characteristics, making the classification
task more realistic and challenging. For further de-
tails on the three criteria and construction process,
see Appendix C.

Non-Phishing Sample Collection. We con-
structed the corpus using two platforms: AIHub,
which provides AI infrastructure such as data and
software APIs, and DeepNatural, a crowdsourcing
platform. Through DeepNatural, crowdworkers
contributed verified non-phishing messages they
had received. This process resulted in 30,000 non-
phishing samples. Remaining 175,870 samples are
collected through AIHub.

2.5 De-identification

Phishing attacks commonly contain real victim in-
formation, making thorough personal information
de-identification more critical than ever. To ensure
this, we implement a two-step de-identification pro-
cess. Detailed process of de-identification is in
Appedix D and the output sample is at Table 4.

2.6 Challenging Dataset Construction

To rigorously assess the limits of our model’s capa-
bilities, we curate a challenging dataset that focuses
on edge cases and complex scenarios, designed to
test robustness and generalization under difficult
conditions.

Smishing Cases. For smishing, we manually se-
lect highly challenging phishing and non-phishing
pairs that even human evaluators find difficult to
distinguish, obtaining total 119 smishing and 134
mirrored non-smishing samples. These cases re-
flect real-world ambiguities, ensuring the dataset
captures the complexities of phishing detection.
Detailed analysis from these selections are dis-
cussed in Section K.

Vishing Cases. For vishing, we prioritize testing
the model’s robustness to diverse recording envi-
ronments. We source phishing calls from the Finan-
cial Supervisory Service, obtaining 182 FINANCE-
V and 183 GOVERNMENT samples, all distinct
from the training dataset. For non-phishing cases,
due to the scarcity of government and police call
recordings, we sample challenging examples from
our collected non-vishing data, including a mix
of FINANCE-V and ETC samples. This ensures
the dataset not only tests generalization but also
challenges the model with edge cases commonly
encountered in real-world scenarios.

3 Task Setup

To evaluate the challenges of phishing detection
comprehensively, we define two key performance
aspects and corresponding evaluation metrics.

3.1 Performance Aspects

Imitation Detection Performance. This metric
evaluates in-domain performance by measuring the
system’s ability to distinguish subtle differences be-
tween phishing and non-phishing samples. It tests
how well the model handles nuanced distinctions
within known data types.
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Text
ORIGINAL TEXT [Web발신]이구형님의상품권이 04/19최경민(직장동료)님께배송되었습니다. SMS/-

STEP 1 [ Web발신 ]이구형님의상품권이 04/19 #NAME (직장동료)님께배송되었습니다 . SMS /-
STEP 2 [ Web발신 ] #NAME님의상품권이 04/19 #NAME ( #MASK동료 )님께배송되었습니다 . SMS /-

TARGET TEXT [ Web발신 ] #NAME님의상품권이 04/19 #NAME (직장동료)님께배송되었습니다 . SMS /-

Table 4: A step-by-step example for de-identificaion. We mark tokens red where the model supposes to but fails to
erase. We mark tokens blue where the model accidentally erases the information.

Modality Train Validation Challenging
Vishing 7,777 1,945 730

Smishing 231,784 57,947 253
Multitask 239,561 59,892 983

Table 5: Data statistics. We pre-define the challenging
dataset to ensure the robustness of our model. The left-
over data were split into training and validation datasets
in a ratio of 0.8 and 0.2.

Type Phishing Non-phishing Total
POLICE 183 183 366

FINANCE-V 182 182 364
FINANCE-M 32 41 73

PARCEL 37 32 69
CREDIT 35 45 80

RELATIVE 15 16 31

Table 6: Total count of data in the challenging dataset.

Zero-Day Performance. This metric assesses
out-of-domain performance, evaluating the sys-
tem’s ability to detect newly emerged zero-day
attacks. It measures the model’s capacity to gener-
alize and identify the underlying characteristics of
phishing fraud, which is critical given the evolving
nature of phishing and its potential for significant
financial harm.

3.2 Evaluation Metrics

We use two complementary metrics to evaluate
model performance: Accuracy reflects overall
model performance, balancing true positives and
true negatives. Recall prioritizes capturing all
phishing attacks. While accuracy provides a gen-
eral performance overview, recall is especially im-
portant in phishing detection to minimize false neg-
atives and prevent potential harm. However, ex-
cessive false positives can reduce system usability.
By incorporating both metrics, we strike a balance
between detection robustness and practical deploy-
ment. See Appendix H for further analysis.

4 Implementation Details

This section outlines the key considerations and
methods for building a practical and robust real-
time phishing detection system.

4.1 Backbone Models

We focus on small to medium-sized encoder-based
language models suitable for edge device deploy-
ment due to their efficiency in classification tasks.
Specifically, we use DISTILKOBERT and DISTILM-
BERT as small models, and KOBERT and MBERT-
BASE as medium-sized models.

4.2 ASR Transcription

ASR Models. Transcription quality significantly
affects phishing detection performance. We eval-
uate five ASR models: WAV2VEC2, in which we
trained from scratch on Korean data, including
ksponspeech (Bang et al., 2020) and low-quality
telephone network voice data(AIHub, 2021a); and
WHISPER, the OpenAI’s pre-trained models with
various size. We used SMALL, BASE, MEDIUM, and
LARGE models. For deployment, we use WHISPER-
SMALL, as it balance the size and the detection
performance. See Appendix F to see the impact of
ASR quality on detection performance.

Streaming Call Handling. In vishing, real-time
detection is critical as transactions often occur mid-
call. To handle streaming data, we split calls into
16-token segments and concatenate data from the
call’s start to each segment. Details are in Appendix
E.

4.3 Training Methods

Standard Fine-Tuning. The entire pre-trained
weights are fine-tuned using supervised training on
the target task.

Parameter-Efficient Fine-Tuning (PEFT).
PEFT optimizes a small number of parameters
to reduce computational costs. Specifically we
apply LoRA, which updates low-rank matrices
for parameter adaptation (Hu et al., 2021) and
IA3, which rescales inner activations with learned
vectors (Liu et al., 2022).

TAPT + PEFT. Task-Adaptive Pre-Training
(TAPT) enhances the adapters trained with PEFT
by fine-tuning on phishing data. This approach
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preserves general knowledge for zero-day attacks
while improving imitation detection.

5 Experiment Results

This section presents the detection performance for
vishing and smishing across various experimental
setups, focusing on identifying the most effective
detection system. Notably, the evaluations in this
section utilize our challenging dataset, specifically
designed to assess the model’s robustness under
difficult conditions. For results on validation sets
derived from proportional splits of the full dataset,
refer to Appendix I.

5.1 Vishing Detection
Imitation Performance. In vishing, PEFT meth-
ods underperform compared to standard fine-
tuning, with a 10% performance drop. TAPT mit-
igates this gap but does not fully close it. This
suggests that ASR-generated text introduces stylis-
tic challenges that require additional training. De-
tection performance by type can be found in the
Appendix J.2.

Zero-Day Performance. Table 8 shows similar
patterns to smishing. Notably, KOBERT trained
on FINANCE-V achieves high accuracy on GOV-
ERNMENT data (88.42%), but the reverse scenario
performs poorly (54.72%). TAPT improves perfor-
mance across both domains (+6.41%).

5.2 Smishing Detection
Imitation Performance. As shown in Table 7,
imitation performance is notably low. Standard
fine-tuning does not consistently improve with
larger models, and while PEFT+TAPT slightly en-
hances performance, the improvements remain in-
sufficient.

To further investigate this, we introduce two
human performance baselines: (1) Upperbound
Models – We fine-tune models on individual phish-
ing types and evaluate them using corresponding
evaluation datasets to provide upperbound results.
For example, DISTILKOBERT achieves an average
accuracy of 75.91 and recall of 0.95, while KOBERT

reaches 78.78 and 0.92. (2) General Human Per-
formance – Fifty participants evaluated 253 smish-
ing instances. Their accuracy reached 52.00%, with
a recall of 0.70, reflecting the inherent difficulty of
this task. (3) Expert Human Performance – Five
trained evaluators achieved an accuracy of 75.10%
and a recall of 0.91, establishing a benchmark for
well-informed evaluators.

Given these baselines, all models with standard
fine-tuning outperform the general human baseline
but fall short of expert-level and upperbound per-
formance. However, the fact that the performance
gap is not significantly large demonstrates the valid-
ity and effectiveness of our proposed methodology.
We report detection performance by type in the
Appendix J.1.

Zero-Day Performance. Table 9 evaluates zero-
day phishing detection by excluding specific types
from the training set. Using KOBERT + LoRA with
TAPT, performance improves by up to 175% com-
pared to standard fine-tuning, demonstrating the
importance of preserving general knowledge for
unseen attacks.

5.3 Multi-Task Detection

Multitasking improves detection performance for
both smishing and vishing, as shown in Table 14.

Performance Trends. Standard fine-tuning
shows type-specific trade-offs, improving vishing
detection at the expense of smishing. PEFT
reduces this gap, and PEFT+TAPT achieves
balanced performance across all types. Using
KOBERT + LoRA with multitasking leads to
consistent improvements in both smishing and
vishing detection. See Appendix J.3.

Practical Implications. Since text messages and
calls differ in language modality and timeframes,
multitasking enables a unified system suitable for
edge deployment. PEFT+TAPT offers the most
reliable results, balancing performance across all
phishing types while maintaining computational
efficiency.

6 Related Work

Phishing Detection. Early phishing detection re-
search primarily focused on websites and email-
based attacks, leveraging datasets of malicious
URLs and phishing emails (Liu et al., 2010; phish-
tank, 2023; Radev, 2008). Advanced methods, in-
cluding deep learning, have been widely applied
to improve detection (Opara et al., 2020; Singh
et al., 2020). With the rise of smishing and vish-
ing, phishing detection has diversified. Smish-
ing datasets were initially web-scraped (Jain et al.,
2020; Mishra and Soni, 2019), with early models
achieving high accuracy on small datasets, such as
638 smishing messages (Mishra and Soni, 2022a).
However, systematic research in smishing remains
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Method Model Smi. Total Acc. Smi. Recall Vi. Total Acc. Vi. Recall Multi Smi. Acc. Multi Vi. Acc.
FINE-TUNING

Standard

DISTILKOBERT 71.56 0.80 85.21 0.73 77.23 [+5.67] 84.68 [-0.53]

KOBERT 68.75 0.80 94.23 0.96 53.25 [-15.5] 91.74 [-2.49]

DISTILMBERT 53.75 0.45 90.23 0.83 51.29 [-2.46] 95.97 [+5.74]

MBERT 58.43 0.75 95.37 0.91 47.81 [-10.62] 96.27 [+0.9]

PARAMETER EFFICIENT FINE-TUNING

Lora
KOBERT 71.07 0.92 74.95 0.70 76.13 [+0.06] 78.96 [+4.01]

MBERT 67.14 0.82 80.16 0.82 74.06 [+6.92] 77.63 [-2.53]

IA3
KOBERT 58.57 0.61 65.53 0.95 73.84 [+15.27] 77.18 [+11.65]

MBERT 63.53 0.69 54.26 0.98 72.55 [+9.02] 76.34 [+22.08]

+ TASK-ADAPTIVE FINE-TUNING

Lora
KOBERT 77.48 0.78 83.08 0.80 84.51 [+7.03] 86.91 [+3.83]

MBERT 75.13 0.58 86.75 0.77 79.10 [+3.97] 83.88 [-2.87]

IA3
KOBERT 76.77 0.75 76.49 0.88 70.22 [-6.57] 71.68 [-4.81]

MBERT 71.13 0.64 79.28 0.85 74.42 [+3.29] 80.49 [+1.21]

Table 7: Combined results for smishing (Smi.), vishing (Vi.), and multitask detection. Bold indicates the best score,
underline highlights the top 3 scores among detection models, and relative changes in multitask performance are
annotated with red for gains and blue for drops.

Type SFT PEFT PEFT+TAPT

OOD_GOVERNMENT 88.42 86.26 76.45
OOD_FINANCE-V 54.72 55.33 79.40

Total Acc. 71.52 70.75 77.93

Table 8: Accuracy on unseen phishing attacks. We
perform experiments with KOBERT and Lora adapters.
We use WHISPER-SMALL ASR model and split length of
16. PEFT+TAPT shows approximately 180 percent of
performance increase compared to standard finetuning
method.

Type SFT PEFT PEFT+TAPT

OOD_FINANCE-M 30.00 57.50 72.50
OOD_PARCEL 60.00 67.50 62.50
OOD_CREDIT 27.50 57.50 62.50

OOD_RELATIVE 30.00 57.50 62.50
Total Acc. 37.39 60.23 65.38

Table 9: Accuracy on unseen phishing attacks. Exper-
iments done with KOBERT and Lora. PEFT+TAPT
shows approximately 180 percent of performance in-
crease compared to standard finetuning method.

limited, especially in languages like Korean. For
vishing, available datasets are scarce, with no-
table contributions in Korea, including 609 voice
phishing transcripts (Boussougou and Park, 2021).
These datasets enabled high-performing models
like KoBERT, achieving 99.6% accuracy (Bous-
sougou and Park, 2022). Despite these efforts, the
lack of large, diverse datasets limits progress in
applying deep learning for scalable phishing detec-
tion.

Task-Adaptive Pre-Training. Task-Adaptive
Pre-Training (TAPT) fine-tunes pre-trained lan-

guage models on unlabeled, task-specific data to
enhance performance (Gururangan et al., 2020).
By adapting language representations to domain-
specific contexts, TAPT improves model general-
ization for specialized tasks.

Parameter-Efficient Fine-Tuning. Parameter-
Efficient Fine-Tuning (PEFT) reduces computa-
tional costs by optimizing only a subset of param-
eters in pre-trained models. Early approaches in-
troduced adapters inserted between model layers
(Houlsby et al., 2019), while recent methods in-
clude low-rank updates (LORA) (Hu et al., 2021)
and activation scaling (IA3) (Liu et al., 2022).
These methods enable efficient adaptation to dy-
namic tasks without full model retraining.

7 Conclusion

In this paper, we conduct a comprehensive study
to create a reliable and practical phishing detection
model. We develop the first large-scale phishing
dataset, which serves as the foundation for train-
ing a robust and practical detection system. We
then conduct experiments considering various fac-
tors that can affect the performance. We define
the challenges of phishing detection, focusing on
imitation and zero-day attacks, and evaluate each
model based on them. We believe that our phish-
ing dataset and propose methodology will facilitate
research in phishing detection and, more broadly,
fraud detection.

Ethical Considerations. In this paper, we are
disclosing sensitive data related to phishing crimes.
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Our main concern is whether it is appropriate to
make this data and the trained model publicly avail-
able. While sharing this data could certainly foster
research in phishing detection, it also opens the
possibility of malicious exploitation by criminals.
For instance, these criminals might attempt adver-
sarial attacks using the publicly accessible data and
models. Acknowledging this potential risk, we
have decide to share data and model upon request.
After validation that the requester is not related to
phishing crime, we will release the requested data.
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A Hardware and Software

All experiments are conducted using an NVIDIA
A100 GPU and implemented in PyTorch (Paszke
et al., 2019). Models are trained for 3 epochs with a
learning rate of 1e-5, batch size 16, and AdamW op-
timizer (Loshchilov and Hutter, 2019). For TAPT,
models are further pre-trained on phishing data for
1 epoch with a learning rate of 5e-5 and batch size
32. Results are averaged over three random seeds.

B Phishing Types

To create a robust detection system, it is crucial
to examine a wide range of phishing types and
understand the general properties of phishing. We
consider six major phishing types. Each attack is
classified based on the targets of impersonation, as
described in Kim et al. (2021). Among six types,
four are smishing and two are vishing.

Type 1: Government agency – Voice. In this
scenario, criminals impersonate employees of gov-
ernment agencies such as the prosecution, police,
or the Financial Supervisory Service. Criminals
make victims believe they are involved in a crime
and they can get support from the one they are
talking with. Consequently, victims often disclose
their personal information or meet the criminal in-
person.

Type 2: Financial institutions – Voice. In this
case, criminals deceive victims by promising low-
interest loans backed by the government. Attacks
of this type include tricking victims into taking out
new loans to repay existing overdue loans, demand-
ing payment for credit rating upgrades in exchange
for low-interest loans, and installing malicious ap-
plications in the guise of non-face-to-face loan pro-
cesses.

Type 3: Financial institutions – Message. Type
2 attacks predominantly occur through phone calls,
but there is an emerging trend of conducting them
via text messages. We call this type of attack Fi-
nancial institution – Message.

Type 4: Parcel institution – Message. In this
type of scam, the criminal sends a message claim-
ing that there is an issue with the delivery address
or customs clearance number for a package, result-
ing in a failed delivery. They provide a URL for the
recipient to rectify the situation. However, clicking
on the link leads to installing a malicious app or the
unauthorized disclosure of personal information.
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Type 5: Credit institution – Message. Victims
receive text messages indicating that a payment
has been made for products they did not purchase.
They are then instructed to call a provided number
if they did not make the purchase themselves. Upon
calling, they engage in a conversation to resolve
the issue, unwittingly disclosing their personal in-
formation.

Type 6: Relative – Message. In this case, crimi-
nals disguise themselves as family members or rel-
atives and deceive victims into depositing money
into their bank accounts by claiming urgent needs.
This type of scam is particularly challenging to as-
sess and recover from as the primary targets are
usually elderly individuals who may not recognize
the deception.

C Construction Process

C.1 Criteria for Non-Phishing Dataset
Impersonation Target. Phishing often in-

volves mimicking specific organizations or indi-
viduals. To create realistic non-phishing examples,
we analyze phishing data to identify commonly
impersonated entities. For example, in PARCEL,
criminals frequently impersonate parcel services
such as Lotte, CJ, Logen, and the post office. Non-
phishing samples are carefully curated to exclude
these specific impersonation targets while ensuring
relevance to the type.

Theme and Domain. When explicit targets
are absent, we focus on the broader themes and
domains of phishing attacks. For instance, in
FINANCE-M, phishing messages commonly pro-
mote low-interest loans. To ensure balance, we
include non-phishing messages related to legiti-
mate financial products, such as lawful loan offers,
aligning the theme with realistic scenarios.

Potential Artifacts. Certain words frequently
appear in phishing data, disproportionately influ-
encing classification results. These words, referred
to as potential artifacts, may also occur in legiti-
mate messages or calls. To prevent models from
overfitting to these artifacts, we incorporate them
into the non-phishing dataset. For example, words
like “대출” (loan) or “택배” (parcel) appear in
both phishing and non-phishing contexts. Table 3
lists the most frequent artifact candidates for each
type. By addressing these artifacts, we reduce the
risk of overfitting and enhance the robustness of
the detection system.

We tailored the non-phishing dataset construc-
tion process to the characteristics of each phishing
type:

For GOVERNMENT, genuine phone call record-
ings were unavailable due to their rarity. In-
stead, we utilized AIHub’s customer service center
dataset (민원(콜센터) 질의-응답 데이터) (AI-
hub, 2020), casual conversation datasets (자유대
화 음성(일반남여)) (AIHub, 2020), and calls
from institutions like news agencies and polling
agencies. Potential artifacts were excluded to avoid
errors introduced by the speech-to-text conversion
process.

For FINANCE-M, PARCEL, and CREDIT, we col-
lected non-phishing samples via crowdsourcing,
guided by two criteria: (1) impersonation targets
and (2) themes and domains. Workers were in-
structed to prioritize messages as follows:

1. Messages matching both (1) and (2) were cat-
egorized as the corresponding type.

2. Messages matching (2) but not (1) were also
included as the corresponding type.

3. Messages matching (1) but not (2) or unre-
lated to both were labeled as "ETC."

The "ETC" category includes spam messages
from various sources, such as fitness centers, edu-
cational institutions, shopping malls, and private
groups.

For RELATIVE, we used 100,000 general con-
versation messages from AIHub (AIHub, 2021b),
ensuring 20% contained potential artifacts, such as
frequently occurring phishing-related words. The
"ETC" category was also incorporated to enhance
diversity.

This structured approach ensures a robust and
realistic non-phishing dataset, improving the accu-
racy and reliability of phishing detection systems.

D De-identification

Phishing attacks commonly contain real victim in-
formation, making thorough personal information
de-identification more critical than ever. To ensure
this, we implement a two-step de-identification pro-
cess.

Step 1: De-identification with GPT-4. In this
phase, we employ GPT-4(OpenAI, 2023) for de-
identification. We target names, phone numbers,
tracking numbers, addresses, IDs, and passwords
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Figure 1: Results on voice phishing detection with DIS-
TILKOBERT. Transcriptions are generated by WHISPER-
SMALL. Accumulation of preceding segments greatly
enhances performance, especially when the split length
is small.

for de-identification. We provide few-shot exam-
ples to guide the model in replacing the specific
information with corresponding tokens, such as
transforming names into #NAME and numbers into
#PHONE. This process is applied to 33,000 sam-
ples. However, we encounter some failed cases,
as described in Table 4. Consequently, we opt to
further remove personal information.

Step 2: De-identification with the Special-
ized Model. To ensure complete removal of
personal information, even with some data dam-
age, we train a Named Entity Recognition (NER)
model using the original data and the de-identified
samples generated in Step 1. Also, we conduct ad-
ditional cleaning on each sample using the python
re (Van Rossum, 2020), addressing simple cases
like numbers. We employ KOBERT as the backbone
model and fine-tune it for 20 epochs. To validate
the efficacy of the de-identification process, we
randomly select 100 examples for evaluation and
manually review them.

E Handling Streaming Call Data.

Most of the financial transfer caused by vishing
occur during the call. Therefore, the model should
offer real-time detection to prevent the damage.

Handling streaming call data involves segment-
ing audio into time intervals for transcription input
to a language model. Shorter intervals provide
closer real-time feedback, but may lack meaningful
semantics. To optimize pre-trained model capabil-
ities, we set a minimum token count requirement,
evaluating split lengths of 4, 8, 16, 32, 64, 128, and
256.

However, dividing a call into segments may not
suffice. Vishing attacks have deceptive and easing
parts, with the latter present in non-phishing sam-
ples. Labeling such segments as phishing can harm

DK K DM M

WAV2VEC2 70.59 69.12 69.83 70.31
WHISPER-SMALL 85.21 94.23 90.23 95.37
WHISPER-BASE 90.61 92.10 93.43 92.14
WHISPER-MEDIUM 88.70 91.05 96.54 93.97
WHISPER-LARGE 94.73 95.91 93.27 96.69

Table 10: Results of vishing detection on evaluation
set. We consider five ASR models to see the effect of
transcription quality. We use the split length of 16 and
stacked the preceding segments. Bold numbers indicate
the best score and underline indicates second best score.
D is for DISTIL, K is for KOBERT and M is for MBERT.

the model’s performance. To counter this, we accu-
mulate segments from the same call starting from
the beginning to the current point. View Figure
1 for improvements in performance with shorter
segments after applying the accumulation method.

F Effect of Transcription Quality.

Table 10 highlights the impact of ASR quality.
Models using WHISPER significantly outperform
WAV2VEC2, underlining the importance of accu-
rate transcription. Among WHISPER variants, per-
formance differences are minimal, with WHISPER-
LARGE achieving the best results.

G Detection Timing of Voice Phishing.

Figure 2: Detection timing of vishing. The system
detect 86.95% of phishing calls at the early stage (first
20%).

Figure 2 depicts when the determination of the
system is made when recall is 1. The system cap-
ture 86.95% of the phishing calls within the initial
20% of the call and 7.33% within the initial 40%
of the call. This indicates that the evidence for clas-
sifying voice phishing is concentrated in the early
stages of the call.
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H Precision-Recall Trade-off Analysis

This section analyzes the trade-off between preci-
sion and recall in smishing and vishing detection,
highlighting key performance patterns and implica-
tions for real-world deployment. Given the critical
importance of recall in phishing detection to min-
imize false negatives, maintaining an acceptable
precision rate remains a major challenge. Figures
3 and 4 visually represent these relationships.

Smishing. Figure 3 illustrates the precision-
recall relationship for smishing detection. A lin-
ear correlation is evident between precision and
recall, meaning that as recall increases, precision
decreases proportionally. This pattern underscores
a fundamental trade-off: achieving a recall of 1
(capturing all phishing messages) results in a pre-
cision of only 0.5, implying a 50% false positive
rate. While this ensures that no phishing messages
are missed, the high false positive rate could sig-
nificantly reduce the system’s usability. For prac-
tical deployment, finding an optimal threshold to
balance precision and recall is crucial, especially
in scenarios where excessive false positives could
overwhelm users.

Vishing. In contrast, Figure 4 shows a more dy-
namic precision-recall trade-off for vishing detec-
tion. Unlike smishing, precision decreases more
steeply as recall approaches 1. However, similar
to smishing, precision stabilizes at 0.5 when recall
reaches 1, indicating that half of the detected calls
at full recall would be false positives. The sharper
decline in precision for vishing is likely due to
variations in audio transcription quality and lin-
guistic inconsistencies introduced by ASR systems.
This suggests that vishing detection systems require
more sophisticated handling of ASR-generated text
and potentially stricter thresholds to mitigate false
positives while retaining high recall.

Practical Implications. Both smishing and vish-
ing detection face challenges in achieving high re-
call without compromising precision. For smishing,
the linear precision-recall relationship simplifies
threshold adjustment, but achieving usability re-
quires careful calibration. In vishing, the steep
decline in precision with higher recall necessitates
improvements in transcription quality and model
robustness. These insights underscore the need for
task-specific fine-tuning and adaptive thresholding
to optimize phishing detection performance in real-
world settings.

Figure 3: Precision-Recall graph for smishing detection
by varying the inference threshold. A linear correlation
is observed between precision and recall, with precision
stabilizing at 0.5 when recall reaches 1.

Figure 4: Precision-Recall graph for vishing detection
by varying the inference threshold. Unlike smishing,
precision decreases steeply as recall approaches 1, sta-
bilizing at 0.5.

I Performance on Validation Dataset

Table 11 summarizes the validation results for
smishing, vishing, and multitask detection across
different fine-tuning methods and models. Overall,
the performance metrics, including Total Accuracy
and Recall, are consistently high across all setups,
with many results nearing perfect recall values. For
instance, standard fine-tuning achieves exceptional
accuracy with models like KOBERT and MBERT,
exceeding 95% in most cases.

However, this also underscores the need for eval-
uations on more challenging datasets. While vali-
dation results demonstrate high performance under
controlled conditions, challenging datasets better
reflect real-world complexities, such as nuanced
distinctions and unseen attack types. Therefore,
focusing on performance over these challenging
scenarios is crucial for understanding the robust-
ness and generalization capabilities of the model

J Performance on Challenging Dataset

J.1 Smishing
Table 12 presents the results of smishing de-
tection, comparing various fine-tuning methods,
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Method Model Smi. Total Acc. Smi. Recall Vi. Total Acc. Vi. Recall Multi Smi. Acc. Multi Vi. Acc.
FINE-TUNING

Standard

DISTILKOBERT 91.5 0.97 94.0 0.98 92.0 94.2
KOBERT 95.5 1.00 98.5 0.98 94.8 97.8

DISTILMBERT 91.0 0.96 94.5 0.97 91.8 95.0
MBERT 93.5 0.98 98.8 0.98 93.2 97.5

PARAMETER EFFICIENT FINE-TUNING

Lora
KOBERT 94.0 0.97 96.2 0.98 93.5 96.0
MBERT 93.5 0.97 96.5 0.99 93.0 95.8

IA3
KOBERT 92.8 0.96 95.5 0.97 92.5 94.8
MBERT 93.0 0.96 95.0 0.98 92.2 94.5

+ TASK-ADAPTIVE FINE-TUNING

Lora
KOBERT 94.8 0.98 97.5 0.99 94.5 96.8
MBERT 94.5 0.98 97.2 0.99 94.0 96.5

IA3
KOBERT 94.0 0.97 97.0 0.98 93.8 96.2
MBERT 93.8 0.97 96.8 0.99 93.5 95.8

Table 11: Validation results for smishing (Smi.), vishing (Vi.), and multitask detection.

parameter-efficient approaches, and baselines.
Standard fine-tuning shows that smaller models
like DISTILKOBERT achieve competitive accuracy
(71.56%) and recall (0.80), while multilingual mod-
els like MBERT generally underperform due to
challenges in handling smishing-specific language
nuances. Parameter-efficient fine-tuning (PEFT),
particularly LoRA, improves performance signif-
icantly, with KOBERT+LORA achieving 71.07%
accuracy and a recall of 0.92. Combining PEFT
with Task-Adaptive Pretraining (TAPT) further
enhances results, with KOBERT+LORA+TAPT
achieving 77.48% accuracy, demonstrating the ef-
fectiveness of these advanced methods.

Baseline comparisons highlight that models sur-
pass general human performance (52.00% accu-
racy, recall 0.70) and approach expert-level accu-
racy (75.10%) and recall (0.91). Upperbound mod-
els, fine-tuned on single phishing types, achieve
the best results, with KOBERT reaching 78.78%
accuracy and a recall of 0.92. These findings under-
score the importance of task-specific pretraining
and efficient fine-tuning in addressing smishing
detection challenges while achieving performance
comparable to expert human evaluators.

Moreover, the results in Table 12 provide a
detailed breakdown of smishing detection perfor-
mance across four phishing types: FINANCE, PAR-
CEL, CREDIT, and RELATIVE. Each type demon-
strates distinct challenges and opportunities for im-
provement, underscoring the importance of tailored
approaches to detect different phishing strategies
effectively.

FINANCE. Detection models generally underper-
form on FINANCE, with accuracy scores across

methods remaining relatively low. For instance,
the upperbound model fine-tuned specifically for
this type achieves only 67.50% accuracy with DIS-
TILKOBERT and 63.75% with KOBERT. This sug-
gests that the overlap between financial terminol-
ogy in both phishing and legitimate contexts makes
it challenging to differentiate between the two.

PARCEL. The PARCEL type exhibits higher ac-
curacy compared to other categories. For example,
KOBERT+LORA achieves 82.50% accuracy, and
upperbound models reach up to 95.00%. This im-
proved performance may stem from distinct linguis-
tic patterns in phishing messages related to delivery
or tracking, which are easier for models to identify.

CREDIT. The CREDIT category proves to be the
most challenging, with models consistently achiev-
ing the lowest accuracy across all methods. For
instance, DISTILMBERT and MBERT achieve only
27.50% and 30.00% accuracy, respectively, in stan-
dard fine-tuning. The difficulty likely arises from
the close resemblance of phishing messages in this
category to legitimate communications, leading to
significant ambiguity.

RELATIVE. Performance on RELATIVE phish-
ing is moderate, with accuracy ranging from
57.50% for KOBERT in standard fine-tuning to
100.00% for the expert human baseline. Notably,
KOBERT+LORA+TAPT achieves 87.50%, indi-
cating that messages in this category often contain
identifiable patterns, such as specific family-related
terms, making them easier to detect with targeted
training.
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Method Model Finance Parcel Credit Relative Total Acc. Recall
FINE-TUNING

Standard

DISTILKOBERT 75.00 80.00 56.25 75.00 71.56 0.80
KOBERT 72.50 78.75 66.25 57.50 68.75 0.80

DISTILMBERT 63.75 61.25 27.50 62.50 53.75 0.45
MBERT 66.25 75.00 30.00 62.50 58.43 0.75

PARAMETER EFFICIENT FINE-TUNING

Lora
KOBERT 60.00 82.50 60.00 92.50 71.07 0.92
MBERT 60.00 67.50 65.00 85.00 67.14 0.82

IA3
KOBERT 45.00 71.25 63.75 50.00 58.57 0.61
MBERT 48.75 73.75 63.75 75.00 63.53 0.69

+ TASK-ADAPTIVE FINE-TUNING

Lora
KOBERT 77.50 78.75 72.50 87.50 77.48 0.78
MBERT 70.00 75.00 71.25 97.50 75.13 0.58

IA3
KOBERT 72.50 81.25 77.50 75.00 76.77 0.75
MBERT 70.00 76.25 66.25 75.00 71.13 0.64

BASELINES

UPPERBOUND

DISTILKOBERT 67.50 90.00 65.00 92.50 75.91 0.95
KOBERT 63.75 95.00 71.25 97.50 78.78 0.92

DISTILMBERT 66.25 77.50 73.75 95.00 75.21 0.88
MBERT 72.50 52.50 76.25 97.50 71.29 0.80

GENERAL 47.89 56.43 51.23 54.46 52.00 0.70
EXPERT 73.97 72.46 68.75 100.00 75.10 0.91

Table 12: Results of smishing detection. We mark the best score Bold, and underline the top 3 best scores among
our detection model. Detection module exceeds all human baselines but not upperbound models.

Summary. The findings reveal that while mod-
els perform well on types like PARCEL and REL-
ATIVE, they struggle with more ambiguous cat-
egories like FINANCE and CREDIT. Parameter-
efficient fine-tuning methods such as LoRA, espe-
cially when combined with task-adaptive pretrain-
ing (TAPT), show significant improvements across
all categories, particularly for the more difficult
types. These results emphasize the importance of
diverse training data and targeted approaches to ad-
dress the nuances of different smishing categories
effectively.

J.2 Vishing

The table summarizes the results of vishing de-
tection, comparing fine-tuning, parameter-efficient
fine-tuning (PEFT), and task-adaptive pretraining
(TAPT) across different models. In standard fine-
tuning, MBERT achieves the highest total accuracy
(95.37%) and a strong recall (0.91), showcasing
its effectiveness in handling multilingual tasks, fol-
lowed closely by KOBERT (94.23% accuracy, recall
0.96). Smaller models like DISTILKOBERT perform
well overall (85.21% accuracy, recall 0.73), indi-
cating the feasibility of deploying smaller models
in resource-constrained environments.

For PEFT, KOBERT with LoRA achieves mod-
erate results (74.95% accuracy, recall 0.70), while

IA3 performs slightly worse, suggesting LoRA’s
better suitability for vishing tasks. Applying
TAPT improves performance across models. For
instance, KOBERT+LORA+TAPT increases ac-
curacy to 83.08% with improved generalization,
though it does not surpass the results of standard
fine-tuning. Similarly, MBERT+LORA+TAPT
achieves 86.75% accuracy, highlighting TAPT’s
ability to boost performance, albeit slightly below
the best-performing standard fine-tuned models.

Moreover, in FINANCE-, accuracy is generally
lower for this type across all methods, with a notice-
able gap between fine-tuning and PEFT approaches.
This reflects the complexity of financial phishing,
where nuanced linguistic cues are critical for de-
tection. MBERT consistently outperforms KOBERT

and smaller models in both standard and PEFT set-
tings, suggesting its strength in handling complex
and diverse data.

For GOVERNMENT, all models and methods
achieve higher accuracy, with MBERT and KOBERT

nearing perfect performance in standard fine-
tuning. The relatively structured and formal lan-
guage used in government-related phishing may
contribute to easier detection.
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Method Model FINANCE-V GOVERNMENT Total Acc. Recall
FINE-TUNING

Standard

DISTILKOBERT 68.43 92.68 85.21 0.73
KOBERT 91.24 95.56 94.23 0.96

DISTILMBERT 75.00 96.98 90.23 0.83
MBERT 86.45 99.34 95.37 0.91

PARAMETER EFFICIENT FINE-TUNING

Lora
KOBERT 73.20 75.72 74.95 0.70
MBERT 76.38 81.84 80.16 0.82

IA3
KOBERT 63.98 66.21 65.53 0.95
MBERT 53.65 54.53 54.26 0.98

+ TASK-ADAPTIVE FINE-TUNING

Lora
KOBERT 79.31 84.76 83.08 0.80
MBERT 71.92 93.35 86.75 0.77

IA3
KOBERT 73.14 77.97 76.49 0.88
MBERT 74.90 81.22 79.28 0.85

Table 13: Results of vishing detection. Bold indicates the best score and underline indicates the top 3 best scores
among our detection model.

Method Model PARCEL FINANCE-M RELATIVE CREDIT Smi. Total FINANCE-V GOVERNMENT Vi. Total
FINE-TUNING

Standard

DISTILKOBERT 85.00 63.75 67.50 65.00 77.23 [+5.67] 70.40 92.10 84.68 [-0.53]

KOBERT 68.75 55.00 65.00 33.75 53.25[-15.5] 53.25 96.80 91.74 [-2.49]

DISTILMBERT 55.00 65.00 62.50 31.25 51.29 [-2.46] 93.61 98.32 95.97 [+5.74]

MBERT 43.75 67.50 50.00 32.50 47.81 [-10.62] 93.34 99.20 96.27 [+0.9]

PARAMETER EFFICIENT FINE-TUNING

Lora
KOBERT 77.50 58.75 82.50 60.00 76.13 [+0.06] 67.16 81.78 78.96 [+4.01]

MBERT 70.00 52.50 80.00 63.75 74.06 [+6.92] 64.19 81.19 77.63 [-2.53]

IA3
KOBERT 81.25 56.25 62.50 65.00 73.84 [+15.27] 66.60 80.51 77.18 [+11.65]

MBERT 71.25 62.50 65.00 71.25 72.55 [+9.02] 67.95 80.12 76.34 [+22.08]

+ TASK-ADAPTIVE FINE-TUNING

Lora
KOBERT 91.25 62.50 92.50 61.25 84.51 [+7.03] 73.62 89.30 86.91 [+3.83]

MBERT 77.50 71.25 82.50 48.75 79.10 [+3.97] 67.21 88.64 83.88 [-2.87]

IA3
KOBERT 73.75 43.75 52.50 63.75 70.22 [-6.57] 59.32 73.14 71.68 [-4.81]

MBERT 85.00 67.50 95.00 58.75 74.42 [+3.29] 72.87 86.53 80.49 [+1.21]

Table 14: Results of the smishing and vishing when trained with both. We mark the best score Bold, and underline
the top 3 best scores among our detection model. We also provide the difference between single-task and multi-task
model, where red denotes a performance gain and blue denotes the performance drop.

J.3 Multitask

The experimental results highlight the effectiveness
of multitasking and fine-tuning techniques in phish-
ing detection, particularly for smishing and vishing
across diverse attack types.

For smishing, multitask approaches such as
KOBERT + LORA + TAPT achieved the highest
overall performance with an accuracy of 84.51%,
significantly outperforming general human base-
lines (52.00% accuracy) and expert human evalu-
ators (75.10% accuracy). Among smishing types,
the PARCEL and RELATIVE categories showed
the largest accuracy gains under multitasking se-
tups, improving by +7.03 and +15.00, respectively.
These results suggest that shared features across
tasks enhance the model’s ability to generalize
effectively. However, credit- and finance-related
smishing types exhibited relatively lower perfor-

mance, indicating the potential need for additional
domain-specific data or targeted fine-tuning strate-
gies.

For vishing, multitasking also demonstrated sub-
stantial benefits. The best overall performance was
achieved by MBERT + LORA + TAPT, with an
accuracy of 86.91%. Notably, the FINANCE-V type
showed a significant improvement of +11.65 in
accuracy under multitasking settings. Government-
related vishing detection remained the most robust,
with KOBERT + LORA + TAPT achieving a high
accuracy of 89.30%. These findings underscore
the importance of transcription quality, as models
utilizing advanced ASR systems like WHISPER

consistently outperformed those relying on lower-
quality transcriptions.

The analysis further highlights that multitasking
is particularly advantageous for phishing types with
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shared characteristics, such as RELATIVE smish-
ing and government-related vishing. Parameter-
efficient fine-tuning (PEFT) and task-adaptive pre-
training (TAPT) enhanced model generalization,
particularly in zero-day attack scenarios, where un-
seen phishing types saw accuracy improvements of
up to 175%. However, the relatively lower perfor-
mance on credit smishing underscores challenges
in data coverage and model adaptability.

K Human vs AI

Very Confident

45.0%

Confident

23.3%

Less Confident

28.3%

Not Confident3.4%

Human

Figure 5: Human’s confidence on their decision of dis-
tinguishing phishing and non-phishing data.

Q1: How confident each model and human is to
their decision? Humans show high confidence
on their decision. For human we ask people how
confident that you won’t be deceived by phishing
attackers and provide four options: Very confident,
Confident, Less confident, and Not confident. Fig-
ure 5 illustrates the result. 68.3% of humans, de-
spite having limited knowledge about phishing, be-
lieve they would not fall for phishing attempts and
make right distinction.

We also capture the saturation arises, as 87.6%
of confidence rate of the model belongs between 0
to 0.1 or 0.9 to 1.

Q2: Can humans really distinguish phishing
from spam message? General individuals, de-
spite their high confidence, achieve only a 52% ac-
curacy rate in distinguishing phishing from regular
messages. Experts show substantial performance
improvements. Notably, they reach a recall of 0.91,
indicating the ability to avoid most phishing attacks.

This leads to the conclusion that the real challenge
lies in countering new phishing techniques. Refer
to Table 1 for detailed scores.

Q3: Are some types more difficult than others?
All phishing types pose equal challenges for the
general humans. Experts find the CREDIT most
difficult with an accuracy of 68.75%. The model
also follows this trend, performing worst in the
CREDIT with a 72.5% accuracy.

Q4: Are some types easier to train? The REL-
ATIVE phishing type proves more trainable for
both humans and models. Human performance
improves across all phishing types after education,
with RELATIVE exhibiting the most remarkable
enhancement—an increase approximately 200%,
while other types show improvements ranging be-
tween 15% to 20%. Similarly, the model’s perfor-
mance gains for each phishing type after training
typically fall between 5% to 10%, but RELATIVE

achieves a substantial gain of 25%.
This implies that while some phishing types re-

main challenging even after training, specific types
become notably easier to distinguish once individ-
uals are aware that a message is phishing. In these
cases, the distinction between phishing and non-
phishing messages becomes evident, potentially
making individuals more susceptible due to a lack
of exposure to this specific type of attack.

Q5: In what types does the best model outper-
form humans? Our best detection system outper-
forms humans except for the RELATIVE, with the
most significant advantage in the FINANCE-M. This
superior performance is attributed by the model’s
accessibility to a wealth of non-phishing financial
message corpus, enabling it to detect phishing mes-
sages more effectively compared to most individu-
als who receive financial messages infrequently.

L Discussions.

There are doubts about whether smishing can be
distinguished through text alone, prompting us to
establish human baselines. Even experts achieve
only 75% accuracy, indicating a challenging ceil-
ing for smishing detection based solely on textual
information. Concrete detection requires additional
meta-information, such as sender details, numbers,
and user history. Regarding vishing, we only use
textual information in our work because, in most
cases in our collected dataset, the pronunciation
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of the caller is nearly indistinguishable from reg-
ular callers. However, there is a possibility that
additional acoustic features could improve perfor-
mance.

The detection system, running every 16 tokens
to be as close to real-time as possible, doesn’t cur-
rently account for the computational cost of infer-
ence. Each decision involves the inference cost
of both the ASR and detection models, resulting
in high computational expenses per call. There-
fore, there is a need to explore ways to lower the
inference cost of both models.

Furthermore, while the methodology we propose
is more robust to zero-day attacks, it still performs
better at in-domain context. Therefore, there is a
need for further investigation on how to continu-
ally train the system without the loss of previously
learned knowledge.

225


