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Abstract

Universal query embeddings that accurately
capture the semantic meaning of search queries
are crucial for supporting a range of query
understanding (QU) tasks within enterprises.
However, current embedding approaches often
struggle to effectively represent queries due to
the shortness of search queries and their ten-
dency for surface-level variations. We propose
a user-behavior-driven contrastive learning ap-
proach which directly aligns embeddings ac-
cording to user intent. This approach uses
intent-aligned query pairs as positive exam-
ples, derived from two types of real-world user
interactions: (1) clickthrough data, in which
queries leading to clicks on the same URLs are
assumed to share the same intent, and (2) ses-
sion data, in which queries within the same user
session are considered to share intent. By in-
corporating these query pairs into a robust con-
trastive learning framework, we can construct
query embedding models that align with user
intent while minimizing reliance on surface-
level lexical similarities. Evaluations on real-
world QU tasks demonstrated that these models
substantially outperformed state-of-the-art text
embedding models such as mE5 and SimCSE.
Our models have been deployed in our search
engine to support QU technologies.

1 Introduction

Query understanding (QU) tasks, such as query
classification and suggestion, play a crucial role in
improving user search experiences by interpreting
users’ search intents and supporting search behav-
ior (Shneiderman et al., 1997; Lau and Horvitz,
1999). Embedding-based approaches have gained
prominence in addressing these tasks due to their
robustness to lexical variations (Zhang et al., 2019).
Building tailored embeddings for every QU task is
costly, making universal query embeddings essen-
tial. Such universal embeddings enable accurate

*Equal contribution.

(a) Clickthrough data

(b) Session data

Figure 1: Illustrations of user interactions used to con-
struct positive query pairs in UBIQUE.

representation of search intent and provide a versa-
tile solution applicable across QU tasks, which is
highly valuable for enterprises.

Despite their importance, developing query em-
beddings that well reflect users’ intent presents
unique challenges. Since search queries are typi-
cally short, they lack rich contextual information,
making it difficult to precisely capture users’ search
intent (Hashemi, 2016). This shortness also means
that minor wording changes in queries, e.g., replac-
ing even a couple of words with their synonyms,
can noticeably alter their appearances. For exam-
ple, “buy car” and “purchase an automobile” ex-
press the same intent but differ substantially in
wording. These challenges highlight the need to
consider suitable learning embedding approaches
for search queries.

A widely recognized approach for learning ro-
bust text embeddings is contrastive learning, which
has demonstrated notable success in this field.
State-of-the-art (SOTA) contrastive learning ap-
proaches typically use large-scale weak supervi-
sion from web sources, such as question-answer
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pairs from QA forums or title-passage pairs from
encyclopedic articles (Wang et al., 2024a,b; Li
et al., 2023b). However, as these datasets primarily
consist of longer, contextually detailed sentences,
models trained on them struggle to handle short,
context-poor queries.

An alternative approach is to use unsupervised
contrastive learning models, such as Unsup. Sim-
CSE (Gao et al., 2021), directly on a large corpus of
search queries. Unsup. SimCSE generates pseudo-
positive examples by encoding the same sentence
twice with different dropout noise. A model trained
on such positive examples tends to overemphasize
lexical overlap as a cue for semantic equivalence;
we observed that Unsup. SimCSE struggles to cap-
ture semantic similarities between queries with dif-
ferent appearances but the same intent, such as
“buy car” and “purchase an automobile” (§5.1).

Overall, current contrastive learning approaches
are suboptimal when creating effective positive
examples for search query embeddings: typical
weakly supervised approaches struggle to gen-
eralize to context-poor queries, while the repre-
sentative unsupervised approach results in mod-
els that are overly sensitive to surface-level vari-
ations. To address these problems, we propose
User Behavior-driven contrastive learning with
Intent alignment for search QUery Embeddings
(UBIQUE). UBIQUE directly aligns embeddings
according to user intent, using intent-aligned query
pairs derived from real-world user interactions as
positive examples. As shown in Figure 1, we ex-
plore two types of user interactions. (1) Click-
through data are records of users’ clicking on web
pages after submitting search queries. Queries are
considered to have the same intent if they lead to
clicks on the same URL, as users tend to click on
results that satisfy similar information needs. (2)
Session data are sequences of queries a single user
takes on a search engine within a given time frame.
Queries within the same user session are assumed
to share the same search intent. By using a robust
contrastive learning framework (Chen et al., 2020)
on these intent-aligned query pairs, UBIQUE con-
structs models that precisely capture the inherent
intent of context-poor queries. This approach also
minimizes reliance on appearances, as these intent-
aligned query pairs are constructed independently
of surface-level similarities.

For our experiments, we built four practical
QU datasets using real-world search queries to
evaluate UBIQUE from multiple perspectives

(§4). The results indicate that our click-based
model (UBIQUEclick) and session-based model
(UBIQUEsession) substantially outperformed base-
lines such as mE5large and Unsup. SimCSE.
Specifically, compared to mE5large, UBIQUEclick
achieved an average improvement of 8.7 points
in task-performance metrics across all tasks,
while UBIQUEsession showed strengths in a query-
suggestion task, achieving an improvement of 5.3
points in NDCG@10 score. Our analysis also con-
firmed their robustness to lexical variations, effec-
tively capturing semantic similarities where unsu-
pervised models fail (§5.1). These findings high-
light the effectiveness of leveraging user behavior
data in learning universal query embeddings.

2 Related Work

Query Understanding QU aims to enhance
search experiences by effectively processing user
queries (Shneiderman et al., 1997; Lau and Horvitz,
1999). Due to the shortness and challenges in cap-
turing their intent, user behavior logs have tradi-
tionally supported each QU task before the emer-
gence of deep learning. For instance, mutual query
suggestions have been derived from co-occurring
session queries (Huang et al., 2003). Similarly,
query classification and clustering have leveraged
clicked URLs (Cao et al., 2009; Beeferman and
Berger, 2000).

More recently, pre-trained language models have
advanced QU. Jiang et al. (2022) mitigated context
absence in queries via extended token classifica-
tion, while Li et al. (2023a) proposed a pre-training
framework using a query-URL bipartite graph. We
fine-tuned pre-trained language models using user
interactions to construct fixed-size text embeddings
for general QU tasks. Our approach can be com-
bined with these pre-training techniques.

Closely related is the study by Zhang et al.
(2019), who proposed a Bi-GRU-based GEN en-
coder to compute intent similarity using click-
through data and task-specific human annotations.
Unlike their method, UBIQUE constructs general-
purpose search query embedding models that rely
solely on automatically collected user interactions.

Contrastive Learning Contrastive learning has
proven effective for learning text embeddings by
pulling similar pairs closer and pushing dissimilar
pairs apart (Hadsell et al., 2006). Prior research
typically focused on constructing positive exam-
ples. Early studies relied on annotated datasets,
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such as the NLI dataset (Gao et al., 2021; Zhang
et al., 2021), while more recent studies used large-
scale weak supervision from web resources, achiev-
ing SOTA results (Wang et al., 2024a,b; Li et al.,
2023b). While these datasets consist of longer texts,
we focused on handling short-text queries using
weak supervision from user interactions.

To reduce reliance on annotated data, unsuper-
vised approaches have also been explored. A
prominent example is Unsup. SimCSE, which uses
dropout as minimal noise to generate positive
pairs (Gao et al., 2021; Liu et al., 2021). While Wu
et al. (2022) addressed the length biases inherent in
Unsup. SimCSE, we examined its ineffectiveness
with search queries, particularly its sensitivity to
surface-level variations.

3 UBIQUE

This section introduces UBIQUE for constructing
universal query-embedding models.

3.1 Overview

UBIQUE uses query pairs (q, q+) as positive exam-
ples, which match the same search intent, regard-
less of differences in their surface forms. These
pairs are mined from user-interaction logs, which
capture detailed records of search activities and en-
gagement patterns with a search engine (§3.2 and
§3.3). Given a set of query pairs D = (qi, q

+
i )

m
i=1,

UBIQUE models are trained using the InfoNCE
loss over in-batch negatives (Chen et al., 2017):

Li = −log
esim(qi,q

+
i
)/τ

∑N

j=1
e
sim(qi,q

+
j
)/τ

, (1)

where N denotes the mini-batch size, τ the temper-
ature hyperparameter, sim(·) the cosine similarity,
and qi and q+

i the embeddings of qi and q+i , re-
spectively. In the following sections, we explain
the construction of these positive examples (q, q+)
from user interactions. 1

3.2 Clickthrough Data

Clickthrough data consist of records of user clicks
on web pages after submitting search queries.
Queries leading to clicks on the same URL are
presumed to share similar search intent, as user
clicks generally reflect fulfillment of informational
needs (Beeferman and Berger, 2000; Croft et al.,
2009).

1We also experimented with hard negative sampling, but it
did not yield improved results (see Appendix A).

However, simply mining query pairs that co-
clicked on a single URL can produce false positive
pairs, as records include unreliable information
such as user misclicks or clicks to generic sites
(e.g., news portals) that attract diverse queries. To
mitigate these types of noise, we mined query pairs
in which sets of clicked URLs are similar. By lever-
aging set similarity, we reduce the impact of noise,
as the reliable click information within the sets
helps identify appropriate query pairs. Following
previous literature (Beeferman and Berger, 2000;
Huang et al., 2023), we used the Jaccard coefficient
as the measure of set similarity:

Simclick(q1, q2) =
U(q1) ∩ U(q2)

U(q1) ∪ U(q2)
, (2)

where q1 and q2 denote the search queries, and
U(qi) denotes the set of URLs associated with qi.
Query pairs exceeding a similarity threshold θ were
selected as positive pairs.

3.3 Session Data
Session data comprise sequences of queries sub-
mitted by a single user within a specific time frame
t. Queries within the same session are assumed to
have similar search intent, as they may involve re-
formulating queries, adding further information to
previous queries, or searching for different aspects
of the same topic (Huang et al., 2003).

Simply mining query pairs that co-occurred
within a session can introduce noise, as users may
also search with different intents within a session,
such as aimless web surfing or addressing mul-
tiple informational needs. To address this, we
aggregated the co-occurrence frequencies of ad-
jacent queries from each session across multiple
sessions (Fonseca et al., 2005), assuming that query
pairs with similar search intent are more prevalent
than those with different search intents. Since high-
frequency queries, such as “YouTube”, can bias
simple co-occurrence frequencies, we used the Jac-
card coefficient that accounts for individual query
frequencies (Huang et al., 2003):

Simsession(q1, q2) =
c(q1, q2)

f(q1) + f(q2)− c(q1, q2)
, (3)

where c(q1, q2) denotes the co-occurrence fre-
quency of q1 and q2, and f(qi) the frequency of
query qi. This measure ensures that even if two
queries frequently co-occur, they receive a low sim-
ilarity score if one of them is popular across differ-
ent contexts. Query pairs with similarity above a
threshold ϕ were selected as positive pairs.
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Query 1 Query 2

Click

ユニバーサルスタジオジャパンホテル安い 大阪 USJ格安ホテル
(Universal Studios Japan Hotel Cheap) (Osaka USJ Budget Hotel)

海外旅行クレカ 海外に強いクレジットカード
(Overseas Travel CC) (Credit Card Good for Overseas)

最も長い蛇 10m蛇
(Longest Snake) (10m Snake)

Session

TDLテリヤキチキン ディズニーランド照り焼きチキンレシピ
(TDL Teriyaki Chicken) (Tokyo Disneyland Teriyaki Chicken Recipe)

コンビニ大根サラダ コンビニ大根サラダアレンジ
(Convenience Store Radish Salad) (Convenience Store Radish Salad Variations)

アメリカ 80万旅行 アメリカ 1週間旅費
(USA 800,000 Yen Trip) (USA One Week Travel Cost)

Table 1: Examples of positive query pairs in UBIQUE.

Task #Samples #Associated

Query-Synonym Retrieval 5,000 1
Query Suggestion 951 8.2
Query Classification 1,456 N/A
Short-Text Reranking 4,667 25.5

Table 2: Statistics of the QU benchmark. #Samples
denotes the size of the dataset, and #Associated denotes
the average number of associated items per source query.
The associated items were created based on human an-
notations.

Examples of the constructed query pairs are pre-
sented in Table 1.

4 Experiment

We evaluated UBIQUE on four real-world QU
tasks using Japanese search query logs.

4.1 Evaluation
A multifaceted evaluation across various QU tasks
is essential to assess the effectiveness of universal
embeddings, as performance on one task may not
correlate with performance on others (Muennighoff
et al., 2023). Due to privacy and proprietary restric-
tions, comprehensive benchmarks covering multi-
ple QU tasks are not publicly available. Therefore,
we constructed a QU benchmark comprising the
following four distinct tasks, including one with a
public dataset.

Query-Synonym Retrieval (QR) This task re-
trieves queries that express the same intent despite
lexical differences (Li and Xu, 2014). For each
source query, retrieval was conducted by calculat-
ing cosine similarity against all other queries in the

test set, excluding the source query itself. Mean
Reciprocal Rank (MRR) was used as the evaluation
metric.

Query Suggestion (QS) This task aims to re-
trieve contextually related queries that users may
consider next. Related queries are sourced from re-
lated search keywords in our search system, curated
by human evaluators for quality assurance. For
evaluation, we retrieved the top ten queries from
the full set of related queries, ranked by cosine sim-
ilarity to the source query. We computed Normal-
ized Discounted Cumulative Gain (NDCG)@10 by
assigning a gain value of 1.0 to related queries and
0.0 to all others for each source query.

Query Classification (QC) This task involves
categorizing geolocation-related queries into four
classes: landmarks, chain stores, addresses, and
station names. We trained a linear classifier on the
embeddings and evaluated its performance using
five-fold cross-validation following Conneau and
Kiela (2018) and reported the average of macro F1
score.

Short-Text Reranking (SR) This task re-ranks
product names linked to user queries using the pub-
licly available ESCI dataset (Reddy et al., 2022).
Each query corresponds to multiple products with
graded relevance labels: Exact, Substitute, Comple-
ment, and Irrelevant. We assigned gain values of
1.0, 0.1, 0.01, and 0.0 to these labels, respectively,
for computing NDCG. We ranked all the product
names by cosine similarity to the source query.

Statistics of the QU benchmark are shown in
Table 2.
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Model Params QR QS QC SR Avg.

General

SOTA
Sup. SimCSElarge 337M 40.9 81.3 85.4 88.4 74.0
Rurilarge 337M 67.7 86.3 88.0 90.5 83.1
mE5large 560M 63.1 87.3 82.4 91.1 81.0
Sarashina1.1b 1.2B 73.9 89.2 84.5 91.3 84.7
OpenAI3-large - 65.9 89.9 80.8 91.4 82.0

Similar Scale
DistilBERT 68M 20.3 79.7 83.4 87.3 67.7
Rurismall 68M 54.5 87.6 84.1 90.8 79.3
mE5small 118M 59.5 87.7 71.5 90.8 77.4

Search Logs

Unsupervised
fastText - 22.9 84.8 82.5 87.7 69.5
Unsup. SimCSE 68M 28.5 84.8 83.2 88.2 71.2

Ours
UBIQUEclick 68M 91.4 91.2 85.8 90.5 89.7
UBIQUEsession 68M 71.9 92.6 86.9 90.3 85.4

Table 3: Performance comparison of models on QU
benchmark. Metrics: QR (MRR), QS (NDCG@10),
QC (F1), SR (NDCG). Avg. is the macro average across
tasks. Bold: best, Underline: second best.

4.2 Training Details

The training data, sourced from user logs of Yahoo!
JAPAN Search2 in April 2024, includes 50 million
query pairs. For clickthrough data, we set θ to 0.4,
while for session data, we set ϕ to 0.2 and t to
300 seconds.3 Queries containing predefined adult
terms were excluded, as such queries often trigger
diverse URL clicks or shifts in intent within a short
time frame, resulting in the generation of irrelevant
query pairs.

We used Japanese DistilBERT (Koga et al.,
2023) as the base model, a lightweight model well-
suited for practical deployment. The [CLS] repre-
sentation was used as the query embedding. The
batch size was set to 1,024, with a maximum se-
quence length of 164. The learning rate was 2e-4,
using linear decay and a warmup for the initial 1%
of steps, with the AdamW optimizer. Training was
conducted over 5 epochs, and we selected the best
checkpoint on the basis of evaluations conducted
every 4,000 steps. We implemented our code using
Transformers (Wolf et al., 2020) and ran the train-
ing on four NVIDIA V100 GPUs, which took 16
hours. To leverage a large number of in-batch neg-
atives crucial for model performance (Wang et al.,

2https://search.yahoo.co.jp
3Performance improved with higher thresholds for θ and

ϕ, reaching a plateau at these values.
4This length covers 98.4% of the search queries.

2024a), we used DeepSpeed ZeRO-2 (Rajbhandari
et al., 2020) to reduce memory usage and scale up
batch size (see Appendix B for details).

4.3 Baselines

We compared UBIQUEclick and UBIQUEsession
with SOTA general domain text embedding models
and unsupervised models trained on search queries.

We used five SOTA models: Japanese
Sup. SimCSElarge (Tsukagoshi et al., 2023),
Rurilarge (Tsukagoshi and Sasano, 2024),
mE5large (Wang et al., 2024b), Sarashina1.1b (SB
Intuitions, 2024), and the commercial model
OpenAI3-large (OpenAI, 2024). We also used
Japanese DistilBERT (UBIQUE’s base model),
Rurismall, and mE5small as similar-scale models for
fair comparison.

For unsupervised models, we used fastText (Bo-
janowski et al., 2017) and Unsup. SimCSE, both
trained on 50 million queries. For fastText, we
tokenized queries with MeCab (Kudo, 2006) and
trained a 300-dimensional vector model using Skip-
gram, with default hyperparameters. For Un-
sup. SimCSE, we used Japanese DistilBERT as the
base model, with a learning rate of 3e-5, dropout
rate of 0.2, and the same settings as our UBIQUE
models for the remaining parameters (see Appendix
C for details).

4.4 Results

Table 3 presents the evaluation results on the QU
benchmark. UBIQUEclick and UBIQUEsession sub-
stantially outperformed all similar-scale models on
most tasks and even surpassed the larger SOTA
models on average. For instance, UBIQUEclick
achieved high scores on average, outperform-
ing Rurilarge by 6.6% in average performance
(89.7% vs. 83.1%).5 UBIQUEsession also surpassed
Rurilarge with an average score of 2.3% and demon-
strated exceptional strength in the QS task, achiev-
ing an NDCG@10 score of 92.6%, which is a
6.3% absolute improvement over the baseline’s
86.3%. It is worth noting that these SOTA models
are not solely based on contrastive learning but in-
volve complex two-stage training pipelines using
rerankers (Wang et al., 2024a; Li et al., 2023b).
These results underscore the importance of con-
structing positive examples specialized for search
queries.

5UBIQUEclick even surpassed Rurilarge on the dev set early
in training, at just 2.5% of the total training steps.
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Model QR QS QC SR

UBIQUEclick 91.4 91.2 85.8 90.5
w/o Jaccard 89.4 90.8 85.6 90.4

UBIQUEsession 71.9 92.6 86.9 90.3
w/o Jaccard 58.7 92.1 87.1 90.1

Table 4: Ablation study on the QU benchmark.

Figure 2: MRR scores on the QR task across different
bins of normalized Levenshtein similarity.

UBIQUEclick and UBIQUEsession substantially
outperformed unsupervised models trained on
search queries. For example, Unsup. SimCSE
achieved an MRR of 28.5% on the QR task,
whereas UBIQUEclick achieved 91.4%. This no-
table performance gap in QR task scores indicates
that these unsupervised models struggle to capture
semantic relationships between search queries with
different appearances (see also §5.1), resulting in
limited performance improvements.

To evaluate the effectiveness of the Jaccard co-
efficient in query pair selection, we conducted
an ablation study. We trained UBIQUEclick and
UBIQUEsession without applying Jaccard similar-
ity thresholds (i.e., using query pairs that simply
co-clicked on a single URL (Zhang et al., 2019) or
just co-occurred in a session). As shown in Table 4,
incorporating the Jaccard coefficient led to consis-
tent performance improvements in both our models
across most tasks. This suggests the importance
of integrating a robust query-pair-mining approach
based on the Jaccard coefficient to mitigate noise
and irrelevant pairs.

5 Analysis

To understand the effectiveness of UBIQUE mod-
els, we conducted comparative analyses with repre-
sentative baseline models.

5.1 Robustness to Lexical Variations

By leveraging user interactions for contrastive
learning, UBIQUEclick and UBIQUEsession avoid
reliance on appearances alone and capture the se-
mantic meaning of search queries, which are often
short and thus prone to lexical variations. To verify
this property, we evaluated their performance on a
query-synonym retrieval task across different edit
distances.

As shown in Figure 2, we observed that all mod-
els achieved decent MRR scores for lexically simi-
lar pairs (e.g., “colour palette” and “color palette”).
However, as the lexical difference increased (e.g.,
“purchase an automobile” and “buy car”), the scores
of the baseline models, especially Unsup. SimCSE,
decreased dramatically, whereas our models main-
tained their performance. These findings indicate
that, while Unsup. SimCSE is highly sensitive to
lexical variations, our models are robust against
such variations and can appropriately capture the in-
tent of queries. This robustness can be attributed to
using user interactions as weak supervision, which
enables the models to focus on semantic similari-
ties rather than appearances.

5.2 Qualitative Analysis

To understand how our models improve query em-
beddings, we analyzed nearest neighbor queries for
each model in the embedding space6. Representa-
tive nearest neighbor queries are shown in Table 5.

With mE5large and Unsup. SimCSE, the nearest
neighbors often had similar appearances but dif-
ferent intents. For example, when given a query
“ロス旅費 (LA travel expenses)”, these baseline
models retrieved “スイス旅費 (Swiss travel ex-
penses)” because they were affected by the lexi-
cal overlap “旅費 (Travel expenses)”, even though
the destination differed. In contrast, our models
succeeded in retrieving queries that share similar
intents regardless of lexical differences, such as
“ロサンゼルス旅行費用 (Cost of a trip to Los
Angeles).” UBIQUEclick tended to retrieve para-
phrases of queries that more precisely matched the
intent while UBIQUEsession retrieved queries with
broader or transitional intents, such as “ロス現地
時間 (LA local time).” These observations align
with the characteristics of each data source.

6Using Faiss (Douze et al., 2024), we conducted approxi-
mate nearest neighbor search on 10 million random queries.
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Model 1st Query 2nd Query 3rd Query

Unsup. SimCSE ケアンズ旅費 スイス旅費 シンガポール旅費
(Cairns travel expenses) (Switzerland travel expenses) (Singapore travel expenses)

mE5large スイス旅費 ロサンゼルス旅行費用 タイ旅費
(Switzerland travel expenses) (Cost of a trip to Los Angeles) (Thailand travel expenses)

UBIQUEclick 旅行ロス ロサンゼルス旅行費用 ロサンゼルス物価
(Trip to LA) (Cost of a trip to Los Angeles) (Los Angeles cost of living)

UBIQUEsession ロサンゼルス旅行費用 ロス羽田 ロス現地時間
(Cost of a trip to Los Angeles) (LA Haneda Airport) (LA local time)

Table 5: Nearest neighbors in embedding space for “ロス旅費 (LA travel expenses)” across models.

6 Conclusion and Future Work

We proposed UBIQUE, a simple yet effective ap-
proach to address the challenges of learning univer-
sal search query embeddings by harnessing user be-
havior data through contrastive learning. UBIQUE
constructs positive query pairs from clickthrough
and session data, enabling the model to align em-
beddings based on user intent rather than surface-
level similarities. The empirical results on four
practical QU tasks demonstrated that UBIQUE
models outperformed strong baselines, particularly
in their robustness to lexical variations in search
queries.

While our study focused on a Japanese search
system, we recognize that search styles can vary
across languages (Chu et al., 2012). Since
UBIQUE is theoretically applicable to other lan-
guages, evaluating its effectiveness in diverse lin-
guistic contexts is an exciting future direction. Al-
though we constructed our models separately using
clickthrough and session data, combining these
data sources may lead to further performance im-
provements. Incorporating additional information
from search results, such as titles and documents,
could further enhance UBIQUE, provided the po-
tential increase in inference latency is acceptable.

7 Ethics Statement

Throughout UBIQUE’s training data generation
process (§3) and the creation of evaluation
datasets (§4.1), all user information was rigorously
anonymized to ensure that neither researchers nor
reviewers could identify individual users. Specifi-
cally, user IDs were replaced with hashed strings,
guaranteeing that personal identities remain undis-
closed. Additionally, all annotation tasks were con-
ducted by internal senior reviewers who had access
only to the queries themselves, without any user
information.

In our qualitative evaluation (§5.2), we included
only queries that appeared at least ten times in the
logs to further protect user privacy.
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Fangyu Liu, Ivan Vulić, Anna Korhonen, and Nigel
Collier. 2021. Fast, Effective, and Self-Supervised:
Transforming Masked Language Models into Univer-
sal Lexical and Sentence Encoders. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. MTEB: Massive Text Embed-
ding Benchmark. In Proceedings of the 17th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 2014–2037.

OpenAI. 2024. New embedding models and API up-
dates.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. ZeRO: Memory Optimiza-
tions Toward Training Trillion Parameter Models.
Preprint, arXiv:1910.02054.

Chandan K. Reddy, Lluís Màrquez, Fran Valero, Nikhil
Rao, Hugo Zaragoza, Sambaran Bandyopadhyay,
Arnab Biswas, Anlu Xing, and Karthik Subbian.
2022. Shopping Queries Dataset: A Large-Scale
ESCI Benchmark for Improving Product Search.
Preprint, arXiv:2206.06588.

SB Intuitions. 2024. Sarashina-embedding-v1-1b.

Ben Shneiderman, Don Byrd, and W. B Croft. 1997.
Clarifying Search: A User-Interface Framework for
Text Searches. Technical report.

Hayato Tsukagoshi and Ryohei Sasano. 2024. Ruri:
Japanese General Text Embeddings. Preprint,
arXiv:2409.07737.

Hayato Tsukagoshi, Ryohei Sasano, and Koichi Takeda.
2023. Japanese SimCSE Technical Report. Preprint,
arXiv:2310.19349.

145

https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://ciir.cs.umass.edu/downloads/SEIRiP.pdf
https://ciir.cs.umass.edu/downloads/SEIRiP.pdf
https://arxiv.org/abs/2401.08281
https://doi.org/10.1145/1099554.1099726
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://api.semanticscholar.org/CorpusID:18908839
https://api.semanticscholar.org/CorpusID:18908839
https://doi.org/10.1002/asi.10256
https://doi.org/10.1002/asi.10256
https://doi.org/10.1002/asi.10256
https://www.amazon.science/publications/behavior-driven-query-similarity-prediction-based-on-pre-trained-language-models-for-e-commerce-search
https://www.amazon.science/publications/behavior-driven-query-similarity-prediction-based-on-pre-trained-language-models-for-e-commerce-search
https://www.amazon.science/publications/behavior-driven-query-similarity-prediction-based-on-pre-trained-language-models-for-e-commerce-search
https://arxiv.org/abs/2210.03915
https://arxiv.org/abs/2210.03915
https://arxiv.org/abs/2210.03915
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://huggingface.co/line-corporation/line-distilbert-base-japanese
https://huggingface.co/line-corporation/line-distilbert-base-japanese
https://taku910.github.io/mecab/
https://taku910.github.io/mecab/
https://www.microsoft.com/en-us/research/publication/patterns-search-analyzing-modeling-web-query-refinement/
https://www.microsoft.com/en-us/research/publication/patterns-search-analyzing-modeling-web-query-refinement/
https://doi.org/10.1561/1500000035
https://doi.org/10.1561/1500000035
https://doi.org/10.1145/3539618.3591845
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://aclanthology.org/2021.emnlp-main.109
https://aclanthology.org/2021.emnlp-main.109
https://aclanthology.org/2021.emnlp-main.109
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.eacl-main.148
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2206.06588
https://arxiv.org/abs/2206.06588
https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b
https://homes.luddy.indiana.edu/donbyrd/Papers/ClarifyingSearch_UIFramework.pdf
https://homes.luddy.indiana.edu/donbyrd/Papers/ClarifyingSearch_UIFramework.pdf
https://arxiv.org/abs/2409.07737
https://arxiv.org/abs/2409.07737
https://arxiv.org/abs/2310.19349


Bin Wang, C.-C. Jay Kuo, and Haizhou Li. 2022. Just
Rank: Rethinking Evaluation with Word and Sen-
tence Similarities. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6060–6077.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao,
Linjun Yang, Daxin Jiang, Rangan Majumder, and
Furu Wei. 2024a. Text Embeddings by Weakly-
Supervised Contrastive Pre-training. Preprint,
arXiv:2212.03533.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024b. Multi-
lingual E5 Text Embeddings: A Technical Report.
Preprint, arXiv:2402.05672.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45.

Xing Wu, Chaochen Gao, Liangjun Zang, Jizhong Han,
Zhongyuan Wang, and Songlin Hu. 2022. ESimCSE:
Enhanced Sample Building Method for Contrastive
Learning of Unsupervised Sentence Embedding. In
Proceedings of the 29th International Conference on
Computational Linguistics, pages 3898–3907.

Dejiao Zhang, Shang-Wen Li, Wei Xiao, Henghui Zhu,
Ramesh Nallapati, Andrew O. Arnold, and Bing Xi-
ang. 2021. Pairwise Supervised Contrastive Learning
of Sentence Representations. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing.

Hongfei Zhang, Xia Song, Chenyan Xiong, Corby Ros-
set, Paul N. Bennett, Nick Craswell, and Saurabh
Tiwary. 2019. Generic Intent Representation in Web
Search. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR’19, page
65–74.

A Limitations of Hard Negative Sampling

Model QR QS QC SR

UBIQUEclick 91.4 91.2 85.8 90.6
w/ hardnegatives 90.2 90.1 86.2 90.1

Table 6: Results of introducing hard negatives.

To capture more fine-grained information with
our models, we aimed to incorporate hard negatives
—negative examples that are challenging to distin-
guish from the anchor query. Following a prior

study (Karpukhin et al., 2020), we selected hard
negative queries that are lexically similar to the an-
chor query (i.e., with small edit distances) but have
non-overlapping sets of clicked URLs. Specifically,
we applied string matching using SimString 7 to a
dataset of 10 million queries, treating the anchor
query from clickthrough-based training pairs (§3.2)
as the search string. To avoid false negatives due to
missing click information, we ensured that all 10
million queries in this dataset were associated with
click data. We empirically set the similarity range
to 0.45–0.60 to avoid selecting queries that are too
lexically similar as hard negatives. We then filtered
out extracted queries with any overlapping clicked
URLs, treating the remaining queries as hard nega-
tives. Using these hard negatives, we constructed a
triplet dataset (i.e., anchor, positive, hard negative)
and conducted additional contrastive learning using
UBIQUEclick.

Despite this effort, overall task performance
slightly declined (see Table 6). While this model
showed a slight improvement in distinguishing lex-
ically similar negatives, it struggled overall to rec-
ognize semantically equivalent queries. This de-
cline in performance may be attributed to the inher-
ent difficulty of consistently using lexically similar
queries as negatives, as surface features can also
serve as cues for query representation. Future work
will focus on refining the negative sampling strat-
egy beyond simple edit-distance measures.

B Training Details

To construct the training data, we conducted dedu-
plication to prevent overfitting and excluded query
pairs included in the test set to prevent leakage.
The learning rate was explored from {2e-4, 3e-4,
3e-5}, and we chose the best one, 2e-4, based on
the dev set. For evaluation during training to se-
lect the best checkpoint, we used query-synonym
retrieval, as the symmetric retrieval task exhibits
a strong correlation with downstream tasks (Wang
et al., 2022). We used a dev set consisting of 5,000
queries for evaluation.

We also tried using Rurismall as the base model
for UBIQUE models. Rurismall was initialized with
Japanese DistilBERT and further trained using con-
trastive learning with weak supervision on large-
scale web data. While Rurismall-based UBIQUE
models’ performance was relatively higher than

7https://www.chokkan.org/software/simstring/
index.html.en
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that of Japanese DistilBERT-based UBIQUE mod-
els in the initial stages of training, the final perfor-
mance showed a negligible difference. This result
underscores the importance of using user-behavior
data rather than general web data for constructing
query embedding models.

C Baseline Details

We used [CLS] pooling for Sup. SimCSElarge,
mean pooling for DistilBERT, Ruri, and mE5, and
last-token pooling for Sarashina1.1b, with a maxi-
mum sequence length of 512 used across all models.
For mE5 and Ruri, it is necessary to add a prefix to
the input sentence, indicating whether it is a source
text (query) or a target text (passage) to differenti-
ate the embeddings. We added a query prefix to the
source query across all tasks. For the target query,
the prefix was added according to the task: a query
prefix was used for the symmetric task QR, while
a passage prefix was used for the asymmetric tasks
QS and SR.

For fastText, we obtained query embeddings by
applying mean pooling to the vectors of each to-
ken. In Unsup. SimCSE, we explored learning
rates from {2e-4, 3e-4, 3e-5} and dropout rates
from {0.05, 0.1, 0.2} on the dev set, choosing the
best ones, 3e-5 and 0.2, respectively.
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