
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(System Demonstrations), pages 328–349

April 30, 2025 ©2025 Association for Computational Linguistics

Cognitive Kernel: An Open-source Agent System towards
Generalist Autopilots

Hongming Zhang‡, Xiaoman Pan, Hongwei Wang, Kaixin Ma, Wenhao Yu, Dong Yu
Cognitive Kernel Team*, Tencent AI Lab, Seattle

{hongmzhang, xiaomanpan, hongweiw, kaixinma, wenhaowyu, dyu}@global.tencent.com

Abstract

We introduce Cognitive Kernel, an open-source
agent system towards the goal of generalist au-
topilots. Unlike copilot systems, which primar-
ily rely on users to provide essential state infor-
mation, autopilot systems complete tasks from
start to finish independently. This requires the
system to acquire the missing state information
actively. Cognitive Kernel adopts a dynamic
programming design where the central policy
model (a fine-tuned LLM) could initiate an en-
vironment state perception task, essentially an-
other agent task, as needed. The results demon-
strate that Cognitive Kernel achieves better or
comparable performance to other closed-source
systems on core autopilot capabilities. Cogni-
tive Kernel is fully dockerized, ensuring every-
one can deploy it privately and securely. We
open-source the system to encourage further
research on LLM-driven autopilot systems12.

1 Introduction

Large language models (LLMs) have revolution-
ized the landscape of AI applications (OpenAI,
2023; Anil et al., 2023; Zhao et al., 2023; Chang
et al., 2024). Systems like ChatGPT1 have signif-
icantly enhanced productivity in everyday tasks.
However, these systems primarily function as
“Copilots,” where users are required to manage the
majority of the work, such as planning the overall
workflow, posing the right questions, or refining
the model’s output as needed (Xi et al., 2023; Wang
et al., 2024b). To fully harness the capabilities of
LLMs and reduce the burden of tedious, repeti-
tive tasks, we shall shift from building “Copilot”
systems to “Autopilot” systems that can indepen-
dently complete tasks. For instance, while a Copi-
lot system might assist in drafting a template for

*All authors contribute equally and are listed randomly.
‡Hongming Zhang is the project lead.

1Code: https://github.com/Tencent/CogKernel
2Demo: https://youtu.be/vZ4GEwIas-o

an invitation email, an Autopilot system should be
capable of composing the entire email and sending
it. At the same time, an autopilot system should
be a general-purpose assistant capable of handling
various user needs instead of being customized for
a particular environment (e.g. an email agent).

To achieve this goal, one should give the agent
system the capability of proactively acquiring the
essential environment information when needed
rather than passively waiting for humans to pro-
vide through prompts (Figure 1 (a)). The system
should also adaptively interact with the suitable en-
vironment rather then being constrained to a certain
task-specific environment (Figure 1 (b)). Follow-
ing this design principle, we propose Cognitive
Kernel, which has the freedom to interact with the
real world to acquire missing information. As il-
lustrated in Figure 1(c), Cognitive Kernel containts
three conceptual components: the reasoning kernel,
the perception kernel, and the memory kernel, cor-
responding to decision-making, state perception,
and state storage, respectively. Analogous to a Tur-
ing Machine (Turing et al., 1936), the reasoning
kernel functions as the transition mapping mecha-
nism, the perception kernel serves as the tool for
reading current state information, and the mem-
ory kernel acts as the tape, recording past state
information. At each step, the reasoning kernel
will generate the next action, which might involve
activating the perception kernel to gather missing
state information or engaging the memory kernel
to store or retrieve critical historical information.
Since such perception cannot be pre-defined, we
treat the perception task as another fine-grained au-
topilot task in a dynamic programming paradigm.

This autopilot agent design poses significant
challenges to the central policy model of the
system, as it would need to handle general
chats with users, environment perception planning
and decision-making within diverse environments.
Hence directly applying a fixed model leads to un-

328

https://github.com/Tencent/CogKernel
https://youtu.be/vZ4GEwIas-o

Memory KernelReasoning KernelCK
initial state

output
Perception Kernel

Write, read history information

Activate a perception task
(e.g., file web memory)

Step-wise Plans
(e.g.)

Policy Model
(i.e.)

Action
(execute plans)

State
(execution result)

Memory KernelReasoning Kernel

Perception Kernel
Step-wise PlansPolicy Model

ActionState

perception task
initial state

User

Activate new perception tasks (if any) …

User Copilot
suggested

action
(a) Copilot System

AgentUser

Policy Model
(i.e.)

State

Action

(b) Environment-centric Agent System

Task Environment

(c) Cognitive Kernel

output

Task*

response

Task
Ta

sk

response

initial state

Figure 1: Comparison of conceptual frameworks: (a) Copilot system, (b) Environment-centric Agent system, and (c)
Cognitive Kernel system, highlighting key structural differences. After receiving a task, Cognitive Kernel evaluates
whether it has all essential state information to make a sound action. If not, it actively perceives missing state
information from the environment, which can be a deeper-level self-contained autopilot task.

satisfactory performance. To address this issue,
Cognitive Kernel employs a two-stage training pro-
cess that enables the policy model to develop fun-
damental capabilities and then continuously learn
from interaction feedback for further improvement
after initial deployment.

We evaluate the system’s performance across
three essential capabilities for an “autopilot” sys-
tem: real-time information management (e.g., gath-
ering data and completing tasks on the open web),
private information management (e.g., processing
and understanding local files), and long-term mem-
ory management (e.g., personalizing the system
based on user interactions). By comparing our
system with leading closed-source systems (e.g.,
ChatGPT website, Kimi website) and open-source
agent systems utilizing different foundation mod-
els, we have made the following observations: (1)
No single system consistently delivers the best
performance across all tasks; each system has its
strengths as well as inherent behavioral biases; (2)
Optimal performance is achieved through the deep
integration of model and system design. Cogni-
tive Kernel demonstrates significantly better results
when paired with our specifically adapted model
than an overall stronger model (GPT-4o).

To summarize, Cognitive Kernel makes the fol-

lowing contributions: (1) Proactive State Acquisi-
tion: Our system introduces an innovative approach
to proactively acquiring state information, enabling
the possibility of evolving from a “copilot” to an
“autopilot” system. (2) A Dynamic Programming
(DP) Framework: We propose an elegant and effi-
cient DP-based agent design tailored for proactive
state perception. (3) An easy-to-use dockerized
system that everyone can deploy locally.

2 System Design

In this section, we introduce the motivations and
design principles of the three kernels in our Cogni-
tive Kernel system.3 In Figure 2, we demonstrate
an example usage of our Cognitive Kernel system.

2.1 Reasoning Kernel
The reasoning kernel generates and executes plans
for the next action use the programming language
(i.e., Python) as the medium (Li et al., 2024; Zhang
et al., 2024). Basic Python operations, such as
arithmetic (+, -, *, /) and logical comparisons (==,
>, <) are treated as atomic actions, while Python
functions serve as compound actions. This ap-
proach offers better flexibility in handling uncer-

3A conceptual framework of “Autopilot” systems can be
found at Appendix B.

329

Upload the paper to Cognitive Kernel Ask the core idea of the uploaded paper Ask the number of citations of the uploaded paper

Cognitive Kernel search on internet to answer the question Answer is found to be 41 Cognitive Kernel provides the final answer

Figure 2: An example trajectory of Cognitive Kernel on completing user queries leveraging both private information
management and real-time information management abilities.

tainty through constructs like “if/else” for design-
ing alternative strategies or “for loop” for iterative
attempts, which are often infeasible in natural lan-
guage. Also, programming language provides a
much higher level of parallelism than natural lan-
guage, allowing multiple steps to be executed si-
multaneously. To enhance PL-centric planning,
we further make two improvements to over the
past code-centric agent systems. Firstly, instead
of single-time execution, Cognitive Kernel imple-
ments a state caching mechanism to cache previous
execution states and functions for future usage. Sec-
ondly, we implement an async parallel execution
mechanism in Cognitive Kernel, enabling indepen-
dent steps to run simultaneously and avoiding the
slow actions blocking the whole execution process.

2.2 Perception Kernel
The perception kernel accesses the environment to
perceive missing localized states. This subsection
explains how Cognitive Kernel acquires temporally
and spatially localized state information.
Temporally Localized State Perception. The
world is constantly changing and the “autopilot”
needs to access the up-to-date information. Like
humans using the internet, Cognitive Kernel is
equipped with open web access. When the rea-
soning kernel identifies the need for temporal state
information, it sends a task-specific query to the
perception kernel, which activates a web server to
execute the task, as shown in Figure 1. At each step,
the system observes the current web session as state
information and relays it to the reasoning kernel

for next-step actions. Specifically, we follow Zhou
et al. (2024) and use the web page’s accessibility
tree as the observation to the agent due to its struc-
tural format and conciseness. We further optimized
the raw accessibility tree to reduce redundancy and
prune out irrelevant information. We define the
following atomic actions such that Cognitive Ker-
nel could operate the browser to perceive real-time
information as humans do: (1) Click: click an ele-
ment on the webpage; (2) Type: clear the text con-
tent in an element and fill it with new content; (3)
Scroll: scroll up or down of the current viewport;
(4) Goback: go back to the previously browsed
page; (5) Restart: return to the homepage directly
and restart the browsing process; (6) Stop: summa-
rize the relevant information and sent back to the
upper-level reasoning kernel. The execution loop
runs until the task is completed or the maximum
number of steps is reached.

Spatially Localized State Perception. Another
perspective of the localized state information is the
spatial one. Real-world tasks often involve private
information only accessible to the local user. This
section covers the two most popular localized state
resources: local files and long-tem history.

Files such as documents and spreadsheets are es-
sential for daily information transfer, making it cru-
cial for an “autopilot” system to perceive and pro-
cess local files effectively. Similar to humans, Cog-
nitive Kernel uses basic operations like opening
files (e.g., file.open()) and performing tasks such as
keyword searches, counting specific terms, or ex-

330

Figure 3: Cognitive Kernel ’s frontend user interface when activating the feedback mode

tracting portions of input data (e.g., isolating rows
with specific conditions in a spreadsheet) by gen-
erating code in the reasoning kernel. These capa-
bilities enable Cognitive Kernel to handle straight-
forward tasks with precision and flexibility. In
addition to these basic operations, Cognitive Ker-
nel includes two advanced actions: (1) Search*:
Perform semantic-based retrieval to find relevant
information within the file4. (2) Read: Employ
a policy model to understand and summarize file
content, extract key information, generate insights,
or answer questions based on the document. Af-
ter each action, the reasoning kernel determines
if additional information is needed and activates
appropriate operations for complex tasks.

Besides files, another important spatially local-
ized state information is the long-term history be-
tween users and the “autopilot” systems. For exam-
ple, a user might expect the system to remember
their home location without needing to specify it in
every conversation. However, appending all dialog
histories to input is infeasible due to the limited
context window size of langauge models. To solve
this problem, we treat history as a special kind of
spatially localized information that is available to
the current user and “autopilot” system and formu-
late the storage and usage of such information as
a perception task. Specifically, if Cognitive Ker-
nel decides to store some information in the history
or perceive history, it will activate the memory ker-
nel to write into or load from the memory just like

4This operation requires support of memory kernel. For
implementation efficiency, when Cognitive Kernel receives
the files, it will first add all contents into the memory kernel
for later retrieval usage. More details are in Section 2.3.

how modern computers operate the disk. More
details of our memory design are in Section 2.3.

2.3 Memory Kernel

The memory kernel is designed to provide a
caching mechanism for the Cognitive Kernel, en-
abling it to save and retrieve past states. Its
core component is a dense retrieval method that
segments messages into fixed-length chunks and
creates chunk indexes using representation mod-
els (Karpukhin et al., 2020; Ni et al., 2022; Izacard
et al., 2022). To enable well-structured storage and
fine-grained semantic retrieval, we employ a multi-
granularity information management system as the
memory kernel of Cognitive Kernel, including two
major components: information processing/storage
and information retrieval.

For Information processing and storage, we
parse the user’s messages into different granulari-
ties and create semantic index (i.e., embeddings)
accordingly. These indexes encompass not only
the original documents but also extracted propo-
sitions (Chen et al., 2024), key perspectives, and
mentioned concepts. More details about obtaining
fine-grained semantic index are in Appendix C.

For information processing and storage, user
messages are parsed into various granularities, gen-
erating semantic indexes (i.e., embeddings). These
indexes encompass original documents, extracted
propositions (Chen et al., 2024), key perspectives,
and mentioned concepts. For information retrieval,
Cognitive Kernel employs a multi-granularity simi-
larity matching system to identify the most relevant
documents, propositions, and concepts. Retrieved

331

documents are reranked based on their similarity
scores (see Appendix C for more details).

3 System Implementation

3.1 Dockerized Design

We adopted a dockerized design to ensure efficient
and secure deployment. As shown in Figure 1, the
three conceptual kernels are deeply integrated. To
optimize scheduling and execution, the system is
organized into separate Docker containers, each
tailored to its specific task. As shown in Figure 4,
we implement Cognitive Kernel with five dockers:
Frontend Docker: We implement the frontend
docker with React2 and Nginx3. Figure 2, illustra-
tion of the frontend UI of Cognitive Kernelin vari-
ous stages of execution. To collect feedback from
users and thus continuously improve the system
performance, we implement an online feedback
module, where the user can see all details of the
system execution and provide comments or sugges-
tions accordingly. Users can activate the annotation
mode, revealing an Annotate button next to each di-
alog turn. Upon clicking the button, the annotation
interface will show up, as illustrated in Figure 3.
This interface shows the full prompt of the current
dialog session in the message format, including the
system prompt turns. Users can edit the assistant’s
response directly or provide edit suggestions, with
all changes saved to a persistent database.
Backend Docker: The backend docker is the cen-
ter of Cognitive Kernel. At each step, the backend
docker converts the input into a prompt, sends it
to the inference docker to generate plans, and then
executes them. To avoid repetitive plan genera-
tion and execution, the backend docker includes an
execution state caching mechanism. Similar to a
Jupyter Notebook4, for any request, the backend
docker will cache all intermediate execution results,
including the variables and function definitions in
the memory. For later steps, the backend docker
will include that information as part of the state
description and thus the model can avoid gener-
ating repetitive code, which can significantly in-
crease the planning generation efficiency. Another
optimization we did was the multi-processing syn-
chronization. To increase the system efficiency, the
backend docker adopts a multi-processing strategy
to handle concurrent requests instead of processing
the queue linearly. One thing worth mentioning
is that since these concurrent requests might use
shared cached variables, we will create a copy of

the reused variables and provide a divergence of
the caching branches to avoid potential conflicts.
Web Docker: We implemented the web server with
Playwright5. Regarding the webpage observations,
we found raw accessibility tree is sub-optimal be-
cause the tree could be lengthy and contain huge
redundancy. To solve this problem, the web docker
first parallelly localizes the visible elements from
the current viewport and only constructs the tree for
these elements. Then, we perform node deduplica-
tion heuristically so that only the nodes containing
unique semantic information are kept. For actions
that require arguments (target element to interact),
e.g., click and type, previous works typically rely
on the element’s coordinates within the viewport
to execute the action (Zhou et al., 2024). However,
using the coordinates may lead to unexpected out-
comes. For example, when dropdown menus or
grid cells are expanded on certain websites, the co-
ordinates of certain elements will overlap. To avoid
such scenarios, Cognitive Kernel uses an element’s
role and name to pinpoint the target, ensuring pre-
cise execution regardless of the webpage layout.
Inference Docker: The inference docker receives
prompts from the backend docker and calls the
central language model to generate next-step plans.
In Cognitive Kernel, we support both TGI6 and
vLLM (Kwon et al., 2023) as the inference server.
Database Docker: We use multiple database sys-
tems to fit the different needs of Cognitive Kernel.
For permanent information that we want to store
for a long time such as user feedback, we use the
postgresql7 due to its high reliability. For temporal
content such as an uploaded file or cached execu-
tion results that are useful for the live sessions, we
use sqlite8 due to its lightness.

3.2 Policy Model Training

Since directly applying a closed-source model
leads to unsatisfying performance, we trained our
own model upon open-source language models
(i.e., Llama3 (Dubey et al., 2024)). The training
contains two stages. In stage one, we employ stan-
dard supervised fine-tuning. Specifically, we use
a mixture of data including open-sourced instruc-
tion following data (Zhou et al., 2023; Luo et al.,
2024), function calling data9, agent trajectories
data for various tasks (Zeng et al., 2024; Wang
et al., 2024c; Yin et al., 2024; Zhou et al., 2024),
and a small set of manually annotated data that
fits our system design to train our model. This

332

Load Balancing

Local File
System

User 1 User 2 User 3 User n…

Inference Docker

Web Docker

Online FeedbackUser Management

Frontend Docker

Accessibility Tree Pruning

Backend Docker

Multi-processing Execution

Execution State Caching Dynamic State Tracking

Database Docker

Figure 4: Engineering framework of Cognitive Kernel.

stage equips the model with the general problem-
solving capability and the basic capability of in-
voking atomic actions. However, the output distri-
bution remains relatively flat, leading to unstable
performance. We conduct a second-stage train-
ing to overcome this challenge and enhance the
model’s generalization ability. Specifically, we de-
ploy the first-stage model online and then collect
the system’s output trajectories given various in-
puts. Again, we used a mixture of data where the
inputs are either mined from open-source datasets
(Wang et al., 2024a; He et al., 2024; Dasigi et al.,
2021; Trivedi et al., 2022) or submitted by internal
users. Here, to ensure the quality of the collected
data, we also collect judgments and feedback for
the system trajectories. The judgments and feed-
back can come from a user (where the user can
directly submit via Cognitive Kernel ’s user inter-
face) or the system itself (when the code produces
the error and error message). More training details
can be found in Appendix D.1.

4 Evaluation

4.1 Experimental Settings

We focus on evaluating Cognitive Kernel’s ability
on (1) gather real-time information and complete
web-based tasks, (2) process user-uploaded files
and answer questions, and (3) manage the interac-
tion history with the user for better personalization.

Baseline Systems We mainly compare against
the following general-purpose end-to-end AI sys-
tems in our experiments: ChatGPT10 (4o), Gem-
ini11 (Pro-1.5), Claude12 (opus), Kimi13, and
Coze14, and we directly use their web interface
for evaluation. Finally, we include a baseline using
GPT-4o as Cognitive Kernel’s backbone to assess
the central policy model’s impact.

Benchmarks For real-time information manage-
ment, we evaluate systems on the WebCanvas
benchmark (Pan et al., 2024), which includes 104
human-annotated tasks requiring interaction with
live websites to complete specific instructions. For
private information management, we assess sys-
tems using DOCBENCH (Zou et al., 2024), which
provides end-to-end evaluations with 229 real-
world documents and 1,102 questions across five
domains and four question types. For long-term
memory management evaluation, we use Long-
MemEval (Wu et al., 2024a) containing of 500
human-assistant conversations. Each conversation
consists of historical dialog sessions as well as a fi-
nal test session. We provide additional benchmark
details and evaluation in Appendix D.2 and D.3.

4.2 Overall Results

We present the overall results from our experi-
ments in Table 1. We see that Cognitive Kernel can
achieve the best results on real-time information
management and long-term memory and compa-
rable performance with state-of-the-art systems in
the management of private information.

For real-time information management evalu-
ation, the primary limitation of the baseline sys-
tems is their inability to directly interact with target
websites, preventing them from completing tasks
such as adding items to cart or rating a movie
on IMDB (except Coze, which possesses web-
browsing plug-ins). Furthermore, our observations
reveal a consistent pattern of inherent behavioral
biases across the systems. For example, Gemini
often sticks to Google-related products/websites
while ignoring the instruction, e.g., searching for
music playlists on YouTube despite the instruction
asking for Soundcloud. Also, Kimi-Chat nearly an-
swers all of the questions in Chinese and it can only

333

Systems
Real-time Information Private Information Long-term Memory

(WebCanvas) (DocBench) (LongMemEval)

GPT-4o (0806) 33.7 63.1 59.3
Gemini-Pro 1.5 31.7 55.4 -
Claude3-opus - 67.6 -
Coze (GPT-4o) 42.3 28.6 58.1
Kimi-Chat 25.0 70.9 -

Cognitive Kernel (GPT-4o) 39.4 37.2 59.0
Cognitive Kernel 49.0 68.2 85.9

Table 1: The overall successful rates of different end-to-end systems: best in bold, second-best underlined.

access websites available in China, which leads to
its low success rate. While an ideal system should
not be impacted by such behavioral bias, we under-
stand that the design decisions are also bounded by
company and governmental policies.

In the private information management evalua-
tion, all baseline systems can handle user-uploaded
files, taking them as input to generate responses to
user queries. Among the systems based on their
own trained LLMs, such as GPT-4o, Gemini-Pro
1.5, and Claude3-opus, Coze stands out as a fully
prompt-based system using GPT-4o as its back-
bone LLM. However, Coze and our Cognitive Ker-
nel with GPT-4o performed poorly in handling
user documents with a prompt-driven approach,
as the system’s instructions did not align well with
the LLMs’ training. Kimi-Chat outperformed all
systems, particularly in managing long-context
questions. GPT-4o ranks behind Kimi-Chat and
Claude3-opus, often fabricating information not
present in the document, especially when users ask
unanswerable questions. Further analysis is pro-
vided in Appendix E.2.

For long-term memory management evaluation,
we selected GPT and Coze as baseline methods,
as they are the only two publicly available sys-
tems that support long-term memory. As shown in
Table 1, GPT-4o slightly outperforms Coze, indi-
cating that its long-term memory module design is
superior. However, as discussed later in Appendix
E.3, GPT-4o is susceptible to memory overwrit-
ing, which can result in catastrophic forgetting. In
contrast, Cognitive Kernel achieves the best perfor-
mance among all systems, with an overall accuracy
of 85.9%. Additionally, we evaluated the scenario
where the base LLM in the Cognitive Kernel is
replaced with GPT-4o. The results showed a sig-
nificant decrease in performance (from 85.9% to
59.0%), as GPT-4o is not specifically aligned with
our system design. We provide more in-depth anal-

ysis of each core ability in Appendix E.

5 Applications

In this section, we showcase another application
scenario of Cognitive Kernel to illustrate how users
might interact with the system. In this example
from Figure 10, we see that the user first asked the
system to search for recent papers about web agents
and download the first one it found. Cognitive Ker-
nel again opened a web browser and searched web
agent papers. Then it opened the first paper in the
results and clicked the download button on the pa-
per’s arXiv page. After the paper was downloaded,
the system returned the downloaded file’s path. In
the next turn, the user then asked how many times
the keyword “HTML” is mentioned in the paper.
Then Cognitive Kernel leveraged its private infor-
mation management ability to open the paper and
count the occurrences of “HTML.” Then it returned
the answer 5, which we verified to be correct by
opening the paper and manually searching the key-
word.

6 Conclusion

In this paper, we presented Cognitive Kernel,
a dockerized agent system towards the goal of
general-purpose “Autopilots”, which has three
main components: reasoning kernel for decision-
making, perception kernel for state perceiving, and
memory kernel for state management. We further
reorganized these components into several dock-
ers for easy and safe deployment. We evaluate
Cognitive Kernel’s ability to handle real-time infor-
mation, private information and long-term histories.
The results show that Cognitive Kernel achieves
stronger or similar performance compared to other
SOTA closed-source systems. We release our sys-
tem framework, model weights, and findings to the
community, hoping to inspire future research on
the direction of generalist “Autopilots” systems.

334

Broader Impact Statement

Since Cognitive Kernel directly interacts with the
real world (through the web browser and host file
system5), it might introduce additional risks for the
user. For example, accessing confidential informa-
tion on the host system or downloading malicious
content from the internet. Thus it requires extra cau-
tion and a substantial amount of safe checks when
deploying and running the Cognitive Kernel. In
our experiments that involve the open web, we also
closely monitor the Cognitive Kernel ’s progress to
make sure that the system is not causing any harm
to the website hosts.

Also, we would like to note that Cognitive Ker-
nel is a research project and not an official product
from Tencent. Our intention is to explore the possi-
bility of building “Autopilot” systems and we hope
our work could inspire others and bring more posi-
tive social impact. Any misuse of the system that
could be potentially harmful to others is strictly
forbidden.

References
Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-

Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil-
lican, David Silver, Slav Petrov, Melvin Johnson,
Ioannis Antonoglou, Julian Schrittwieser, Amelia
Glaese, Jilin Chen, Emily Pitler, Timothy P. Lilli-
crap, Angeliki Lazaridou, Orhan Firat, James Molloy,
Michael Isard, Paul Ronald Barham, Tom Henni-
gan, Benjamin Lee, Fabio Viola, Malcolm Reynolds,
Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens
Meyer, Eliza Rutherford, Erica Moreira, Kareem
Ayoub, Megha Goel, George Tucker, Enrique Pi-
queras, Maxim Krikun, Iain Barr, Nikolay Savinov,
Ivo Danihelka, Becca Roelofs, Anaïs White, Anders
Andreassen, Tamara von Glehn, Lakshman Yagati,
Mehran Kazemi, Lucas Gonzalez, Misha Khalman,
Jakub Sygnowski, and et al. 2023. Gemini: A fam-
ily of highly capable multimodal models. CoRR,
abs/2312.11805.

Kai Arulkumaran, Marc Peter Deisenroth, Miles
Brundage, and Anil Anthony Bharath. 2017. Deep
reinforcement learning: A brief survey. IEEE Signal
Processing Magazine, 34(6):26–38.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2024. A sur-
vey on evaluation of large language models. ACM
5By default, Cognitive Kernel’s dockers are isolated such

that they could not impact the host system. However, one
could bind the host system’s file path with docker’s file path,
e.g. for debugging purposes, which would make it possible
for Cognitive Kernel to directly access the host file system.

Transactions on Intelligent Systems and Technology,
15(3):1–45.

Arthur Charpentier, Romuald Elie, and Carl Remlinger.
2021. Reinforcement learning in economics and fi-
nance. Computational Economics, pages 1–38.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Col-
lier, Karthik Narasimhan, and Shunyu Yao. 2023.
Fireact: Toward language agent fine-tuning. CoRR,
abs/2310.05915.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu,
Kaixin Ma, Xinran Zhao, Hongming Zhang, and
Dong Yu. 2024. Dense X retrieval: What retrieval
granularity should we use? In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2024, Miami, FL,
USA, November 12-16, 2024, pages 15159–15177.
Association for Computational Linguistics.

Filippos Christianos, Georgios Papoudakis, Matthieu
Zimmer, Thomas Coste, Zhihao Wu, Jingxuan Chen,
Khyati Khandelwal, James Doran, Xidong Feng, Ji-
acheng Liu, Zheng Xiong, Yicheng Luo, Jianye Hao,
Kun Shao, Haitham Bou-Ammar, and Jun Wang.
2023. Pangu-agent: A fine-tunable generalist agent
with structured reasoning. CoRR, abs/2312.14878.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A Smith, and Matt Gardner. 2021. A dataset
of information-seeking questions and answers an-
chored in research papers. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4599–4610.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien

335

https://aclanthology.org/2024.emnlp-main.845
https://aclanthology.org/2024.emnlp-main.845

Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Omer Gottesman, Fredrik Johansson, Matthieu Ko-
morowski, Aldo Faisal, David Sontag, Finale Doshi-
Velez, and Leo Anthony Celi. 2019. Guidelines
for reinforcement learning in healthcare. Nature
medicine, 25(1):16–18.

Significant Gravitas. 2024. Autogpt.

Izzeddin Gur, Hiroki Furuta, Austin V. Huang, Mustafa
Safdari, Yutaka Matsuo, Douglas Eck, and Aleksan-
dra Faust. 2024. A real-world webagent with plan-
ning, long context understanding, and program syn-
thesis. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Aus-
tria, May 7-11, 2024. OpenReview.net.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu,
Yong Dai, Hongming Zhang, Zhenzhong Lan, and
Dong Yu. 2024. Webvoyager: Building an end-to-
end web agent with large multimodal models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 6864–6890. Association for
Computational Linguistics.

Ronald A Howard. 1960. Dynamic programming and
markov processes.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2022. Unsupervised dense in-
formation retrieval with contrastive learning. Trans.
Mach. Learn. Res., 2022.

Leslie Pack Kaelbling, Michael L Littman, and An-
drew W Moore. 1996. Reinforcement learning: A

survey. Journal of artificial intelligence research,
4:237–285.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6769–6781. Associa-
tion for Computational Linguistics.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick
Mannion, Ahmad A Al Sallab, Senthil Yogamani,
and Patrick Pérez. 2021. Deep reinforcement learn-
ing for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems,
23(6):4909–4926.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen,
Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-
Fei, Fei Xia, and Brian Ichter. 2024. Chain of code:
Reasoning with a language model-augmented code
emulator. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander
Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. 2016. Continuous con-
trol with deep reinforcement learning. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng
Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie
Huang, Yuxiao Dong, and Jie Tang. 2024. Agent-
bench: Evaluating llms as agents. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue,
Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit,
Ran Xu, Phil Mui, Huan Wang, Caiming Xiong,
and Silvio Savarese. 2023. BOLAA: benchmarking
and orchestrating llm-augmented autonomous agents.
CoRR, abs/2308.05960.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:

336

Empowering code large language models with evol-
instruct. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Kaixin Ma, Hongming Zhang, Hongwei Wang, Xi-
aoman Pan, and Dong Yu. 2023. LASER: LLM
agent with state-space exploration for web naviga-
tion. CoRR, abs/2309.08172.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hernández Ábrego, Ji Ma, Vincent Y. Zhao,
Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yinfei
Yang. 2022. Large dual encoders are generalizable
retrievers. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2022, Abu Dhabi, United Arab Emirates, De-
cember 7-11, 2022, pages 9844–9855. Association
for Computational Linguistics.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei
Leng, Bing Jiang, Hangyu Liu, Yanyi Shang, Shuyan
Zhou, Tongshuang Wu, and Zhengyang Wu. 2024.
Webcanvas: Benchmarking web agents in online en-
vironments. CoRR, abs/2406.12373.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet
Motwani, Chelsea Finn, Divyansh Garg, and Rafael
Rafailov. 2024. Agent q: Advanced reasoning
and learning for autonomous ai agents. CoRR,
abs/2406.12373.

Ahmad El Sallab, Mohammed Abdou, Etienne Perot,
and Senthil Kumar Yogamani. 2017. Deep rein-
forcement learning framework for autonomous driv-
ing. In Autonomous Vehicles and Machines 2017,
Burlingame, CA, USA, January 29 - February 2,
2017, pages 70–76. Society for Imaging Science and
Technology.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. 2018. A general reinforcement learn-
ing algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144.

Richard S Sutton and Andrew G Barto. 2018. Reinforce-
ment learning: An introduction. MIT press.

Richard S. Sutton, David A. McAllester, Satinder Singh,
and Yishay Mansour. 1999. Policy gradient methods
for reinforcement learning with function approxima-
tion. In Advances in Neural Information Processing
Systems 12, [NIPS Conference, Denver, Colorado,
USA, November 29 - December 4, 1999], pages 1057–
1063. The MIT Press.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian
Yu, Haitao Mi, and Dong Yu. 2024. Toward self-
improvement of llms via imagination, searching, and
criticizing. CoRR, abs/2404.12253.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. Musique: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539–554.

Alan Mathison Turing et al. 1936. On computable num-
bers, with an application to the entscheidungsprob-
lem. J. of Math, 58(345-363):5.

Hado Van Hasselt, Arthur Guez, and David Silver. 2016.
Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI conference on artificial
intelligence, volume 30.

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li,
Sen Song, and Yang Liu. 2024a. Openchat: Advanc-
ing open-source language models with mixed-quality
data. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Aus-
tria, May 7-11, 2024. OpenReview.net.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024b. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024c. Exe-
cutable code actions elicit better LLM agents. In
Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Christopher JCH Watkins and Peter Dayan. 1992. Q-
learning. Machine learning, 8:279–292.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256.

Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-
Wei Chang, and Dong Yu. 2024a. Longmemeval:
Benchmarking chat assistants on long-term interac-
tive memory. arXiv preprint arXiv:2410.10813.

Yiran Wu, Tianwei Yue, Shaokun Zhang, Chi Wang, and
Qingyun Wu. 2024b. Stateflow: Enhancing LLM
task-solving through state-driven workflows. CoRR,
abs/2403.11322.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin
Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and
Lingpeng Kong. 2024c. Os-copilot: Towards gener-
alist computer agents with self-improvement. CoRR,
abs/2402.07456.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan,

337

Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran
Wang, Changhao Jiang, Yicheng Zou, Xiangyang
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng,
Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan
Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui.
2023. The rise and potential of large language model
based agents: A survey. CoRR, abs/2309.07864.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang
Hong, Honglin Guo, Junzhe Wang, Dingwen Yang,
Chenyang Liao, Xin Guo, Wei He, Songyang Gao,
Lu Chen, Rui Zheng, Yicheng Zou, Tao Gui,
Qi Zhang, Xipeng Qiu, Xuanjing Huang, Zuxuan
Wu, and Yu-Gang Jiang. 2024. Agentgym: Evolv-
ing large language model-based agents across diverse
environments. CoRR, abs/2406.04151.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou-
jun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu,
Yiheng Xu, Shuyan Zhou, Silvio Savarese, Caim-
ing Xiong, Victor Zhong, and Tao Yu. 2024. Os-
world: Benchmarking multimodal agents for open-
ended tasks in real computer environments. CoRR,
abs/2404.07972.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kil-
ian Lieret, Shunyu Yao, Karthik Narasimhan, and
Ofir Press. 2024. Swe-agent: Agent-computer inter-
faces enable automated software engineering. CoRR,
abs/2405.15793.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Raghavi Chandu, Kai-Wei Chang, Yejin Choi,
and Bill Yuchen Lin. 2024. Agent lumos: Uni-
fied and modular training for open-source language
agents. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pages 12380–12403. Associa-
tion for Computational Linguistics.

Ori Yoran, Samuel Joseph Amouyal, Chaitanya
Malaviya, Ben Bogin, Ofir Press, and Jonathan
Berant. 2024. Assistantbench: Can web agents
solve realistic and time-consuming tasks? CoRR,
abs/2407.15711.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng
Yin. 2021. Reinforcement learning in healthcare: A
survey. ACM Computing Surveys (CSUR), 55(1):1–
36.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2024. Agenttuning:
Enabling generalized agent abilities for llms. In Find-
ings of the Association for Computational Linguistics,
ACL 2024, Bangkok, Thailand and virtual meeting,
August 11-16, 2024, pages 3053–3077. Association
for Computational Linguistics.

Tianhua Zhang, Jiaxin Ge, Hongyin Luo, Yung-Sung
Chuang, Mingye Gao, Yuan Gong, Yoon Kim, Xixin
Wu, Helen Meng, and James Glass. 2024. Natural
language embedded programs for hybrid language
symbolic reasoning. In Findings of the Association
for Computational Linguistics: NAACL 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, et al.
2023. A survey of large language models. CoRR,
abs/2303.18223.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. LIMA:
less is more for alignment. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-
ham Neubig. 2024. Webarena: A realistic web en-
vironment for building autonomous agents. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

Anni Zou, Wenhao Yu, Hongming Zhang, Kaixin Ma,
Deng Cai, Zhuosheng Zhang, Hai Zhao, and Dong
Yu. 2024. DOCBENCH: A benchmark for evalu-
ating llm-based document reading systems. CoRR,
abs/2407.10701.

338

Appendix

Notes
1. https://chatgpt.com/

2. https://react.dev/

3. https://nginx.org/en/

4. https://jupyter.org/

5. https://playwright.dev/

6. https://huggingface.co/docs/
text-generation-inference/en/index

7. https://www.postgresql.org/

8. https://www.sqlite.org/

9. https://huggingface.co/datasets/glaiveai/
glaive-function-calling-v2

10. https://chatgpt.com/

11. https://gemini.google.com/

12. https://claude.ai/chat/

13. https://kimi.moonshot.cn/chat/

14. https://www.coze.com/

A Backgrounds

We first introduce previous efforts on rule-based
automated systems, which motivates our formula-
tion of an “autopilot” system. Then we cover more
recent works in building and training task-specific
agent systems.

A.1 From Rule-based Automated Systems to
LLM-driven “Autopilots”

One of the automated system pioneers is the Tur-
ing machine (Turing et al., 1936), a mathematical
model describing an abstract machine that manipu-
lates symbols based on a table of rules and a foun-
dation of modern computers. A Turing Machine
contains two key concepts: states, the set of pre-
defined variables, and transition functions, which
are predefined rules describing how a system shall
respond to a state. Although traditional Turing
machines cannot directly serve as an “autopilot”
system to solve real-world tasks due to the almost
infinite space of possible states and transition rules
with randomness among them, it motivates the two
fundamental duties of an “autopilot” system: (1)
perceiving and managing essential states; (2) make
wise decisions based on the states.

LLMs implicitly learn the possible connection
between states by compressing and modeling vast
amounts of world information. They thus can serve

as an approximation of the transition functions and
partially solve the second duty (Wu et al., 2024b;
Ma et al., 2023). However, how to efficiently and
accurately perceive and manage the state remains
unclear. Daily applications require both global
state information (e.g., world knowledge) and lo-
calized state information that changes constantly
(e.g., update-to-date knowledge or private informa-
tion). LLMs can learn to model the global state
information but cannot model the localized ones.
Thus, how to manage the localized state informa-
tion becomes the critical design choice for building
an LLM-driven AI system. For a Copilot system,
we leave the task of providing localized state in-
formation to users, which simplifies the task but
also limits the capability of the system to solve
tasks independently (Chen et al., 2021). In contrast,
for an “autopilot” system, we expect it to monitor
and acquire the localized state information by itself
and thus it has the potential to solve a complete
task without human involvement (Gravitas, 2024).
Therefore, in Cognitive Kernel , we specifically
designed the perception kernel and the memory
kernel to perceive and memorize localized state
information, and their orchestration is completely
handled by the reasoning kernel, moving one step
closer to an LLM-driven “Autopilot” system.

A.2 Recent Advancement in Model-based
Agents

The concept of an agent, popular in the rein-
forcement learning (RL) community, has been
foundational to artificial intelligence (Watkins and
Dayan, 1992; Kaelbling et al., 1996). An agent
interacts with an environment to learn how to
achieve a specific goal by maximizing cumula-
tive rewards (Arulkumaran et al., 2017; Sutton and
Barto, 2018). Early work focused on the theoretical
underpinnings of RL, such as Markov decision pro-
cesses and dynamic programming (Howard, 1960).
These methods provided the basis for the develop-
ment of various RL algorithms. Recent advances
like Q-learning (Watkins and Dayan, 1992) and
policy gradients (Williams, 1992; Sutton et al.,
1999) have been crucial, especially with the in-
troduction of deep RL, which combines neural net-
works for approximating Q-values, as seen in Deep
Q-Networks (Van Hasselt et al., 2016) achieving
human-level performance in complex tasks. Key
algorithms such as DDPG (Lillicrap et al., 2016)
and PPO (Schulman et al., 2017) have significantly
impacted robotics, healthcare, finance, gaming, and

339

https://chatgpt.com/
https://react.dev/
https://nginx.org/en/
https://jupyter.org/
https://playwright.dev/
https://huggingface.co/docs/text-generation-inference/en/index
https://huggingface.co/docs/text-generation-inference/en/index
https://www.postgresql.org/
https://www.sqlite.org/
https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2
https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2
https://chatgpt.com/
https://gemini.google.com/
https://claude.ai/chat/
https://kimi.moonshot.cn/chat/
https://www.coze.com/

autonomous driving, showcasing RL’s broad appli-
cability (Gottesman et al., 2019; Yu et al., 2021;
Charpentier et al., 2021; Silver et al., 2018; Sallab
et al., 2017; Kiran et al., 2021).

However, previous assumptions in RL signifi-
cantly differ from human learning processes, as
the human mind is highly complex and capable
of learning from a much wider variety of envi-
ronments. With the recent developments of large
language models (LLMs), the concept of agents
has evolved beyond simple policy functions in
restricted environments (Xi et al., 2023; Wang
et al., 2024b). LLM-based agents can possess
more comprehensive world knowledge, perform
more informed actions, and also provide natural
language interfaces for human interaction, mak-
ing them more flexible and explainable (Yao et al.,
2023; Liu et al., 2023; He et al., 2024; Gur et al.,
2024; Yang et al., 2024). For example, ReAct (Yao
et al., 2023) prompts LLMs to perform dynamic
reasoning to create, maintain, and adjust high-level
action plans (reason to act), while also interact-
ing with external environments (e.g., Wikipedia) to
incorporate additional information into reasoning
(act to reason), thereby achieving superior perfor-
mance in benchmarks. However, prompting-based
agent frameworks still perform poorly in many real-
world agent scenarios.

To make LLM-agents task experts, a series of
works have focused on collecting expert trajec-
tories from diverse environments and tasks, and
training LLM-based agents through behavioral
cloning (Zeng et al., 2024; Chen et al., 2023).
However, obtaining these expert trajectories is of-
ten costly and lacks sufficient exploration. An-
other line of work involves training LLM-based
agents based on environmental feedback using
RL methods to align LLMs with agent task ob-
jectives (Christianos et al., 2023). Additionally,
some approaches utilize self-improvement, where
the model explores the environment to obtain high-
reward trajectories and fine-tunes itself based on
these trajectories (Putta et al., 2024). Although
these training strategies have shown promising per-
formance in reasoning, coding, and web tasks,
these trained agents remain constrained to their
specific tasks, struggle to generalize to general-
purpose usage, and are restricted to pre-defined
environments.

Existing efforts on LLM-driven agents often fol-
low an environment-centric design, where they par-
tially solve this problem by designing an environ-

ment for each task to manage and feed localized
state information (Liu et al., 2024; Xi et al., 2024).
Moving one step further and aiming to create a
general-purpose “autopilot” system that has the
potential to solve more general tasks, Cognitive
Kernel switchs from environment-centric to model-
centric and asks the system to actively perceive the
localized state information with tools an ordinary
person could use.

B A Conceptual Framework of
“Autopilot” Systems

Motivated by previous automated systems (Tur-
ing et al., 1936), an autopilot system AS should
excel at managing the current state and making
wise actions accordingly. Thus, we first formulate
the conceptual autopilot framework as a 6-tuple
AS = ⟨S, sn,A, an, T,M⟩, where S is the set of
all possible states, sn ∈ S is the state6 at timestamp
n, A is the set of possible actions, an ∈ A is the
action at timestamp n, T is the transition matrix,
which determines an based on sn, M is the mem-
ory component that records s0 to sn−1. Note that
in real applications, S and A are arbitrarily large to
be enumerated by modern machines. As the size of
T is |S| · |A|, T is also too large to be enumerated.

To address these limitations and create a practi-
cal autopilot system, we further decouple the states
into global and localized ones, where the global
state information is the world knowledge shared
by most humans and localized state information is
temporally or spatially unique to the current task.
Specifically, we can decouple S as:

S = Sg ∪ S l, (1)

where Sg and S l represent the set of global and
localized state information, respectively. Similarly,
for any state sn at timestamp n, we can also decou-
ple it as:

sn = sgn ∪ sln. (2)

Based on the assumption that large language
models such as GPT-4 have compressed the world’s
knowledge through the pre-training, we can use
an LLM as the policy function F to simulate Sg,
sgn, and T . Thus, we can reformulate AS as
⟨S l, slnA, an, F,M⟩, where F is the LLM-based
policy function that predicts an conditional on sn.
Since LLMs are essentially probabilistic models,

6Each state is a set of variables and their values. In this
paper, we omit the concept of variables for simplicity.

340

this formulation no longer guarantees the execution
correctness, and thus an can only be viewed as the
most likely action based on the trajectories that F
has seen during the training phase.

A remaining challenge is where to get the lo-
calized state information in a real system. As dis-
cussed in Section 1, a key difference between au-
topilot systems and copilot systems is that the state
information might not be provided and the system
must perceive the state information actively. To
better represent this, we add one more variable
son ⊆ sln to denote the observed localized states at
each step n. Empirically, sln is the optimal local
state that one can not easily get, and son is the lo-
calized state information the autopilot system truly
has and can rely on. At each step n, F will first
determine whether son is close enough to sln, if it
is not close enough, F will initiate a perception
task to perceive more localized states. Since each
perception task might be an autopilot task requiring
further state perception and planning, we denote it
as P k, where k is the depth of the perception tasks.
Thus, we can get the final formal formulation of
AS as:

AS = ⟨S l, sln, s
o
n,A, an, F,M, P 0⟩,

P k = ⟨S l, sln, s
o
n,A, an, F,M, P k+1⟩.

(3)

In Section 2, we will cover the implementation de-
tails of Cognitive Kernel and explain how it fulfills
the above formulation.

C Design of the Memory Kernel

The overall framework of the memory kernel is
illustrated in Figure 5, which includes two major
components: information processing/storage and
information retrieval.

The information processing/storage component
is illustrated in the right part of Figure 5 (the blue
rectangle). For any given information, we first con-
vert it into plain text and treat it as a regular docu-
ment. For example, for dialogue history with the
timestamp information, we could create a sentence
in the format of “C@@T,” where C and T repre-
sent the content and timestamp, respectively. The
documents are parsed into different granularities:

• Documents. An example of document is de-
noted as doc_emb in Figure 5;

• Propositions (Chen et al., 2024). The doc-
ument d in the bottom right corner of Fig-
ure 5 can be broken down into propositions of

p1 = “The Yellow River is in China,” p2 =
“The length of Yellow River is 5,464 km,” ...
We denote embedding representations of all
propositions as (prop_1_emb, ...).

• Key concept and perspective. For example,
the concept and perspective for p1 is “Yellow
River” and “country”, and the concept and
perspective for p2 is “Yellow River” and
“length”. To facilitate the semantic matching,
we concatenate the concept and perspective
as a phase and then compute the embedding
representation (c_p_1_emb, ...).

• Mentioned Concepts. For example, the men-
tioned concepts for p1 are “Yellow River” and
“China”, and the mentioned concepts for p2
are “Yellow River”.

Information retrieval. The information re-
trieval part is shown in the left-side of Figure 5
Given an input query q, we first compute its em-
bedding Query_emb and extract key concepts and
perspectives with the same models we used for the
processing step. Then Cognitive Kernelconducts
the multi-granularity matching with the following
granularities:

• Document-level soft matching finds the most
relevant documents based on the similarity
between Query_emb and all doc_emb;

• Proposition-level soft matching finds the most
relevant propositions based on the similarity
between Query_emb and {prop_1_emb, ...}
and then retrieves the corresponding docu-
ments;

• Concept-level soft matching finds the most
relevant concept+proposition combinations
based on the similarity between Query_emb
and {c_p_1_emb, ...} and then finds the cor-
responding proposition and documents;

• Concept-level Hard Matching finds all doc-
uments that share mentioned concepts with
query q.

Finally, Cognitive Kernelreranks the retrieved
documents based on their maximum similarity ac-
cording to the above four matching methods. For
example, if the retrieved result of document-level
soft matching is [(doc A, 0.8), (doc B, 0.7)] and the
retrieved result of proposition-level soft matching

341

Query

Key concept Hard matching

Proposition-
level soft
matching

Doc-level soft
matching

Concept-level
soft matching

Query emb

Concept+
perspective emb

Key
perspective

Databases

How long is the
Yellow River?

Yellow River

Length

doc_emb

prop_1_emb
prop_2_emb

…

document

c_p_1_emb
c_p_2_emb

…

proppsition_1
proposition_2

…

concept_perspective__1
concept_perspective__2

…

all_concepts__1
all_concepts__2

…

The Yellow River is in
China, at the length
of 5,464 km…

1. The Yellow River is in
China;

2. The length of Yellow
River is 5,464 km;

…

1. Yellow River, China;
2. Yellow River;
…

1. Yellow River, country;
2. Yellow River, length;
…

Queries

Figure 5: The overall framework of the multi-granularity information management system.

is [(doc B, 0.9), (doc C, 0.6)], then the merged re-
sult of the two matching methods is [(doc B, 0.9),
(doc A, 0.8), (doc C, 0.6)].

D Experiments (Additional Details)

D.1 Trainng Details
Pre-trained Model We train our own policy
models based on Llama3 series (Dubey et al., 2024)

Hyper-parameters The hyper-parameters for
learning the 70B and 8B policy models are listed
in Table 2.

Training Data Table 3 displays the training data
statistics for the proxy model, primarily divided
into conventional instruction-following data and
agent data.

D.2 Benchmarks
For real-time information management evaluation,
we conduct experiments on the recently released
WebCanvas benchmark (Pan et al., 2024). WebCan-
vas test set contains 104 human-annotated tasks that
require interacting with real-world live websites to
complete, and each of the tasks specifics a target
website for interaction. We simply provide each
task instruction to each system and it is expected
to strictly follow the instructions to find the target
webpage and complete the task.

For private information management evalua-
tion, we conducted extensive assessments using
DOCBENCH (Zou et al., 2024). DOCBENCH pro-
vides an end-to-end evaluation: starting with a raw
file input along with user questions and evaluating
the system based on the quality of the answers gen-
erated. This benchmark includes 229 real-world
documents and 1,102 questions, spanning five dis-
tinct domains: Academia, Finance, Government,

Law, and News. Furthermore, it encompasses four
major types of questions: text-only, multi-modal,
meta-data, and unanswerable questions. We simply
upload the files to each system and ask the ques-
tions.

For long-term memory management evaluation,
we use two benchmarks: LLM-generated test cases
and human-written test cases. Specifically, each
test case consists of a session of messages between
the user and the assistant acting as dialog history,
followed by a final question about the details of pre-
vious messages. The goal is to assess if the assistant
can accurately retrieve the ground truth message(s)
from the dialog history and correctly answer the
query. The benchmarks has four categories of ques-
tions: Single Message (1-M), where answering
the final question relies on a single ground truth
message; Multiple Messages (Mul-M), where an-
swering the final question requires combining infor-
mation from two or more ground truth messages;
Knowledge Update (Update), where the user ini-
tially provides some information and later updates
or corrects it. Temporal Reasoning (Temp), where
the questions require inferring the chronological
order of two events mentioned in conversation his-
tory. For the LLM-generated test cases, we use the
LongMemEval (Wu et al., 2024a), which prompts
the LLM (i.e., GPT-4o) to first create users with
particular attributes, preferences, and experiences,
then we have an LLM role-plays the user while
another LLM role-plays the assistant to create the
dialog history. For the manually-created test cases,
we write both the dialog history and the final ques-
tion and we only cover the first three categories.
Finally, an LLM is prompted to generate the ques-
tion and the answer. The generated conversations,
questions, and answers are manually checked by

342

Learning Rate Sequence Length Warmup Step Global Batch Size Epoch

70B 1e−5 8192 0 64 3
8B 5e−5 8192 50 64 3

Table 2: Hyper-parameters for the 70B and 8B policy models.

Samples

Instruction-following 33,882
Agent 49,996

Total 83,878

Table 3: Training data statistics for the policy model.

humans to ensure quality. During the evaluation
process, we manually enter the dialog history (user
turns) to the tested systems, then start a new chat
session and ask the final question.

D.3 Metrics

We mainly focus on the end-task success rate in our
evaluation. However, the definition of task success
and evaluation methods are different for each of
the target scenarios. Here we provide the detailed
definitions.

For WebCanvas, (Pan et al., 2024) proposed step-
wise scores that use human-annotated key nodes
along the gold trajectory to evaluate the system’s
web browsing performance. Upon further inspec-
tion of the annotated key nodes, we found that
this metric can significantly underestimate the sys-
tem performance. Since there exist many possible
trajectories that lead to task completion, simply
matching the key nodes from one trajectory can
overlook many other valid paths. Thus we opt for
manual evaluation and we only focus on the overall
task success rate. Here, since many tasks cannot be
truly “completed,” we consider a task to be success-
ful if 1) the required information is gathered from
the target website and 2) all the necessary actions
are performed with regard to the correct elements.
For example, the system cannot truly buy a gift
card (without valid account information), we con-
sider it to be successful if it has added the correct
gift card to the cart on the target website and filled
in the fake user information in the instruction to
the correct cells on the checkout page. We closely
monitor the system’s web interaction sessions dur-
ing our experiments to ensure that no harm is done
to website hosts. For systems that do not provide
the intermediate trajectories, we consider a task to
be successful if the system provides the links to

the correct websites that satisfy all requirements in
their responses.

For DOCBENCH, we follow (Zou et al., 2024)
and adopt GPT-4o to automatically evaluate the
correctness of the generated answers based on the
reference. As reported by (Zou et al., 2024), re-
lying on string matching or number extraction to
evaluate the accuracy of generated response can be
imprecise, since different LLMs and systems ex-
hibit substantial variations in the organization and
style of their outputs, potentially leading to biases
in traditional metrics. We instruct GPT-4o to assign
a score of 0 (incorrect) or 1 (correct), thus using
Accuracy to measure system performance.

For long-term memory evaluation, we ask Cogni-
tive Kernel as well as baseline systems to generate
the answer for each question, and manually judge
the correctness of the answers.

E In-depth Analysis

E.1 Real-time information management

We further conduct experiments using a specialized
web agent system specifically designed for web in-
teraction. In particular, we rerun the WebCanvas
agent (Pan et al., 2024) using the GPT-4o API as
the backbone and then manually evaluate its tra-
jectories. We further categorized the failure cases
for WebCanvas agent and Cognitive Kernel to bet-
ter understand the limitations of existing systems.
Specifically, we define the following categories:
Missing Detail: the system almost succeeded but
missed a detail in the instruction. Reasonable At-
tempt: the system makes reasonable actions on the
webpage (similar to a human when navigating an
unseen website), but runs out of max steps before
completing the task due to unfamiliarity. Com-
pletely Failed: the system’s action trajectory does
not make much sense. Blocked: the system’s web
browsing is blocked by bot detectors or Captcha.

From Figure 6, we see that the WebCanvas Agent
system coupled with GPT-4o achieves a much
higher success rate than baselines shown in Table 1,
showing that the model capability is not the only
factor that affects end-task performance. Also, in
addition to the highest success rate, Cognitive Ker-

343

Figure 6: Overall task completion results on the WebCanvas test set.

nel also has a much larger portion of cases where
the system almost completed the task, suggesting
the overall superiority of the system. We showcase
an example of Missing Detail in Figure 8 and an
example of Reasonable Attempt in Figure 9 in the
appendix.

E.2 Private information management
Figure 7 presents a radar plot illustrating the ac-
curacy of various end-to-end LLM-based systems
and open-source LLMs using a parse-then-read
pipelines across different question types in the
DocBench. The questions in DocBench are cat-
egorized into four major types: Text-only, Multi-
modal (including tables and figures), Meta-data,
and Unanswerable questions.

The left subfigure compares these systems with
the end-to-end systems presented in Table 1. Div-
ing into this detailed comparison, we can observe
the specific capabilities of these systems in han-
dling different document-based questions. As
shown, Kimi-Chat and Claude3-opus perform well
across all these categories, demonstrating balanced
performance on different types of questions. No-
tably, GPT-4 underperforms in the unanswerable
category, suggesting potential overfitting in GPT-
4’s optimized file systems, likely due to training
on datasets that only include answerable questions
with provided golden answers. On the other hand,
Gemini-Pro 1.5 struggles with figure-based ques-
tions in documents, with its performance in the mul-
timodal category primarily driven by table-based
questions. Coze (GPT-4o) performs poorly in han-
dling user documents due to misalignment between
system instructions and the LLM’s instruction-
following capabilities. Other systems show rel-
atively balanced performance, with gaps mainly
attributable to the backbone LLMs and their sys-

tem designs. As shown in the right subfigure, we
also compare the results with recent state-of-the-art
open-source LLMs using parse-then-read pipelines.
To enable LLMs to process documents as input, we
use the fitz package to extract text, tables, and im-
ages from PDF files, then feed the questions, along
with the extracted information, into the LLM to ob-
tain the final answer. It is evident that simply using
these LLMs does not lead to strong performance on
document-based tasks. Compared to Llama-3 70B,
Cognitive Kernel demonstrates a 22% relatively im-
proved performance, highlighting the importance
of system design in handling diverse types of user
questions.

E.3 Long-term memory management
The detailed evaluation results of Cognitive Kernel,
along with baseline systems on long-term memory,
are presented in Table 4. While GPT-4o is generally
more powerful than GPT-4o-mini, it performs sig-
nificantly worse in long-term memory evaluation.
Upon closely examining the intermediate content
within the long-term memory module, we discov-
ered that GPT-4o is more prone to modifying or
overwriting existing memories when receiving new
input from the user, even when the new content is
only semantically similar to the old memory rather
than actual update. As a result, the system may
lose the ability to answer the final question accu-
rately. Additionally, Coze does not perform as well
as GPT in this setting. The choice of the under-
lying base model also has a significant impact on
Coze’s performance, with Coze + GPT-3.5-turbo
performing substantially worse than Coze + GPT-
4o. In our system, we found that the Cognitive
Kernel’s performance is suboptimal when using
GPT-4o as the base LLM. This is likely because
GPT-4o is not fully aligned with our system prompt

344

Overall

Text-only

MultimodalMeta-data

Unanswerable

20%

40%

60%

80%

100%

GPT-4o (0806)
Gemini-Pro 1.5
Claude3-opus
Kimi-Chat
Coze (GPT-4o)
Cognitive Kernel

Overall

Text-only

MultimodalMeta-data

Unanswerable

20%

40%

60%

80%

100%

Yi-1.5 (34B)
Command-R (35B)
Mixtral-8x7B (56B)
Llama-3 (70B)
Cognitive Kernel (70B)

Figure 7: Performance comparison of various end-to-end systems (left) and open-source LLMs across different
question types in the DocBench.

Systems Human-written test cases LLM-generated test cases Avg1-M Mul-M Update All 1-M Mul-M Update Temp All

GPT-4o-mini 70.0 70.0 80.0 73.3 100.0 71.4 68.0 66.7 75.9 74.6
GPT-4o 60.0 50.0 70.0 60.0 76.0 40.5 84.0 45.8 58.6 59.3

Coze (GPT-3.5-turbo) 60.0 50.0 60.0 56.7 48.0 9.5 36.0 8.3 23.3 40.0
Coze (GPT-4o) 80.0 80.0 90.0 83.3 68.0 14.3 24.0 37.5 32.8 58.1

Cognitive Kernel (GPT-4o) 70.0 50.0 50.0 56.7 68.0 73.8 40.0 54.2 61.2 59.0
Cognitive Kernel 100.0 90.0 90.0 93.3 100.0 81.0 84.0 45.8 78.4 85.9

Table 4: The results of long-term memory management.

even though the prompt is natural and accurate for
humans. After switching to the adapted LLM, the
performance improved from 59.0% to 85.9%. This
observation shows that there is no perfect model
and a continuously evolving AI system is crucial
in real applications.

E.4 Error Cases

In Figure 8, we illustrate an example of Missing
Details from the WebCanvas test set. Given the
query, the system first searched for the director of
Smile and found it to be Parker Finn. Then it tried
to search for other movies directed by Parker Finn,
and it found the answer from the IMDB website.
However, the initial query requires the answer from
the TVGuide website, thus the task is not consid-
ered as successful.

In Figure 9, we show an example of Reasonable
Attempt. The task requires checking the iPhone
repair status, and it would be considered successful
if it can reach the Apple My Support page 7 (upon
signing in one can check the status there). In this
case, Cognitive Kernel examined different pages
on the Apple website that are relevant to iPhone

7https://support.apple.com/my-support

repair but could not find the page with explicit
information for the status check. After reaching
the maximum number of steps it is forced to stop.
We believe such errors are reasonable and could
be potentially solved by allowing the system to
explore the website before executing any tasks and
update its memory accordingly.

F Discussions and Limitations

Despite that Cognitive Kernel achieves promising
performance on several realist tasks, there is still a
huge gap between Cognitive Kernel and a general-
ist “autopilot” system. In this section, we discuss
the limitations of our current system, which is also
our future working directions.

F.1 Multi-modal Perception Ability

For a generalist “Autopilot” system, it’s critical to
have multi-modal perception ability because the
real world is multi-modal and the rich information
that helps decision-making is often embedded in
other modalities beyond text. However, current
Cognitive Kernel employs an LLM as the central
policy model, thus it cannot handle multi-modal
inputs such as images or audio. Intuitively, all three

345

https://support.apple.com/my-support

Figure 8: An example trajectory of Missing Details from Cognitive Kernel. The task instruction is "Find more films
from the director of Smile on tvguide"

use cases we experimented with could greatly ben-
efit from other modalities and provide a better user
experience. For example, for private information
management, the system can better understand lo-
cal files by reading both the text and images embed-
ded in the files. For real-time information manage-
ment, the system can better understand the websites
by observing the visual layout and visual elements
not captured in the accessibility tree, therefore nav-
igating the web more effectively. For long-term
memory management, the user can also send im-
ages to the system or speak to it directly without
typing any text, and the system can read and write
memories of different modalities to better serve
different scenarios. Therefore it is a promising di-
rection to equip Cognitive Kernel with multi-modal
perception ability and we leave this exploration for
future work.

F.2 Self-improvement Through Search and
Feedback

Even though we give Cognitive Kernel freedom to
be a generalist autopilot system, it tends to mimic
the training trajectories. Thus, an important re-
search question is how to make it capable of contin-
uously evolving to overcome the limitation of the
limited training trajectories such that it could gener-
alize to unseen tasks. Similar to previous efforts on
reinforcement learning, a promising way towards

this goal is by letting the system search for dif-
ferent task-solving strategies in unseen situations,
automatically collect feedback signals for differ-
ent trajectories, and orchestrate the learning and
system updates autonomously. The most critical
component in this pipeline is the feedback signal.
Currently, Cognitive Kernel still relies on users or
external models to provide the feedback, which lim-
its its scalability. Ideally, the system should also
acquire the ability to be a critic, such that it can
serve as a value function to estimate the quality of
its own task-solving trajectories. With such ability,
the system could adopt algorithms such as Monte-
Carlo Tree Search (MCTS) (Tian et al., 2024) to
explore the real-world environments, collect the
self-feedback, and continue improving itself with
this signal. We believe this direction is a necessary
path toward a true “Autopilot” system and warrant
further investigation.

F.3 Robust System-level Support

Since the purpose of an “Autopilot” system is to
complete various user tasks in the real world, it re-
quires much more than a powerful policy model. In
other words, the system needs a robust and scalable
infrastructure to support the central policy model to
function as the “brain” an intelligent agent, much
like the relationship between the human body and
the brain. With this in mind, we adopted a dock-

346

Figure 9: An example trajectory of Reasonable Attempt from Cognitive Kernel. The task instruction is "Check the
status of your iPhone repair on apple."

347

Ask Cognitive Kernel to download
a recent paper about web agent

Cognitive Kernel answers ‘5’

Cognitive Kernel search on web

Check the first paper in the results Download the paper’s PDF

Cognitive Kernel returns the downloaded file path

We verify the answer with manual search

Ask how many times ‘HTML’ is mentioned in the paper

Figure 10: An example trajectory of Cognitive Kernel on completing user queries leveraging both real-time
information management and private information management abilities.

348

erized design and equipped Cognitive Kernel with
various functionalities such as file processing and
web interaction, as described in Section 2. How-
ever, we recognize that what we currently have
is still quite limited and there is ample room for
improvement in terms of both scope and robust-
ness. For example, our system only supports user-
uploaded file processing for private information
management. To further expand the scope of ap-
plications, we could allow the system to directly
access the local file systems and control other soft-
ware on the operating system level (Xie et al., 2024;
Wu et al., 2024c). In this way, we can enable the
system to manage different kinds of private infor-
mation for the user.

From the perspective of robustness, we also no-
ticed that our system could not cover all edge
cases in the environment. For example, when Cog-
nitive Kernel leverages the browser to complete
web-based tasks. In certain cases, despite the pol-
icy model predicting the correct action, the action
could not be executed in the web server due to
certain technical issues (e.g., elements in iFrames
could not be directly clicked as other buttons). Con-
current works on web agents have also observed
that such technical issues contribute to a large por-
tion of failure cases (Yoran et al., 2024). We believe
that improving the system’s robustness is equally
important as improving the capabilities of the pol-
icy model. Only the organic combination of these
two can truly unleash the power of large language
models and build “Autopilot” systems.

349

