
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(System Demonstrations), pages 106–115

April 30, 2025 ©2025 Association for Computational Linguistics

Prompto: An open source library
for asynchronous querying of LLM endpoints

Ryan Sze-Yin Chan1, Federico Nanni1, Angus R. Williams2,
Edwin Brown1,3, Liam Burke-Moore2, Ed Chapman1, Kate Onslow2,

Tvesha Sippy2, Jonathan Bright2, Evelina Gabasova1

1 Research Engineering Group & 2 Public Policy Programme (The Alan Turing Institute),
3 Research Software Engineering Team (University of Sheffield)

Corresponding authors: {rchan,fnanni}@turing.ac.uk

Abstract

Recent surge in Large Language Model (LLM)
availability has opened exciting avenues for re-
search. However, efficiently interacting with
these models presents a significant hurdle since
LLMs often reside on proprietary or self-hosted
API endpoints, each requiring custom code for
interaction. Conducting comparative studies
between different models can therefore be time-
consuming and necessitate significant engineer-
ing effort, hindering research efficiency and
reproducibility. To address these challenges,
we present prompto, an open source Python li-
brary which facilitates asynchronous querying
of LLM endpoints enabling researchers to in-
teract with multiple LLMs concurrently, while
maximising efficiency and utilising individual
rate limits. Our library empowers researchers
and developers to interact with LLMs more ef-
fectively and allowing faster experimentation,
data generation and evaluation. prompto is re-
leased with an introductory video1 under MIT
License and is available via GitHub2.

1 Introduction

The field of Natural Language Processing is going
through a massive transition since the introduc-
tion of Transformer-based Large Language Models
(LLMs) (Vaswani et al., 2017; Devlin et al., 2019;
Radford et al., 2019) which have demonstrated ex-
ceptional generalisation capability on a wide range
of language-related tasks.

While user-friendly interfaces like ChatGPT,
Gemini and Claude have made LLMs more ac-
cessible to the public, researchers nowadays in-
creasingly interact with such models through pro-
grammatic interfaces and APIs. La Malfa et al.
(2023) noted several reproducibility issues with this
Language-Models-as-a-Service (LMaaS) paradigm
(Sun et al., 2022), where language models are cen-

1https://youtu.be/lWN9hXBOLyQ
2https://github.com/alan-turing-institute/prompto

trally hosted and typically provided on a subscrip-
tion or pay-per-use basis (e.g., the OpenAI API3

and Google’s Gemini API4). To address some of
them, Biderman et al. (2024) suggested a series
of best practices when evaluating LLMs, such as
sharing your exact prompts, parameter inputs and
code and always providing model outputs.

In addition to LMaaS, there are now also several
open LLMs, defined here as those with broadly
available model weights as in Kapoor et al. (2024),
e.g. Llama (Llama Team, 2024), Gemma (Gemma
Team, 2024), Aya (Aryabumi et al., 2024). These
"open" models are often accompanied by a model
card (Wolf et al., 2020) which provides instruc-
tions for executing them locally and for accessing
their internals and weights. This allows users to
create their own API endpoints for LLMs (e.g., via
Ollama5) on their available hardware.

A significant challenge with both LMaaS and
open LLMs is that conducting a comparative study
across multiple models necessitates writing sepa-
rate code to interact with each API and this obstacle
further hinders already complex evaluation and re-
producibility efforts. An additional problem is that
APIs may have different constrains (e.g., query-
per-minute (QPM) rate limits), adding even more
complexity to the engineering design.

To address these limitations and simplify large-
scale comparative studies across LLMs, we intro-
duce prompto, an open source Python library for
asynchronous querying of LLM endpoints in a con-
sistent and highly efficient manner. prompto uses
asynchronous programming to efficiently interact
with endpoints by allowing users to send multiple
requests to different APIs concurrently. This elimi-
nates idle wait times and maximises efficiency, es-
pecially when dealing with different rate limits. In
contrast, in traditional synchronous programming,

3https://openai.com/api/
4https://ai.google.dev/gemini-api
5https://ollama.com/

106

https://youtu.be/lWN9hXBOLyQ
https://github.com/alan-turing-institute/prompto
https://openai.com/api/
https://ai.google.dev/gemini-api
https://ollama.com/


a user sends a single request to an endpoint and
waits for a response from the API before sending
another request, repeating for each query. prompto
supports a range of LMaaS endpoints (e.g. Ope-
nAI, Gemini, Anthropic) as well as self-hosted end-
points for querying local models (e.g. Ollama,
Hugging Face’s text-generation-inference6

for serving models hosted on Hugging Face). The
codebase is easily extensible to integrate new APIs
and/or locally self-hosted models. For instance,
we provide an example using Quart7 in prompto
to easily set up an endpoint for inferencing local
models using transformers (Wolf et al., 2020).

Inspired by Biderman et al. (2024); He et al.
(2024), the library promotes experiment repro-
ducibility by facilitating the definition of all in-
puts/prompts within a single JSON Lines (JSONL)
or CSV file. The file can encompass queries for
various APIs and models, enabling parallel pro-
cessing for even greater efficiency gains. The li-
brary’s scalability allows it to handle large-scale
experiments. prompto also provides built-in func-
tionalities for automatic evaluation of the obtained
responses, such as allowing the user to apply scor-
ing functions to model outputs, and model graded
evaluation or LLM-as-a-judge (Zheng et al., 2024).

In this paper, we present an overview of
prompto, highlighting its modular design and flex-
ibility. We present prompto’s functionalities, de-
sign choices, technical implementation and show
its advantages in comparison with alternative ap-
proaches. We accompany its release with extensive
documentation and a series of Jupyter Notebooks
as tutorials, to allow the research community to
easily explore all its functionalities. In addition
to the library’s provided examples8, we provide
an illustrative showcase of using our library and
compare against a synchronous approach to query
several LLM endpoints in parallel in Appendix A.

2 Related Work and Motivation

To support transparent and reproducible evalua-
tion of large language models, a series of eval-
uation frameworks have been published in re-
cent years, such as Language Model Evalua-

6https://github.com/huggingface/
text-generation-inference

7https://github.com/pallets/quart
8Example usage of prompto can be found at https://

alan-turing-institute.github.io/prompto/examples/

tion Harness (lm-eval9) (Gao et al., 2023; Bi-
derman et al., 2024), the UK AI Safety Insti-
tute’s Inspect framework (inspect-ai10), Con-
fident AI’s DeepEval (deeepeval11), LLM Com-
parator (llm-comparator12).

Nevertheless, conducting evaluation experi-
ments on multiple large language models in order
to compare their performance remains an engineer-
ing challenge, as each endpoint requires dedicated
code to be written. To address this, our prompto
library allows users to specify queries for various
APIs and models within a single JSONL file, with-
out having to interact directly with the details of
each endpoint’s infrastructure. This prioritises flex-
ibility in experiment design, simplifies the setup for
researchers and especially promotes reproducibil-
ity as all model parameters and prompts can be
documented within a single file. After running an
experiment, we record all model responses into an
output experiment file which can be further anal-
ysed or used downstream in other pipelines.

Furthermore, our prompto library prioritises ef-
ficiency when running experiments. When inter-
acting with LLMs, a sequential and synchronous
approach where requests are sent to an endpoint
and then waited upon for a response is highly inef-
ficient, especially when dealing with different rate
limits or when conducting comparisons across mul-
tiple models. prompto and tackles this challenge
by leveraging asynchronous programming.

The ability to interact with multiple LLMs con-
currently and process requests asynchronously
makes our library particularly well-suited for initial
exploration and rapid comparison between differ-
ent LLMs. Researchers can efficiently experiment
with various models and gauge their performance
on specific tasks. This might be particularly useful
in experiments where an "expected" or "ideal" re-
sponse is not known ahead of time since evaluation
framework tools are often most useful for settings
where there is pre-defined model response from
which the performance of an LLM can be scored
against (e.g. automated metrics such as BLEU (Pa-
pineni et al., 2002), HellaSwag (Zellers et al., 2019)
or MMLU (Hendrycks et al., 2021)). prompto may
also be preferred in settings where the responses
are intended for human evaluation, for instance in

9https://github.com/EleutherAI/
lm-evaluation-harness

10https://github.com/UKGovernmentBEIS/inspect_ai
11https://github.com/confident-ai/deepeval
12https://github.com/pair-code/llm-comparator

107

https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/pallets/quart
https://alan-turing-institute.github.io/prompto/examples/
https://alan-turing-institute.github.io/prompto/examples/
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/UKGovernmentBEIS/inspect_ai
https://github.com/confident-ai/deepeval
https://github.com/pair-code/llm-comparator


Rao et al. (2023); Rashkin et al. (2023); Dash et al.
(2023); Williams et al. (2024).

Finally, prompto’s applicability goes beyond be-
yond evaluation tasks, and can be leveraged to
generate synthetic datasets from LLMs for model
training and development (Wang et al., 2022; Xu
et al., 2024a,b), or to create datasets specifically
tailored for LLM distilation tasks, a technique for
compressing knowledge from larger models into
smaller, more efficient ones (Taori et al., 2023; Wu
et al., 2023; Peng et al., 2023; Gu et al., 2023).

3 Library Design

Our prompto library is an open source Python pack-
age13 which facilitates processing of experiments
of language models stored as JSONL files. The
library has commands to process an experiment file
to query models and store results. A user can query
multiple models asynchronously and in parallel in
a single experiment file.

We detail key components of setting up an ex-
periment and core commands of the library. For
a comprehensive exploration of prompto’s fea-
tures, we kindly refer readers to the detailed docu-
mentation at https://alan-turing-institute.
github.io/prompto/.

3.1 Pipeline data folder
For running an experiment in prompto, everything
starts with setting up a pipeline data folder (illus-
trated in Figure 1) which has several subfolders:

• input: contains input experiment JSONL
files as described in 3.2

• output: contains results of experiment runs
• media: contains any input media files for mul-

timodal model experiments

When an experiment is ran, a folder will be created
in the output folder with the experiment name (the
experiment file name without the ".jsonl" exten-
sion). We move the input file (originally stored in
the input folder) into the output folder and re-
name it to indicate it was the original input file for
a particular run. The model responses are stored in
a new "completed" JSONL file, where each prompt
dictionary will have a new "response" key stor-
ing the model response. A log file is also created
to store any logs from the experiment run. Each
of these files are timestamped to when the exper-
iment started, allowing users to run the same ex-
periment multiple times without interfering with

13https://pypi.org/project/prompto/

Figure 1: Illustration of the folder structure of
the pipeline data folder after a exp_1.jsonl experi-
ment file has been processed while exp_2.jsonl and
exp_3.jsonl are experiment files yet to be processed
in the input folder. After processing exp_1.jsonl,
a exp_1 folder is created in the output folder which
stores a completed experiment file, the original input
file and a log file which are all timestamped to when the
experiment was ran. The media folder stores any input
media files for multimodal experiments.

the same output files and to track any changes to
the input files between runs. An illustration of this
data folder can be found in Figure 1.

3.2 Setting up a prompto experiment
A prompto experiment file is a JSON Lines
(JSONL) file that contains the prompts for an exper-
iment along with any other parameters or metadata.
Each line in the JSONL file is a valid JSON value14

which defines a particular input to a model. We re-
fer to a single line in the JSONL file as a prompt
dictionary (or prompt_dict) with keys:

• prompt: the prompt to the model
• api: the name of the API to query (e.g.
"openai", "gemini", etc.)

• model_name: the name of the model to query
(e.g. "gpt-4o", "gemini-1.5-flash", etc.)

The value of the prompt key is typically a string
type that is passed to the model to generate a re-
sponse, but for certain APIs or models, this could
take different forms. For instance, for some API
endpoints like OpenAI and Gemini, this could be a
list of strings which we consider as a sequence of
prompts to be sent as user messages in a chat inter-
action, or it could be a list of dictionaries each with
"role" and "content" keys which can be used to de-
fine a history of a conversation. To foster the use of
multimodal LLMs, prompto supports images and
videos as inputs for several models. For instance,

14In practice, this means each line is a collection of key/-
value pairs and in Python, this is realised as a dictionary.

108

https://alan-turing-institute.github.io/prompto/
https://alan-turing-institute.github.io/prompto/
https://pypi.org/project/prompto/


for the OpenAI API, it is possible to prompt with
images by passing them through the "content" keys.
These can be URL links to images on the web, or
be stored locally in the media folder of the pipeline
data folder (see Section 3.1)15.

There are also optional keys that can be included
in a prompt dictionary such as "parameters"
which define the parameters or generation config-
uration for a prompt such as temperature. Note
that API services often have different names for the
same generation parameter16. In prompto, these pa-
rameters are not unified and the generation param-
eters specified in the prompt dictionary are passed
directly to the API used. A "group" key could be
defined to pass a user-specified grouping of the
prompts which can be useful for processing groups
of prompts in parallel.

Note that CSV files can also be used as input
where they get converted to JSONL to be processed.
In this setting, the keys in the prompt dictionary
discussed above are columns in the CSV file.

3.3 Running an experiment in prompto

An experiment can be ran in the terminal using
the prompto_run_experiment command line in-
terface (CLI) by specifying the path to input experi-
ment file with the --file or -f argument. The user
can also specify the path to the data folder (Section
3.1) with the --data-folder or -d argument17:

prompto_run_experiment
--file path/to/experiment.jsonl \
--data-folder data

For interacting with LLM endpoints, we often need
to specify API keys or other variables. These can
be set as environment variables, or they can be
specified in a .env file18 as key-value pairs:

OPENAI_API_KEY=...
GEMINI_API_KEY=...

The prompto_run_experiment CLI then starts
asynchronously sending requests using asyncio19

15A full example with multimodal prompting
in prompto with the OpenAI API can be found at
https://alan-turing-institute.github.io/prompto/
examples/openai/openai-multimodal/.

16For example, to specify the maximum output tokens to
generate, the OpenAI API uses max_tokens while Gemini API
uses max_output_tokens.

17By default, we assume the data folder is called data/ in
the current working directory.

18By default, we look for a .env file in the current working
directory, but a path can be specified using --env or -e.

19https://docs.python.org/3/library/asyncio.html

for each prompt dictionary which includes details
of the input, the API to send to and the model name
to query. There are several other arguments to
the command for providing flexibility of how this
process occurs20 such as the maximum queries to
send per minute (--max-queries or -mq), the max-
imum number of retries if errors (such as rate limit
or connection errors) occur (--max-attempts or
-ma). To adhere to strict API rate limits, we use
the max-queries (per minute) argument to deter-
mine how frequently to send our requests asyn-
chronously. If max-queries is set to 10, we sim-
ply send our requests every 60/10 = 6 seconds.
Since we use an asynchronous approach, we do not
need to wait for a response before sending another
request, ensuring that prompts are sent at correct
intervals. To handle any errors (e.g. API failures or
timeouts), we use the max-attempts argument to
determine the maximum number of attempts for a
prompt. In the case of an unexpected error, prompts
are added to the back of the queue and are retried
a maximum number of times. If the maximum is
reached, we return and log the error in the response.

For example, to run an experiment where we
asynchronously send 50 queries per minute (one
query every 1.2 seconds) with 5 maximum retries,
we can simply run the following command:

prompto_run_experiment \
--file path/to/experiment.jsonl \
--data-folder data \
--max-queries 50 \
--max-attempts 5

Furthermore, prompto supports sending requests to
different APIs or models in parallel (--parallel
or -p). Our implementation of the "parallel" pro-
cessing again uses asynchronous programming al-
lowing multiple queues of prompts to be managed
concurrently within a single thread of execution
rather than utilising multiple CPU cores and so is
more resource efficient. If parallel processing of
different APIs or models is requested, the user can
fully customise how queues of prompts are con-
structed and set different rate limits for each queue.
This is particularly useful when querying multiple
API endpoints with different rate limits21.

20Full details of each of these arguments can be found
in our documentation at https://alan-turing-institute.
github.io/prompto/docs/pipeline/

21Full details of parallel processing can be found at
https://alan-turing-institute.github.io/prompto/docs/
rate_limits/

109

https://alan-turing-institute.github.io/prompto/examples/openai/openai-multimodal/
https://alan-turing-institute.github.io/prompto/examples/openai/openai-multimodal/
https://docs.python.org/3/library/asyncio.html
https://alan-turing-institute.github.io/prompto/docs/pipeline/
https://alan-turing-institute.github.io/prompto/docs/pipeline/
https://alan-turing-institute.github.io/prompto/docs/rate_limits/
https://alan-turing-institute.github.io/prompto/docs/rate_limits/


Users can use all of prompto’s functionalities
directly in Python rather than using the CLI. For
instance, to run an experiment in Python:

from prompto import Settings , Experiment

experiment_settings = Settings(
data_folder="data",
max_queries =50,
max_attempts =5,

)
experiment = Experiment(

file_name="path/to/experiment.jsonl",
settings=experiment_settings ,

)

await experiment.process ()

In this example code, we are utilising the Settings
and Experiment classes of the prompto library.
The Settings class defines the settings of the ex-
periment and stores all the paths to the relevant
data folders, whereas the Experiment class stores
all the relevant information for a single experiment
and takes in a Settings object during initialisation.
The Experiment class has an async method called
process which runs the experiment.

For a more illustrative walkthrough of running
experiments, the documentation includes examples
of typical workflows with associated notebooks8.

3.4 The prompto pipeline

Our prompto library also has the functionality to
run a pipeline which continually looks for new
experiment JSONL files in the input folder us-
ing the prompto_run_pipeline command which
takes in the same settings arguments as the
prompto_run_experiment command:

prompto_run_pipeline \
--data-folder data \
--max-queries 50 \
--max-attempts 5

This command initialises the process of continually
checking the input folder for new experiments to
process. Consequently, there is no need to pass
in a path to an experiment file to process as with
prompto_run_experiment. If a new experiment
is found, it is processed and the results and logs are
stored in the output folder as explained in Section
3.3. The pipeline will continue to check for new
experiments until the process is stopped. In the case
where there are several experiments in the input
folder, the pipeline will process the experiments in
the order that the files were last modified.

In Python, it is possible to initialise this process
in the following way:

from prompto import Settings ,
ExperimentPipeline

experiment_settings = Settings(
data_folder="data",
max_queries =50,
max_attempts =5,

)
experiment_pipeline = ExperimentPipeline(

settings=experiment_settings ,
)

experiment_pipeline.run()

3.5 Automatic evaluation
A common use case for prompto is to evaluate dif-
ferent models, where we first need to obtain a large
number of responses and then subsequently evalu-
ate those responses. prompto provides functional-
ity to automatically evaluate model responses.

One approach is to apply a simple scoring func-
tion to responses. A scoring function is typically
lightweight such as performing string matching to
some target output or some regex pattern matching.
We have some built in scoring functions in the li-
brary such as a match() which determines whether
the model response matches some expected re-
sponse pre-defined by the user, or includes()
which determines if the model responses includes
a substring which is defined by the user.

In future work, we hope to expand this func-
tionality to more advanced and computationally
expensive scoring functions such toxicity classi-
fiers (Inan et al., 2023; Hanu and Unitary team,
2020). While these can already be implemented as
custom scorers in the library, scorers are applied
independently to each output meaning batching is
not fully utilised in the current implementation. A
potential avenue is to utilise continuous batching
strategies as in Kwon et al. (2023) to efficiently
batch requests as responses are retrieved.

To automatically apply scoring functions to
model outputs during an experiment run, one can
simply use the --scorers argument to specify a
comma-separated list of scoring functions:

prompto_run_experiment \
--file path/to/experiment.jsonl \
--data-folder data \
--scorers match,includes

Another common approach to automatic evaluation
is using an LLM to judge the outputs of a model

110



(Zheng et al., 2024). To perform an LLM-as-a-
judge evaluation, the user must provide a prompt
template which will be used to generate prompts
to the Judge LLM for evaluation. In prompto, we
treat this evaluation as simply as another prompto
experiment where we obtain a new set of prompts
using some judge evaluation template which in-
cludes a model response. An LLM-as-a-judge eval-
uation can be performed automatically after run-
ning an experiment. Full details and guidelines for
running LLM-as-a-judge evaluations and all other
evaluations features available with prompto can
be found at https://alan-turing-institute.
github.io/prompto/docs/evaluation/.

3.6 Rephrasing prompts

It is often useful to be able to rephrase/paraphrase
a given prompt, particularly in evaluation settings
since performance of models can vary significantly
with choice of prompt or wording (Gonen et al.,
2023; Mirzadeh et al., 2024; Hughes et al., 2024).
In prompto, we provide functionality to simply use
another language model to rephrase a given prompt.
A rephrasal experiment can be constructed by us-
ing a template to prompt a model to rephrase/para-
phrase. The responses from the rephrasal exper-
iment (along with the original prompts), can be
sent to another model to obtain responses for later
evaluation or for any other purpose.

It’s important to note that without safeguards,
rephrasing may introduce semantic drift, leading
to inconsistent evaluation results, so it is recom-
mended that users also construct an evaluation of
the rephrased prompts using methods discussed
in Section 3.5 such as an LLM-as-a-judge evalu-
ation. Full details and some examples of utilis-
ing the rephrasing functionality in prompto can
be found at https://alan-turing-institute.
github.io/prompto/docs/rephrasals/.

3.7 Adding new APIs and models to prompto

We have designed prompto to be easily extensible
to integrate new LLM API endpoints and models.
In particular, a user can add a new API by creat-
ing a new class which inherits from the AsyncAPI
class from the prompto library. The user must then
implement an async method query which asyn-
chronously interacts with the model endpoint. Full
details on implementing a new model endpoint can
be found at https://alan-turing-institute.
github.io/prompto/docs/add_new_api/.

4 Conclusions and Future Work

We present prompto, an open source library de-
signed to facilitate researchers to efficiently query
large language models which reside on proprietary
or self-hosted API endpoints. Using prompto is
simple and all inputs/prompts can be easily de-
fined in a single JSONL file, which can encom-
pass prompts for various APIs and models. Out-
puts are then stored in output JSONL files allow-
ing researchers to easily share experiment outputs
promoting reproducibility. Consequently, our li-
brary enables faster experimentation and evalua-
tion. prompto is an ongoing open source project
and we welcome contributions from the commu-
nity to ensure support for a wide range of LLM
endpoints and new features.

There are a number of interesting avenues for
extending prompto. In the future, we hope to
continue focusing on extending the evaluation
pipelines discussed in Section 3.5. For evaluation,
integration of larger-scale NLP pipelines can be
useful in order to efficiently apply more advanced
scoring functions such as toxicity classifiers and
other safety risk classifiers for automatic safety
evaluation. Furthermore, integrating prompto with
data visualisation libraries can bring additional plot-
ting features to the library to enable deeper explo-
ration of model performance.

Another direction of work is to extend the
rephrasing pipelines in prompto (see Section 3.6).
A particular area of interest is extending the
pipeline for translation of prompts. This can be
useful for synthetic data generation applications.
The current pipeline enables the use of LLMs for
translation which have demonstrated remarkable
potential in handling multilingual machine trans-
lation (MMT) (Zhu et al., 2024), however extend-
ing this pipeline to dedicated MMT models, such
as NLLB (Costa-jussà et al., 2022; NLLB Team,
2024), could particularly be effective for translating
to lower resourced languages. Moreover, a rephras-
ing pipeline can also be important in evaluation
settings to generate a wider set of prompts to test
a model. However, further research is required in
order to do this effectively.

Lastly, future work includes expanding our tool’s
accessibility by developing direct local model
integration capabilities. The current implemen-
tation requires setting up an API endpoint for
querying, but we envision simplifying this pro-
cess by enabling direct model instantiation (e.g.,

111

https://alan-turing-institute.github.io/prompto/docs/evaluation/
https://alan-turing-institute.github.io/prompto/docs/evaluation/
https://alan-turing-institute.github.io/prompto/docs/rephrasals/
https://alan-turing-institute.github.io/prompto/docs/rephrasals/
https://alan-turing-institute.github.io/prompto/docs/add_new_api/
https://alan-turing-institute.github.io/prompto/docs/add_new_api/


using transformers (Wolf et al., 2020)). While
toolkits for deploying and serving LLMs, such
as text-generation-inference or vLLM (Kwon
et al., 2023), already simplify setting up efficient
endpoints, this approach would reduce overhead
for researchers who wish to query local models and
utilise offline batched inference, allowing for more
streamlined experimentation and rapid prototyping.

Acknowledgments

We thank Yi-Ling Chung, Florence Enock, Kobi
Hackenburg for useful discussions on this library,
and also thank Marie Chappell for their support on
the project. This work was partially supported by
the Ecosystem Leadership Award under the EPSRC
Grant EPX03870X1, The AI Safety Institute & The
Alan Turing Institute.

References
Viraat Aryabumi, John Dang, Dwarak Talupuru,

Saurabh Dash, David Cairuz, Hangyu Lin, Bharat
Venkitesh, Madeline Smith, Kelly Marchisio, Sebas-
tian Ruder, et al. 2024. Aya 23: Open weight re-
leases to further multilingual progress. arXiv preprint
arXiv:2405.15032.

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika,
Leo Gao, Jonathan Tow, Baber Abbasi, Alham Fikri
Aji, Pawan Sasanka Ammanamanchi, Sidney Black,
Jordan Clive, et al. 2024. Lessons from the Trenches
on Reproducible Evaluation of Language Models.
arXiv preprint arXiv:2405.14782.

Marta R Costa-jussà, James Cross, Onur Çelebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
et al. 2022. No Language Left Behind: Scal-
ing Human-Centered Machine Translation. arXiv
preprint arXiv:2207.04672.

Debadutta Dash, Rahul Thapa, Juan M Banda, Akshay
Swaminathan, Morgan Cheatham, Mehr Kashyap,
Nikesh Kotecha, Jonathan H Chen, Saurabh Gombar,
Lance Downing, et al. 2023. Evaluation of GPT-
3.5 and GPT-4 for supporting real-world informa-
tion needs in healthcare delivery. arXiv preprint
arXiv:2304.13714.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186. Association for Computational Linguis-
tics.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Gemma Team. 2024. Gemma: Open Models Based on
Gemini Research and Technology. arXiv preprint
arXiv:2403.08295.

Hila Gonen, Srini Iyer, Terra Blevins, Noah Smith, and
Luke Zettlemoyer. 2023. Demystifying prompts in
language models via perplexity estimation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 10136–10148, Singapore.
Association for Computational Linguistics.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023. MiniLLM: Knowledge Distillation of Large
Language Models. arXiv preprint arXiv:2306.08543.

Laura Hanu and Unitary team. 2020. Detoxify. https:
//github.com/unitaryai/detoxify.

Chaoqun He, Renjie Luo, Shengding Hu, Ranchi Zhao,
Jie Zhou, Hanghao Wu, Jiajie Zhang, Xu Han,
Zhiyuan Liu, and Maosong Sun. 2024. UltraEval:
A lightweight platform for flexible and comprehen-
sive evaluation for LLMs. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), pages 247–257, Bangkok, Thailand. Associa-
tion for Computational Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring Massive Multitask Language Un-
derstanding. In International Conference on Learn-
ing Representations.

John Hughes, Sara Price, Aengus Lynch, Rylan Schaef-
fer, Fazl Barez, Sanmi Koyejo, Henry Sleight, Erik
Jones, Ethan Perez, and Mrinank Sharma. 2024. Best-
of-n jailbreaking. arXiv preprint arXiv:2412.03556.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi
Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine,
et al. 2023. Llama Guard: LLM-based Input-Output
Safeguard for Human-AI Conversations. arXiv
preprint arXiv:2312.06674.

Sayash Kapoor, Rishi Bommasani, Kevin Klyman,
Shayne Longpre, Ashwin Ramaswami, Peter Cihon,
Aspen Hopkins, Kevin Bankston, Stella Biderman,
Miranda Bogen, et al. 2024. On the Societal Im-
pact of Open Foundation Models. arXiv preprint
arXiv:2403.07918.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.

112

https://arxiv.org/pdf/2405.15032
https://arxiv.org/pdf/2405.15032
https://arxiv.org/pdf/2405.14782
https://arxiv.org/pdf/2405.14782
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2304.13714
https://arxiv.org/abs/2304.13714
https://arxiv.org/abs/2304.13714
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://arxiv.org/pdf/2403.08295
https://arxiv.org/pdf/2403.08295
https://doi.org/10.18653/v1/2023.findings-emnlp.679
https://doi.org/10.18653/v1/2023.findings-emnlp.679
https://arxiv.org/pdf/2306.08543
https://arxiv.org/pdf/2306.08543
https://github.com/unitaryai/detoxify
https://github.com/unitaryai/detoxify
https://doi.org/10.18653/v1/2024.acl-demos.23
https://doi.org/10.18653/v1/2024.acl-demos.23
https://doi.org/10.18653/v1/2024.acl-demos.23
https://openreview.net/pdf?id=d7KBjmI3GmQ
https://openreview.net/pdf?id=d7KBjmI3GmQ
https://arxiv.org/abs/2312.06674
https://arxiv.org/abs/2312.06674
https://arxiv.org/pdf/2403.07918
https://arxiv.org/pdf/2403.07918


Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Emanuele La Malfa, Aleksandar Petrov, Simon Frieder,
Christoph Weinhuber, Ryan Burnell, Raza Nazar,
Anthony G Cohn, Nigel Shadbolt, and Michael
Wooldridge. 2023. Language models as a service:
Overview of a new paradigm and its challenges.
arXiv preprint arXiv:2309.16573.

Llama Team. 2024. The Llama 3 Herd of Models. Meta
AI.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.

NLLB Team. 2024. Scaling neural machine translation
to 200 languages. Nature, 630(8018):841.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th annual meeting of the Association for
Computational Linguistics, pages 311–318.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction Tuning with
GPT-4. arXiv preprint arXiv:2304.03277.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Arya Rao, Michael Pang, John Kim, Meghana Kami-
neni, Winston Lie, Anoop K Prasad, Adam Landman,
Keith Dreyer, and Marc D Succi. 2023. Assessing
the utility of ChatGPT throughout the entire clinical
workflow: development and usability study. Journal
of Medical Internet Research, 25:e48659.

Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm,
Lora Aroyo, Michael Collins, Dipanjan Das, Slav
Petrov, Gaurav Singh Tomar, Iulia Turc, and David
Reitter. 2023. Measuring Attribution in Natural Lan-
guage Generation Models. Computational Linguis-
tics, 49(4):777–840.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022. Black-Box Tuning for
Language-Model-as-a-Service. In International Con-
ference on Machine Learning, pages 20841–20855.
PMLR.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford Alpaca:
An Instruction-following LLaMA model. https:
//github.com/tatsu-lab/stanford_alpaca.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. Advances in Neural Information Process-
ing Systems, 30.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2022. Self-Instruct: Aligning Language
Models with Self-Generated Instructions. arXiv
preprint arXiv:2212.10560.

Angus R Williams, Liam Burke-Moore, Ryan Sze-Yin
Chan, Florence E Enock, Federico Nanni, Tvesha
Sippy, Yi-Ling Chung, Evelina Gabasova, Kobi Hack-
enburg, and Jonathan Bright. 2024. Large language
models can consistently generate high-quality con-
tent for election disinformation operations. arXiv
preprint arXiv:2408.06731.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muham-
mad Abdul-Mageed, and Alham Fikri Aji. 2023.
LaMini-LM: A Diverse Herd of Distilled Mod-
els from Large-Scale Instructions. arXiv preprint
arXiv:2304.14402.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024a. WizardLM: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-
tian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. 2024b. Magpie: Alignment Data
Synthesis from Scratch by Prompting Aligned LLMs
with Nothing. arXiv preprint arXiv:2406.08464.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, et al. 2024.
Judging LLM-as-a-judge with MT-Bench and Chat-
bot Arena. arXiv preprint arXiv:2306.05685.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,
Shujian Huang, Lingpeng Kong, Jiajun Chen, and
Lei Li. 2024. Multilingual machine translation with

113

https://arxiv.org/abs/2309.16573
https://arxiv.org/abs/2309.16573
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://www.nature.com/articles/s41586-024-07335-x
https://www.nature.com/articles/s41586-024-07335-x
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/P02-1040.pdf
https://arxiv.org/pdf/2304.03277
https://arxiv.org/pdf/2304.03277
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://www.jmir.org/2023/1/e48659/
https://www.jmir.org/2023/1/e48659/
https://www.jmir.org/2023/1/e48659/
https://doi.org/10.1162/coli_a_00486
https://doi.org/10.1162/coli_a_00486
https://proceedings.mlr.press/v162/sun22e/sun22e.pdf
https://proceedings.mlr.press/v162/sun22e/sun22e.pdf
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/pdf/2212.10560
https://arxiv.org/pdf/2212.10560
https://arxiv.org/abs/2408.06731
https://arxiv.org/abs/2408.06731
https://arxiv.org/abs/2408.06731
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/pdf/2304.14402
https://arxiv.org/pdf/2304.14402
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://arxiv.org/pdf/2406.08464
https://arxiv.org/pdf/2406.08464
https://arxiv.org/pdf/2406.08464
https://arxiv.org/pdf/2306.05685
https://arxiv.org/pdf/2306.05685
https://doi.org/10.18653/v1/2024.findings-naacl.176


large language models: Empirical results and anal-
ysis. In Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pages 2765–2781,
Mexico City, Mexico. Association for Computational
Linguistics.

A Experiments

We provide some illustrative examples22 of using
our prompto library and compare against a tradi-
tional synchronous approach to querying LLM end-
points. We show that our our pipeline provides
significant speedups, especially when querying dif-
ferent models either on separate LLM endpoints
(Appendix A.2) or available on the same API ser-
vice (Appendix A.3).

In each of the following examples, we consider
the task of generating instruction-following data us-
ing the Self-Instruct approach of Wang et al. (2022)
and Taori et al. (2023). We take a sample of 100
prompts from the instruction-following data23 from
Taori et al. (2023) and apply the same prompt tem-
plate. We then use these as prompt inputs to dif-
ferent models using prompto. Full details of how
we obtained a sample of prompts along with note-
books to run each of the following experiments can
be found at https://alan-turing-institute.
github.io/prompto/examples/system-demo/.

Further examples including examples with
prompting multimodal models with images and
videos can be found on our GitHub repo and docu-
mentation8.

A.1 Querying LLM endpoints asynchronously
vs synchronously

We first compare prompto against a synchronous
approach for three different LLM endpoints: the
OpenAI API for gpt-3.5-turbo, Gemini API for
gemini-1.5-flash and Ollama API for Llama 3.
For using prompto for OpenAI and Gemini APIs,
we send requests at 500 queries per minute (QPM).
For Ollama, we send only at 50 QPM due to the
limitations of the machine which we are running
the Ollama server from22. We report run-times of
the two approaches for obtaining 100 responses to
sample prompts in Table 1.

For OpenAI and Gemini, even with a small sam-
ple of 100, we observe a significant speed up (of
around 9 times or 12 times, respectively). Addition-
ally, note that for OpenAI and Gemini APIs, there

22All experiments were ran on a 2021 MacBook Pro with
M1 Pro and 32 GB of memory.

23https://github.com/tatsu-lab/stanford_alpaca/blob/
main/alpaca_data.json

are tiers for which the query per minute rate limit is
much higher than 500 QPM so further gains could
be reached. For Ollama, we only observe a mod-
est improvement in run-time since the Ollama API
handles async requests by queuing the prompts for
computation, so requests still get completed one-at-
a-time. Therefore, in this setting prompto is simply
putting prompts in a queue for the Ollama server.
As noted in Section 4, batch inference strategies for
local models and using alternative toolkits for serv-
ing LLMs such as vLLM can improve efficiency for
querying local models and there is ongoing work
to bring these to prompto.

Table 1: Run-time in seconds to obtain responses from
100 prompts from each API using a synchronous ap-
proach and using prompto.

OpenAI Gemini Ollama
sync 126.31 163.49 271.45
prompto 13.92 14.09 268.59
speedup 9.07 11.60 1.01

A.2 Querying different LLM endpoints in
parallel vs synchronously

As mentioned in Section 3.3, prompto supports
sending requests to different APIs in parallel for
greater efficiency gains. Further, the user can easily
specify how many queries to send to each API or
model per minute. To illustrate, we consider the
same APIs and models as in Section A.1, but query
the models in parallel. We compare against the
baseline synchronous approach which we expect to
be close to the sum of the individual run-times of
the synchronous approaches in Table 1. We report
run-times of the two approaches to obtain a total of
300 prompts (100 to each model/API) in Table 2.

We observe a 2 times speedup when using
prompto with parallel processing. The prompto
run-time is close to how long it took to process the
Ollama requests in Section A.1 which is expected
since the run-time of querying different APIs or
models in parallel is simply dictated by the slowest
API or model to query.

Table 2: Run-time in seconds to obtain responses from
100 prompts from each API in one run using a syn-
chronous approach and enabling parallel processing of
APIs with prompto.

Overall
sync 558.74
prompto 269.06
speedup 2.08

114

https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://alan-turing-institute.github.io/prompto/examples/system-demo/
https://alan-turing-institute.github.io/prompto/examples/system-demo/
https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json
https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json


A.3 Querying different models from the same
endpoint in parallel vs synchronously

Lastly, we illustrate how a user can query from
different models available at the same endpoint us-
ing prompto. For this experiment, we consider the
OpenAI API to query from three different models:
gpt-3.5-turbo, gpt-4 and gpt-4o. As with the
previous two experiments, we will compare the
run-times of querying the models individually as
well as using prompto with parallel processing (i.e.
sending requests to each model in parallel). For
each model, we send requests at a rate of 500 QPM.
We report run-times of this experiment in Table 3.

For each model and with parallel processing
of the models, using prompto offers a signficant
speedup in obtaining responses. Focusing on the
synchronous run-times, we can see GPT-4o and
GPT-4 are slower to obtain responses for than GPT-
3.5-Turbo. Comparing using prompto with par-
allel processing against synchronously querying
each model, we obtain an approximately 35 times
speedup with prompto. As with the previous exper-
iment in Section A.2, the run-time of prompto with
parallel processing is roughly the time to query the
slowest model, GPT-4 in this case.

Table 3: Run-time in seconds to obtain responses from
100 prompts from different models from the OpenAI
API using a synchronous approach and using prompto
and enabling parallel processing of models.

GPT-3.5 GPT-4 GPT-4o Overall
sync 130.73 392.21 241.24 705.38
prompto 14.29 19.79 18.11 19.30
speedup 9.15 19.82 13.32 36.55

115


