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Abstract

This study investigates the internal represen-
tations of verb-particle combinations, called
multi-word verbs, within transformer-based
large language models (LLMs), specifically ex-
amining how these models capture lexical and
syntactic properties at different neural network
layers. Using the BERT architecture, we an-
alyze the representations of its layers for two
different verb-particle constructions: phrasal
verbs like give up and prepositional verbs like
look at. Our methodology includes training
probing classifiers on the model output to clas-
sify these categories at both word and sentence
levels. The results indicate that the model’s
middle layers achieve the highest classification
accuracies. To further analyze the nature of
these distinctions, we conduct a data separabil-
ity test using the Generalized Discrimination
Value (GDV). While GDV results show weak
linear separability between the two verb types,
probing classifiers still achieve high accuracy,
suggesting that representations of these linguis-
tic categories may be non-linearly separable.
This aligns with previous research indicating
that linguistic distinctions in neural networks
are not always encoded in a linearly separable
manner. These findings computationally sup-
port usage-based claims on the representation
of verb-particle constructions and highlight the
complex interaction between neural network
architectures and linguistic structures.

1 Introduction

1.1 The linguistic problem
Multi-word verbs or verb-particle combinations
are a linguistic category presented in the English
language in which the lexical verb is combined
with a particle to form an independent unit. It is
called a phrasal verb when the lexical verb is com-
bined with an adverbial particle like work out. It
is a prepositional verb when the verb is combined
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with a prepositional particle like rely on (Carter
and McCarthy, 2006). Usually, the prepositional
verbs are followed by a noun phrase. Rather than
the nature of the following particle, there are sev-
eral differences between phrasal verbs and prepo-
sitional verbs. One main difference between the
two categories is the particle placement in phrasal
verbs and the foxed order in prepositional verbs.
Where in phrasal verbs, the particle can sometimes
be separated from the verb and placed after the
object. In contrast, the only grammatical form in
prepositional verbs is the V+prepostion+object.

• Turn off the light. (phrasal)

• Turn the light off. (phrasal)

• Look at the painting. (prepositional)

• *Look the painting at.(prepositional)

Several studies explored the mental storage
of these verb-particle constructions, specifically
phrasal verbs, to see in which way they are stored
and processed in the brain. For instance Cappelle
et al. (2010) and further discussed by Pulvermüller
et al. (2013) that phrasal verbs are processed as sin-
gle lexical units, as evidenced by MEG. However,
prepositional verbs remain unexplored, which are
still treated similarly to phrasal verbs in terms of
both the verb and the particle form a single lexi-
cal unit called verb, for example the prepositional
verbs look at, and the phrasal verb turn off (Quirk
et al., 1985; Carter and McCarthy, 2006). From a
constructional point of view, Herbst and Schüller
(2008) proposed what is called the valency model
for the distinction between phrasal verbs and prepo-
sitional verbs, assuming that prepositions function
as integral parts of the complement rather than the
verb itself in prepositional verbs. This valency-
based approach emphasizes the syntactic relation-
ship between the verb and its complements, analyz-
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ing prepositional verbs like look at as the verb look
and the complement at.

1.2 probing-based methods for linguistic tasks
Probing methods analyze the linguistic properties
encoded in the representations of the NLP model.
Probes are supervised models trained to predict lin-
guistic properties or other categories, such as parts
of speech or word meanings, from model represen-
tations such as BERT embeddings (Immertreu et al.,
2024; Ramezani et al., 2024b). These probes have
achieved high accuracy on various linguistic tasks,
demonstrating their utility in understanding how
models encode features such as syntax and seman-
tics (Conneau et al., 2018). The search classifiers
are trained on the activations to identify predefined
concepts or linguistic properties, such as syntactic
tags or semantic meanings, from the model output
embeddings (Hupkes and Zuidema, 2018; Sajjad
et al., 2022). Furthermore, layer-wise analysis (Ten-
ney et al., 2019a; Ramezani et al., 2024b; Krauss
et al., 2024; Banerjee et al., 2025; Ramezani et al.,
2024a) investigates how linguistic knowledge is
distributed across the layers of transformer-based
models, providing insights into the hierarchical or-
ganization of encoded knowledge.

The internal representations of LLMs are fre-
quently analyzed using probing approaches. Ten-
ney et al. (2019a) employ probing tasks to investi-
gate the linguistic information that BERT gathers
and discover that various layers encode different
kinds of linguistic properties. A set of probes is
presented by Tenney et al. (2019b) to examine the
representations acquired by contextualized word
embeddings and to determine the distribution of
syntactic and semantic information among layers.

While prior studies (e.g., Cappelle et al. (2010);
Pulvermüller et al. (2013)) have suggested that
phrasal verbs function as single lexical units, and
Herbst and Schüller (2008) proposed a valency-
based linguistic distinction for prepositional verbs,
it remains unclear whether these distinctions are
reflected in the internal representations of neural
language models. This study aims to investigate
how neural language models encode and differ-
entiate between these two linguistically distinct
categories of multi-word verbs. Specifically, we ex-
amine whether internal representations capture key
syntactic, lexical, and compositional differences.
To achieve this, we apply probing classifiers to mea-
sure classification accuracy across layers and data
separability methods to assess how distinctly these

verb categories are organized within the represen-
tational space of a neural language model.

2 Methods

2.1 Data
The dataset consists of sentences containing phrasal
and prepositional verbs, extracted from the British
National Corpus (BNC, 2001). Sequences were
selected based on syntactic variability using part-
of-speech (PoS) tag patterns:

• Phrasal verbs were identified using the pattern
"V + ADV + Det + N", where the output is
like look up the word.

• Prepositional verbs followed the pattern "V +
PREP + Det + N", where the the output is like
look after the child.

The dataset was manually divided to ensure that
each verb appearing in the training set does not
appear in the test set. This was done to prevent
overlap in representation and ensure that the classi-
fiers generalize beyond memorization. The training
set includes 1920 examples of phrasal verbs and
2070 of prepositional verbs. The test set contains
522 phrasal verb examples and 623 prepositional
verb examples, with a total of 2442 for phrasal
verbs and 2693 for prepositional verbs, as shown
in Table 1. Since our study focuses on probing
analysis rather than optimizing a model, we did not
require hyperparameter tuning, which typically de-
mands a development set. Before using the dataset
as input for the model, we applied several cleaning
steps, which are detailed in Table 2.

2.2 Model (Embedding Extraction)
We use transformer-based model (Vaswani et al.,
2017) BERT (Devlin et al., 2019) as the feature
extraction model for generating contextual embed-
dings. Specifically, we use the bert-base-uncased
version, consisting of 12 layers, each producing
768-dimensional contextual embeddings for input
tokens. For each sample, we extract embeddings at
two levels:

Token-Level Embeddings For verb-specific
analysis, we extract the embedding corresponding
to the main token of the verb (e.g., give in give up).
These embeddings focus on the localized represen-
tation of the verb within the sentence.

Sentence-Level Embeddings To capture the en-
tire context of the sentence, we compute the aver-
age of all token embeddings in the sentence. This
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Phrasal # Prepositional #
Training

blow_up 52 break_into 147
break_down 134 call_on 138
close_down 54 come_across 168
fill_up 54 do_without 76
find_out 243 get_off 184
finish_off 46 care_for 150
give_away 35 cope_with 150
give_up 239 get_into 150
hand_in 229 get_on 150
hold_up 56 go_into 150
look_up 67 lead_to 148
put_off 57 listen_to 153
shut_down 57 look_at 154
throw_away 58 look_for 152
turn_down 75
wake_up 31
take_over 102
work_out 101
sort_out 230
Total 1920 Total 2070

Test
take_up 100 depend_on 150
carry_on 184 look_after 154
bring_up 115 deal_with 153
check_out 123 get_over 111

approve_of 55
Total 522 Total 623
Grand Total 2442 Grand Total 2693

Table 1: Distribution of phrasal and prepositional verbs
in training and test sets with their frequencies.

approach aggregates information across all tokens,
providing a representation of the sentence without
relying solely on the [CLS] token embedding.

Our study focuses on bert-base-uncased as a
widely used transformer model, but we acknowl-
edge that different LLM architectures may encode
linguistic categories differently. Future research
could extend this analysis to other models, such as
roberta-base or bert-large, to assess whether the
observed patterns generalize across architectures.

2.3 Classification Models

Logistic Regression (LR) is a linear model used
in modeling the probabilities of possible outcomes
given an input variable.

Support Vector Machines (SVM) perform well
on smaller datasets by optimizing data transfor-
mations based on predefined classes. They are
based on the principle of Structural Risk Minimiza-
tion from Statistical Learning Theory (Boser et al.,
1992). In their fundamental form, SVMs learn lin-
ear discrimination that separates positive examples
from negative ones with a maximum margin. This
margin, defined by the distance of the hyperplane
to the nearest positive and negative examples, has

proven to have good properties in terms of general-
ization bounds for the induced classifiers.

2.4 Generalized Discrimination Value (GDV)
We used the GDV to calculate cluster separability
as published and explained in detail in Schilling
et al. (2021). Briefly, we consider N points
xn=1..N = (xn,1, · · · , xn,D), distributed within D-
dimensional space. A label ln assigns each point
to one of L distinct classes Cl=1..L. In order to
become invariant against scaling and translation,
each dimension is separately z-scored and, for later
convenience, multiplied with 1

2 :

sn,d =
1

2
· xn,d − µd

σd
. (1)

Here, µd = 1
N

∑N
n=1 xn,d denotes the mean, and

σd =
√

1
N

∑N
n=1(xn,d − µd)2 the standard devia-

tion of dimension d. Based on the re-scaled data
points sn = (sn,1, · · · , sn,D), we calculate the
mean intra-class distances for each class Cl

d̄(Cl) =
2

Nl(Nl−1)

Nl−1∑

i=1

Nl∑

j=i+1

d(s(l)i , s(l)j ), (2)

and the mean inter-class distances for each pair of
classes Cl and Cm

d̄(Cl, Cm) =
1

NlNm

Nl∑

i=1

Nm∑

j=1

d(s(l)i , s(m)
j ). (3)

Here, Nk is the number of points in class k, and
s(k)i is the ith point of class k. The quantity d(a,b)
is the euclidean distance between a and b. Finally,
the Generalized Discrimination Value (GDV) is
calculated from the mean intra-class distances

⟨d̄(Cl)⟩ =
1

L

L∑

l=1

d̄(Cl) (4)

and the mean inter-class distances

⟨d̄(Cl, Cm)⟩ = 2

L(L−1)

L−1∑

l=1

L∑

m=l+1

d̄(Cl, Cm)

(5)

as follows:

GDV =
1√
D

[
⟨d̄(Cl)⟩ − ⟨d̄(Cl, Cm)⟩

]
(6)
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Character Pre-processing step
Punctuations
(!"#$%&’()*+,-./:;<=>?@[\]\^_
\`{}|\~)

Removed

Leading and trailing whitespaces Removed
Extra whitespaces Replaced with a single space
Uppercase characters Converted to lowercase

Table 2: Text pre-processing steps applied to the dataset.

whereas the factor 1√
D

is introduced for dimension-
ality invariance of the GDV with D as the number
of dimensions.

Note that the GDV is invariant with respect to a
global scaling or shifting of the data (due to the z-
scoring), and also invariant concerning a permuta-
tion of the components in the N -dimensional data
vectors (because the euclidean distance measure
has this symmetry). The GDV is zero for com-
pletely overlapping, non-separated clusters, and it
becomes more negative as the separation increases.
A GDV of -1 signifies already a very strong separa-
tion.

3 Results

Token-based classification
The results of the lexical verb token classifica-

tion task using logistic regression and linear SVM
have shown distinct trends across the 12 layers of
the BERT model Figure 1. For the Logistic Regres-
sion classifier, accuracy starts at 0.87 in the input
layer, remains stable around 0.84 - 0.80 through
layers 2 to 4, and then increases significantly, reach-
ing 0.99 in layer 6 before slightly decreasing in the
late layers of the model. Similarly, the linear SVM
classifier achieves an accuracy of 0.63 in the input
layer. Then 0.84, through layers 2 to 4. To start im-
proving from layer 5 onward, reaching its highest
accuracy of 0.99 at layer 8. Both classifiers show
the best accuracy in the middle layers (layers 6–9,
suggesting that these layers encode the most sig-
nificant linguistic features to distinguish between
phrasal verbs and prepositional verbs. Therefore,
the accuracies decrease slightly in the late layers,
which indicates a shift towards task-specific repre-
sentations less suited for this classification task.

Sentence-Based Classification
For the sentence-based classification task, both

Logistic Regression and Linear SVM show dis-
tinct trends across the 12 BERT layers Figure 1.
However, the accuracies in the token-based classi-

Figure 1: Classification accuracies

fication were higher than those based on sentence
embeddings. The Logistic Regression classifier be-
gins with an accuracy of 0.80 in the input layer and
improves to 0.85 in layers 6 and 7. Then, accuracy
decreases in the late layers, dropping to 0.69 in
layers 11 and 12. Similarly, the linear SVM classi-
fier starts with an accuracy of 0.77 and 0.76 in the
input and first layer respectively, to 0.84 in layer
6, then decreases to the lowest accuracy of 0.66 in
the final layer of the model. With these results, it
is suggested that the middle layers (layers 5–7) of
the model are the best to capture linguistic infor-
mation at sentence-level representations to distin-
guish phrasal verbs and prepositional verbs, while
the higher layers, likely focused on task-specific
semantics, encode features less suited to these prop-
erties predictions.

GDV Values for Data Separability
The GDV calculations for both token-based and

sentence-based embeddings has shown non-strong
separation between between the phrasal and prepo-
sitional verbs across BERT layers Figure 2. For
the token-based embeddings, GDV values start at
equivalent of 0.00 in the input layer which is re-
sponsible for converting tokens into dense vector
representations before they are processed by the
transformer layers. Then, the GDV has shown
an improvement (less negative) across the layers,
reaching their strongest separability at layers 3 and
4 with a value of -0.049 and -0.048 respectively.
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Figure 2: GDV values for data separability between the
two multi-word verbs classes across BERT layers

This improvement indicates that BERT’s middle
layers may encode more discriminative features for
distinguishing between the two verb types in word
embeddings.

After we ran a normality test on the classification
accuracies and GDV scores across BERT layers,
we found that the data was not normally distributed,
which justified the use of Spearman’s rank correla-
tion as a non-parametric test Figure 3. The analysis
showed no statistically significant correlation be-
tween the variables. For words, the correlation
between Logistic Regression and GDV was rs =
0.32, p = 0.285, and between Linear SVM and
GDV, rs = 0.26, p = 0.383. For sentences, the
correlation between Logistic Regression and GDV
was rs = -0.44, p = 0.128, while Linear SVM and
GDV showed a negative correlation of rs = -0.52,
p = 0.069, approaching significance. Overall, no
strong or significant associations were observed.

4 Discussion

Our findings indicate that while probing classifiers
and GDV provide some investigations into how
BERT encodes differences between linguistic cate-
gories, they may not fully capture the complexities
of linguistic representations. Particularly, when
distinguishing between phrasal and prepositional
verbs based on token-level embeddings. As pro-
posed by Goldberg (1995), lexico-semantic ele-
ments convey a portion of linguistic information,
but they do not embody all structural and func-
tional aspects present in a text. This limitation is
particularly relevant in the case of the investigated
cases in the study, where distinctions often emerge
from interactions between lexical, syntactic, and
semantic factors rather than being determined by
individual token representations.

Our study focuses on bert-base-uncased as a
widely used transformer model, but we acknowl-

edge that different LLM architectures may encode
linguistic categories differently. Future research
could extend this analysis to other models, such
as roberta-base or bert-large, to assess whether the
observed patterns generalize across architectures.

This perspective aligns with the constructionist
approach to language processing (Madabushi et al.,
2020), which challenges the traditional separation
of lexical and grammatical elements. Instead, it
proposes a continuum of constructions—where lin-
guistic representations arise from learned pairings
of form and meaning rather than being strictly lexi-
cal or grammatical only. From this point, phrasal
and prepositional verbs might be better understood
as integrated constructions, rather than purely lexi-
cal or syntactic units. Consequently, probing clas-
sifiers, which primarily capture lexical or semantic
properties in token-based classification tasks, may
fail to fully account for the grammatical and con-
textual information that shapes the representation
of these constructions. This is evident in the mis-
match between classification accuracies and GDV
values, suggesting that different methods may cap-
ture other dimensions of representation.

Several studies have discussed the limitations of
probing classifiers (Belinkov, 2022; Sajjad et al.,
2022). One major limitation is the disconnect be-
tween probing accuracy and the original model’s
internal processing. While probing classifiers can
detect correlations between model embeddings and
linguistic features, they do not necessarily indicate
whether the model actively uses these properties for
linguistic processing. This limitation is apparent
in our findings: while probing classifiers achieved
high accuracies, GDV analysis showed weak lin-
ear separability between phrasal and prepositional
verbs, as indicated by the lack of significant corre-
lation between classification accuracies and GDV
values.

This observed Disagreement between classifier
accuracies and GDV values aligns with previous
research suggesting that internal representations in
neural networks and large language models are not
necessarily linearly separable (Hewitt and Liang,
2019; Kissane et al., 2024; Zhang and Bowman,
2018; Banerjee et al., 2025; Hildebrandt et al.,
2025; Krauss et al., 2024; Ramezani et al., 2024b).
Since GDV measures linear separability, it does
not capture non-linearly structured representations.
In contrast, probing classifiers can still detect non-
linearly separable distinctions, allowing them to
identify linguistic categories that may be encoded
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Figure 3: The correlation between probing classifier accuracy and Generalized Discrimination Value (GDV) scores
across BERT layers. While probing classifiers achieve high accuracy in distinguishing phrasal and prepositional
verbs, GDV values remain close to zero, indicating that these categories are not linearly separable in BERT’s
representation space.

in high-dimensional space. Therefore, the low
GDV scores do not suggest that BERT fails to en-
code multi-word verb distinctions, but rather that
these representations may require non-linear trans-
formations to be fully distinguished. This Point
up the need for comprehensive analytical methods
when investigating how LLMs structure linguis-
tic knowledge and suggests that linear separability
should not be the only one criterion for assessing
learned representations.
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