
Proceedings of the Eighth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2025), pages 66–80
May 3, 2025 ©2025 Association for Computational Linguistics

Jamo-Level Subword Tokenization in
Low-Resource Korean Machine Translation

Junyoung Lee*,†

Nanyang Technological University
junyounglee.k@gmail.com

Marco Cognetta*

Institute of Science Tokyo
cognetta.marco@gmail.com

Sangwhan Moon
Institute of Science Tokyo
sangwhan@iki.fi

Naoaki Okazaki
Institute of Science Tokyo

okazaki@c.titech.ac.jp

Abstract

Subword tokenization, where text is repre-
sented in an intermediate form between full
words and characters, is ubiquitous in modern
NLP due to its ability to represent any input
sentence with a small vocabulary. However for
Korean, where there are 11,172 base characters
(syllables) in its alphabet, it is difficult to have
a vocabulary large enough to succinctly encode
text while fitting within parameter-budget con-
straints. This motivates us to explore an alterna-
tive representation for Korean which relies on
the decompositional nature of Korean syllables,
each of which can be uniquely decomposed
into a sequence of two or three subcharacters
(jamo), of which there are only 68.

Using jamo as the basis for subword tok-
enization (e.g., byte-pair encoding) leads to
shorter tokenized sequences with fewer vo-
cabulary parameters, exposes the model to
sub-syllable-level morphological information,
and increases the amount of augmentation
gained from subword regularization. We evalu-
ate jamo-level subword tokenization on several
Korean translation tasks and find that jamo-
level subword models consistently outperform
syllable- and byte-level models in low-resource
and restricted-vocabulary settings1.

1 Introduction

Modern language models struggle with languages
such as Chinese, Japanese, and Korean, where the
large base character sets (Hanzi, Kanji/Kana, and
Korean syllables, respectively) mean that a huge
vocabulary parameter count is required to represent
the base character set and the added subword to-
kens. However, unlike Hanzi and Kanji, the 11,172
modern Korean syllables have a compositional

1Our full experimental code can be found at https://
github.com/mcognetta/jamo-bpe-loresmt.

*Authors contributed equally.
†This work was done while the author was a visiting stu-

dent at Institute of Science Tokyo.

Example 1: Example tokenizations for "공부합니다" (to
study). From top to bottom: syllable-level, jamo-level,
and the jamo-level tokenization mapped back to the
syllable sequence. Note that the jamo-level tokenization
is able to cross syllable boundaries, while the syllable-
level tokenization cannot.

structure where each can be decomposed uniquely
into a sequence of subcharacters called jamo. Jamo
decompositions align to syllable-level sequences in
a way that byte-level encoding does not and offer a
linguistically-grounded, parameter-efficient mecha-
nism for encoding Korean text. Several works have
considered jamo-level subword tokenization, but
only on the encoding side (Kim et al., 2021; Park
et al., 2020a). To the best of our knowledge, this
is the first study on the generation of Korean with
jamo-level subword tokenization.

We hypothesize that jamo-level subword tok-
enization should improve over syllable-level sub-
word tokenization for three reasons. Compared
to syllable-level subword tokenization, jamo-level
subword tokenization:

1. produces shorter tokenized sequences at a given
vocabulary size

2. exposes sub-syllable morphological information

3. unlocks a larger space of tokenizations for sub-
word regularization

In English↔Korean and Korean↔Jeju-eo (a
very-low-resource Koreanic language spoken on
Korea’s Jeju Island) translation tasks, we find that
jamo-level models do not improve upon syllable-
level models in high resource settings. However, in
low-resource and low-parameter settings (specifi-
cally, extremely small vocabulary budgets), jamo-

66

https://github.com/mcognetta/jamo-bpe-loresmt
https://github.com/mcognetta/jamo-bpe-loresmt

level subword models greatly improve over both
syllable- and byte-level subword models, especially
when dropout is used. This supports our hypothesis
about the benefits of jamo-level subword models.

2 Byte-Pair Encoding and Subword
Regularization

Subword tokenization transforms free-form text
into a sequence of tokens drawn from a finite vo-
cabulary. The tokens occupy an intermediate gran-
ularity between full words (e.g., democratic
or 대한민국) and character sequences (e.g.,
d e m o c r a t i c or 대 한 민 국),
known as subwords (e.g., demo cratic or 대
한 민국). A key feature is that subword tokenizers
are open vocabulary—any possible input text can
be represented by them (i.e., they never produce
out-of-vocabulary (OOV) tokens). This is realized
by including a comprehensive atomic vocabulary in
the final subword vocabulary (e.g., the full alphabet
for English or the set of all Korean syllables).

Byte-pair Encoding (BPE) is a simple and popu-
lar subword tokenization technique first introduced
by Gage (1994) and reintroduced by Sennrich
et al. (2016) for neural machine translation. To
construct the vocabulary, starting from the atomic-
character-level representation of the training cor-
pus, the model iteratively finds the most frequent
co-occurring pair of tokens, merges them, and adds
the merge to the subword vocabulary. This process
repeats until the vocabulary reaches the desired size.
For inference, starting from the character-level in-
put, among all possible merges, the highest priority
merge (the one that was added earliest to the merge
vocabulary during training) is executed. This re-
peats until no possible merges remain.

Subword regularization, where tokenizations are
sampled from a probability distribution, is often
used during training to augment the dataset and
improve model robustness, and has been shown
to improve model quality across a wide variety of
tasks, especially in low-resource machine transla-
tion (Kudo, 2018; Provilkov et al., 2020).

BPE-Dropout (Provilkov et al., 2020) is a vari-
ant of BPE’s inference algorithm that injects ran-
domness into the tokenization process as a form of
subword regularization.

3 Hangul and Jamo Decomposition

Hangul, the modern Korean writing system, is rep-
resented in Unicode as a list of 11,172 unique syl-

Initial consonant, I ㄱㄲㄴㄷㄸㄹㅁㅂㅃㅅㅆㅇㅈㅉㅊㅋㅌㅍㅎ

Vowel, V ㅏㅐㅑㅒㅓㅔㅕㅖㅗㅘㅙㅚㅛㅜㅝㅞㅟㅠㅡㅢㅣ

Final consonant, F ∅(nil)ㄱㄲㄳㄴㄵㄶㄷㄹㄺㄻㄼㄽㄾㄿㅀ
ㅁㅂㅄㅅㅆㅇㅈㅊㅋㅌㅍㅎ

Compatibility jamo
∅(nil)ㄱㄲㄳㄴㄵㄶㄷㄸㄹㄺㄻㄼㄽㄾㄿㅀ
ㅁㅂㅃㅄㅅㅆㅇㅈㅉㅊㅋㅌㅍㅎㅏㅐㅑㅒㅓㅔㅕ

ㅖㅗㅘㅙㅚㅛㅜㅝㅞㅟㅠㅡㅢㅣ

Table 1: All positional jamo, separated into their three
distinct classes, and the the set of compatibility jamo.
Note that there are visual overlaps between some initial
and final consonants (e.g., ㄱ), and that compatibility
jamo is the minimal set of visually distinct jamo.

lables. Each syllable can be uniquely and deter-
ministically decomposed into two or three jamo:
an initial consonant, a vowel, and an (optional) fi-
nal consonant, of which there are 19, 21, and 28,
respectively (Table 1). Likewise, any initial conso-
nant, vowel, final consonant triplet can be mapped
directly to a unique syllable. For example, 신 =
(ㅅ, ㅣ, ㄴ), whereㅅ is the initial consonant,
ㅣ is the vowel, andㄴ is the final consonant.

To produce a decomposed jamo sequence from
a syllable sequence, we concatenate the jamo from
each triplet corresponding to the syllables. For a
syllable without a final consonant, like구 = (ㄱ,
ㅜ, ∅), we omit the ∅ when writing out the jamo
sequence2 (i.e., 가→ (ㄱ, ㅏ, ∅) → ㄱㅏ). Thus,
every syllable maps to a length of two or three jamo
sequence. Example 1 demonstrates a syllable-level
and jamo-level subword tokenization.

Hangul is represented in three different ways
in Unicode: precomposed syllables3, positional
jamo4, and compatibility jamo5. All jamo (includ-
ing ∅, which denotes the absence of a final con-
sonant), organized by class, are shown in Table 1,
separated into positional jamo (partitioned into ini-
tial consonants, vowels, and final consonants) and
compatibility jamo.

The syllable block (U+AC00-U+D7AF) con-
tains all 11,172 modern syllables, each represented
by a single codepoint. A syllable can be decom-
posed into either of the jamo representations, out-
lined here and discussed in detail in Appendix B.

2This is a design choice. Including the ∅ symbol in the
decomposed jamo sequence is also possible and results in
equivalent but slightly longer sequences.

3Wikipedia: Hangul Syllables
4Wikipedia: Hangul Jamo (Unicode Block)
5Wikipedia: Hangul (Compatibility Jamo)

67

https://en.wikipedia.org/wiki/Hangul_Syllables
https://en.wikipedia.org/wiki/Hangul_Jamo_(Unicode_block)
https://en.wikipedia.org/wiki/Hangul_Compatibility_Jamo

3.1 Positional Jamo (U+1100-U+11FF)
Positional jamo are designed to perfectly match the
compositional structure of jamo. The initial con-
sonants, vowels, and final consonants are disjoint
Unicode character sets, and a simple procedure
based on modular arithmetic is sufficient to convert
a single syllable codepoint to an initial consonant,
vowel, and final consonant triplet, and vice-versa.

3.2 Compatibility Jamo (U+3130-U+318F)
Unlike positional jamo, compatibility jamo does
not provide distinct codepoints for initial conso-
nants and final consonants. Instead, visually am-
biguous jamo are merged into one token, so that
the final set of compatibility jamo is the set of
all visually distinct jamo. Thus, there is a surjec-
tive mapping from positional jamo to compatibility
jamo, but there are compatibility jamo which can-
not be unambiguously mapped back to positional
jamo (e.g.,ㄱ, which could map to either the initial
consonantㄱ or final consonantㄱ, depending on
the surrounding context). A finite state machine
is sufficient to recover the syllable sequence from
valid compatibility jamo sequences.

3.3 Jeju-eo Orthography
Jeju-eo (제주어) is a Koreanic language that also
uses Hangul as the modern writing system, but
with the inclusion of two archaic vowels, 「ㆍ」

(araea, 아래아, U+318D), and its doubled form
「:」 (ssang-araea,쌍아래아, U+11A2). Syllables
in the Hangul Precomposed Syllable range do not
contain this vowel, so we use a custom encoding
described in Appendix B.3. Compatibility and po-
sitional jamo representations work like modern Ko-
rean by treating 「ㆍ」 and 「:」 as regular vowels.

4 Benefits of Jamo-level Tokenization

One may ask, why even consider jamo-level to-
kenization, as syllable-level tokenization is the
canonical unit of text? Furthermore, byte-level BPE
can be used to alleviate any space issues, and per-
haps, as the vocabulary size grows, jamo-level to-
kens will just converge to syllable boundaries.

Tokenization Length and Small Vocabularies
Especially at smaller vocabulary sizes, jamo-level
BPE produces substantially shorter tokenized se-
quences compared to syllable level models, which
is crucial to developing models that fit within some
parameter or inference budget. As seen in Figure 1,
compatibility and positional jamo produce shorter

sequences than syllable-level subword tokenizers
across all vocabulary sizes, until they eventually
converge. When the vocabulary size is small, jamo-
level models far outperform syllable-level models
in compression ratio. This is especially true at the
lowest end of the scale, where syllable-level models
operate at essentially the character level (i.e., the
entire vocabulary budget is taken up by the base syl-
lable vocabulary, so no merges can be added). Even
with a vocabulary budget of just 500, jamo-level
subword models produce 5% shorter sequences
than syllable-level models with |V | = 2100, the
smallest possible in our corpus. At |V | = 1000 and
1500, jamo-level models produce nearly 25% and
40% shorter sequences than a |V | = 2000 syllable
model, respectively.

Having shorter sequence lengths is a common
metric for tokenizer performance and is also an
important consideration with attention-based lan-
guage models that scale quadratically with se-
quence length.

Sub-syllable Morphology Morphemes in Ko-
rean are not necessarily constrained to syllable
boundaries. For example, the word 하기 (ha-
gi/doing/gerund form) can be morphologically
segmented into 하 (ha/to do/root) and 기 (gi/-
ing/nominalization). On the other hand, 합니다
(hab-ni-da/to do/honorific form) is morphologi-
cally segmented into하 (ha/to do/root) and -ㅂ니
다 (b-nida/present tense honorific/ending). Notice
that the second morpheme contains an incomplete
syllable (the final consonantㅂ) which is part of
the first syllable in합니다 (similar to Example 1).

When modeling at the syllable level, this and
similar jamo-level morphology is impossible to
capture, as the tokenization is constrained to sylla-
ble boundaries, so either theㅂ jamo information
is lost due to being split off from -니다 or the entire
sequence합니다 is represented as a single subword
token, and the underlying morphological informa-
tion is not able to be shared with other sequences
that also include the -ㅂ니다 morpheme. However,
with jamo-level BPE, which is not constrained to
syllable boundaries, it is possible to capture such
morphological patterns.

Increased Subword Regularization Subword
regularization improves model robustness by sam-
pling tokenizations during training, which aug-
ments the training set and breaks the model’s con-
ditioning on an exact, canonical tokenization. A

68

Vocabulary Size

C
om

pr
es

si
on

 R
at

io

0.4

0.6

0.8

1.0

1000
2000

3000
4000

5000
6000

7000
8000

9000
1000

1100
1200

syllable byte positional compatibility

Figure 1: A comparison of the tokenization compression ratio of each of the jamo representations at different
vocabulary sizes. The number of tokens in the tokenized corpus is compared to the total number of syllables in the
corpus. The syllable subword tokenizer falls back to a character-level tokenizer at |V | ≈ 2000. However, the jamo
and byte subword tokenizers can have much smaller vocabularies and better compression ratios.

key factor is the amount of augmentation (that is,
the number of unique tokenized sequences) that
are produced during stochastic tokenization, with
the implication that a larger number of tokeniza-
tions should lead to a larger improvement in model
quality and robustness (Cognetta et al., 2024).

Let ws be a sequence of Korean syllables and
wj the same sequence decomposed into jamo form
(the argument works identically for positional and
compatibility jamo). For simplicity, assume every
subsequence of ws and wj is a token in the re-
spective subword vocabularies. Then, the stars and
bars theorem says that tokenizing a sequence of
length n into k tokens can be done in

(
n−1
k−1

)
ways

(Wikipedia contributors, 2024) and the total num-
ber of ways to tokenize a sequence w is

|w|∑

k=1

(|w| − 1

k − 1

)
= 2|w|−1.

The maximum tokenized sequence lengths for a
syllable and jamo sequence are |ws| and |wj |, re-
spectively, corresponding to just their character-
level sequences, which must be a valid tokeniza-
tion. As 2|ws|−1 ≤ 22|ws|−1 ≤ 2|wj |−1 ≤ 23|ws|−1,
there are at least

22|ws|−1

2|ws|−1
= 2|ws|

times more ways to tokenize a jamo-level sequence

than a syllable-level sequence, meaning there is
exponentially larger space of tokenizations avail-
able for subword regularization when representing
Korean text at the jamo level.

4.1 Arguments Against Jamo Tokenization

Here, we consider some arguments against jamo-
level tokenization, but argue that they are not fatal.

Why Not Byte-Level BPE? An obvious ques-
tion is "why not just use byte-level BPE, which
should do the same thing?" The primary rea-
son is that there is no clear alignment between
bytes, jamo, and syllables in Unicode. For ex-
ample, a byte-level representation for the to-
ken긱 = (ㄱ,ㅣ,ㄱ) is <0xEA><0xB8><0xB1>
while the representation for 깋 = (ㄱ,ㅣ,ㅎ) is
<0xEA><0xB9><0x8B>, which differ in the sec-
ond and third bytes despite the two having the same
initial consonant and vowel. Thus, byte-level rep-
resentations cannot losslessly capture jamo-level
morphologies. Explicitly modeling with jamo pro-
vides a linguistically motivated way to represent
Korean text which can be combined with a byte-
level fallback in the presence of other languages.

Invalid Sequence Generation When operating
at the jamo level, the jamo sequences produced
by concatenating jamo-level BPE tokens may not
follow the canonical IVF order. In this case, they

69

cannot be recomposed back into syllable sequences,
and the overall sequence becomes invalid (Moon
and Okazaki, 2020). For example, if the model
produced the token sequence [ㄱㅏ][ㅓㅎ], one
cannot recompose it to a syllable sequence, since
there are two vowels in a row.

In our experiments (Section 5), we observed
no instances of invalid sequence generation once
the models had gone through a small number of
training epochs (and far before they fully con-
verged). Some probability mass is still allocated
to invalid sequences, but it can be eliminated by
masking out the logits corresponding to invalid to-
kens (i.e., tokens which would cause an invalid
sequence when appended to the current text).

This is not a problem with syllable-level BPE, as
it operates only on valid syllables so any sequence
of syllables is, at least syntactically, valid, but does
affect byte-level tokenization, as a sequence of
bytes does not necessarily correspond to a valid
Unicode sequence.

Convergence to Syllable-Level Tokens As the
vocabulary size grows, it is possible that jamo-level
tokenizations eventually converge to just syllable-
level tokens — i.e., after a certain point, the vast
majority of new merges form unambiguous, full-
syllable sequences. Then, if we have to form in-
termediate syllable-level tokens anyway, it may be
better just to start with a syllable base vocabulary.

However, as shown in Figure 1, starting at the syl-
lable level is less space efficient (from a parameter
count and tokenized-sequence-length perspective)
than jamo-level encoding, and results in less avail-
able augmentation from subword regularization.
Further, even if they both converge to syllable-level
tokens, they likely will not converge to the same
set of tokens, and the jamo-level tokenizers will
still have a larger number of merged tokens (com-
pared to atomic characters) in the vocabulary than
a syllable-level subword tokenizer.

Ambiguity Between Decomposed Syllables and
Jamo Literals It is possible that the input or out-
put of a model should be literal jamo, which is diffi-
cult to disambiguate from jamo tokens that are pro-
duced from decomposition. This is especially true
for compatibility jamo representations, as isolated
compatibility jamo are often used in colloquial Ko-
rean (e.g.,ㅋㅋㅋ/"kekeke" for "laughing").

The ambiguity is lessened for positional jamo, as
it is not possible to directly input positional jamo

on most modern IMEs. Additionally, since compat-
ibility jamo is a distinct set from positional jamo,
the set of compatibility jamo can be included in
a positional jamo tokenizer’s base vocabulary to
allow such colloquialisms to be processed directly.

5 Experiments

We compare syllable-level, byte-level, and jamo-
level BPE tokenization on two translation tasks:
English↔Korean using the AI-Hub News Trans-
lation corpus6 and Korean↔Jeju-eo (Park et al.,
2020a) (Section 6.3). The full English↔Korean
dataset contains 800k sentence pairs, but we use a
200k sentence-pair subset given our focus on lower-
resource settings (Section 6.1). However, experi-
mental results for the full corpus are given in Ap-
pendix C and an analysis of a restricted-vocabulary
experimental setting on the larger corpus is given
in Section 6.2.1. The Korean↔Jeju-eo corpus con-
tains 180k sentence pairs.

We use SentencePiece (Kudo and Richard-
son, 2018) as the BPE tokenizer implementation
and fairseq (Ott et al., 2019) for training our lan-
guage models. For each experiment, we fix an un-
derlying Transformer architecture and only vary the
tokenizer according to the Korean representation
and vocabulary sizes. The source and target side to-
kenizers are trained separately and their parameters
are not shared. All other training configurations are
held equal in all experiments. The complete model
and training information is given in Appendix A.
For each task, we compare the BLEU, CHRF (both
via SACREBLEU (Post, 2018)), and COMET (Rei
et al., 2020) scores of each model (using an average
of 3 runs). All metrics are computed at the sylla-
ble level (after the jamo-level model outputs are
recomposed to syllables).

In the English↔Korean corpus, there are ∼4600
unique characters. However, about ∼2500 of
these are Chinese, Japanese, and Korean (CJK)
ideographs (Hanzi/Kanji/Hanja), which appear in
only a small fraction of sentences and with median
frequency 1, but take up an outsized amount of the
vocabulary if we include all observed symbols to
avoid OOV. To isolate our main focus (the repre-
sentation of Korean text), we remove all sentences
with these ideographs.

We analyze three axes: 1) input representation,
2) subword regularization, and 3) vocabulary size,
and corpus size via the following experiments:

6https://www.aihub.or.kr/

70

https://www.aihub.or.kr/

• English↔Korean

1) Syllable, Positional, Compatibility7, Byte
2) No dropout, English-only dropout, Korean-

only dropout, Both dropout
3) Full 8k (En)/8k (Kr) vocabulary, Restricted

8k (En)/2.1k (Kr) vocabulary

• Korean↔Jeju-eo

1) Syllable, Positional, Compatibility7, Byte
2) No dropout, Korean-only dropout, Jeju-eo-

only dropout, Both dropout
3) Full 4k (Kr)/4k (Je) vocabulary, Restricted

2k (Kr)/2k Je vocabulary

For vocabulary size, the "full" vocabulary size
was chosen arbitrarily without a hyperparameter
sweep for a fair comparison. However, the "re-
stricted" vocabulary size was chosen as the num-
ber of unique characters in the syllable-level cor-
pus. In this setting, the syllable-level models act as
character-level models (since there is no room in
the vocabulary for merged tokens), while the other
representations can still form additional subwords.

6 Results

6.1 English↔Korean

On the left of Table 2 are the English→Korean
results. We are particularly interested in this direc-
tion as it requires outputting Korean, which, as de-
scribed in Section 4.1, could be difficult when using
jamo-level BPE. However, we see that positional
jamo-level model performs the best in all three met-
rics. In the double-dropout case, positional jamo
outperforms the best syllable-level model by 0.3
BLEU. Conversely, byte-level BPE performs the
worst across the board, indicating that generating
Korean with byte-level subwords is difficult.

In the restricted vocabulary setting, positional
jamo again performs the best (this time when
dropout is applied to the English side only). In
the same setting, byte-level BPE comes close, but
otherwise generally underperforms, similar to the
full vocabulary setting. Syllable-level models also
perform much worse than positional jamo-level
models (-0.45 change in COMET), which is likely
because they are character-level models and the
output sequence length becomes too long.

7Compatibility jamo performed similarly to positional
jamo, so we only report it in Appendix C for space reasons.

On the right side are the Korean→English re-
sults. In both the non-restricted and restricted vo-
cabulary settings, dropout does not consistently
improve the model. Particularly, in the full vocabu-
lary setting, applying dropout to the English side
actually degrades the model performance across
all representation types. Syllable-level models also
perform the best across the board, and we attribute
this to it being easier to encode than to decode at
the character level. Since the models are outputting
English and use an 8k English vocabulary, they are
able generate coherent text even when the source
side uses character-level Korean representations.

6.2 Aside: Full English↔Korean Corpus

Most of the full English↔Korean corpus experi-
ments had uninteresting results, so they are moved
to Appendix C, but we cover one interesting exper-
imental result in Section 6.2.1.

In general, in the full corpus setting, we observed
no advantage to using jamo- or byte-level modeling
over syllable-level BPE. In both directions, the dif-
ference in performance of the best positional jamo-
level model and the best syllable-level model was
within 0.3 BLEU, with the best byte-level models
being only slightly worse. Adding dropout to any of
the models did not noticeably improve model per-
formance, and sometimes degraded quality, in line
with past research about subword regularization in
high-resource settings (Provilkov et al., 2020).

6.2.1 English→Korean Full Corpus,
Restricted Vocabulary

We now turn to an interesting experimental result
from the full English↔Korean corpus: the En→Kr
restricted-vocabulary setting (Table 3).

Given that syllable-level models are acting essen-
tially as character-level models at this setting, we
expect the byte- and positional jamo-level models
to perform better than them. We see this to be true
as the syllable-level models lose nearly 4 BLEU,
showing how difficult it is for the model to learn
robust embeddings for such a small vocabulary as
the syllables appear in such diverse contexts. Since
this is a large corpus, we also expect dropout to
have little effect on performance of byte- and posi-
tional jamo-level models, and we see that they have
similar BLEU, CHRF, and COMET scores.

6.3 Korean↔Jeju-eo

This experiment, shown in Table 4, is a low-
resource translation task between two highly re-

71

Representation Dropout (p = 0.1) BLEU CHRF COMET

Syllable

None 15.50 38.43 87.47
English 15.99 38.87 87.86
Korean 16.42 39.63 88.14
Both 16.31 39.53 88.18

Byte

None 15.19 38.23 87.32
English 15.77 38.87 87.89
Korean 15.50 38.60 87.33
Both 15.24 38.20 87.07

Positional

None 15.53 38.33 87.36
English 15.74 38.60 87.63
Korean 16.10 39.23 87.91
Both 16.63 39.77 88.28

Syllable (restricted)
None 15.78 38.80 87.37

English 16.05 38.20 87.68

Byte (restricted)

None 15.82 38.80 87.50
English 16.47 39.67 88.07
Korean 15.44 38.30 87.05
Both 15.59 38.47 87.12

Positional (restricted)

None 15.91 39.00 87.54
English 16.52 39.77 88.13
Korean 16.20 39.37 87.84
Both 16.43 39.57 88.13

(a) English→Korean

Representation Dropout (p = 0.1) BLEU CHRF COMET

Syllable

None 32.30 59.83 80.49
Korean 33.36 60.73 81.02
English 32.13 59.27 80.23

Both 32.74 59.73 80.67

Byte

None 32.21 59.80 80.37
English 32.31 59.83 80.46
Korean 31.56 58.73 79.83
Both 31.31 58.23 79.53

Positional

None 32.25 59.87 80.34
Korean 33.01 60.40 81.01
English 31.67 58.73 79.87

Both 32.74 59.70 80.70

Syllable (restricted)
None 32.93 60.40 80.78

English 33.31 60.60 80.97

Byte (restricted)

None 32.81 60.17 80.63
Korean 32.32 59.93 80.43
English 32.99 60.27 80.72

Both 32.58 60.00 80.53

Positional (restricted)

None 32.84 60.37 80.71
Korean 32.84 60.23 80.81
English 33.08 60.30 80.74

Both 32.71 59.93 80.49
(b) Korean→English

Table 2: Experimental results7 for the truncated English↔Korean corpus (Section 6.1). Models marked "(restricted)"
are for the restricted Korean vocabulary setting.

Representation Dropout (p = 0.1) BLEU CHRF COMET

Syllable (restricted)
None 16.75 40.17 86.63

English 16.78 40.27 86.63

Byte (restricted)

None 20.61 44.65 90.36
English 20.59 44.50 90.31
Korean 20.16 44.15 90.03
Both 19.46 43.13 89.65

Positional (restricted)

None 20.65 44.63 90.33
English 20.77 44.67 90.37
Korean 20.50 44.43 90.28
Both 20.14 44.23 90.19

English→Korean

Table 3: Experimental results7 for the restricted vocabu-
lary full English→Korean corpus (Section 6.2.1).

lated languages. In both language directions, posi-
tional jamo-level BPE far outperforms syllable- and
byte-level BPE in both BLEU and CHRF. In the
most extreme case, for Korean→Jeju-eo, the posi-
tional jamo-level model with dropout on both sides
outperforms the best syllable-level and byte-level
models by roughly 0.6 and 1.0 BLEU, respectively.

The same is seen in the restricted vocabulary
setting, where again positional jamo-level model
with dropout on both sides is the best perform-
ing model. In Jeju-eo→Korean, the syllable-level
model slightly outperforms the positional jamo-
level model without dropout. However, the syllable-
level model is not able to utilize dropout (since
it uses character-level vocabulary), while apply-
ing dropout on both sides on the positional jamo-
level model improves the model by more than 2.3

BLEU. The Korean→Jeju-eo restricted vocabulary
setting is similar. However, here, the no-dropout
syllable-level model performs worse than both the
byte- and positional jamo-level base models with-
out dropout. When dropout is applied, positional
jamo-level model outperforms the best byte-level
model by 0.4 BLEU and the syllable-level model
by nearly 3 BLEU. We observe similar results for
CHRF, where positional jamo outperforms syllable-
and byte-level models.

7 Analysis

Overall, we observe that using jamo-level subword
tokenization performed on-par with or better than
syllable-level tokenization in non-dropout settings
and with large vocabularies. This is to be expected,
especially at large vocabulary sizes where the jamo-
level tokenizers converge to syllable-level tokens.

One hypothesized benefit of using jamo-level
subwords is that the increased amount of subword
regularization would lead to better modeling. This
was most clearly observed in the lowest-resource
setting (Korean↔Jeju-eo), but we also observed
it in the English→Korean tasks. In the highest re-
source setting, dropout did not improve modeling
quality at all, but this is in line with other research
(Provilkov et al., 2020). For Korean↔Jeju-eo, not
only did positional jamo-level models with dropout
score better than all other models (with or without

72

Representation Dropout (p = 0.1) BLEU CHRF

Syllable

None 69.52 79.67
Jeju-eo 70.76 80.60
Korean 70.40 80.37
Both 71.58 81.30

Byte

None 68.02 78.30
Jeju-eo 70.21 80.10
Korean 69.69 79.65
Both 71.62 81.30

Positional

None 68.97 79.03
Jeju-eo 71.17 80.87
Korean 70.27 80.13
Both 72.06 81.67

Syllable (restricted) None 69.67 79.86

Byte (restricted)

None 68.81 78.93
Jeju-eo 70.51 80.33
Korean 69.74 79.67
Both 71.44 81.10

Positional (restricted)

None 69.50 79.60
Jeju-eo 70.85 80.70
Korean 70.31 80.23
Both 71.82 81.56

(a) Jeju-eo→Korean

Representation Dropout (p = 0.1) BLEU CHRF

Syllable

None 43.27 56.37
Korean 44.54 57.40
Jeju-eo 44.06 56.97
Both 45.33 58.13

Byte

None 42.70 55.57
Jeju-eo 44.17 57.13
Korean 43.81 56.53
Both 44.95 57.73

Positional

None 43.49 56.47
Korean 44.36 57.10
Jeju-eo 44.27 57.07
Both 45.96 58.50

Syllable (restricted) None 42.83 56.03

Byte (restricted)

None 43.70 56.50
Jeju-eo 44.46 57.20
Korean 43.77 56.57
Both 45.32 58.00

Positional (restricted)

None 43.91 56.60
Jeju-eo 44.88 57.63
Korean 44.70 57.30
Both 45.72 58.33

(b) Korean→Jeju-eo

Table 4: Experimental results7 for the Korean↔Jeju-eo corpus (Section 6.3). Models marked "(restricted)" are for
the restricted vocabulary setting. Jeju-eo is not supported by COMET, so that metric is omitted.

dropout), but also the gain in performance over the
non-dropout baseline was larger, suggesting that
the additional tokenizations available for subword
regularization is truly beneficial.

A qualitative analysis found that most tokens
in the jamo-level vocabularies essentially syllable-
level tokens and that these tokens made up the vast
majority of actually-observed tokens in the tok-
enized corpora. This suggests that the additional
morphological information available in jamo-level
subwords may not be very useful, or it may also
just be an artifact of the BPE tokenization algo-
rithm, which merges tokens greedily, and another
tokenization algorithm like UnigramLM (Kudo and
Richardson, 2018) might make better use of tokens
that do not fit in syllable boundaries. Further, in all
of the small vocabulary settings with Korean as the
output, positional jamo-level models performed the
best. This demonstrates that positional jamo repre-
sentations form more useful tokens than byte-level
models and that the ability to form subword tokens
in a way that syllable models cannot is beneficial.

Across the board, byte-level models underper-
formed compared to jamo-level models, despite
having similar advantages over syllable-level mod-
els. Indeed, in every experimental setting, the jamo-
level model outperformed the equivalent byte-level
model (irrespective of corpus, vocabulary size,

or dropout). This suggests that the salient differ-
ence is that byte-level models fail to preserve sub-
syllable morphological information that is captured
by jamo-level models and leads to better modeling.

8 Related Work

Park et al. (2020b) investigate Korean tokenization
in various natural language understanding tasks.
The strategies compared include jamo and sylla-
ble character-level modeling, morphological seg-
mentation provided by MeCab-ko (Kudo, 2006),
syllable-level BPE, and word-level segmentation.

In another work, Park et al. (2020a) consider
jamo-level byte-pair encoding for Jeju-eo in a sim-
ilar way to what we explore here. However, this
is in the context of text-to-speech, and the jamo-
level subword encoding is only applied to the input
side but not to generation. For a translation task,
Park and Zhao (2020) used hierarchical syllable
and jamo-level features, but also only for encod-
ing. Jamo-level modeling has been applied to many
encoder-only tasks such as named entity recogni-
tion (Stratos, 2017; Kim et al., 2021) and sentence
classification (Cho et al., 2019). For decoding, both
Song et al. (2018) and Cognetta et al. (2023) used
jamo-level representations in character-level Ko-
rean language-modeling tasks. However, their ap-
proaches do not apply to subword-level modeling.

73

For Chinese and Japanese, which have large base
vocabularies due to their use of ideographs, radical-
based decomposition has been explored as a possi-
ble sub-character method to reduce the required vo-
cabulary budget and improve modeling (Shi et al.,
2015; Nguyen et al., 2017; Saunders et al., 2020;
Si et al., 2023). However, unlike Korean, radical-
based decomposition is not lossless.

9 Conclusion

We investigate jamo-level subword tokenization for
Korean machine translation based on three theoret-
ical benefits—shorter tokenized sequences and bet-
ter vocabulary allocation, exposure to sub-syllable
morphological information, and larger space of to-
kenizations for subword regularization—and show
that in two translation tasks and across multiple ex-
perimental settings, jamo-level models outperform
syllable-level models and byte-level models.

Our experimental results support the hypothe-
sized advantages of jamo-level subword model-
ing in that: 1) in small-vocabulary settings, jamo-
level models far outperform syllable-level models
(which essentially act like character-level models),
2) jamo-level models outperform byte-level mod-
els across the board (with the primary difference
between them being that jamo models preserve sub-
syllable information that byte-level models do not
and syllable-level models cannot), and 3) with the
same dropout hyperparameters, jamo-level models
both perform better than analogous syllable- and
byte-level models and also exhibit a larger increase
in performance over the non-dropout models as
compared to syllable- and byte-level models.

We conclude with the recommendation against
simply defaulting to syllable-level or byte-level sub-
word tokenization for Korean NLP, as it can lead
to poor tokenizations and loss of performance, es-
pecially in low-resource settings. We hope to have
provided sufficient basis for further exploration into
jamo-level subword tokenization with our work.

Limitations

One limitation is that we used only two datasets,
and that the Korean↔Jeju-eo pair is an extremely
closely related language pair. It would be better
to compare with other language pairs, especially
others from the CJK family. However, few high
quality datasets with Korean parallel sentences ex-
ist, so this was not possible.

Another is that we did not do a large vocabu-
lary hyperparameter sweep. While the restricted
vocabulary settings are inherently fixed (since we
choose the vocabulary size to be the number of
unique characters in the corpus so that the syllable-
level models are forced to be as small as possible),
the other vocabulary sizes were picked arbitrarily
(though the same vocabulary sizes were used for
all models within a language pair). It is possible
that our results would change with different vocab-
ulary sizes. However, finding the best vocabulary
size is prohibitively expensive, and by arbitrarily
choosing a size and using it across all models, we
hoped to provide a fair comparison.

We also did not experiment with using large, pre-
trained models as our base encoders and decoders,
which has become common in modern NLP. The
primary reason for this is that pretrained models
come with their own tokenizers. In order to experi-
ment with a variety of tokenizers like we did in this
paper, we would need to train our own large base
models from scratch for each tokenizer, which is
prohibitively expensive and beyond the scope of
this paper.

A final limitation is that our corpora had at most
200k sentence pairs, which should be considered
low-resource. However, the full English↔Korean
had 800k sentence pairs, which is substantially
higher resource than the Korean↔Jeju-eo corpus,
but might be considered low-resource in the mod-
ern, data-rich NLP era. Our results do not scale
perfectly to the larger dataset, suggesting that as
the dataset grows, the benefits of our proposed tech-
nique diminish. However, this is not unexpected, as
many of these techniques have diminishing returns
as the vocabulary size grows (in particular, dropout
is not effective and can even be harmful in large
corpus settings (Provilkov et al., 2020)).

References
Won Ik Cho, Seok Min Kim, and Nam Soo Kim. 2019.

Investigating an effective character-level embedding
in Korean sentence classification. In Proceedings of
the 33rd Pacific Asia Conference on Language, In-
formation and Computation, pages 10–18, Hakodate,
Japan. Waseda Institute for the Study of Language
and Information, Waseda University, Tokyo, Japan.

Marco Cognetta, Sangwhan Moon, Lawrence Wolf-
sonkin, and Naoaki Okazaki. 2023. Parameter-
efficient Korean character-level language modeling.
In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational

74

https://aclanthology.org/2023.eacl-main.172
https://aclanthology.org/2023.eacl-main.172

Linguistics, pages 2350–2356, Dubrovnik, Croatia.
Association for Computational Linguistics.

Marco Cognetta, Vilém Zouhar, and Naoaki Okazaki.
2024. Distributional properties of subword regular-
ization. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 10753–10763, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users Journal, 12(2):23–38.

Gyeongmin Kim, Junyoung Son, Jinsung Kim, Hyunhee
Lee, and Heuiseok Lim. 2021. Enhancing Korean
named entity recognition with linguistic tokenization
strategies. IEEE Access, 9:151814–151823.

Taku Kudo. 2006. MeCab: Yet Another Part-of-Speech
and Morphological Analyzer.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium. As-
sociation for Computational Linguistics.

Sangwhan Moon and Naoaki Okazaki. 2020. Jamo pair
encoding: Subcharacter representation-based extreme
Korean vocabulary compression for efficient subword
tokenization. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
3490–3497, Marseille, France. European Language
Resources Association.

Viet Nguyen, Julian Brooke, and Timothy Baldwin.
2017. Sub-character neural language modelling in
Japanese. In Proceedings of the First Workshop
on Subword and Character Level Models in NLP,
pages 148–153, Copenhagen, Denmark. Association
for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for se-
quence modeling. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Jeonghyeok Park and Hai Zhao. 2020. Korean neural
machine translation using hierarchical word structure.
In 2020 International Conference on Asian Language
Processing (IALP), pages 294–298.

Kyubyong Park, Yo Joong Choe, and Jiyeon Ham.
2020a. Jejueo datasets for machine translation and
speech synthesis. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
2615–2621, Marseille, France. European Language
Resources Association.

Kyubyong Park, Joohong Lee, Seongbo Jang, and Da-
woon Jung. 2020b. An empirical study of tokeniza-
tion strategies for various Korean NLP tasks. In
Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference
on Natural Language Processing, pages 133–142,
Suzhou, China. Association for Computational Lin-
guistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882–1892, Online. Association for
Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Danielle Saunders, Weston Feely, and Bill Byrne.
2020. Inference-only sub-character decomposition
improves translation of unseen logographic charac-
ters. In Proceedings of the 7th Workshop on Asian
Translation, pages 170–177, Suzhou, China. Associ-
ation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Xinlei Shi, Junjie Zhai, Xudong Yang, Zehua Xie, and
Chao Liu. 2015. Radical embedding: Delving deeper
to Chinese radicals. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 594–598, Beijing, China. Asso-
ciation for Computational Linguistics.

Chenglei Si, Zhengyan Zhang, Yingfa Chen, Fanchao
Qi, Xiaozhi Wang, Zhiyuan Liu, Yasheng Wang, Qun
Liu, and Maosong Sun. 2023. Sub-character tok-
enization for Chinese pretrained language models.

75

https://doi.org/10.18653/v1/2024.emnlp-main.600
https://doi.org/10.18653/v1/2024.emnlp-main.600
https://doi.org/10.1109/ACCESS.2021.3126882
https://doi.org/10.1109/ACCESS.2021.3126882
https://doi.org/10.1109/ACCESS.2021.3126882
https://taku910.github.io/mecab/
https://taku910.github.io/mecab/
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://aclanthology.org/2020.lrec-1.429
https://aclanthology.org/2020.lrec-1.429
https://aclanthology.org/2020.lrec-1.429
https://aclanthology.org/2020.lrec-1.429
https://doi.org/10.18653/v1/W17-4122
https://doi.org/10.18653/v1/W17-4122
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.1109/IALP51396.2020.9310510
https://doi.org/10.1109/IALP51396.2020.9310510
https://aclanthology.org/2020.lrec-1.318
https://aclanthology.org/2020.lrec-1.318
https://aclanthology.org/2020.aacl-main.17
https://aclanthology.org/2020.aacl-main.17
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://aclanthology.org/2020.wat-1.21
https://aclanthology.org/2020.wat-1.21
https://aclanthology.org/2020.wat-1.21
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.3115/v1/P15-2098
https://doi.org/10.3115/v1/P15-2098
https://doi.org/10.1162/tacl_a_00560
https://doi.org/10.1162/tacl_a_00560

Transactions of the Association for Computational
Linguistics, 11:469–487.

Chisung Song, Myungsoo Han, Hoon Young Cho, and
Kyong-Nim Lee. 2018. Sequence-to-sequence au-
toencoder based Korean text error correction using
syllable-level multi-hot vector representation. In Pro-
ceedings of HCLT (in Korean), pages 661–664.

Karl Stratos. 2017. A sub-character architecture for
Korean language processing. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 721–726, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Wikipedia contributors. 2024. Stars and bars
(combinatorics) — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/
w/index.php?title=Stars_and_bars_
(combinatorics)&oldid=1240643785.
[Online; accessed 26-August-2024].

A Architecture and Training Details

We used fairseq for the training.
For English↔Korean, we used the base
transformer architecture. For Korean↔Jeju-
eo, we used the smaller transformer-iwslt
architecture. Table 5 gives the model configu-
rations and Table 6 gives the optimization and
training settings.

transformer

Embedding Dimension 512
FFN Dimension 2048
Number of Heads 6
Number of Layers 8
Dropout 0.1

transformer-iwslt

Embedding Dimension 512
FFN Dimension 1024
Number of Heads 4
Number of Layers 6
Dropout 0.1

Table 5: The configurations for the transformer and
transformer-iwslt architectures.

A.1 Tokenization and Segmentation
We use SentencePiece for BPE tokenization.
Table 8 gives the flags for the Korean and English
tokenizers.

We used SacreBLEU to compute the metrics.
The text was pre-segmented by whitespace and
punctuation with SacreMoses.

Optimizer ADAM
β1, β2 (0.9, 0.98)
Learning Rate 5× 10−4

Warmup
4000 steps (Korean↔Jeju-eo)
20000 steps (English↔Korean)

Scheduler Inverse Square Root
Tokens-per-batch 4096

Patience
5 (English↔Korean)
8 (Korean↔Jeju-eo)

Table 6: The optimizer and training parameters.

Corpus Train Test Valid

English↔Korean 750k 25k 25k
English↔Korean (truncated) 200k 8k 10k
Korean↔Jeju-eo 160k 5k 5k

Table 7: The size of the corpora used for each experi-
ment.

B Jamo Decomposition

For clarity, to disambiguate visually identical ini-
tial and final positional jamo, we mark them with
a subscript denoting their position. For example,
국 would decompose toㄱi,ㅜv,ㄱf . For compati-
bility jamo, we always leave it unmarked (e.g,ㄱ,
ㅜ, ㄱ).

B.1 Positional Jamo
Let c be the codepoint of any Hangul syllable, and
c′ = c− 0xAC00 be its offset from the start of the
Hangul syllable range. Then, we compute i, v, f
(the initial consonant, vowel, and final consonant
positional jamo codepoint offsets, respectively) as:

i =
c′

588

v =
c′ − (588 · i)

28
f = (c′ − (588 · i))− 28 · v

(1)

For example, the syllable름 (U+B984) gives c′ =

3460, i = 5 (I5 =ㄹi) , v = 18 (V18 =ㅡv), and
f = 16 (F16 =ㅁf).

A triplet with f = 0 signifies that the syllable
does not have a final consonant. For example,르
(U+B974), which does not have a final consonant
gives i = 5 =ㄹi, v = 18 =ㅡv, but f = 0 = ∅f .

Recomposition of positional jamo triplets back
to syllable follows the inverse of the same algo-
rithm. Given i, v, and f :

c = i× 588 + v × 28 + f + 44032

76

https://doi.org/10.18653/v1/D17-1075
https://doi.org/10.18653/v1/D17-1075
https://en.wikipedia.org/w/index.php?title=Stars_and_bars_(combinatorics)&oldid=1240643785
https://en.wikipedia.org/w/index.php?title=Stars_and_bars_(combinatorics)&oldid=1240643785
https://en.wikipedia.org/w/index.php?title=Stars_and_bars_(combinatorics)&oldid=1240643785

Language Flag

English
--character_coverage=1.0
--normalization_rule="identity"

Korean
&

Jeju-eo

--character_coverage=1.0
--normalization_rule="identity"
--split_by_whitespace=false

Table 8: SentencePiece tokenizer settings for each
language. All flags not listed here are set to the defaults.

produces the original syllable codepoint. Thus, to
convert a positional jamo sequence back to a syl-
lable sequence, we simply iterate through each
(i, v, f) triplet and recover the original syllables.

B.2 Compatibility Jamo
Decomposition of syllables to compatibility jamo
is a simple two-step process of first decomposing
syllables into positional jamo and then converting
the resulting positional jamo to the corresponding
compatibility jamo with the surjective mapping.
For example,왕 =ㅇi,ㅘv,ㅇf , which is mapped
to the compatibility jamoㅇ, ㅘ, ㅇ (in the lat-
ter, the ㅇ’s are the same codepoint, while in the
former, they are distinct codepoints).

A difficulty comes in the recomposition of a com-
patibility jamo sequence back into syllables, which
requires disambiguating the compatibility jamo by
converting them back to positional jamo. Without
context, since the mapping is surjective, this is not
possible. However, since syllables always follow
(i, v, f) order, compatibility jamo can be disam-
biguated by greedily decoding the jamo sequence
from left to right via a simple state machine.

B.3 Jeju-eo Syllable Decomposition
To convert from a Unicode Private Use Area (PUA)
representation of a syllable containing araea, we
extract the initial and final like in Equation 1. Let
p be the start of the PUA range and c be the code-
point in the PUA range we wish to decompose.
Then i = ⌊ c−p

|I| ⌋ and f = (c − p) mod |I|. This
produces positional jamo for the initial and final
consonants, which can be mapped to compatibility
jamo as usual.

To reverse the process, given an initial and final
(positional) consonant, we compute i×I+f+p to
recover the PUA-indexed codepoint corresponding
to the syllable (Ii,ㆍ,Ff).

The same is done for ssang-araea, but with a
separate PUA.

77

C Full Results

Tables 9, 10, and 11 contain the full experimen-
tal results. Specifically, they all contain the Com-
patibility Jamo experiments (which were omitted
due to space from the main paper’s tables) and the
full-sized English↔Korean corpus results (only a
subset of this corpus was presented in Table 3).

78

Representation Dropout (p = 0.1) BLEU CHRF COMET

Syllable

None 15.50 38.43 87.47
English 15.99 38.87 87.86
Korean 16.42 39.63 88.14
Both 16.31 39.53 88.18

Byte

None 15.19 38.23 87.32
English 15.77 38.87 87.89
Korean 15.50 38.60 87.33
Both 15.24 38.20 87.07

Compatibility

None 15.32 38.00 87.13
English 15.74 38.50 87.66
Korean 16.25 39.50 88.06
Both 16.23 39.27 87.99

Positional

None 15.53 38.33 87.36
English 15.74 38.60 87.63
Korean 16.10 39.23 87.91
Both 16.63 39.77 88.28

Syllable (restricted)
None 15.78 38.80 87.37

English 16.05 38.20 87.68

Byte (restricted)

None 15.82 38.80 87.50
English 16.47 39.67 88.07
Korean 15.44 38.30 87.05
Both 15.59 38.47 87.12

Compatibility (restricted)

None 15.79 38.73 87.53
English 16.18 39.10 87.72
Korean 16.00 39.10 87.68
Both 16.21 39.30 87.88

Positional (restricted)

None 15.91 39.00 87.54
English 16.52 39.77 88.13
Korean 16.20 39.37 87.84
Both 16.43 39.57 88.13

(a) English→Korean

Representation Dropout (p = 0.1) BLEU CHRF COMET

Syllable

None 32.30 59.83 80.49
Korean 33.36 60.73 81.02
English 32.13 59.27 80.23

Both 32.74 59.73 80.67

Byte

None 32.21 59.80 80.37
English 32.31 59.83 80.46
Korean 31.56 58.73 79.83
Both 31.31 58.23 79.53

Compatibility

None 32.18 59.77 80.25
Korean 32.85 60.20 80.81
English 31.71 58.97 79.98

Both 31.97 58.90 80.08

Positional

None 32.25 59.87 80.34
Korean 33.01 60.40 81.01
English 31.67 58.73 79.87

Both 32.74 59.70 80.70

Syllable (restricted)
None 32.93 60.40 80.78

English 33.31 60.60 80.97

Byte (restricted)

None 32.81 60.17 80.63
Korean 32.32 59.93 80.43
English 32.99 60.27 80.72

Both 32.58 60.00 80.53

Compatibility (restricted)

None 32.65 60.07 80.56
Korean 32.89 60.20 80.76
English 32.87 60.07 80.69

Both 32.81 60.07 80.47

Positional (restricted)

None 32.84 60.37 80.71
Korean 32.84 60.23 80.81
English 33.08 60.30 80.74

Both 32.71 59.93 80.49
(b) Korean→English

Table 9: Full experimental results for the truncated English↔Korean corpus (Section 6.1) including Compatibility
Jamo, which was omitted in Table 2. Models marked "(restricted)" are for the restricted Korean vocabulary setting.

Representation Dropout (p = 0.1) BLEU CHRF COMET

Syllable

None 20.27 44.23 90.29
English 20.22 44.13 90.26
Korean 20.52 44.67 90.44
Both 20.23 44.27 90.32

Byte

None 19.96 44.00 90.22
English 19.88 43.87 90.19
Korean 19.19 43.10 89.70
Both 18.22 41.77 89.01

Compatibility

None 20.23 44.13 90.24
English 19.88 43.70 90.12
Korean 20.26 43.33 90.31
Both 20.18 43.43 89.97

Positional

None 20.19 44.13 90.27
English 19.86 43.77 90.15
Korean 20.35 44.40 90.33
Both 19.88 43.70 90.09

Syllable (restricted)
None 16.75 40.17 86.63

English 16.78 40.27 86.63

Byte (restricted)

None 20.61 44.65 90.36
English 20.59 44.50 90.31
Korean 20.16 44.15 90.03
Both 19.46 43.13 89.65

Compatibility (restricted)

None 20.62 44.53 90.25
English 20.65 44.53 90.31
Korean 20.20 44.20 90.18
Both 19.95 43.83 90.04

Positional (restricted)

None 20.65 44.63 90.33
English 20.77 44.67 90.37
Korean 20.50 44.43 90.28
Both 20.14 44.23 90.19

(a) English→Korean

Representation Dropout (p = 0.1) BLEU CHRF COMET

Syllable

None 37.74 63.93 83.37
Korean 38.04 64.17 83.57
English 36.77 62.73 82.78

Both 36.73 62.73 82.77

Byte

None 37.48 63.73 83.27
English 37.17 63.57 83.14
Korean 36.25 62.23 82.52
Both 35.69 61.73 82.24

Compatibility

None 37.60 63.80 83.27
Korean 37.68 63.83 83.33
English 36.38 62.43 82.52

Both 36.78 62.70 82.77

Positional

None 37.72 63.90 83.37
Korean 37.55 63.80 83.34
English 36.46 62.57 82.64

Both 36.52 62.43 82.66

Syllable (restricted)
None 37.53 63.77 83.32

English 37.50 63.63 83.29

Byte (restricted)

None 37.82 63.97 83.43
Korean 37.12 63.57 83.11
English 37.42 63.57 83.20

Both 36.72 63.07 82.86

Compatibility (restricted)

None 37.78 63.97 83.44
Korean 37.62 63.83 83.38
English 37.33 63.47 83.11

Both 37.20 63.30 83.06

Positional (restricted)

None 37.87 64.03 83.40
Korean 37.65 63.87 83.34
English 37.51 63.60 83.26

Both 37.20 63.30 83.08
(b) Korean→English

Table 10: Full experimental results for the full English↔Korean corpus (Section 6.1) including Compatibility Jamo,
which was omitted in Table 3. Models marked "(restricted)" are for the restricted Korean vocabulary setting.

79

Representation Dropout (p = 0.1) BLEU CHRF

Syllable

None 69.52 79.67
Jeju-eo 70.76 80.60
Korean 70.40 80.37
Both 71.58 81.30

Byte

None 68.02 78.30
Jeju-eo 70.21 80.10
Korean 69.69 79.65
Both 71.62 81.30

Compatibility

None 68.79 78.70
Jeju-eo 70.56 80.47
Korean 69.90 79.80
Both 71.98 81.53

Positional

None 68.97 79.03
Jeju-eo 71.17 80.87
Korean 70.27 80.13
Both 72.06 81.67

Syllable (restricted) None 69.67 79.86

Byte (restricted)

None 68.81 78.93
Jeju-eo 70.51 80.33
Korean 69.74 79.67
Both 71.44 81.10

Positional (restricted)

None 69.50 79.60
Jeju-eo 70.85 80.70
Korean 70.31 80.23
Both 71.82 81.56

(a) Jeju-eo→Korean

Representation Dropout (p = 0.1) BLEU CHRF

Syllable

None 43.27 56.37
Korean 44.54 57.40
Jeju-eo 44.06 56.97
Both 45.33 58.13

Byte

None 42.70 55.57
Jeju-eo 44.17 57.13
Korean 43.81 56.53
Both 44.95 57.73

Compatibility

None 43.05 55.87
Korean 44.11 56.97
Jeju-eo 43.97 56.73
Both 45.65 58.30

Positional

None 43.49 56.47
Korean 44.36 57.10
Jeju-eo 44.27 57.07
Both 45.96 58.50

Syllable (restricted) None 42.83 56.03

Byte (restricted)

None 43.70 56.50
Jeju-eo 44.46 57.20
Korean 43.77 56.57
Both 45.32 58.00

Positional (restricted)

None 43.91 56.60
Jeju-eo 44.88 57.63
Korean 44.70 57.30
Both 45.72 58.33

(b) Korean→Jeju-eo

Table 11: Full experimental results for the Korean↔Jeju-eo corpus (Section 6.3) including Compatibility Jamo,
which was omitted in Table 4. Models marked "(restricted)" are for the restricted vocabulary setting. Jeju-eo is not
supported by COMET, so that metric is omitted.

80

