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Introduction

We are delighted to welcome you to the NAACL 2025 Workshop on Language Models for Underserved
Communities (LM4UC), held in Albuquerque, New Mexico, on May 4, 2025. This workshop aims to
address the persistent gaps in natural language processing (NLP) technologies for underserved commu-
nities, ensuring equitable and culturally sensitive advancements in artificial intelligence (AI).

The rapid advancement of natural language processing technologies has unlocked transformative op-
portunities across numerous domains, from communication to knowledge preservation. However, these
benefits are not equitably distributed, leaving many underserved communities—speakers of Indigenous
languages, regional dialects, and minority languages spoken by smaller populations—without adequate
access to these innovations. This disparity stems from multiple factors, including limited linguistic data,
insufficient computational resources, and a lack of commercial prioritization. Such languages, which in-
clude examples like Yoruba, Igbo, Native American languages, and dialects in multilingual nations such
as India and Indonesia, are often both low-resource and underserved, compounded by challenges in AI
governance and cultural representation. To address these inequities, the LM4UC initiative aims to foster
rigorous research and dialogue centered on three critical pillars:

• AI Governance: Establishing robust legal and ethical frameworks to ensure fairness, transparency,
and data sovereignty in the development and deployment of language models.

• Cultural NLP: Designing models that preserve linguistic diversity and accurately reflect cultural
nuances, safeguarding unique heritage and values embedded in language.

• Sustainable NLP: Developing efficient, scalable models optimized for low-resource environmen-
ts, aligning with environmental sustainability and accessibility goals.

This year, we received numerous high-quality submissions addressing a broad spectrum of topics, in-
cluding democratizing AI access, preserving linguistic diversity, encoding cultural norms, and building
efficient language models. We appreciate the dedication of the authors, reviewers, and program commit-
tee members in maintaining the scientific rigor and diversity of perspectives that enrich this workshop.

Invited Speakers

We are privileged to host an exceptional group of invited speakers, featuring Timothy Baldwin from MB-
ZUAI, Timnit Gebru from Google, Pratyusha Ria Kalluri from Stanford, David Ifeoluwa Adelani from
McGill, and Genta Indra Winata from Capital One. Their presentations will provide valuable insights
into the pressing challenges and pioneering solutions within the field of natural language processing,
with a particular focus on addressing the needs of underserved communities.

Acknowledgments

We extend our gratitude to the speakers and organizing committee for their unwavering commitment in
making this workshop possible. Special thanks also go to our sponsors and supporters for their inval-
uable contributions. We hope this workshop serves as a platform for vibrant discussions, meaningful
collaborations, and impactful research that advances the inclusivity of language technologies worldwide.
Thank you for joining us at LM4UC 2025—we look forward to an engaging and productive event.

Sincerely,
The LM4UC Workshop Organizers
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Abstract

Automatic Speech Recognition (ASR) facil-
itates documenting endangered low-resource
languages. While recent advances in acous-
tic modelling have been substantial, contextual
learning remains underexplored. This study in-
vestigates the main factors that influence the
integration of knowledge from language mod-
els (LMs) into state-of-the-art ASR models for
endangered low-resource languages. Through
experiments on five diverse low-resource lan-
guages, we find: 1) Fine-grained tokenization
effectively improves ASR performance by ad-
dressing the prevalent unknown words and im-
proving data usage efficiency; 2) The integra-
tion of transformer-based LMs into ASR sys-
tems surpasses that of N-gram LMs only in
one language, even though they consistently
achieve better results in language modelling
tasks. 3) ASR performance is highly sensitive
to language-specific optimization, as shown by
a 43% performance degradation in one lan-
guage due to parameter transfer across lan-
guages. We open-source our scripts to support
further research and applications 1.

1 Introduction

The threat of language endangerment continues to
grow due to various external pressures, prompt-
ing linguists to actively document vulnerable lan-
guages. However, manual documentation pro-
cesses are often impractical and time-intensive. Au-
tomatic Speech Recognition (ASR) models offer
valuable support for language documentation, yet
their effectiveness is hindered by the limited avail-
ability of supervised data.

Recent advancements indicate that multilingual
self-supervised learning holds promise for devel-
oping ASR systems tailored to endangered low-
resource languages(Mihajlik et al., 2023; Li et al.,
2024; Taguchi et al., 2024; Mainzinger and Levow,

1https://github.com/ZL-KA/LM-LR-ASR

2024; Taguchi and Chiang, 2024). Among these
approaches, fine-tuning the pre-trained Wav2Vec2
models (Conneau et al., 2020) with Connectionist
Temporal Classification (CTC) loss (Graves et al.,
2006) has emerged as a popular and effective strat-
egy. Compared to other pre-trained ASR models,
such as Whisper (Radford et al., 2023), this ap-
proach often achieves superior performance, par-
ticularly in reducing character-level errors (Le Fer-
rand et al., 2024; He et al., 2024). This advantage
can be attributed to its smaller parameter set and
the extensive pre-training data, making it especially
effective for low-resource settings.

Despite its strengths in acoustic modelling, this
approach lacks contextual learning capabilities due
to the conditional independence assumption inher-
ent in CTC (Graves et al., 2006; Lu and Chen, 2023;
Higuchi et al., 2022). To address this, previous re-
search has integrated ASR models with language
models (LMs) at the word level (Conneau et al.,
2020; San et al., 2023; Liu et al., 2024; He et al.,
2024; Pratap et al., 2024; Arisaputra et al., 2024).
However, word-level integration struggles with the
high prevalence of unknown words in low-resource
settings, where limited text data further impedes
performance.

Additionally, prior studies have predominantly
employed statistical N-gram LMs for integration.
However, transformer-based LMs have demon-
strated superior contextual learning capabilities
compared to N-gram models for high-resource lan-
guages. While few studies have explored com-
bining transformer-based LMs with Wav2Vec2 and
CTC fine-tuning (Conneau et al., 2020), these inves-
tigations have focused on high-resource languages,
leaving their potential for low-resource languages
unexplored. Differences in data availability and lin-
guistic complexity underscore the need for further
investigation.

To fill these gaps, we explore LM integration for
five low-resource languages from diverse language

1
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families, considering differences in data size and
source. Our main contributions are:

1. Fine-grained tokenizations at subword and
character levels generally improve perfor-
mance, except for Khinalug, a language where
minimal data availability imposes constraints.

2. The transformer-based method outperforms
the N-gram approach only with one language,
unlike high-resource languages where trans-
former models consistently excel (Conneau
et al., 2020), highlighting challenges in low-
resource settings.

3. Parameter optimization is highly language-
specific, with parameter transferring from one
language to another resulting in a significant
performance gap from optimal outcomes.

2 Language Model in ASR

2.1 Language Model Integration

The popular ASR system for low-resource lan-
guages leverages self-supervised pre-training fol-
lowed by CTC-based fine-tuning. Due to the inde-
pendence assumption inherent in CTC, the ASR
system incorporates LMs during decoding to en-
hance contextual learning2. Specifically, LM inte-
gration occurs during inference-only decoding in
an auto-regressive manner 3. In accordance with
the CTC algorithm, the character-level acoustic
representations accumulate based on the space sep-
arator. The corresponding sequence of characters
is collapsed using the CTC algorithm, and the LM
assigns scores to the resulting text. The total score
is computed using Equation 1:

score = logP (text) + α ∗ LM(text) + β (1)

Here, logP (text) represents the acoustic hid-
den representation, and LM(text) denotes the LM
score. The parameters α and β control the con-
tribution of the LM and adjust the length of the
generated sequences, respectively. LM integra-
tion enables the CTC-based ASR model to perform
beam search, where the candidate sequence with
the highest score is returned as the final prediction.

2https://huggingface.co/blog/
wav2vec2-with-ngram

3https://github.com/kensho-technologies/
pyctcdecode/tree/main

2.2 Tokenization Granularity

Since CTC-based fine-tuning operates at the charac-
ter level, current word-level integration overlooks
the fine-grained knowledge provided by CTC, leav-
ing room for potential improvement. Additionally,
word-level LMs struggle to handle the prevalence
of unknown words in low-resource languages, lead-
ing to performance degradation.

This work proposes integrating LMs at the sub-
word and character levels. We encode the tran-
script with space markers ("_") to denote word
boundaries. Tokenization-specific ASR models and
LMs are built using corresponding encoded text,
enabling the models to leverage encoded knowl-
edge effectively. This encoding increases the fre-
quency of sequence patterns, improving data uti-
lization efficiency for LMs. Furthermore, unknown
words are decomposed into recognizable subwords
or characters, reducing their negative impact on
performance.

The study also investigates the impact of
transformer-based LMs on LM integration. The
integration process is adapted by modifying the
scoring function to accommodate the transformer-
based approach. Similar to N-gram LMs, log prob-
abilities are used as LM scores.

3 Experimental Setups

3.1 Datasets

To address the unique challenges of building ASR
systems for low-resource languages, such as lan-
guage complexity, limited corpus size, and sparse
audio sources, this study conducts experiments on
five linguistically diverse languages to explore their
practical application in language documentation.:
Khinalug (Li et al., 2024), Kichwa (Taguchi et al.,
2024), Mboshi (Godard et al., 2018), Japhug (Guil-
laume et al., 2022), and Bemba (Sikasote et al.,
2023). Four of the selected languages are recog-
nized as endangered, while Bemba is included to
examine the impact of collecting additional super-
vised data. Table 1 illustrates the occurrence of
unknown words in the development and test splits,
highlighting the potential risks of overlooking them
when using word-level LMs.

3.2 Modelling

Acoustic Model: We utilize the state-of-the-art ver-
sion of Wav2Vec2 model mms-300 4. Pre-trained

4https://huggingface.co/facebook/mms-300m

2
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Language ISO code Language Family Audio source Train (h) Dev+Test (h)
Unknown

words
Khinalug kjj Northeast Caucasian Spontaneous 2.14 0.49 25.12%
Kichwa que Quechuan Radio 3.05 0.77 27.28%
Mboshi mdw Bantu ZoneC Reading 3.93 0.53 16.57%
Japhug jya Sino-Tibetan Spontaneous 27.74 7.00 5.23%
Bemba bem Bantu ZoneM Reading 116.32 11.43 7.41%

Table 1: Dataset descriptive statistic

with over 1400 languages, it provides extensive lin-
guistic coverage and adaptability for low-resource
settings. In addition, its lightweight design, with
fewer parameters than other checkpoints, ensures
faster and more efficient performance.

Language Model: We utilize 5-gram LMs for
word and subword tokenization, and 10-gram LMs
for character tokenization. For transformer-based
LMs, we employ GPT-2 tailored to causal lan-
guage modelling tasks5. The vocabulary sizes vary
based on the tokenization approach: the number
of distinct words for word-level, 2000 tokens for
subword-level, and the number of distinct charac-
ters for character-level tokenization. These con-
figurations are based on insights from preliminary
experiments.

Pre- & Post-processing: We investigate LM
integration across various tokenization levels and
adapt ASR modelling accordingly. Training la-
bels are generated by preprocessing transcripts into
string sequences, embedding tokenization details
directly into the training pipeline, as described in
Section 2.2. This method allows the ASR model
to produce outputs consistent with the chosen tok-
enization level. After prediction, post-processing is
used to reverse the encoding steps and reconstruct
the original sentence.

4 Results and Analysis

4.1 Fine-grained Tokenization Benefits
We experiment with different tokenization gran-
ularity with N-gram LMs. As shown in Table 2,
compared with the coarse word-level tokenization,
fine-grained tokenization improves performance
for Kichwa, Mboshi, Japhug, and Bemba with Rel-
ative Word Error Rate (Relative WER) reduction
of 6.5%, 7.3%, 8.4% and 9.8%, respectively. How-
ever, for Khinalug, the fine-grained approach shows
comparable results but no clear gains, likely due

5https://huggingface.co/docs/transformers/
tasks/language_modeling

to limited data and the spontaneous nature of the
audio source.

Besides, we find the character level tokeniza-
tion leads to the best performance for most lan-
guages, indicating character tokenization as a more
effective choice. Regarding the outlier Mboshi, we
notice its character ASR model struggles due to
fast speaking speed or morphological complexity
(Appendices A), complicating direct comparisons
with subword models. Despite this challenge, the
character-based approach shows greater relative im-
provements when transitioning from no LM to LM
integration compared to the subword approach.

No LM Word Subword Char
Khinalug 42.2 34.2 37.9 35.8
Kichwa 17.7 15.4 15.3 14.4
Mboshi 31.4 27.3 25.3 30.1
Japhug 26.5 23.6 24.0 21.3
Bemba 40.0 38.6 35.5 34.8

Table 2: Experimental results for integrations granular-
ity with N-gram LMs. Word, subword and char indicate
the tokenization granularity. The evaluation metric is
WER.

No LM N-gram Transformer
Khinalug 45.5 35.9 40.5
Kichwa 18.6 15.0 17.1
Mboshi 33.4 27.5 28.5
Japhug 26.8 23.0 21.8
Bemba 39.0 36.3 37.2

Table 3: Experimental results for comparison between
N-gram and transformer-based LMs. The resulted WER
represents the average across experiments using word,
subword, and character tokenization.

4.2 N-gram Integration Outperforms

Transformer-based LMs demonstrate notable
strengths in perplexity evaluation, as detailed in

3
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Text WER N-gram PPL Trans PPL
Gold alcaldesa juzgadomanta llukshikta rikukuni - 7.5 5.4

No LM alcaldesa husgadomanta llukshikta rikukuni 25.0 9.3 5.3
N-gram alcaldesa juzgadomanta llukshikta rikukuni 0 7.5 5.4
Trans alcaldesa huskadomanta llukshikta rikukuni 25.0 8.9 4.8

Table 4: An example of Kichwa with character-level tokenization is presented. Note that all hypotheses are
considered during decoding in all experiments, but only one is selected as the final prediction with Equation 1 in
each experiment.

Appendix B. We investigate transformer-based in-
tegration across all tokenization types and report
the average scores. Surprisingly, as shown in Ta-
ble 3, transformer-based LMs outperform N-gram
LMs only for a single language, Japhug.

A closer examination of prediction samples re-
veals a misalignment between ASR performance
and language modelling under the current integra-
tion approach. As shown in Table 4, the N-gram
and transformer-based approaches do select the can-
didates with the lowest perplexity, and the perplex-
ity values from transformer LM are indeed higher
than that of N-gram LM, indicating the superior
performance in causal language modelling. How-
ever, inconsistencies arise in how different LMs
rank these candidates.

Specifically, the ASR gold transcript aligns more
with the N-gram ranking than the transformer-
based LM in this example. Although both models
share the same vocabulary, allowing direct perplex-
ity comparisons, their rankings might differ due to
variations in architecture and evaluation. This sug-
gests the current integration approach lacks robust-
ness for low-resource languages, as it does not con-
sistently improve ASR performance across models.

4.3 Language Optimization Matters

In developing ASR systems, prior research has pre-
dominantly focused on ASR training optimization,
with limited attention to integrating LMs. In this
study, we observe that the optimal tokenization
granularity for five languages spans all three tok-
enization types and that the integration parameters
vary significantly across languages. To highlight
the importance of language-specific optimization,
we experiment with reasonable parameter adapta-
tion from Kichwa to Mboshi, which has a similar
amount of supervised data, and Japhug, which has
the same optimal tokenization type. As shown in
Table 5, direct parameter transfer results in perfor-
mance degradations of 32.0% and 43.2%, respec-
tively.

Token (Alpha, Beta) WER
Kichwa char (0.9, 5.0) 14.4
Mboshi subword (0.6, 2.0) 25.3

Transferred char (0.9, 5.0) 33.4
Japhug char (0.6, 1.0) 21.3

Transferred char (0.9, 5.0) 30.5

Table 5: Experiment results of parameter transferring
from Kichwa to Mboshi and Japhug. Transferred means
inferencing with the parameters optimized for Kichwa;
Token indicates the tokenization type; Alpha and Beta
indicate the parameters in decoding (Equation 1).

Moreover, we find that customizing beam size
could improve inference speed while maintaining
performance, demonstrating the practical benefits
of tailored ASR systems (Appendix C.1). Addition-
ally, our results indicate that ASR performance in
low-resource languages is highly sensitive to train-
ing hyperparameters; even small adjustments in the
learning rate can lead to significant performance
differences (Appendix C.2). These findings empha-
size the critical importance of language-specific
settings in building effective ASR systems for low-
resource languages.

5 Conclusion

This study focuses on improving contextual learn-
ing in ASR models for low-resource languages by
examining tokenization granularity and the inte-
gration of transformer-based LMs. The findings
show that fine-grained tokenization enhances ASR
performance by addressing unknown words and
increasing data usage efficiency. Moreover, inte-
grating transformer-based LMs does not consis-
tently outperform N-gram LMs in boosting ASR
accuracy. Finally, our results indicate that directly
applying experimental settings to new languages
harms performance, emphasizing the importance
of language-specific optimizations.

4



References
Panji Arisaputra, Alif Tri Handoyo, and Amalia Zahra.

2024. Xls-r deep learning model for multilingual
asr on low-resource languages: Indonesian, javanese,
and sundanese. arXiv preprint arXiv:2401.06832.

Alexis Conneau, Alexei Baevski, Ronan Collobert,
Abdelrahman Mohamed, and Michael Auli. 2020.
Unsupervised cross-lingual representation learn-
ing for speech recognition. arXiv preprint
arXiv:2006.13979.

Pierre Godard, Gilles Adda, Martine Adda-Decker,
Juan Benjumea, Laurent Besacier, Jamison Cooper-
Leavitt, Guy-Noel Kouarata, Lori Lamel, Hélène
Maynard, Markus Mueller, Annie Rialland, Sebastian
Stueker, François Yvon, and Marcely Zanon-Boito.
2018. A very low resource language speech corpus
for computational language documentation experi-
ments. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning,
pages 369–376.

Séverine Guillaume, Guillaume Wisniewski, Cécile
Macaire, Guillaume Jacques, Alexis Michaud, Ben-
jamin Galliot, Maximin Coavoux, Solange Rossato,
Minh-Châu Nguyên, and Maxime Fily. 2022. Fine-
tuning pre-trained models for automatic speech recog-
nition, experiments on a fieldwork corpus of japhug
(trans-himalayan family). In Proceedings of the Fifth
Workshop on the Use of Computational Methods in
the Study of Endangered Languages, pages 170–178,
Dublin, Ireland. Association for Computational Lin-
guistics.

Taiqi He, Kwanghee Choi, Lindia Tjuatja, Nathaniel
Robinson, Jiatong Shi, Shinji Watanabe, Graham
Neubig, David Mortensen, and Lori Levin. 2024.
Wav2Gloss: Generating interlinear glossed text from
speech. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 568–582, Bangkok,
Thailand. Association for Computational Linguistics.

Yosuke Higuchi, Brian Yan, Siddhant Arora, Tetsuji
Ogawa, Tetsunori Kobayashi, and Shinji Watanabe.
2022. BERT meets CTC: New formulation of end-to-
end speech recognition with pre-trained masked lan-
guage model. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 5486–
5503, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Eric Le Ferrand, Zoey Liu, Antti Arppe, and Emily
Prud’hommeaux. 2024. Are modern neural ASR ar-
chitectures robust for polysynthetic languages? In

Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pages 2953–2963, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Zhaolin Li, Monika Rind-Pawlowski, and Jan Niehues.
2024. Speech recognition corpus of the khinalug lan-
guage for documenting endangered languages. In
Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 15171–15180, Torino, Italia. ELRA and ICCL.

Zoey Liu, Nitin Venkateswaran, Eric Le Ferrand, and
Emily Prud’hommeaux. 2024. How important is a
language model for low-resource ASR? In Find-
ings of the Association for Computational Linguis-
tics: ACL 2024, pages 206–213, Bangkok, Thailand.
Association for Computational Linguistics.

Ke-Han Lu and Kuan-Yu Chen. 2023. A context-aware
knowledge transferring strategy for ctc-based asr. In
2022 IEEE Spoken Language Technology Workshop
(SLT), pages 60–67.

Julia Mainzinger and Gina-Anne Levow. 2024. Fine-
tuning ASR models for very low-resource languages:
A study on mvskoke. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 4: Student Research Workshop),
pages 76–82, Bangkok, Thailand. Association for
Computational Linguistics.

Peter Mihajlik, Mate Kadar, Gergely Dosinszky, Yan
Meng, Meng Kedalai, Julian Linke, Tibor Fegyo, and
Katalin Mady. 2023. What kind of multi- or cross-
lingual pre-training is the most effective for a sponta-
neous, less-resourced asr task? 2nd Annual Meeting
of the Special Interest Group on Under-resourced
Languages: SIGUL 2023 ; Conference date: 18-08-
2023 Through 20-08-2023.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
et al. 2024. Scaling speech technology to 1,000+
languages. Journal of Machine Learning Research,
25(97):1–52.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International conference on machine
learning, pages 28492–28518. PMLR.

Nay San, Martijn Bartelds, Blaine Billings, Ella
de Falco, Hendi Feriza, Johan Safri, Wawan Sahrozi,
Ben Foley, Bradley McDonnell, and Dan Jurafsky.
2023. Leveraging supplementary text data to kick-
start automatic speech recognition system develop-
ment with limited transcriptions. In Proceedings of
the Sixth Workshop on the Use of Computational
Methods in the Study of Endangered Languages,
pages 1–6, Remote. Association for Computational
Linguistics.

5

https://aclanthology.org/L18-1531
https://aclanthology.org/L18-1531
https://aclanthology.org/L18-1531
https://doi.org/10.18653/v1/2022.computel-1.21
https://doi.org/10.18653/v1/2022.computel-1.21
https://doi.org/10.18653/v1/2022.computel-1.21
https://doi.org/10.18653/v1/2022.computel-1.21
https://doi.org/10.18653/v1/2024.acl-long.34
https://doi.org/10.18653/v1/2024.acl-long.34
https://doi.org/10.18653/v1/2022.findings-emnlp.402
https://doi.org/10.18653/v1/2022.findings-emnlp.402
https://doi.org/10.18653/v1/2022.findings-emnlp.402
https://doi.org/10.18653/v1/2024.findings-emnlp.166
https://doi.org/10.18653/v1/2024.findings-emnlp.166
https://aclanthology.org/2024.lrec-main.1319
https://aclanthology.org/2024.lrec-main.1319
https://doi.org/10.18653/v1/2024.findings-acl.13
https://doi.org/10.18653/v1/2024.findings-acl.13
https://doi.org/10.1109/SLT54892.2023.10022825
https://doi.org/10.1109/SLT54892.2023.10022825
https://doi.org/10.18653/v1/2024.acl-srw.16
https://doi.org/10.18653/v1/2024.acl-srw.16
https://doi.org/10.18653/v1/2024.acl-srw.16
https://aclanthology.org/2023.computel-1.1/
https://aclanthology.org/2023.computel-1.1/
https://aclanthology.org/2023.computel-1.1/


Claytone Sikasote, Eunice Mukonde, Md Mahfuz Ibn
Alam, and Antonios Anastasopoulos. 2023. BIG-
C: a multimodal multi-purpose dataset for Bemba.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2062–2078, Toronto, Canada.
Association for Computational Linguistics.

Chihiro Taguchi and David Chiang. 2024. Language
complexity and speech recognition accuracy: Ortho-
graphic complexity hurts, phonological complexity
doesn’t. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15493–15503, Bangkok,
Thailand. Association for Computational Linguistics.

Chihiro Taguchi, Jefferson Saransig, Dayana Velásquez,
and David Chiang. 2024. Killkan: The automatic
speech recognition dataset for kichwa with mor-
phosyntactic information. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 9753–9763,
Torino, Italia. ELRA and ICCL.

Silero Team. 2024. Silero vad: pre-trained enterprise-
grade voice activity detector (vad), number detec-
tor and language classifier. https://github.com/
snakers4/silero-vad.

A ASR Performance analysis

A.1 ASR Performance without Language
Models

This section evaluates the performance of the ASR
model using different tokenization methods with-
out including language models (LMs). As outlined
in Table 6, subword- and character-level tokeniza-
tions demonstrate slightly lower performance than
word-level tokenization. This decline can be at-
tributed to the added task of predicting the word
boundary symbol "_." Nonetheless, this trade-off
enables the incorporation of a more robust LM at
the subword and character levels, enhancing the
overall ASR performance during LM integration.

Lang Word Subwrod Char
Khinalug 42.2 47.0 47.4
Kichwa 17.7 18.1 19.9
Mboshi 31.4 29.5 39.4
Japhug 26.5 26.5 27.5
Bemba 40.0 38.7 38.5

Table 6: ASR model performance of different tokeniza-
tion types without LMs

A.2 Character Density Analysis

The Mboshi ASR model with character-level tok-
enization performs noticeably worse compared to
word- and subword-level models. To investigate
the outliers, we examine the character density of
the corpus and find that the Mboshi corpus has a
significantly higher number of characters per sec-
ond than others, even though all audio files are
sampled at 16 kHz (see Table 7).

We specifically use Voice Activity Detection
(VAD) (Team, 2024) to measure the speaking dura-
tion and count the number of characters in the cor-
responding transcripts. We argue that the high char-
acter density negatively impacts character-level to-
kenization, as it leaves limited space for detecting
separators between characters, resulting in infor-
mation loss. Additionally, we suspect that the mor-
phological complexity of Mboshi could be another
contributing factor, but we are unable to evaluate
this hypothesis due to a lack of linguistic expertise.

Lang Train Valid Test
Khinalug 0.75 0.75 0.74
Kichwa 0.84 0.85 0.83
Mboshi 1.08 1.1 1.06
Japhug 0.83 0.84 0.84
Bemba 0.75 0.75 0.75

Table 7: Analytical statistic on character per second

B Causal Language Modelling

In this section, we compare N-gram and
transformer-based language models (LMs) in the
context of causal language modelling, which fo-
cuses on predicting the next token. This analysis
supports our discussion in Section 4.2. As shown
in Table 8, transformer-based LMs consistently
achieve lower perplexity than N-gram LMs across
all languages. This aligns with our expectation
that transformer-based models outperform N-gram
models in causal language modelling tasks due to
their superior ability to capture contextual informa-
tion. Additionally, we observe that larger datasets
amplify the performance gap between the two types
of models.

C Language Specific optimization

C.1 Integration Parameters

This section highlights the importance of language-
specific parameters in language model integration.
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Word Subword Char
N-gram Trans N-gram Trans N-gram Trans

Khinalug 1619.9 1243.2 709.5 604.7 10.3 8.8
Kichwa 1770.2 1271.7 550.2 313.7 6.9 4.0
Mboshi 1015.7 673.7 343.4 173.8 9.83 5.5
Japhug 699.6 448.0 181.7 75.1 7.3 3.5
Bemba 2915.9 1439.5 238.6 79.0 6.2 2.9

Table 8: Perplexity comparison for difference tokenization of N-gram and transformer-based LMs

Beam (α, β) WER
Kichwa

word 10 0.2/0 15.5
word 100 0.2/0 15.4

subword 10 0.9/5.0 15.7
subword 100 0.9/5.0 15.3

char 10 0.8/2.0 14.8
char 100 0.8/2.0 14.4

Japhug
word 10 0/0 25.3
word 100 0.1/0 23.6

subword 10 0.1/2 24.2
subword 100 0.1/2 24.0

char 10 0.5/1 21.9
char 100 0.6/1 21.3

Table 9: Experimental results about beam searching and
the selection of alpha and beta for Kichwa and Japhug

As illustrated in Table 9, a beam size of 10 performs
comparably to a beam size of 100, demonstrating
that this smaller value can reduce computational
costs and hardware requirements. Additionally, we
observe that the parameters alpha and beta require
tailored values for optimal performance.

C.2 ASR Training Parameters
In this study, we explore various training hyper-
parameters to highlight their significance in low-
resource scenarios. Specifically, we experiment
with learning rates of 5e-4, 1e-4, 5e-5, 1e-5, 5e-6,
and 1e-6. Our findings reveal that using the same
hyperparameters across different languages or ap-
plying parameters optimized for one language to
another results in noticeable performance degra-
dation (as shown in Table 10). This underscores
the importance of language-specific optimization
when developing ASR systems for low-resource
languages, in contrast to high-resource scenarios
where the abundance of supervised data mitigates
the influence of training hyperparameters.

Lang Learning rate CER WER
Khinalug 1e-4 13.35 55.85

1e-5 11.40 47.00
Japhug 1e-4 14.41 28.41

1e-5 12.95 26.47

Table 10: Impact of learning rate on building ASR mod-
els
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Abstract

Research on Retrieval-Augmented Genera-
tion for low-resource languages has been
sparse because of limited resources. To
address this, we focus on Bangla, a
low-resource language, and have created
a dataset of 200 question-answer pairs
as a basis for our study from Bangla
Wikipedia dump data. This paper intro-
duces the TraSe architecture, which en-
hances RAG for Bangla using Translative
prompting. Our experiments demonstrate
that TraSe improves answer selection ac-
curacy, achieving 34% with automatic re-
trieval and 63% with Human-in-the-Loop
retrieval, outperforming baseline methods.
The TraSe architecture marks a significant
advancement in RAG for low-resource lan-
guages and has the potential to enhance
question-answering systems for Bangla
and similar languages. Future research
could explore additional low-resource lan-
guages. The code is available at the follow-
ing GitHub repository: https://github.
com/Atia6/TraSe-Bangla-RAG.

1 Introduction
The rapid advancements in natural language
processing (NLP) have led to the development
of sophisticated models that can perform a
wide range of tasks with high accuracy(Bird,
2024). Among these, Retrieval-Augmented
Generation (RAG) has emerged as a powerful
approach that combines the strengths of in-
formation retrieval and generative models to
produce more informed and contextually ac-
curate responses. While RAG has been ex-
tensively explored in languages like English,
its application in low-resource languages, such
as Bangla, remains significantly underdevel-
oped(Cuconasu et al., 2024).

The scarcity of research and resources in
Bangla RAG presents a critical gap in the

NLP field, particularly given the language’s
extensive use by over 230 million speakers
worldwide(Bhattacharjee et al., 2022a). Ex-
isting systems struggle to meet the nuanced
demands of Bangla language processing, often
unable to retrieve (Rony et al., 2024) and gen-
erate contextually relevant information effec-
tively (Ipa et al., 2024). This gap not only lim-
its the practical applications of NLP in Bangla
but also highlights the need for tailored ar-
chitectures to address the unique challenges
posed by this language.

In response to this need, we propose
the TraSe architecture, a novel approach
specifically designed for the RAG in Bangla.
TraSe integrates advanced retrieval mecha-
nisms with generative capabilities, optimizing
performance across various tasks by leverag-
ing both pre-existing knowledge and contex-
tual information. This paper presents a de-
tailed examination of TraSe’s architecture, its
comparative performance against existing sys-
tems, and its potential to enhance Bangla lan-
guage processing. Through this research, we
aim to contribute a significant step forward
in the development of effective NLP tools for
Bangla, bridging the gap in RAG research for
this important language.

1.1 Main Contributions
We achieved significant advancements in RAG
for the low-resource Bangla language through
the Translative method and further enhanced
performance using the TraSe method. Our
main contributions are as follows:

1. Created a Bangla question-answering
dataset consisting of 200 question-answer
pairs.

2. Introduced the Translative prompting
method specifically designed for Bangla
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question answering.

3. Developed the TraSe architecture and
demonstrated its superior performance
compared to baseline prompting meth-
ods.

2 Related Work
Retrieval-Augmented Generation (RAG) has
emerged as a powerful framework for address-
ing key limitations of large language mod-
els (LLMs), such as hallucination, outdated
knowledge, and lack of transparency (Gao
et al., 2023; Huang and Huang, 2024). By
integrating external knowledge into the gen-
eration process, RAG enhances accuracy, reli-
ability, and contextual relevance (Zhao et al.,
2024). Over time, the paradigm has evolved
from simple retrieval-based augmentation to
more sophisticated modular architectures that
optimize retrieval, generation, and augmen-
tation processes (Gao et al., 2023). A no-
table advancement in this direction is FLARE,
an active retrieval mechanism that continu-
ously gathers relevant information through-
out the generation process to improve re-
sponse quality (Jiang et al., 2023). Beyond
traditional text-based applications, RAG has
demonstrated versatility across multimodal
tasks and knowledge-intensive scenarios, rein-
forcing its potential in various domains (Zhao
et al., 2024).

Despite these advancements, RAG still
faces challenges in evaluation, retrieval qual-
ity, and real-world implementation. Re-
searchers are actively working to develop com-
prehensive benchmarks and refine methodolo-
gies to improve retrieval accuracy, optimize
integration with LLMs, and enhance system
adaptability (Zhao et al., 2024; Huang and
Huang, 2024). Several recent innovations have
focused on addressing these limitations. Cor-
rective RAG, introduced by (Yan et al., 2024),
incorporates a retrieval evaluator to assess
document quality and dynamically trigger dif-
ferent retrieval actions, such as web searches,
thereby improving the reliability of retrieved
content. SelfMem (Cheng et al., 2023) takes
a different approach by iteratively using a
retrieval-augmented generator to build an un-
bounded memory pool, leveraging past model
outputs as a self-referential knowledge base.

Meanwhile, Iter-RetGen (Shao et al., 2023)
adopts an iterative retrieval-generation cycle
where model-generated content informs subse-
quent retrieval steps, refining relevance and
coherence. These methods specifically ad-
dress issues related to retrieval precision, fixed
corpus constraints, and complex information
needs, demonstrating improved performance
across various NLP tasks, including question
answering, summarization, and dialogue gen-
eration.

Further developments continue to push the
boundaries of RAG optimization. Stochas-
tic RAG (Zamani and Bendersky, 2024) intro-
duces an end-to-end optimization framework
that utilizes straight-through Gumbel-top-k
selection, enhancing retrieval and generation
efficiency while achieving state-of-the-art re-
sults across multiple tasks. Blended RAG
(Sawarkar et al., 2024) improves retrieval ef-
fectiveness by leveraging hybrid query strate-
gies and semantic search, surpassing con-
ventional fine-tuning approaches on datasets
like SQuAD. Additionally, Graph Retrieval-
Augmented Generation (GRAG) (Hu et al.,
2024) presents a divide-and-conquer strategy
for retrieving structured textual subgraphs,
facilitating multi-hop reasoning, and signifi-
cantly outperforming standard RAG models
in handling networked document structures.

Beyond these techniques, other research ef-
forts have sought to refine RAG’s adaptability
and evaluation. R^2AG (Ye et al., 2024) aims
to bridge the semantic gap between retrievers
and LLMs by embedding retrieval information
directly into the generation process. RAGAs
(Shahul et al., 2023) introduces a reference-
free evaluation framework to assess retrieval
relevance, LLM faithfulness, and overall gen-
eration quality, providing a more holistic as-
sessment of RAG pipelines. The RAGGED
framework (Hsia et al., 2024) analyzes differ-
ent RAG configurations, revealing that opti-
mal performance depends on varying model ar-
chitectures and context utilization strategies.
Additionally, MemoRAG (Qian et al., 2024)
pioneers a memory-augmented approach that
employs a dual-system architecture—where
a lightweight LLM manages global memory
while a more expressive LLM handles final an-
swer generation—enabling better handling of
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ambiguous queries and long-term knowledge
retention.

Together, these advancements illustrate the
increasing sophistication of RAG techniques
and their transformative potential for LLMs.
By improving retrieval strategies, optimizing
generative integration, and expanding to new
application areas, RAG continues to evolve
as a fundamental enabler of more accurate,
contextually aware, and reliable AI-generated
content.

3 Methodology

In this study, we developed TraSe architecture,
a selection-based process to improve the per-
formance of RAG for Bangla question answer-
ing with the help of the translative method.
We further compared the performance of our
model with existing techniques.

3.1 Dataset

We created 200 questions from the Bangla
Wikipedia dump for our experiment. The
raw Bangla dataset that we utilized consisted
of 27 topics in 27 articles. The dataset is
preprocessed to convert to chunks of 5 sen-
tences. Along with 200 questions, 3 related
contexts are accompanied by each question for
human-in-the-loop (HIL) context insertion in
the LLM. Dataset details are given in Table 1.
In Table 2, several question-answer pairs along
with their corresponding answer types are pre-
sented.

3.2 Baselines

The baseline methods for comparison are de-
scribed below.

Zero Shot: The zero-shot method involves
assigning a task to a model without prior ex-
amples or specific training, relying solely on
the model’s pre-existing knowledge. This ap-
proach is useful for generalization in low-data
scenarios. (Arora et al., 2023) explored the
use of zero-shot retrieval in their work.

2 Shot: The two-shot method provides the
model with two examples before a new task,
helping it better understand the task struc-
ture and improve performance. (Brown et al.,
2020) explored the few-shot technique in their
work on GPT-3.
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Figure 1: Temperature vs accuracy for the zero-
shot method with HIL context.

Self-Ask: Self-Ask encourages the model
to ask clarifying questions before answering,
breaking down complex queries for more accu-
rate responses. (Press et al., 2023) discussed
this method in their study.

ReAct: ReAct (Reasoning and Acting) al-
ternates between reasoning and action steps,
allowing the model to iteratively refine its un-
derstanding and outputs, which is particularly
useful in complex tasks. This method was in-
troduced by (Yao et al., 2023).

3.3 LLM Parameter

For this experiment, we used the Llama 2
7B model, which supports over 260 languages,
in a text generation pipeline via the trans-
formers1 library. The model, optimized with
bfloat16 data and automatic device mapping,
generates sequences of up to 3000 tokens.
Sampling with a ‘top_k‘ of 10 promotes di-
verse yet coherent outputs. Zero-shot direct
prompting and HIL context were applied as
shown in Figure 1, and after testing tempera-
tures from 0.00001 to 1, the most accurate re-
sults were achieved at a temperature of 0.0001,
which was selected for the final setup. In
this research, we used LangChain2 to integrate
the Hugging Face pipeline, allowing us to effi-
ciently apply prompting techniques with pre-
trained models.

1https://pypi.org/project/transformers/
2https://www.langchain.com/

10



Table 1: Dataset description

Dataset No of Articles No. of Words No. of Chunks Question Answer Pair Text Based Answer Number Based Answer

Bangla Wikipedia Dump 27 53,575 710 200 70 130

Table 2: Question-answer pairs with answer type

Question Answer Answer Type
ঢাকা শহর কতিট সংসদীয় এলাকায় িবভğ?
(How many parliamentary constituencies
is Dhaka city divided into?)

২৫ িট (25) Number-based

সিচবালয় েকাথায় অবǬƵত? (Where is the
Secretariat located?)

রমনায় (In
Ramna)

Text-based

জাতীয় সংসদ ভবেনর Ƶপিত েক িছেলন?
(Who was the architect of the National
Parliament Building?)

লুইস কান (Louis
Kahn)

Text-based

বাংলােদেশর জাতীয় সংসদ ভবন কয়
কক্ষিবিশƧ? (How many chambers does
the National Parliament Building of
Bangladesh have?)

এক কক্ষ (Single
chamber)

Text-based

বাংলােদেশর জাতীয় মসǬজদ েকানিট?
(What is the national mosque of
Bangladesh?)

বায়তɊল মুকাররম
(Baitul
Mukarram)

Text-based

ঢাকায় àিতবছর কত টন কিঠন বজর্য্ উৎপŭ
হয়? (How many tons of solid waste are
generated in Dhaka each year?)

৯৭ লক্ষ টন (9.7
million tons)

Number-based

বাংলােদেশর àধান বািণǬজয্ক েকū েকানিট?
(What is the main commercial hub of
Bangladesh?)

ঢাকা (Dhaka) Text-based

3.4 Translative Prompting
Llama 2 has not been trained on a large
amount of Bangla data. Therefore, its perfor-
mance is not that great in the case of Bangla.
The translative method instructs the model
to translate the query and context to English,
then find the answer, and then translate the
answer to Bangla, as depicted in Figure 2.
This method has been seen to be useful for
text-based answers in this study.

3.5 TraSe Architecture
The TraSe architecture can be seen in Figure
3. BanglaBERT (Bhattacharjee et al., 2022b)
and bert base multilingual case (Devlin et al.,
2018) embedding models have been used to
embed query and document. Cosine similarity
is used to retrieve the top 3 contexts. We have
also used accurate 3 contexts along with the
query for HIL context to evaluate the perfor-

mance of the model when the retrieval process
is accurate.

As Translative prompting is more useful for
text-based answers than the others, a selective
model has been proposed. In the model, query,
contexts, answers generated from Translative
prompting, and answers generated from one of
the other methods (zero-shot, 2-shot, Self Ask,
and ReAct) are inserted into the LLM pipeline
and asked to select one of the answers based
on the query and context.

3.6 Evaluation Metrics

Accuracy: Accuracy is the percentage of cor-
rect answers. The generated answers were
manually evaluated and assigned as right or
wrong answers. Based on manual evaluation
the accuracy has been determined. We have
taken an answer to be accurate if the in-
formation is correct, whether it is answered
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Figure 2: Flowchart of Translative method.

in Bangla or English. In the equation, TP
means true positives (correct positives), TN
means true negatives (correct negatives), FP
means false positives (incorrect positives), and
FN means false negatives (incorrect negatives).
The formula for accuracy is given by:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

F1 Score: The F1 score is the harmonic
mean of precision and recall, making it a more
reliable metric than accuracy when dealing
with imbalanced datasets. The formula for F1
Score is:

F1 Score = 2 · Recall · Precision
Precision + Recall (2)

Exact Match is an important evaluation
metric for question answering. However, in
our case, it is not useful as the generated an-
swer is not always in Bangla. One example is
given below.
Query: 'রাƮপিত এরশাদ কত িখƲাƁ পযর্ť েদশ
শাসন কেরন?' Until when President Ershad
ruled the country?
Actual Answer: ১৯৯১ িÌƲাƁ 1999 AC
Generated Answer: The answer to the query
is 1991.

So, the generated answer is correct but not
an exact match with the actual answer.

4 Result and Discussion
The efficiency of the translative method for
text-based question answering is evident in
Figure 4. With an accuracy of 0.28 for
BanglaBERT, 0.24 for Bert-base-multilingual-
case, and 0.61 for the HIL context, this

method consistently outperforms the other
four methods for text-based answering. Addi-
tionally, the translative method demonstrates
competitive accuracy in number-based an-
swers.

Table 3 presents the F1 scores and accuracy
for various models, including baseline meth-
ods and the Translative prompting technique,
with and without retrieval using BanglaBERT
embeddings, Bert-base-multilingual-case em-
beddings, and Human-in-the-Loop (HIL) re-
trieval. The results show that the Translative
model generally outperforms baseline models
across different retrieval methods. Notably,
all TraSe models demonstrate significant im-
provements over the baselines. For instance,
the combination of zero-shot and Translative
prompting achieves a 33% accuracy with Bert-
base-multilingual-case, a substantial improve-
ment over the 22% accuracy of the baseline
0-shot direct method. Similarly, in the HIL
retrieval context, the TraSe method with zero-
shot and Translative prompting achieves a
63% accuracy, compared to 51% for the base-
line, indicating a notable improvement. Ad-
ditionally, the 2-shot Translative combination
is competitive with the zero-shot Translative
method for BanglaBERT embeddings, achiev-
ing a 34% accuracy compared to 33%. Overall,
when retrieval is accurate, the combination
of zero-shot and Translative prompting with
the TraSe architecture consistently achieves
higher accuracy, with up to 63% in the HIL
retrieval setting, showcasing the effectiveness
of the TraSe approach.
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Figure 3: Flowchart of TraSe method.

5 Conclusion

In this study, we introduced the Translative
prompting model, which demonstrated strong
performance in both number-based and text-
based answers for Bangla RAG. Building on
this, we developed the TraSe model, leverag-
ing the strengths of Translative prompting to
enhance answer selection from previously gen-
erated responses. The TraSe model achieved
notable accuracy improvements, reaching 34%
accuracy with automatic retrieval and 63%
accuracy with Human-in-the-Loop (HIL) re-
trieval, underscoring its effectiveness in both
automated and human-assisted retrieval con-
texts.

Future research should prioritize incorporat-
ing a variety of language models, larger and
more diverse datasets, and an expanded set of
low-resource languages to validate and build
upon these findings, ultimately contributing

to a deeper and more generalizable under-
standing of language model performance.

Limitations
A limitation of this study is that it utilizes a
single language model, which may not capture
the full spectrum of performance across dif-
ferent models. Additionally, the smaller sam-
ple size may affect the generalizability of the
results. Future research could benefit from
incorporating a variety of models and larger
datasets to validate and extend these findings.
Furthermore, investigating other low-resource
languages could provide additional insights
and enhance the robustness of the conclusions.
Investigating additional languages would not
only enhance the robustness of the conclusions
but also provide a more comprehensive under-
standing of how language models perform in
diverse linguistic contexts.
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Table 3: Performance comparison between methods with and without retrieval across different models.

Method
Without Retrieval With Retrieval

BanglaBERT Bert-base-multilingual-case Human In the loop Retrieval

F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy

0 shot direct .06 .03 .36 .22 .31 .18 .68 .51

2 shot direct .13 .07 .32 .19 .28 .16 .67 .50

Self-Ask - - .33 .20 .29 .17 .62 .45

ReAct - - .29 .17 .25 .14 .60 .43

Translative - - .41 .26 .39 .24 .71 .55

TraSe Method

0shot+ Translative - - .50 .33 .45 .29 .77 .63

2shot+ Translative - - .51 .34 .41 .26 .75 .60

SelfAsk+ Translative - - .46 .30 .43 .27 .76 .61

ReAct + Translative - - .45 .29 .36 .22 .74 .59
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Abstract

Arabic dialects present major challenges for
natural language processing (NLP) due to their
diglossic nature, phonetic variability, and the
scarcity of resources. To address this, we in-
troduce a phoneme-like transcription approach
that enables the training of robust language
models for North African Dialects (NADs) us-
ing only formal language data, without the need
for dialect-specific corpora. Our key insight is
that Arabic dialects are highly phonetic, with
NADs particularly influenced by European lan-
guages. This motivated us to develop a novel
approach in which we convert Arabic script
into a Latin-based representation, allowing our
language model, ABDUL, to benefit from ex-
isting Latin-script corpora. Our method demon-
strates strong performance in multi-label emo-
tion classification and named entity recognition
(NER) across various Arabic dialects. ABDUL
achieves results comparable to or better than
specialized and multilingual models such as
DarijaBERT, DziriBERT, and mBERT. Notably,
in the NER task, ABDUL outperforms mBERT
by 5% in F1-score for Modern Standard Ara-
bic (MSA), Moroccan, and Algerian Arabic,
despite using a vocabulary four times smaller
than mBERT.

1 Introduction

NADs, including Moroccan, Algerian, and
Tunisian, introduce additional complexities. Influ-
enced by Berber languages and colonial languages
such as French and Spanish, these dialects display
notable phonetic variability, including vowel incon-
sistency and the adoption of phonemes absent in
MSA, such as /p/ and /v/ (Barkat-Defradas et al.,
2003). In addition, their lexicons are enriched by
extensive borrowing from French and Spanish and
often incorporating them with phonetic modifica-
tions (Owens, 2013).

In this article, we introduce a phoneme-like tran-
scription approach that bridges formal Arabic with

dialectal varieties through linguistic normalization.
Inspired by the Buckwalter (Buckwalter, 2002)
transliteration system, our method simplifies and
adapts transliteration by clustering phonetically
similar sounds, improving alignment with dialec-
tal phonetic patterns. To highlight consonants and
long vowels (e.g., the "ā" in the word kitāb for
"book" which is pronounced with an extended du-
ration of the vowel /a/), this approach deliberately
omits diacritization and even removes preexisting
diacritics from the text, reducing phonetic variabil-
ity (Al-Mozainy, 1981).

By transforming Arabic script into a standard-
ized phoneme-like Latin representation, this prepro-
cessing pipeline promotes cross-script and cross-
dialect generalization, allowing for the develop-
ment of robust NLP models trained solely on for-
mal language data. In this article, we will focus ex-
clusively on transliterating MSA to handle Arabic
dialects, with the future goal of including French
and code-switched text, given their significance in
NADs.

2 Linguistic Justification

NADs are low-resource languages with no formal
or standardized grammatical rules, relying mainly
on direct phonetic transcription. Alongside MSA
vocabulary, they feature extensive lexical borrow-
ings from French, Spanish, Turkish, and Italian,
reflecting the historical and colonial influence of
these languages in the region. The lexical resem-
blance between Algerian Arabic (ALG) and MSA
has been quantitatively analyzed using computa-
tional methods. Abukwaik et al. (Abu Kwaik et al.,
2018) employed Latent Semantic Indexing (LSI)
to assess lexical overlap between MSA and various
Arabic dialects, reporting an LSI similarity score
of 0.68 for Algerian Arabic. This score indicates a
moderate lexical divergence, suggesting that while
some vocabulary is shared, directly applying MSA-
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trained models to Algerian Arabic could result in
significant tokenization mismatches. Harrat et al.
(Harrat et al., 2014) found that approximately 20%
of Algerian dialectal words originate from Arabic,
while 34% are derived from MSA. Studies estimate
that loanwords make up around 30–40% of the vo-
cabulary in these dialects, particularly in technical,
educational, and governmental contexts (Owens,
2013; Barkat-Defradas et al., 2003). In (Harrat
et al., 2016), the authors argue that significant vari-
ations between and MSA occur in vocalization,
along with the omission or modification of certain
letters, particularly the Hamza1. Despite the in-
fluence of foreign lexicons, NADs preserve core
linguistic structures from MSA. However, in terms
of pronunciation, Menacer et al. (Menacer et al.,
2017) found that 46% of MSA-derived words in
NADs exhibit phonetic variations compared to their
standard MSA counterparts. Another key charac-
teristic of NADs is their strong dependence on con-
sonantal structures for lexical and semantic distinc-
tions, as vowel patterns vary significantly across
regions (Barkat-Defradas et al., 2003). Given these
linguistic properties, ABDUL leverages stable con-
sonantal structures, which serve as robust subword
units for training NLP models, reducing variability
caused by inconsistent usage of vowels.

3 Related Work

NADs are low-resource languages that lack for-
malized grammatical rules and primarily rely on
phonetic transcription. In this work, we propose a
novel paradigm for training language models for
NADs using only formal language corpora, elim-
inating the need for dialect-specific datasets. To
evaluate the effectiveness of our approach, we com-
pare it against several key baselines in Arabic NLP,
particularly those designed for Arabic dialects:

• AraBERT 2: A pretrained BERT model for
MSA (Antoun et al., 2020), serving as a foun-
dational model for Arabic NLP. It is trained on
a mix of MSA corpora and Arabic Wikipedia,
capturing linguistic nuances in formal Arabic.

• mBERT 3: A multilingual BERT model pre-
trained on 100+ languages (Devlin et al.,
2019). While not specifically optimized for

1The Hamza is a letter in the Arabic alphabet representing
the glottal stop

2https://huggingface.co/aubmindlab/bert-base-arabertv2
3https://huggingface.co/google-bert/bert-base-

multilingual-uncased

Arabic, it provides a multilingual perspective
on cross-lingual transfer.

• DarijaBERT 4: A BERT model fine-tuned
for Moroccan Arabic (Darija) (Gaanoun et al.,
2023), leveraging localized datasets to capture
dialect-specific nuances.

• TunBERT 5: A Tunisian Arabic BERT model
(Messaoudi et al., 2021), highlighting the lex-
ical and phonological idiosyncrasies of this
dialect.

• DziriBERT 6: A pretrained model for Alge-
rian Arabic (Dziri) (Abdaoui et al., 2022), pro-
viding a benchmark for North African dialec-
tal NLP.

Beyond these baselines, our approach is further
inspired by the study "Consonant is All You Need"
(Al-shaibani and Ahmad, 2023), which highlights
the benefits of reducing reliance on vowels for more
efficient NLP models. This work demonstrates
how selectively omitting certain lexical features
can lead to smaller vocabularies, lower computa-
tional complexity, and improved training efficiency.
These insights align with our dediacritization and
consonant-centric transcription strategy, reinforc-
ing the scalability and effectiveness of our method.

Through a rigorous comparative analysis, we
aim to underscore the advantages of our approach.
By pretraining a language model from scratch on
data processed via our pipeline, we establish a fair
and consistent benchmark to demonstrate the ben-
efits of phoneme-like transcription for Arabic di-
alectal NLP. Our work contributes to the broader
goal of improving low-resource language modeling
through linguistically informed methodologies.

4 Methodology

To effectively adapt formal Arabic resources for
dialectal NLP, we develop a preprocessing pipeline
that normalizes phonetic variability while preserv-
ing linguistically significant features. In the follow-
ing, we outline the key steps in our phoneme-like
transcription process.

4.1 Phoneme-like Transcription Pipeline
Our preprocessing pipeline transforms Arabic text
into a phoneme-like Latin representation by:

4https://huggingface.co/SI2M-Lab/DarijaBERT
5https://huggingface.co/tunis-ai/TunBERT
6https://huggingface.co/alger-ia/DziriBERT
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1. Dediacritization: We remove short vowels
and diacritics, treating them as having a mini-
mal impact to normalize phonetic variations
and highlight consonant structures. This ap-
proach aligns with the principle that conso-
nants encode the fundamental semantic mean-
ing of words in Arabic (Watson, 2002).

2. Retention of Long Vowels: long vowels
are preserved to capture essential phonetic
cues while reducing ambiguity, reflecting their
phonemic stability in Arabic dialects (Al-
Mozainy, 1981).

3. Simplified Transliteration: Inspired by the
Buckwalter transliteration system, our sim-
plified Latin-script transcription ensures pho-
netic consistency across dialects. This im-
proves tokenization efficiency and allows
models trained with formal Arabic corpora
to generalize better to dialects, particularly by
unifying phonetically similar sounds under a
shared representation.

4.2 Model Training

We pretrain a BERT model from scratch using the
Arabic split of the OSCAR corpus (Ortiz Suárez
et al., 2019), applying our preprocessing pipeline.
We utilize a WordPiece tokenizer with a vocabulary
size of 30,522 tokens. The model undergoes train-
ing for 9 epochs using the Adam optimizer, with
a learning rate of 5e-5, a batch size of 64, and a
maximum sequence length of 512. Training is con-
ducted on a single NVIDIA A100, with a masked
language modeling (MLM) probability of 0.15.

The choice of vocabulary size plays a crucial
role in language model training, especially for
morphologically rich languages like Arabic. To
ensure fair comparison, we adopt the BERT ar-
chitecture, aligning with benchmark models such
as DarijaBERT, DziriBERT, TunBERT, AraBERT,
and mBERT. The 30,522-token vocabulary was se-
lected to match the lowest vocabulary size among
these benchmarks (Table 1), allowing for an equi-
table evaluation of efficiency across different pre-
training settings.

5 Datasets

In this section, we describe the datasets used for
pretraining and benchmarking ABDUL, covering
MSA and NADs. Our selection includes a large-
scale corpus in MSA for pretraining and multiple

Table 1: Vocabulary size comparison between the AB-
DUL trained BERT model and the models it will be
benchmarked against

Language Model Vocab Size
Moroccan DarijaBERT 80,000
Algerian DziriBERT 50,000
Tunisian TunBERT 30,522
MSA arabert 64,000
Multilingual mBERT 119,547
MSA ABDUL 30,522

dialect-specific datasets for downstream tasks, en-
suring a comprehensive evaluation across emotion
classification and named entity recognition (NER).

5.1 Pretraining Dataset

We use the Arabic subset of the OSCAR corpus (Or-
tiz Suárez et al., 2019) for pretraining our model.
This dataset contains approximately 8.7 million
documents and 6.1 billion words, totaling around
84.2 GB of text. Derived from web sources such
as news articles, blogs, and forums, OSCAR pro-
vides a diverse representation of MSA. Its scale
and domain diversity make it well-suited for train-
ing transformer-based language models, ensuring
broad linguistic coverage.

5.2 Emotion Classification Datasets

For text classification, we employ the SemEval
2025 7 Task 11-A dataset, which focuses on emo-
tion detection in Moroccan and Algerian Arabic.
The dataset consists of approximately 900 labeled
instances per dialect, annotated with four emotion
categories: joy, anger, sadness, and fear. This
dataset serves as a benchmark for evaluating emo-
tion classification in different research works con-
cerning NADs, which pose unique linguistic chal-
lenges due to their phonetic variations and lexical
borrowings.

5.3 Named Entity Recognition (NER)
Datasets

For NER evaluation, we utilize three datasets: Wik-
iFANE(Alotaibi and Lee, 2014), DzNER (Dahou
and Cheragui, 2023), and DarNER (Moussa and
Mourhir, 2023), which cover different dialects and
entity types, providing a comprehensive benchmark
for dialectal Arabic NER.

7https://semeval.github.io/SemEval2025/
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• WikiFANE: Covers MSA and NADs, provid-
ing a general-purpose dataset.

• DzNER: Focuses on Algerian Arabic, with a
broader range of entity types.

• DarNER: Specializes in Moroccan Arabic
and includes date entities in addition to stan-
dard entity categories.

Table 2 summarizes the dataset attributes.

6 Results

The performance of ABDUL is evaluated on two
tasks: emotion classification and named entity
recognition (NER), across multiple Arabic variants.
The results demonstrate ABDUL’s ability to gener-
alize effectively across dialects while maintaining
competitive performance against specialized mod-
els.

6.1 Emotion Classification Performance

Table 3 presents the emotion classification results
for Algerian Arabic. ABDUL achieves a macro-F1
score of 0.5315, ranking second behind DziriBERT
(0.5573). It outperforms DarijaBERT (0.5107), the
specialized Moroccan Arabic model, and signifi-
cantly surpasses TunBERT (0.2473), which strug-
gles in this dialect.

Table 3: Emotion classification results for Algerian Ara-
bic.

Model Precision Recall Macro-F1 Accuracy
DarijaBERT 0.6454 0.4289 0.5107 0.2747
DziriBERT 0.6560 0.4928 0.5573 0.3186
TunBERT 0.4220 0.2210 0.2473 0.2087
arabert 0.6369 0.4159 0.4964 0.2417
mBERT 0.5295 0.3434 0.4071 0.2197
ABDUL 0.6000 0.5014 0.5315 0.2088

Table 4 presents the emotion classification re-
sults for Moroccan Arabic. ABDUL achieves
a macro-F1 score of 0.4519, closely matching
AraBERT (0.4518), a model trained on MSA. It out-
performs DarijaBERT (0.4648) and significantly
surpasses TunBERT (0.1020).

Table 4: Emotion classification results for Moroccan
Arabic.

Model Precision Recall Macro-F1 Accuracy
DarijaBERT 0.5399 0.4122 0.4648 0.5280
DziriBERT 0.5057 0.3589 0.4157 0.4410
TunBERT 0.1538 0.0797 0.1020 0.2981
arabert 0.7039 0.3775 0.4518 0.4907
mBERT 0.4109 0.2777 0.3254 0.3727
ABDUL 0.5266 0.4035 0.4519 0.4596

Table 5 presents the averaged classification re-
sults across dialects. ABDUL achieves an over-
all macro-F1 score of 0.4915, outperforming Dar-
ijaBERT (0.4878) and DziriBERT (0.4865). This
highlights ABDUL’s ability to generalize across
NADs despite being trained exclusively on MSA.

Table 5: Average emotion classification results across
dialects.

Model Precision Recall Macro-F1 Accuracy
DarijaBERT 0.5926 0.4205 0.4878 0.4013
DziriBERT 0.5808 0.4258 0.4865 0.3798
TunBERT 0.2879 0.1503 0.1746 0.2535
arabert 0.6704 0.3967 0.4741 0.3662
mBERT 0.4702 0.3106 0.3662 0.2962
ABDUL 0.5633 0.4524 0.4915 0.3342

These results suggest that ABDUL’s phoneme-
like transcription preprocessing effectively cap-
tures dialectal features while avoiding reliance
on extensive dialect-specific data. Its particularly
strong performance in Algerian Arabic underscores
its suitability for handling underrepresented di-
alects in emotion classification.

6.2 Named Entity Recognition (NER)
Performance

Table 6 presents the results for NER in MSA. AB-
DUL achieves an F1 score of 0.4646, performing
on par with mBERT (0.4647), the top-performing
model. It surpasses arabert (0.4427), demonstrat-
ing its effectiveness in formal Arabic settings. The
results assess ABDUL’s ability to generalize across
different Arabic variants and effectively capture
named entities despite phonetic and lexical vari-
ability.
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Table 2: NER datasets for Arabic and North African dialects.

Dataset Language/Dialect Entities Size in tokens
WikiFANE MSA and North African Dialects 102 different entities 490k
DzNER Algerian Arabic (Darija) PER, LOC, ORG, MISC 220k
DarNER Moroccan Arabic (Darija) PER, LOC, ORG, DATE 65,905

Table 6: NER performance on MSA.

Model Precision Recall F1 Accuracy
DarijaBERT 0.4922 0.4112 0.4481 0.8927
DziriBERT 0.4825 0.3854 0.4285 0.8911
TunBERT 0.4416 0.0068 0.0134 0.8633
arabert 0.5016 0.3962 0.4427 0.8954
mBERT 0.5152 0.4233 0.4647 0.8977
ABDUL 0.5180 0.4212 0.4646 0.8979

For NER in Algerian Arabic (Table 7), ABDUL
achieves the highest F1 score of 0.6828, signifi-
cantly outperforming DziriBERT (0.5461), which
is specifically trained for this dialect.

Table 7: NER performance on Algerian Arabic.

Model Precision Recall F1 Accuracy
DarijaBERT 0.5556 0.5615 0.5585 0.9384
DziriBERT 0.5361 0.5565 0.5461 0.9382
TunBERT 0.4286 0.0071 0.0140 0.9104
arabert 0.5104 0.5841 0.5448 0.9389
mBERT 0.4975 0.5727 0.5325 0.9343
ABDUL 0.6601 0.7071 0.6828 0.9553

For NER in Moroccan Arabic (Table 8), ABDUL
attains an F1 score of 0.6557, ranking just behind
mBERT (0.7192), the best-performing model over-
all. However, it surpasses DarijaBERT (0.6246),
that was designed especially for Morrocan. A qual-
itative analysis of the DarNER corpus revealed that
many words were transcribed in a way that closely
aligns with their Arabic root rather than reflect-
ing phonetic pronunciation. This likely explains
mBERT’s and arabert’s superior performance, as
these models benefit from their extensive pretrain-
ing on MSA.

Table 8: NER performance on Moroccan Arabic.

Model Precision Recall F1 Accuracy
DarijaBERT 0.6077 0.6424 0.6246 0.9272
DziriBERT 0.5875 0.5516 0.5690 0.9193
TunBERT 0.1928 0.0548 0.0853 0.8436
arabert 0.6491 0.6761 0.6623 0.9290
mBERT 0.7140 0.7246 0.7192 0.9403
ABDUL 0.6415 0.6706 0.6557 0.9346

Table 9 presents the averaged NER performance

across MSA, Algerian, and Moroccan Arabic. AB-
DUL achieves an overall F1 score of 0.6010, out-
performing both DarijaBERT (0.5437) and DziriB-
ERT (0.5145). This demonstrates ABDUL’s abil-
ity to generalize effectively across dialects while
maintaining strong performance in both formal and
informal Arabic varieties.

Table 9: Average NER performance across Arabic vari-
ants.

Model Precision Recall F1 Accuracy
DarijaBERT 0.5518 0.5384 0.5437 0.9194
DziriBERT 0.5354 0.4978 0.5145 0.9162
TunBERT 0.3543 0.0229 0.0376 0.8724
arabert 0.5564 0.5521 0.5500 0.9211
mBERT 0.5756 0.5735 0.5721 0.9241
ABDUL 0.6065 0.5996 0.6010 0.9293

7 Conclusion

ABDUL consistently matches or exceeds the per-
formance of specialized models for certain dialects
in tasks such as emotion classification and named
entity recognition (NER), despite being trained ex-
clusively on MSA. It notably outperforms Dari-
jaBERT and DziriBERT in several scenarios, show-
casing its strong adaptability to NADs. By utilizing
a phoneme-like transcription approach, ABDUL
effectively bridges the gap between formal and di-
alectal Arabic, improving tokenization efficiency
and enhancing generalization across dialects with
shared linguistic features. Its ability to compete
with dialect-specific models while relying solely
on widely available, high-quality MSA data under-
scores its scalability and potential for low-resource
Arabic NLP.

8 Limitations and Future Work

While ABDUL demonstrates strong performance
in dialectal NLP tasks, several limitations remain.
Currently, our approach does not support Latin-
script Arabizi dialects, which are widely used in
informal settings. Expanding ABDUL to handle
Arabizi is a key part of our future work. Addition-
ally, we plan to investigate how vocabulary size
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impacts performance, as well as how different for-
mal languages used in pretraining (e.g., French,
Spanish, and English) influence the model’s ability
to generalize across dialects.

Overall, the results are low for state-of-the-art
models, including ABDUL. The task will be to test
other architectures to improve the results and not
settle for the current ones.

Finally, we aim to expand ABDUL’s applicabil-
ity to a broader set of NLP tasks, including machine
translation and text generation, to further assess its
scalability and effectiveness in diverse linguistic
contexts. As a long-term objective, we seek to
build the first large language model (LLM) for Ara-
bic dialects, leveraging the high availability and
quality of formal languages data to address the low-
resource status of Arabic dialects and advance the
field of dialectal Arabic NLP.
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Abstract

Cross-lingual transfer learning is an invaluable
tool for overcoming data scarcity, yet select-
ing a suitable transfer language remains a chal-
lenge. The precise roles of linguistic typol-
ogy, training data, and model architecture in
transfer language choice are not fully under-
stood. We take a holistic approach, examining
how both dataset-specific and fine-grained ty-
pological features influence transfer language
selection for part-of-speech tagging, consider-
ing two different sources for morphosyntactic
features. While previous work examines these
dynamics in the context of bilingual biLSTMS,
we extend our analysis to a more modern trans-
fer learning pipeline: zero-shot prediction with
pretrained multilingual models. We train a
series of transfer language ranking systems and
examine how different feature inputs influence
ranker performance across architectures. Word
overlap, type-token ratio, and genealogical dis-
tance emerge as top features across all architec-
tures. Our findings reveal that a combination
of typological and dataset-dependent features
leads to the best rankings, and that good per-
formance can be obtained with either feature
group on its own.

1 Introduction

Despite being trained on 100+ languages, pre-
trained multilingual language models (MLMs) fail
to cover the vast majority of the world’s languages.
Finetuning MLMs for zero-shot cross-lingual trans-
fer is a useful technique to extend their reach by cir-
cumventing the lack of task-specific labeled data in
low-resource languages. Effective zero-shot trans-
fer hinges on choosing an appropriate source lan-
guage (Eronen et al., 2023, 2022; Layacan et al.,
2024), but it is still not well understood how to
make this selection. Most analyses of success-
ful source/target pairs fall into one of two cate-
gories: typological or dataset-dependent. The ty-
pological view investigates the role of linguistic

similarity, with studies showing that more "sim-
ilar" languages tend to form better source/target
pairs (Eronen et al., 2023; de Vries et al., 2022;
Lauscher et al., 2020). Much of this typological
analysis is coarse-grained, focusing on features
like language family or abstract distance measures.
The dataset-dependent view focuses on compar-
ing source and target datasets based on features
like sub-word overlap (Wu and Dredze, 2019; Pires
et al., 2019; K et al., 2020). Few papers consider
both views, and those that do focus on older meth-
ods of crosslingual transfer like bilingual LSTMS
(Lin et al., 2019). Additionally, previous analyses
shed little light on the linguistic question of which
fine-grained typological features are especially rel-
evant for the task.

This primary goal of this paper is to offer a
deeper understanding of effective transfer language
selection across architectures, comparing crosslin-
gual transfer with biLSTMs to XLM-R (Conneau
et al., 2020) and M-BERT (Devlin et al., 2019).
We aim to identify which features contribute to
selecting a successful source/target pair for part-of-
speech (POS) tagging. We focus on POS tagging
because it directly reflects typological features such
as word order. Our analysis addresses the following
key questions:

Q1. Which features are most important for cross-
lingual transfer?

Q2. Do these features differ between biLSTMs
and MLMs?

Q3. How does the granularity of typological fea-
tures—whether fine or coarse—affect transfer
language selection?

Q4. Is it necessary to consider data set features in
selecting a transfer language?

We train a series of gradient-boosted decision
tree models to rank transfer languages for POS
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tagging, with separate rankers for the two architec-
tures. During training, we generate feature impor-
tance scores and identify the most salient features
for each architecture (Q1, Q2). To examine the role
of fine-grained typological features, we compare
two typological inputs: source/target distance mea-
sures, and full finegrained feature vectors (Q3). We
also evaluate how the source and quality of typolog-
ical data affects ranker performance by swapping
between URIEL (Littell et al., 2017) and Grambank
(Skirgård et al., 2023a) feature vectors. Last, we
investigate whether typological information alone
can effectively determine suitable source/target lan-
guage pairs by experimenting with the exclusion of
dataset-specific features (Q4).

We find that impressive performance can be
achieved when relying primarily on either feature
category, without the need for the other, indicating
that both "typological" and "dataset-dependent"
views of transfer language choice represent inde-
pendently viable strategies. However, peak perfor-
mance is achieved by combining dataset-dependent
and fine-grained typological features. Crucially,
our analysis reveals that key features such as word
overlap, type-token ratio, and genealogical distance
remain consistently important across architectures,
suggesting that the relevance of these features may
transcend specific model designs, offering broader
insights into cross-lingual transfer that could en-
able us to better leverage MLMs for low-resource
applications.

2 Related Works

2.1 Ranking Transfer Languages

Lin et al. (2019) rank transfer languages using both
dataset-dependent and linguistic features from the
URIEL knowledge base (Littell et al., 2017). We
build on their work with key adaptations: 1) In-
stead of varying dataset size, which obscures the
role of fine-grained features, we hold corpus size
constant across all language pairs. 2) In addition to
bilingual biLSTMs, we examine zero-shot transfer
with finetuned MLMs. 3) We replace typological
distance measures with element-wise comparisons
of typological feature vectors, following Dolicki
and Spanakis (2021).

Khan et al. (2025) build on the work in Littell
et al. (2017) to enhance the coverage of URIEL and
lang2vec with novel linguistic databases and cus-
tomizable distance calculations. We follow suit by
comparing the impact of incorporating URIEL syn-

tactic vectors versus Grambank syntactic vectors
on the transfer language ranking task

2.2 Transfer Language Choice for Zero-shot
Cross-lingual Transfer with MLMs

Lauscher et al. (2020) show a correlation between
linguistic proximity and successful zero-shot trans-
fer, but only test English as the source language.
We experiment with 18 source languages. de Vries
et al. (2022) find that XLM-R finetuned on a suit-
able transfer language performs almost three times
better than when using a suboptimal transfer lan-
guage. They highlight the influence of linguistic
similarity but do not consider dataset features.

3 Experiments

3.1 Languages

We experiment with a total of 20 target and 18
source languages across seven language families.
We determine our set of target and source languages
based on the availability of sufficient data in Uni-
versal Dependencies 2.0 (UD) (de Marneffe et al.,
2021). We consider target languages that have a
training corpus with at least 500 lines and source
languages with at least 2000. Justification for this
threshold is described in 3.2.1. We also eliminate
languages that are not present in URIEL and/or
Grambank. Our full set of target languages is given
in Table 1. Languages that also serve as source lan-
guages are italicized. While many of the languages
covered by our experiments are high-resource, sev-
eral others fall into a middle range and are unde-
served by the NLP research community at large.

3.2 Testbed Tasks

We generate gold ranking-data by training a
suite of biLSTMs and finetuned XLM-R and M-
BERT models for POS tagging across all possible
source/target language pairs. To remove the influ-
ence of dataset size, we cap each source language
training set at 2000 lines. Then, for each target lan-
guage, we create a ranking of all potential source
languages based on the relative performance of
each model on a held out test set. Model details are
outlined in following sections.

3.2.1 biLSTMs
We train a suite of 378 biLSTMs using Stanza (Qi
et al., 2020)– one for each target/source pair. We
train each model on 500 instances of UD data in the
target language and 2000 instances in the source
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language. We choose this split to simulate a setting
where limited training data is available in the target
language but comparatively greater data is available
in the source language. We set the data thresholds
to ensure that sufficient training data is present
for model convergence, but training data in the
target language is still limited enough to make the
task non-trivial. All models are trained on default
Stanza hyperparameters without pre-trained word
embeddings for a maximum of 6000 steps. We
evaluate each model on a held out test set drawn
from the same corpus as the target training data.

3.2.2 Fine-tuned XLM-R and M-BERT
We finetune XLM-R and M-BERT equivalently on
each of our 18 source languages with a modified
implementation1 from de Vries et al. (2022). Each
model is trained on the same 2000 instance UD
dataset that we use to train our biLSTM models.
All models are trained for 1,000 batches of 10 sam-
ples with a linearly decreasing learning rate starting
at 5e-5. We use 10% dropout between transformer
layers and 10% self-attention dropout.

Language Treebank
Basque UD_Basque-BDT
Czech UD_Czech-PDT
Danish UD_Danish-DDT
Dutch UD_Dutch-LassySmall
Finnish UD_Finnish-FTB
Hindi UD_Hindi-HDTB
Hungarian UD_Hungarian-Szeged
Indonesian UD_Indonesian-GSD
Galician UD_Galician-CTG
Italian UD_Italian-PoSTWITA
Korean UD_Korean-GSD
Latin UD_Latin-ITTB
Latvian UD_Latvian-LVTB
Turkish UD_Turkish-IMST
Polish UD_Polish-LFG
Portuguese UD_Portuguese-Bosque
Russian UD_Russian-SynTagRus
Catalan UD_Catalan-AnCora
French UD_French-Sequoia
English UD_English-LinES
Ukrainian UD_Ukrainian-IU

Table 1: Full list of target languages and their corre-
sponding treebanks. Languages that also serve as source
languages are italicized.

1https://github.com/wietsedv/xpos

3.3 Our Ranking System
Given a target language t and a list of n poten-
tial source languages S = [s1, s2...sn], our goal is
to rank all source languages in S based on the ex-
pected performance of POS-tagging models trained
on each source/target pair (si,t). Building on Lin
et al. (2019), we train a series of gradient boosted
decision trees using the LightGBM implementation
(MIT License) (Ke et al., 2017) of the LambdaRank
algorithm. Models are trained on gold ranking-data
described in Section 3.2.

Input to our ranking system consists of vector
representations of each source/target pair. Vectors
are defined as a set of features, categorized into
two types. We calculate dataset-dependent fea-
tures by comparing source and target corpora using
four metrics: word overlap, type-token ratio in the
source language corpus, type-token ratio in the tar-
get language corpus, and the difference between
the source and target language type-token ratios.
Dataset-independent features capture linguistic
similarity between the source and target languages
using five measures: genetic, syntactic, phonologi-
cal, (phonetic) inventory, and geographic. Syntac-
tic, phonological and inventory features are defined
using binary feature vectors sourced from typologi-
cal databases. We call these our Typology-Vector
features. By default, Typology-Vector features are
represented by distance measures computed as the
cosine difference between URIEL (Littell et al.,
2017) vectors representing source and target, but
we experiment with different representations (de-
scribed in Sections 3.3.1 and 3.3.2). All features
are briefly summarized in Table 2 and feature vec-
tor lengths are given in Table 3. For more detailed
descriptions, refer to Lin et al. (2019).

3.3.1 Distance-Measure vs. Fully Featured
By default, we express the linguistic similarity be-
tween syntactic, phonological, and inventory fea-
tures as a series of distance measures. We call
these distance Typology-Vector representations.
At predict time, the ranker receives a feature vec-
tor a representing the target and a feature vector b
representing the source and computes the cosine
distance: 1− cos(a, b) = d. We concatenate d to
the final ranking model input vector.

To analyze the impact of fine-grained features on
transfer language suitability, we experiment with
an expanded representation, using an element-wise
and operation to compare a and b: a∧b = v. We re-
fer to v as the full Typology-Vector representation.
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Feature Type Description
Genetic Distance Genealogical distance derived from language descent trees described in Glot-

tolog.
Geographic Distance Defined as the orthodromic distance divided by the antipodal distance between

rough locations of source and target languages on the surface of the Earth.
Syntactic, Phonological, and Inventory
Distances (distance Typology-Vector)

Computed as the cosine difference between corresponding URIEL (Littell
et al., 2017) or Grambank (Skirgård et al., 2023a) feature vectors representing
source and target languages.

Syntactic, Phonological, and Inventory
Vectors (full Typology-Vector)

Computed as element-wise AND operation between corresponding URIEL
(Littell et al., 2017) or Grambank (Skirgård et al., 2023a) feature vectors
representing source and target languages.

Dataset-Dependent Features Word overlap, transfer type-token ration, source type-token ration, type-token
ratio distance

Table 2: All possible ranker features

Vector Type Description
URIEL Syntactic 104
Grambank Syntactic 113
Phonological 28
Inventory 158

Table 3: Typological feature vector lengths

We concatenate v to ranker input.

3.3.2 URIEL vs. Grambank
Many typological analyses of crosslingual trans-
fer rely on URIEL (CC BY-SA 4.0) feature vec-
tors, which are heavily based on the World At-
las of Language Structures (CC BY 4.0) (Dryer
and Haspelmath, 2013). WALS has incomplete
genealogical coverage and over 80% missing data
(Skirgård et al., 2023a). As such, we experiment
with switching to Grambank (CC BY 4.0) (Skirgård
et al., 2023a), which addresses some of WALS’
shortcomings. We impute all undefined features in
either database as follows.

URIEL. We use URIEL vectors that have been
pre-imputed by Littell et al. (2017) using k-nearest-
neighbors.2

Grambank. 24% of total feature values in Gram-
bank 1.0.3 (across all languages in the database)
are undefined. In order to produce fully defined fea-
ture vectors for our experiments, we first eliminate
any features that are undefined for greater than 25%
of languages and any languages that have greater
than 25% missing data. After cropping, only 4.03%
of values are missing. We impute the remaining
values with the MissForest algorithm for nonpara-
metric missing value imputation (Stekhoven and
Bühlmann, 2012). We adapt our imputation proce-
dure from Skirgård et al. (2023b).

2vectors available at https://github.com/antonisa/lang2vec

3.3.3 Dataset Features
We experiment with the inclusion and exclusion
of dataset dependent features to assess the impact
the training corpus might have on successful cross-
lingual transfer. We control for training corpus
size in our gold rankings, but we do not control for
any other corpus features across source languages.
Therefore, it is necessary to evaluate the relevance
of features like type-token ratio and word overlap.

3.3.4 Evaluation
As in Lin et al. (2019), we evaluate our ranking
models with leave-one-out cross-validation. For
each cross-validation fold, we exclude one target
language from our test set of n languages, and
train our ranking model using gold transfer lan-
guage rankings for each n−1 remaining languages.
We then evaluate the model’s performance on the
held-out language. We evaluate our ranking mod-
els using Normalized Distributed Cumulative Gain
(NCDG)(Järvelin and Kekäläinen, 2002).

Specifically, we use NCDG@p, a metric that
considers the top-p elements, which is defined by:

NDCG@p =
DCG@p

IDCG@p
,

where the Discounted Cumulative Gain (DCG) at
position p is defined as

DCG@p =
p∑

i=1

2γi − 1

log2(i+ 1)
.

γi is a relevance score corresponding to the lan-
guage at position i of the predicted ranking that we
are evaluating. For all i ≤ p, γi = p− i, where p
represents the number of ranked items we wish to
assign relevance. We set p = 5, meaning that the
true best transfer language has a relevance score of
γ = 5. All languages below the top-5 are assigned
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Syntactic Dataset Typology-Vector NDCG@5
Feature-Src Features Representation biLSTMs XLM-R M-BERT

URIEL

a distance 0.799 0.755 0.654
b - distance 0.385 0.643 0.625
c full 0.776 0.782 0.680
d - full 0.721 0.670 0.689
Avg 0.670 0.713 0.662

Grambank

a distance 0.768 0.826 0.653
b - distance 0.447 0.574 0.638
c full 0.788 0.827 0.665
d - full 0.721 0.707 0.692
Avg 0.681 0.734 0.662

Avg (std) 0.676 0.723 0.662
(0.153) (0.085) (0.023)

Table 4: Average NDCG@5 for all model configurations trained on gold rankings. Every model configuration
includes genetic and geographic features.

γ = 0. The Ideal Discounted Cumulative Gain
(IDCG) is calculated the same as DCG except it
is calculated over the gold-standard ranking. An
NCDG@p of 1 indicates that the top-p predicted el-
ements match the top-p gold elements exactly. We
report the average NDCG@5 across all N leave-
one-out models.

3.4 Analyzing Feature Importance
To compare the most relevant features for transfer
in POS tagging across architectures, we use our
most full featured ranking model, incorporating
dataset-dependent features, syntactic features from
Grambank, and full Typology-Vectors. We train
three rankers, one for each architecture. During
training, each feature is assigned an importance
score based on the gain resulting from splits made
on that feature. For a given split, we calculate gain
as the reduction in squared error from the parent
node to the child nodes, summed across all trees in
the ranking model. We report average gain over all
cross-validation folds and identify the top-5 most
important features for each model.

4 Results

4.1 Dataset vs. Typological Features
In Table 4, we observe that regardless of syn-
tactic vector source, models trained with dis-
tance Typology-Vector representations and with-
out dataset features (setting b) perform relatively
poorly. This suggests that coarse grained infor-
mation from distance Typology-Vector representa-
tions may not be sufficient for choosing a trans-
fer language. However, when we replace dis-
tance Typology-Vector representations with full,
performance increases substantially. On average,

NDCG@5 jumps by 0.148 between settings b
and d over all 6 architecture/feature-source pair-
ings. The performance gains from including dataset
features are even more significant. On average,
NDCG@5 jumps by 0.19 between settings b and
a.

These findings suggest that both fine-grained
typological features and dataset-dependent features
support more accurate transfer language ranking.
Both feature sources provide meaningful signals to
the ranker, but setting c results in the best average
ranker performance, suggesting that an integrated
view of transfer language choice is most effective.

M-BERT stands out as a notable outlier, as set-
ting d produces the highest-performing M-BERT
rankers. It is unclear why excluding dataset fea-
tures benefits transfer language ranking for M-
BERT. However, it is noteworthy that M-BERT
exhibits by far the lowest standard deviation in per-
formance, suggesting its rankers are less sensitive
to variations in feature configuration. We leave fur-
ther analysis of this phenomenon to future work.

4.2 Grambank vs. URIEL

Rankers leveraging Grambank syntactic features
outperform those trained with URIEL syntactic
features in ranking biLSTMs and XLM-R on av-
erage, suggesting that the typological information
captured by Grambank may be more informative
for selecting a transfer language. However, M-
BERT is yet again an outlier– on average, M-BERT
rankers perform equivalently regardless of syntac-
tic feature-source.
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XLM-R M-BERT BiLISTM

Feature Gain Feature Gain Feature Gain

genetic 272.95 genetic 283.41 word_overlap 264.24
word_overlap 102.82 word_overlap 130.90 transfer_ttr 118.17
transfer_ttr 67.60 transfer_ttr 42.49 genetic 100.78
distance_ttr 25.74 distance_ttr 24.67 distance_ttr 12.66
GB093 11.96 task_ttr 10.06 INV_VOW_10_MORE 7.90
Standard Deviation 17.08 17.96 17.42

Table 5: Feature importance for top-5 features by model for ranker trained with dataset features and full Grambank
vectors.

4.3 Feature Importance

We investigate feature importance within our most
fully-featured ranking model, which incorporates
dataset-dependent features, syntactic features from
Grambank, and full Typology-Vectors. Though
this is not always the highest performing setting, it
enables us to elucidate the interplay between the
dataset-dependent and typological features most
clearly. We identify the top-5 most important fea-
tures for each of our models in Table 5. Four out
of five features are shared across architectures: ge-
netic, word_overlap, transfer_ttr, and distance_ttr.
Notably, these are primarily dataset-dependent fea-
tures. This consistency in relative feature impor-
tance across models suggests that the features that
determine a suitable transfer language choice may
not be architecture-dependent. On the other hand,
it is interesting that genetic is most important for
XLM-R and M-BERT but not for biLSTMs. It is
possible that the shared representation space built
during multilingual pretraining already contains
features like word-overlap making them less rele-
vant for selecting a finetuning dataset.

5 Supplementary Analyses

5.1 Excluding Dataset Features

For the sake of comparison, we also analyze the
top-5 features for a ranking model trained with syn-
tactic features from Grambank and full Typology-
Vectors without dataset-dependent features. These
rankers do not consistently underperform their
dataset-dependent counterparts, raising the ques-
tion of which dataset-independent features carry
the most weight.

Looking at Table 6, we find that the genetic fea-
ture yields substantially more gain than any other
feature. It is possible that genetic scores so highly
because it serves as a proxy for many of the other

Feature Gain

XLM-R
genetic 362.93
GB020 11.62
GB080 8.90
GB093 7.68
INV_OPEN_FRONT_UNROUNDED_VOWEL 7.48
Standard Deviation 20.93

M-BERT
genetic 407.08
GB022 8.44
GB093 7.07
INV_PALATAL_LATERAL_APPROXIMANT 6.42
GB020 6.39
GB114 5.32
Standard Deviation 23.46

biLSTM
genetic 342.61
INV_OPEN_MID_CENTRAL_UNROUNDED_VOWEL 21.75
GB172 19.12
INV_MID_CENTRAL_UNROUNDED_VOWEL 17.66
INV_LABIODENTAL_NASAL 12.22
Standard Deviation 19.83

Table 6: Feature importance for rankers Trained with
full Grambank vectors and without dataset features

features. This intuition is supported by Skirgård
et al. (2023a), who show that phylogenetic relation-
ships explain a majority of the variance in all but a
few Grambank features.

Other than genetic, M-BERT and XLM-R seem
to share more top features with each other than
with biLSTMs– GB093 and GB020 both ranking
highly. However, this does not necessarily indi-
cate a meaningful difference between the architec-
tures. Excluding genetic, gain is relatively low and
consistent across features. This finding suggests
that it may not be possible to identify especially
salient fine-grained features, because relevance is
distributed over the full feature set. In a sense, the
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Src/Tgt XLM-R Rank BiLSTM Rank Diff. Src/Tgt XLM-R Rank BiLSTM Rank Diff.

eus/cat 354 22 332 ukr/pol 10 339 329
kor/cat 360 29 331 ces/pol 8 302 294
kor/glg 339 13 326 rus/pol 32 324 292
kor/fra 359 54 305 dan/fin 66 345 279
pol/cat 323 24 299 rus/lav 26 304 278
eus/glg 301 12 289 lav/pol 86 337 251
eus/fra 334 46 288 eng/fin 96 347 251
pol/fra 331 49 282 ces/rus 15 258 243
tur/cat 305 27 278 ukr/lav 56 297 241
pol/glg 282 7 275 fra/fin 108 348 240

Table 7: Greatest difference in relative performance differences between XLM-R and biLSTM. Better biLSTM
performance (left) vs. better XLM-R performance (right).

XLM-R biLSTM

Language Family Pair Count Language Family Pair Count

Indo-European/Indo-European 125 Basque/Indo-European 13
Indo-European/Uralic 14 Koreanic/Indo-European 14
Austronesian/Indo-European 5 Indo-European/Indo-European 71
Basque/Uralic 1 Turkic/Indo-European 12
Turkic/Uralic 1 Koreanic/Uralic 1
Austronesian/Uralic 1 Koreanic/Austronesian 1
Indo-European/Turkic 14 Indo-European/Uralic 14
Indo-European/Basque 6 Basque/Uralic 1
Turkic/Indo-European 3 Indo-European/Koreanic 14
Basque/Indo-European 2 Indo-European/Austronesian 14
Koreanic/Uralic 1 Turkic/Austronesian 1
Austronesian/Turkic 1 Turkic/Koreanic 1
Basque/Turkic 1 Basque/Austronesian 1
Koreanic/Indo-European 1 Austronesian/Uralic 1
Koreanic/Turkic 1 Austronesian/Indo-European 10

Austronesian/Koreanic 1
Basque/Koreanic 1
Koreanic/Basque 1
Turkic/Basque 1
Indo-European/Basque 8
Austronesian/Basque 1
Turkic/Uralic 1

Table 8: Distribution of language family pairs that ranked relatively higher in XLM-R performance rankings (left)
vs. those that ranked relatively higher in biLSTM performance rankings (right)

whole may be greater than the sum of its parts.

5.2 Ranking Analysis: BiLSTMs vs. XLM-R

To contextualize our findings, we conducted a com-
parative analysis of gold transfer language rankings
for biLSTMs and XLM-R. For each architecture,
we generated an ordered list of source-target pairs
based on performance. We then compared rank dif-
ferences across architectures for each pair. Table 7
highlights the top-10 language pairs with the most

divergent rankings.

XLM-R performs best on language pairs within
the same family or subfamily, such as Slavic pairs,
likely due to better typological alignment. Mean-
while, biLSTMs excel on pairs with weaker genetic
ties. To further explore these trends, we counted
occurrences of language family pairs where either
XLM-R or biLSTM had a relative ranking advan-
tage in Table 8.

We see that XLM-R comparatively excels on
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Indo-European/Indo-European pairs, while biL-
STMs perform relatively better on unrelated or
weakly related pairs. These results align with ex-
pectations: XLM-R’s zero-shot approach benefits
from well-matched transfer pairs, whereas biL-
STMs can make effective use of small amounts
of target language training data.

6 Conclusion

We find that features such as word overlap, type-
token ratio, and genealogical distance are consis-
tently influential in transfer language selection re-
gardless of model architecture; their importance
may be somewhat model-agnostic.

Our findings also highlight the crucial role of
dataset-dependent features in ranking transfer lan-
guages for cross-lingual transfer. Rankers trained
with these features outperform those relying solely
on coarse-grained typological features.

At the same time, while coarse-grained typologi-
cal features alone are insufficient, rankers trained
with fine-grained typological features achieve im-
pressive results even without dataset-dependent fea-
tures. The most successful ranking performance
comes from combining both dataset-dependent and
fine-grained typological features, underscoring the
value of a comprehensive approach to transfer lan-
guage selection.

Crucially, these insights enable us to better sup-
port languages that are not well-represented in
MLM pretraining. By identifying effective trans-
fer languages with interpretable features, we can
improve cross-lingual transfer for lower-resource
languages, expanding the reach of NLP beyond
those languages that benefit from large-scale pre-
training.

Limitations

Since the scope of this paper is limited to crosslin-
gual transfer for POS tagging, it would be interest-
ing to explore whether our results are extensible
to other tasks. We are also limited in that we con-
sider a set of just 20 target languages, 13 of which
are Indo-European. This paper represents a step
forward in explaining the dynamics at play in suc-
cessful crosslingual transfer, but more work is nec-
essary to determine whether our findings generalize
across diverse linguistic contexts.
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Abstract

The Bahnar people, one of Vietnam’s ethnic
minorities, represent an underserved commu-
nity with limited access to modern technologies.
Developing an effective Bahnaric-Vietnamese
translation system is essential for fostering lin-
guistic exchange, preserving cultural heritage,
and empowering local communities by bridg-
ing communication barriers. With advance-
ments in Artificial Intelligence (AI), Neural
Machine Translation (NMT) has achieved re-
markable success across various language pairs.
However, the low-resource nature of Bahnaric,
characterized by data scarcity, vocabulary con-
straints, and the lack of parallel corpora, poses
significant challenges to building an accurate
and efficient translation system. To address
these challenges, we propose a novel hybrid
architecture for Bahnaric-Vietnamese transla-
tion, with BARTBahnar as its core language
model. BARTBahnar is developed by continu-
ally training a pre-trained Vietnamese model,
BARTPho, on augmented monolingual Bah-
naric data, followed by fine-tuning on bilin-
gual datasets. This transfer learning approach
reduces training costs while effectively cap-
turing linguistic similarities between the two
languages. Additionally, we implement ad-
vanced data augmentation techniques to en-
rich and diversify training data, further en-
hancing BARTBahnar’s robustness and trans-
lation accuracy. Beyond leveraging the lan-
guage model, our hybrid system integrates rule-
based and statistical methods to improve trans-
lation quality. Experimental results show sub-
stantial improvements on bilingual Bahnaric-
Vietnamese datasets, validating the effective-
ness of our approach for low-resource trans-
lation. To support further research, we open-
source our code and related materials at https:
//github.com/ura-hcmut/BARTBahnar.

1 Introduction

The Bahnar people, one of Vietnam’s 54 ethnic
minorities, account for approximately 0.3% of the

country’s population. As one of the larger minor-
ity groups, they possess a rich cultural heritage
reflected in unique traditions, festivals, clothing,
cuisine, and, most notably, their distinct Bahnaric
languages (Bui et al., 2024). This linguistic di-
versity is a cornerstone of their identity, necessi-
tating dedicated efforts for preservation and pro-
motion. Recognizing this, the Vietnamese gov-
ernment has implemented various policies to safe-
guard the cultural and linguistic heritage of ethnic
minorities, including the Bahnar people. Language
preservation plays a pivotal role in maintaining
the identity of ethnic groups worldwide. Facilitat-
ing linguistic interaction between the Bahnaric and
Vietnamese-speaking communities is essential for
fostering cultural exchange, mutual understanding,
and the preservation of minority identities. Thus,
developing an efficient Bahnaric-Vietnamese ma-
chine translation system would significantly en-
hance communication, granting Vietnamese speak-
ers access to the wealth of Bahnaric cultural texts
while enabling deeper cross-cultural interactions.

The rapid advancements in Artificial Intelli-
gence, particularly in Neural Machine Transla-
tion (NMT), have significantly improved transla-
tion quality across various language pairs (Qin,
2022). The introduction of the Transformer ar-
chitecture (Vaswani et al., 2017) and subsequent
developments in Large Language Models (LLMs)
have revolutionized Natural Language Process-
ing (NLP) applications, including NMT (Wang
et al., 2024). Transformer-based models can be
broadly categorized into three primary architec-
tures, namely encoder-only, decoder-only, and
encoder-decoder. The encoder-only type is primar-
ily designed for powerful understanding tasks, mak-
ing it unsuitable for non-trivial applications such
as NMT. Meanwhile, the decoder-only architecture
excels in text generation but requires large-scale
training datasets and lacks explicit encoder support
for source language comprehension, making it sub-
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optimal for NMT (Qorib et al., 2024). Additionally,
decoder-only models rely on autoregressive gen-
eration, which demands substantial computational
resources and extensive parallel corpora—both of
which are severely lacking for low-resource lan-
guages. In contrast, the encoder-decoder architec-
ture is inherently suited for NMT, as the encoder ef-
fectively captures the semantic and syntactic struc-
ture of the source language, while the decoder
generates the corresponding translation. How-
ever, despite these advantages, building an encoder-
decoder-based NMT system for an extremely low-
resource language such as Bahnaric remains highly
challenging due to severe data scarcity and vocab-
ulary limitations (Ngo et al., 2019). To the best
of our knowledge, no prior research has been con-
ducted on Bahnaric-Vietnamese translation.

Given these challenges, it is crucial to examine
the linguistic characteristics of Bahnaric and its
relationship to Vietnamese. Both languages belong
to the Austroasiatic family and are considered low-
resource in the linguistic landscape (Alves, 2006).
Moreover, as both languages coexist within the
same country and share a common historical and
cultural background, they exhibit notable syntac-
tic similarities and structural overlaps. Addition-
ally, Bahnaric speakers frequently incorporate Viet-
namese loanwords, particularly in cases where na-
tive Bahnaric vocabulary lacks equivalents (Bui
et al., 2024). These linguistic overlaps serve as crit-
ical insights for designing an effective translation
system.

To leverage these shared linguistic features, we
adopt BARTPho (Tran et al., 2022), a pre-trained
encoder-decoder language model built upon the
Bidirectional and Auto-Regressive Transformers
(BART) (Lewis et al., 2020) architecture, trained
on large-scale Vietnamese corpora. This model ef-
fectively captures the linguistic characteristics of
Vietnamese, making it a strong foundation for adap-
tation to Bahnaric. To enhance its ability to model
the syntactic and lexical properties of Bahnaric, we
continually train BARTPho on augmented mono-
lingual Bahnaric data. The model is then fine-tuned
on an augmented bilingual Bahnaric-Vietnamese
dataset, producing an optimized translation sys-
tem, which we refer to as BARTBahnar. To ad-
dress the issue of data scarcity in Bahnaric, we
implement various Data Augmentation (DA) tech-
niques (Li et al., 2022) specifically designed for
NMT. These techniques enrich and diversify the
training data, improving translation performance.

Furthermore, to fully exploit the unique linguistic
characteristics of Bahnaric, we propose a novel hy-
brid approach that integrates BARTBahnar with
rule-based and statistical methods. This hybrid
strategy enhances translation reliability, particu-
larly in handling loanwords and resolving cases
where direct model-generated translations may be
inaccurate, ultimately improving translation quality
and supporting linguistic preservation.

Our key contributions are summarized as fol-
lows.

• We introduced BARTBahnar, an encoder-
decoder language model fine-tuned for
Bahnaric-Vietnamese translation, leveraging
transfer learning from BARTPho and various
DA techniques. This approach significantly
reduces training costs while effectively uti-
lizing linguistic similarities between the two
languages to enhance translation performance.

• We designed a robust hybrid system that in-
tegrates BARTBahnar with rule-based and
statistical methods, effectively handling loan-
words and improving translation accuracy.

• We achieved promising translation results
on bilingual Bahnaric-Vietnamese datasets,
demonstrating the effectiveness of our ap-
proach in preserving linguistic heritage and
fostering cultural exchange within under-
served communities.

2 Related Works

2.1 NMT for Low-resource Languages
NMT has emerged as the dominant paradigm in ma-
chine translation, leveraging deep learning models
to achieve state-of-the-art performance. However,
its reliance on large-scale parallel corpora poses
significant challenges for low-resource languages.
Existing works addressing these limitations can be
broadly categorized into three primary directions:
utilizing monolingual data, auxiliary languages,
and multi-modal data (Wang et al., 2021).

Monolingual Data Monolingual data, being
more abundant and easier to collect than paral-
lel corpora, serves as a critical resource for NMT
in low-resource scenarios. Key methodologies in-
clude: (1) Back and Forward Translation, where
pseudo-parallel data is generated by translating
monolingual sentences in reverse or the same di-
rection (Sennrich et al., 2016), (2) Joint Training,
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which leverages monolingual data from both source
and target languages simultaneously (He et al.,
2016), (3) Unsupervised NMT, relying on bilingual
alignment and iterative back translation (Lample
et al., 2018), and (4) Language Model Pre-training,
where self-supervised training on monolingual
data, as demonstrated by models like (Hwang and
Jeong, 2023), significantly boosts translation per-
formance. Although these methods effectively ex-
ploit monolingual corpora, they heavily depend on
high-quality data and often struggle with linguisti-
cally distant language pairs, limiting their general-
izability.

Auxiliary Languages Closely related languages
can facilitate knowledge transfer in low-resource
scenarios. Common strategies include: (1) Multi-
lingual Training, which shares parameters across
multiple language pairs (Johnson et al., 2017),
(2) Transfer Learning, where models pre-trained
on high-resource languages are fine-tuned for low-
resource settings (Hujon et al., 2023), and (3) Pivot
Translation, using an intermediate language to cre-
ate pseudo-parallel corpora or to combine source-
pivot and pivot-target models (Cheng et al., 2017).
While these methods leverage linguistic similarities
effectively, their success is sensitive to the choice
of auxiliary languages, data balancing, and error
propagation in pivot-based setups. Moreover, multi-
lingual training can be computationally demanding,
posing challenges in resource-constrained contexts.

Multi-modal Data Multi-modal data, such as
images and speech, expands the capabilities of
NMT by integrating non-textual information. Tech-
niques include: (1) Image Data, where image
captions generate pseudo-parallel corpora or im-
age features are incorporated into NMT mod-
els (Chen et al., 2019), and (2) Speech-Text Pairs,
supporting translation for languages without writ-
ten scripts (Zhang et al., 2021). While multi-modal
approaches provide valuable support for languages
with limited textual resources, they rely on high-
quality aligned datasets and face inherent complex-
ity in fusing diverse modalities.

Despite these advancements, most approaches
still require large, high-quality datasets, whether
monolingual or bilingual, which are unavailable for
extremely low-resource languages like Bahnaric.
This highlights the critical role of DA techniques
in improving NMT performance for low-resource
languages.

2.2 Data Augmentation in NMT
To alleviate data scarcity in low-resource NMT,
extensive research has focused on DA, which
can be grouped into three categories, namely
paraphrasing-based methods, noising-based meth-
ods, and sampling-based methods (Li et al., 2022).

Paraphrasing-based Methods These methods
generate augmented data by altering the original
text at lexical, phrase, or sentence levels. For in-
stance, tools like WordNet (Miller, 1994) replace
words with synonyms, while Easy Data Augmen-
tation (EDA) (Wei and Zou, 2019) offers sim-
ple substitution-based strategies. More advanced
techniques utilize word embeddings (Wang and
Yang, 2015) for enhanced semantic consistency.
Although these approaches increase data diversity,
they often struggle with preserving sentence mean-
ing, especially in languages with limited lexical
resources.

Noising-based Methods These approaches intro-
duce random changes to the original data without
maintaining semantic fidelity. Word swapping (Wei
and Zou, 2019), sentence-level swapping (Yan
et al., 2019), and insertion/deletion (Wei and Zou,
2019) are common examples. While easy to im-
plement, these methods risk disrupting sentence
coherence and may be unsuitable for languages
with complex syntactic structures.

Sampling-based Methods These methods typ-
ically require task-specific knowledge or anno-
tations, such as altering grammatical structures
(e.g., converting active to passive voice) (Min
et al., 2020) or constructing pseudo-parallel sen-
tences (Zhang et al., 2020). Although effective
in generating richer training data, they demand
substantial linguistic resources, which are rarely
available for extreme low-resource languages.

While DA can significantly boost translation per-
formance, its efficacy for Bahnaric, where gram-
matical and semantic resources are scarce, remains
unknown. Grammar-based approaches can be par-
ticularly challenging and may reduce translation
accuracy if applied without a deep understanding
of the language’s structure.

Another standout DA technique is back-
translation, which generates entirely new sentences
by translating target sentences back into the source
language, thus enriching data diversity. For ex-
ample, (Fabbri et al., 2021) use English-French
models to augment French data before training
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French-English NMT. Moreover, with the rise of
LLMs, (Mai and Luong, 2023) apply GPT-3.5 to
augment Vietnamese data, achieving notable im-
provements in NLP tasks. Nevertheless, deploying
back-translation or LLM-based methods for lan-
guages like Bahnaric remains challenging due to
the lack of pre-trained models and high-quality par-
allel corpora.

3 Proposed Hybrid Architecture for
Bahnaric-Vietnamese NMT

3.1 Overall Pipeline
We propose a comprehensive hybrid system for
Bahnaric-Vietnamese translation, consisting of five
main phases: Loanword Detection, Word Segmen-
tation, Lexical Mapping, BARTBahnar Translation,
and Post-Processing, as illustrated in Figure 1.

The pipeline begins with Loanword Detection,
which identifies and extracts shared loanwords that
appear in both Bahnaric and Vietnamese. These
words do not require translation and are excluded
from further processing. The remaining words
are passed to the Word Segmentation phase, where
Bahnaric sentences are segmented into meaningful
phrases using statistical methods. The segmented
phrases are then mapped to their Vietnamese equiv-
alents in the Lexical Mapping phase via a bilin-
gual dictionary. Words and phrases that cannot
be mapped directly are handled by BARTBahnar,
which generates Vietnamese translations for the
remaining content. Finally, the translated output
undergoes Post-Processing, ensuring proper sen-
tence structure, punctuation, and grammatical re-
finements to enhance fluency and accuracy.

3.1.1 Loanword Detection
Loanword detection plays a crucial role in improv-
ing translation efficiency by identifying words that
are shared between Bahnaric and Vietnamese. This
module employs rule-based methods to filter out
punctuation marks, special symbols, and numeric
characters. Additionally, we utilize a Named Entity
Recognition (NER) model from a well-established
open-source Vietnamese NLP toolkit to detect
proper nouns, such as place names and personal
names. The identified loanwords are excluded from
further translation and directly transferred to the
output.

3.1.2 Word Segmentation
As Bahnaric lacks explicit word boundaries, statis-
tical segmentation is necessary to split sentences

into meaningful phrases. To construct a phrase
dictionary from our monolingual Bahnaric cor-
pus, we employ Pointwise Mutual Information
(PMI) (Roussinov et al., 2007), a statistical measure
that quantifies the strength of association between
words. Given an n-gram (x1, x2, .., xn) and X n

as the set of all possible n-grams extracted from
the corpus, the PMI score is computed as shown in
Equation 1.

PMI(x1, x2, .., xn) = log2

(
P (x1, x2, .., xn)

n∏

i=1

P (xi)

)
,

(1)
where

P (x1, x2, .., xn)

=
count(x1, x2, .., xn)∑

(x1,x2,..,xn)∈Xn

count(x1, x2, .., xn)
,

P (xi) =
count(xi)∑

xi∈X 1

count(xi)
.

A higher PMI value indicates a stronger associa-
tion between words, suggesting that they are more
likely to form a valid phrase. An n-gram is consid-
ered a valid phrase if it satisfies both a minimum
frequency threshold and a minimum PMI threshold,
as defined in Equation 2 and Equation 3.

count(x1, x2, .., xn) ⩾ min_freq, (2)

PMI(x1, x2, .., xn) ⩾ min_pmi. (3)

All valid n-grams are stored in the phrase dictio-
nary. The Bahnaric input is then segmented into
phrase units based on this dictionary, facilitating
accurate lexical mapping and translation.

3.1.3 Lexical Mapping
This phase employs a bilingual Bahnaric-
Vietnamese dictionary to map commonly used
words and phrases to their corresponding Viet-
namese translations. To efficiently retrieve the
most relevant Vietnamese equivalents, we index the
dictionary using Solr (Tahiliani and Bansal, 2018),
an open-source search engine optimized for fast
lookup operations. Segments that can be directly
mapped are substituted with their Vietnamese
counterparts, while unmapped segments are passed
to the next translation phase using BARTBahnar.
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Loanword Detection
Dơ gưm lư bơ gloh 50% lai xuâ̆t ăn rim khoan xre wă pơm
hnam, thiê̆t 'bĭ Bình Minh lơm 2 xơ năm pơ tơm chong bi

gơh h'oh 500 triê̆u đông lơm minh kơ sơ Đà Nẵng.

  Named entities: "Bình Minh", "Đà Nẵng"
  Numerical values: "50", "2", "500"
  Punctuation: "%", ",", ",", "."

Dơ gưm lư bơ gloh lai xuâ̆t ăn rim khoan xre wă pơm
hnam thiê̆t 'bĭ lơm xơ năm pơ tơm chong bi gơh h'oh triê̆u

đông lơm minh kơ sơ

Word Segmentation
"dơ_gưm", "lư_bơ_gloh", "lai_xuâ̆t", "ăn", "rim",
"khoan_xre", "wă", "pơm", "hnam", "thiê̆t_'bĭ",

"lơm", "xơ_năm_pơ", "tơm_chong", "bi",
"gơh_h'oh", "riê̆u_đông", "lơm", "minh", "kơ_sơ"

Lexical Mapping
"Hỗ_trợ", "lãi_xuất", "cho", "các", "khoản_vay", 

"để", "đầu_tư", "nhà", "thiết_bị", "trong"

"lư_bơ_gloh", "xơ_năm_pơ", "tơm_chong", "bi",
"gơh_h'oh", "riê̆u_đông", "lơm", "minh", "kơ_sơ"

BARTBahnar "tối đa", "năm đầu", "nhưng", "không", "vượt
quá", "triệu đồng", "trên", "một", "cơ sở"

Post-Processing
Hỗ trợ tối đa 50% lãi suất cho các khoản vay để đầu tư
nhà, thiết bị Bình Minh trong 02 năm đầu nhưng không

vượt quá 500 triệu đồng trên một cơ sở Đà Nẵng.

Loanword removal

Unmapped phrases

Mapped phrases

Bahnaric-Vietnamese
bilingual dictionary

Our Hybrid NMT Architecture

Bahnaric

Vietnamese

Figure 1: Illustration of our hybrid NMT architecture, integrating BARTBahnar with rule-based and statistical
components. The figure outlines the step-by-step translation process from Bahnaric to Vietnamese. For reference,
the English equivalent of the original Bahnaric sentence is “Support up to 50% interest rate for loans to invest in
housing and Binh Minh equipment for the first two years, but not exceeding 500 million VND per facility in Da
Nang.”.

3.1.4 BARTBahnar Translation
Unmapped segments that lack direct dictionary
translations are processed by BARTBahnar, our
encoder-decoder language model fine-tuned for
Bahnaric-Vietnamese translation. The details of
BARTBahnar are elaborated in Section 3.2.

3.1.5 Post-Processing
A critical challenge in Lexical Mapping is ambi-
guity, where multiple Vietnamese candidates may
correspond to a single Bahnaric phrase. To resolve
this, we implement a scoring mechanism that se-
lects the most contextually appropriate translation,
as formulated in Equation 4.

vc = argmax
vc∈{vc1 ,vc2 ,..,vck}

Score(ypartial, vc), (4)

where vc is the chosen translation candidate, ypartial
represents the current state of the translated sen-
tence, and Score(ypartial, vc) is computed using a
pre-trained language model to ensure fluency and
semantic coherence.

After resolving ambiguities, the post-processing
module further standardizes punctuation, capital-
ization, and word order, producing the final Viet-
namese translation and completing the pipeline.

3.2 Our BARTBahnar Language Model

We propose a training strategy to effectively adapt
a pre-trained language model for low-resource
translation, with a specific focus on Bahnaric-
Vietnamese. Our approach builds upon BART, a
sequence-to-sequence model trained as a denoising
autoencoder (Lewis et al., 2020), which enhances
its ability to reconstruct text under noisy conditions.
The model employs a Bidirectional Encoder for
richer contextual understanding and an Autoregres-
sive Decoder for coherent text generation. During
training, a random subset of tokens is masked, and
the model must autoregressively recover the origi-
nal sequence, as illustrated in Figure 2.

Our training strategy comprises three main
phases: (1) Pre-training on monolingual Viet-
namese data to capture Vietnamese linguistic fea-
tures, (2) Continual pre-training on monolingual
Bahnaric data to adapt the model to Bahnaric
text, and (3) Fine-tuning on bilingual Bahnaric-
Vietnamese datasets for the translation task.

3.2.1 Pre-training on Vietnamese Language

To leverage prior knowledge from a closely related
language, we utilize BARTPho, a BART model
pre-trained on 145 million word-segmented Viet-
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Figure 2: The architecture of BART and its training
process as an autoregressive masked language model.

namese sentences. During this stage, two types of
noise are introduced, namely random token mask-
ing and sentence shuffling, to enhance the model’s
ability to handle diverse syntactic structures. Hav-
ing already learned fundamental properties of Viet-
namese grammar and syntax, BARTPho provides
a robust foundation for further adaptation to Bah-
naric.

3.2.2 Continual Pre-training on Bahnaric
Language

We further adapt BARTPho to Bahnaric by training
it on a monolingual Bahnaric corpus using an au-
toregressive Masked Language Modeling (MLM)
objective, similar to the original pre-training ap-
proach. Since Bahnaric is an extremely low-
resource language, constructing a high-quality
dataset poses a significant challenge.

To address this, we conducted extensive field sur-
veys in Bahnar-speaking regions across Vietnam to
gather rare but valuable linguistic materials. Our
data sources include: (1) Direct interviews with
native Bahnar speakers for documenting grammar
and vocabulary, (2) Printed texts such as religious
books, newspapers, song lyrics, and (3) Local news
bulletins and historical documents. After digitiz-
ing and cleaning these materials, we employed a
team of annotators to normalize the content, creat-
ing a high-quality bilingual Bahnaric-Vietnamese
dataset (referred to as the Original dataset). Ad-
ditionally, we applied back-translation techniques
to augment this dataset by reconstructing synthetic
Bahnaric text from high-quality Vietnamese sen-
tences obtained from Vietnamese Wikipedia, lever-
aging an existing Vietnamese-Bahnaric translation
model (Vo et al., 2024). The final dataset statistics
are summarized in Table 1.

In this phase, we use only the monolingual Bah-
naric portion of the dataset to allow the model to
effectively learn Bahnaric syntax and semantics.

Table 1: Statistics of our Bahnaric-Vietnamese bilingual
dataset.

Data Source Sentence Pairs
Original 53,942
Back-Translation 270,587
Total 324,529

Bidirectional Encoder Autoregressive Decoder

rim <s>măy mokthiê̆t 'bĭ các máythiết bị

các máythiết bị móc

Figure 3: The fine-tuning process for the Bahnaric-
Vietnamese translation task.

3.2.3 Fine-tuning for Bahnaric-Vietnamese
Translation

After pre-training, we adapt the model for direct
translation using a bilingual Bahnaric-Vietnamese
dataset. Unlike the MLM phase, where input se-
quences are partially corrupted, this stage follows a
supervised translation approach: the encoder takes
an unmasked Bahnaric sentence, and the decoder
generates the corresponding Vietnamese transla-
tion, as shown in Figure 3. During this step, we
employ various DA techniques but apply them se-
lectively to the Original subset to maintain high-
quality supervision, detailed in Section 4.4. We ex-
clude the back-translated data to avoid introducing
potential errors, which could otherwise undermine
the reliability of the training set.

4 Experimentations

We conduct two main experiments. In the first, we
compare our BARTBahnar model against various
baselines on the Bahnaric-Vietnamese translation
task using only the Original dataset, providing a
fair evaluation under limited data conditions. In the
second, we examine how different DA techniques
affect both BARTBahnar’s training process, intro-
duced in Section 3.2.3, and the performance of our
end-to-end translation pipeline.

4.1 Dataset
From the Original dataset described in Table 1, we
allocate 90% for training and 10% for testing. Al-
though this corpus is relatively small, it is sourced
from diverse domains (e.g., economics, social, pol-
itics, sports), ensuring a broad range of vocabulary
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and grammatical constructions.

4.2 Baselines

We select four baselines to compare against BART-
Bahnar, as described below.

Transformer We replicate the standard Trans-
former architecture introduced by (Vaswani et al.,
2017), following its original hyperparameter con-
figuration.

PhoBERT-Fused NMT Based on (Zhu et al.,
2020), we integrate a Bidirectional Encoder into
each layer of an encoder-decoder NMT system. In
our setup, we replace the baseline’s encoder with
PhoBERT, the encoder component of BARTPho.

ViT5 This is a pretrained Transformer-based
encoder-decoder model for Vietnamese (Phan et al.,
2022), trained on a large, high-quality Vietnamese
corpus using T5-style self-supervision.

BARTPho We employ BARTPho directly, with-
out any Bahnaric-focused continual pre-training.

All baselines are fine-tuned on the Original
dataset for 15 epochs with a learning rate of 2e−05,
using the AdamW optimizer (Loshchilov and Hutter,
2019) and hyperparameters β1 = 0.9, β2 = 0.999,
and ε = 1e−08.

4.3 Evaluation Metrics

We evaluate translation quality using the BiLin-
gual Evaluation Understudy (BLEU) and Metric
for Evaluation of Translation with Explicit ORder-
ing (METEOR). Both metrics measure lexical and
syntactic similarity between the model’s output and
a reference translation, making them suitable for
the Bahnaric-Vietnamese language pair.

4.4 Data Augmentation Methods

Inspired by EDA techniques (Wei and Zou, 2019)
and various approaches in the literature, we de-
signed a set of augmentation methods that preserve
sentence meaning, maintain grammatical correct-
ness, and introduce controlled variations. This ap-
proach balances linguistic diversity with data in-
tegrity, ensuring that augmented samples remain
useful for training.

Swapping Method Reorders sentence segments
within paragraphs or compound sentences, help-
ing the model generalize across varying syntactic
patterns.

Combining Method Merges semantically re-
lated sentences into more cohesive structures, re-
ducing ambiguities and enriching training exam-
ples.

Replacing Method Uses external lexical re-
sources to substitute words with contextually suit-
able synonyms while preserving semantic consis-
tency. Thematic labels and part-of-speech (POS)
tagging guide valid replacements.

Insertion and Deletion Methods The insertion
method selectively adds thematic words (e.g., lo-
cations, time references), providing extra context.
The deletion method removes non-essential words,
forcing the model to infer missing information and
improving robustness against noisy input.

Sliding Window Method Extracts overlapping
sub-sequences from sentences, generating samples
of varying lengths. By capturing both local and
long-range dependencies, it enhances the model’s
ability to handle diverse input structures.

4.5 Results and Analysis

Table 2 presents the performance of BARTBahnar
compared to various baselines on the Bahnaric-
Vietnamese translation task. As shown, BART-
Bahnar consistently outperforms all baselines, val-
idating our transfer learning strategy. By continu-
ally pre-training on Bahnaric data, BARTBahnar
effectively captures linguistic features from both
Vietnamese and Bahnaric, leading to significant
improvements in translation accuracy. Notably, the
substantial performance drop observed when us-
ing BARTPho without Bahnaric-focused continual
pre-training demonstrates the necessity of domain
adaptation before fine-tuning on the bilingual cor-
pus. These findings reinforce that relying solely
on Vietnamese knowledge in BARTPho, even with
monolingual Bahnaric training, is insufficient for
optimal Bahnaric-Vietnamese translation.

Table 2: Performance comparison of BARTBahnar and
baseline models on the Bahnaric-Vietnamese translation
task.

Baselines BLEU↑ METEOR↑
Transformer 0.26 0.0431
PhoBERT-Fused NMT 2.05 0.2648
ViT5 7.18 0.2386
BARTPho 5.73 0.2076
BARTBahnar 10.41 0.2822
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Beyond baseline comparisons, we also analyze
the impact of different data augmentation meth-
ods, as shown in Table 3. Notably, the Replac-
ing method, which applies thematic or synonym-
based word substitutions, yields the greatest im-
provements by increasing translation accuracy by
up to 200% in certain configurations. This result in-
dicates that broadening vocabulary coverage and in-
troducing controlled lexical variation significantly
enhance the model’s ability to generalize and cap-
ture linguistic nuances in Bahnaric. Additionally,
the Deletion method proves effective in this context,
since randomly removing words trains the model
to handle incomplete source sentences. However,
adding excessive noise or distorting sentence struc-
ture too much can be counterproductive. For in-
stance, combining Insertion and Swapping leads
to a sharp decline in translation quality, likely due
to conflicting syntactic cues or disrupted natural
sentence formations, thereby undermining model
reliability.

Table 3: Effect of various DA methods on our pipeline’s
translation performance.

DA Methods BLEU↑ METEOR↑
Insert + Swap 7.56 0.1905
Insert + Original 12.18 0.2921
Swap 13.74 0.2758
Slide 16.37 0.2640
Combine 16.63 0.3170
Delete 19.45 0.3323
Replace (theme) 20.19 0.3210
Replace (synonym) 21.68 0.3459

These results confirm that carefully selecting
data augmentation strategies can significantly im-
prove model performance, whereas excessive or
poorly suited transformations may introduce noise
and reduce accuracy. By strategically applying
effective augmentation techniques, particularly
synonym replacement, our BARTBahnar-based
pipeline achieves better generalization, enhanced
robustness, and improved translation quality for
Bahnaric-Vietnamese.

5 Conclusion

In this paper, we introduced a novel hybrid architec-
ture for low-resource machine translation, focusing
on Bahnaric-Vietnamese and achieving promising
results. Alongside rule-based methods that lever-
age shared features, such as the frequent use of

loanwords among Bahnaric speakers to reduce er-
rors and improve translation quality, our key contri-
bution is the custom language model BARTBahnar.
This model undergoes a strategic training process:
it is first pre-trained on Vietnamese monolingual
data, then adapted to Bahnaric monolingual data,
and finally fine-tuned for the Bahnaric-Vietnamese
translation task. By building on the domestic lan-
guage model BARTPho, we substantially reduce
training costs while relying on structural common-
alities between Vietnamese and Bahnaric to main-
tain high performance. We also investigated vari-
ous data augmentation methods to identify which
techniques are most beneficial for low-resource
languages like Bahnaric. Our findings suggest that
certain augmentations significantly increase data
diversity and enhance translation accuracy, while
others may introduce excessive noise, underscoring
the importance of carefully selecting augmentation
strategies.

Future work could involve further customiz-
ing the language model by integrating additional
Bahnaric-specific linguistic properties and refining
the rule-based components to handle more nuanced
text. Exploring additional combinations of data
augmentation methods also holds potential for fur-
ther improvements.

Limitations

Although our system achieves promising results
for Bahnaric-Vietnamese translation, several limi-
tations remain. First, it relies on a pre-trained Viet-
namese language model, BARTPho, which may not
be available for extremely low-resource languages
lacking a higher-resource “sibling” language, and
training such a model from scratch could be pro-
hibitively expensive. Second, the effectiveness of
our transfer learning approach hinges on structural
similarities between the two languages; adapting it
to languages with drastically different syntax and
grammar may pose significant challenges. Finally,
the rule-based components in our hybrid system
require a bilingual dictionary for phrase mapping,
which must be derived from an existing corpus.
This can be problematic if the corpus lacks suffi-
cient coverage or quality, and it is labor-intensive
to develop in practice.
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Abstract

Automated caption generation for paintings en-
ables enhanced access and understanding of
visual artworks. This work introduces a novel
caption dataset, obtained by manual annotation
of about 7500 images from the publicly avail-
able DEArt dataset for object detection and
pose estimation. Our focus is on describing the
visual scenes rather than the context or style of
the artwork - more common in other existing
captioning datasets. The dataset is the result of
a crowdsourcing initiative spanning 13 months,
with volunteers adhering to explicit captioning
guidelines reflecting our requirements. We pro-
vide each artwork in the dataset with five cap-
tions, created independently by volunteers to
ensure diversity of interpretation and increase
the robustness of the captioning model.

In addition, we explore using the crowdsourced
dataset for fine-tuning Large Language Mod-
els with vision encoders for domain-specific
caption generation. The goal is to improve the
performance of multimodal LLMs in the con-
text of cultural heritage, a domain with "small
data" which often struggles with the nuanced
visual analysis and interpretation required for
cultural objects such as paintings. The use of
crowdsourced data in the domain adaptation
process enables us to incorporate the collective
perceptual insights of diverse annotators, result-
ing in an exploration of visual narratives and a
observing a reduction in hallucinations other-
wise created by these large language models.

1 Introduction

To offer innovative methods for engaging with and
understanding visual artefacts at scale, many sys-
tems rely on rich metadata - for instance, in the
form of captions or descriptions. Having access
to good captions of artworks not only facilitates
broader public access to these artifacts but also
fosters a deeper appreciation for their cultural sig-
nificance. However, the automatic generation of

captions is not without challenges. Artworks of-
ten present scenes with intricate symbolism and
complex narratives, where the most important ele-
ments can be hard to identify and demand nuanced
caption beyond simple object recognition.

In this paper we introduce a novel dataset of cap-
tions of the visual content of artworks and show-
case how it can help in the domain adaptation of
state-of-art approaches such as Multimodal Large
Language Models (mLLMs) (Liu et al., 2023) for
the task of caption generation. The image dataset
was sourced from the publicly available DEArt ob-
ject detection and pose estimation dataset (Reshet-
nikov et al., 2022b), a curated assemblage of paint-
ings spanning diverse European cultures, centuries
and artistic movements.

Our motivation for collecting this new dataset
was twofold. First, good models rely on the exis-
tence of large amounts of quality data. For reasons
that are (1) technical - small data with a large vari-
ety between the representation of objects - real or
imaginary, depiction of actions usually not captured
in photographs, etc - but also (2) the relatively low
interest in cultural heritage - which results in lim-
ited effort and financing, there is still a considerable
gap between how precise multimodal LLMs per-
form for photographs and artworks. This gap could
be narrowed by new quality datasets. Secondly, we
chose to focus on the visual scene because we be-
lieve that it is necessary to identify all/most of the
elements to be able to assign cultural meaning to
a work; additionally, in those cases where a visual
setup can consistently derive further meaning could
be inferred more reliably top-down (from domain
knowledge) rather than being generated based on a
limited dataset.

The model adaptation work was motivated by
the experiments we ran that use mMMLs to gen-
erate captions for cultural heritage (CH) artifacts;
the results underlined some apparent shortcomings:
on the one hand, content unrelated to the visual
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scene (i.e., mistaken identity for both objects and
relationships between objects), and on the other,
missing elements. Our hypothesis was that these
models could effectively leverage domain knowl-
edge from datasets like ours, to overcome some of
their apparent limitations.

Our crowdsourcing campaign was hosted on
the Zooniverse platform and involved volunteers
from various backgrounds and expertise levels,
who created detailed caption annotations for about
7500 DEArt paintings during a year-long period.
Given that a high percentage of the images are non-
iconic (Berg and Berg, 2009), gathering 5 different
annotations per image allows for a diversity of per-
spectives and interpretations, which can make the
trained model more robust. Based on this data, we
use parameter-efficient fine-tuning techniques(Xu
et al., 2023) and demonstrate the possibility of mit-
igating hallucinations in LLM-generated captions.

2 Related work

Early efforts in image captioning, such as (Vinyals
et al., 2015), laid the groundwork for later advance-
ments. The distinctive challenges posed by cultural
heritage artworks demand specialized solutions due
to several important features not present in every-
day pictures: anachronic objects, imaginary beings,
actions not present in photographs - eg decapita-
tions, etc. Several works have made significant
contributions in the area of captioning for cultural
heritage, of which we briefly present those directly
related to our task - visual content captioning.

(Cetinic, 2021) highlights the complexity of
describing artworks with multiple levels of inter-
pretation and develops a captioning model based on
a large-scale dataset of artwork images annotated
with concepts from the Iconclass classification sys-
tem. The model is fine-tuned using a transformer-
based vision-language pre-trained model. Results
suggest that the model could generate meaningful
captions that exhibit a stronger relevance to the vi-
sual art context than those generated by the baseline
(pre-trained) model.

(Bai et al., 2021) introduces a multi-topic and
knowledgeable art description framework (Bai
et al., 2021) which models the generated sentences
according to three artistic perspectives and en-
hances each caption with external knowledge (from
Wikipedia). The framework is validated through an
exhaustive analysis, both quantitative and qualita-
tive, as well as a comparative human evaluation.

(Stefanini et al., 2019) addresses the problem of
cross-modal retrieval of images and sentences com-
ing from the artistic domain. The authors collect
and manually annotate the Artpedia dataset that
contains paintings and textual sentences describ-
ing both the visual content of the paintings and
other (contextual) information. They then devise
a visual-textual model that jointly addresses the
challenge of the retrieval of images and sentences
by exploiting the visual and textual chunks.

More recently, the ArtCap dataset(Lu et al.,
2024) provides 3,606 paintings, each annotated
with five captions, showcasing high-quality annota-
tions and effectiveness in benchmarking painting
captioning models. The SemArt dataset(Garcia and
Vogiatzis, 2018), designed for semantic art under-
standing, includes fine-art paintings with attributes
and textual artistic comments. It also introduces
the Text2Art challenge, a multi-modal retrieval task
linking artistic texts and paintings.

The DEArt dataset(Reshetnikov et al., 2022a)
focuses on object detection and pose estimation for
15K images of European artwork between the 12th
and the 18th centuries. It includes 69 object classes,
many of which are specific to cultural heritage, but
does not include caption annotations. Recognizing
this gap and considering the rich variety of non-
iconic images in DEArt, we decided to leverage a
subset to create a caption generation dataset.

Recent advances in the field of Large Language
Models (LLMs) (OpenAI, 2023) have seen the suc-
cessful integration of visual information into these
models, giving rise to a new generation of mLLMs.
Notable among these is LLaVA (Liu et al., 2023),
which, along with other models such as Mini-
GPT4 (OpenAI, 2023) and Instruct-BLIP (Dai
et al., 2023), have shown impressive image cap-
tioning and question-answering capabilities.

Like LLMs and unlike most of the ArtCap and
SemiArt works, our approach relies on crowdsourc-
ing data. This has the advantage of training the
model with a variety of interpretations of paintings,
coming from volunteers with different levels of ex-
pertise in cultural heritage. We believe that this can
make the trained model more flexible and accurate.

Other works in metadata generation for cultural
heritage exist, but they at least partly focus on the
generation of style and context information (art-
work’s history, author’s biography etc.), which in-
troduces noise in the captions.
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3 Guidelines for caption generation

To create effective guidelines1, we drew inspiration
from established practices such as (Starr, 2022),
and we discussed our proposal with several cultural
heritage experts. After deciding to use Zooniverse
as a platform, we received expert advice from one
of their shepherds.

Our guidelines emphasize the requirements of
clarity, simplicity, and objectivity. We encourage
annotators to start captions with the most crucial
elements, progressing from foreground to back-
ground. We recommend avoiding assumptions,
e.g., the identity of characters, events or places,
assumptions about time periods (which, e.g. may
bias the choice of object names), or professional
jargon. The focus should always be on what is
visually present in the image, avoiding implica-
tions or intentions. Named entities should be iden-
tified, but only if they are clearly recognizable or
convey important information. Guidelines provide
specific instructions for spatial orientation, using
absolute positioning and limiting the use of "back-
ground/foreground" to essential details. They also
advocate for concise annotations, restricting cap-
tions to 250 characters, while encouraging multiple
sentences for clarity and simplicity. The language
should be straightforward and avoid comparative
constructs (e.g. larger, smallest), pronouns, and
unnecessary punctuation. The annotation interface
included examples to illustrate the preferred style
and promote clear and informative annotations in a
standardized manner.

4 Crowdsourcing process and
preprocessing of the annotated data

After a thorough assessment of various platforms,
which included short tests for quality of annota-
tions, we decided to use the Zooniverse platform.
Zooniverse’s established reputation in supporting
citizen science projects with quality metadata, the
possibility of hosting caption annotation tasks, and
the reality that volunteers make for better annota-
tors (possibly due to the inherent interest in the
project), were decisive factors in our decision. Due
to GDPR and other law restrictions, Zooniverse
platform doesn’t allow the collecting of data about
volunteers. However, In March 2015, the Zooni-
verse team conducted a survey to better understand
their volunteer community. The survey, part of a

1Link to guidelines

Master’s thesis by Victoria Homsy at Oxford Uni-
versity, gathered responses from approximately 300
active participants. Key findings revealed a gender
distribution of 60% male and 40% female volun-
teers. Age-wise, the community was diverse, with
a slight underrepresentation of older individuals.
Geographically, the user base was primarily from
English-speaking countries, notably the UK and
the US, each contributing about a third of the par-
ticipants, while only 2% hailed from developing
nations. Employment data indicated that around
half of the volunteers were employed, 15% were re-
tired, 10% unemployed, and 4% unable to work due
to disability. The survey also highlighted a wide
range of occupations among volunteers, including
roles such as professor, administrator, guard, and
various technical positions.

The crowdsourcing campaign was initiated with
the design of a user-friendly interface (UI) to facil-
itate efficient interaction between volunteers and
the paintings. We ran the campaign in batches to
try to get 4-5 good annotations per image for in-
creasingly larger subsets of DEArt, while at the
same time keeping a balance between diversity and
thematic consistency.

Concretely, we included images with different
styles and from different time periods, while ex-
cluding most portraits and other iconic images
with limited interest from a captioning perspec-
tive (e.g.images that weren’t iconographic or that
had low expected variability for the captions). This
process was iterative and involved: (1) the gradual
decrease of the size of the batches to increase the
motivation of the volunteers to complete the work,
and (2) the adaptation of the image selection pro-
cess to propose paintings of complexity that had
lead to good captions in previous batches.

The multiple captions generated for each paint-
ing by the different volunteers reflect diverse artis-
tic interpretations and visual insights and thus help
us train a more robust captioning model.

At the end of each batch annotation process, we
ran a data health check; rigorous quality control
mechanisms were applied to manually verify the
adherence of captions to guidelines and to maintain
thematic alignment. Corrections and clarifications
were incorporated into our guidelines and User
Interface to enhance annotation accuracy. This
iterative batch approach enabled us to capitalize
on the collective contributions of volunteers while
preserving dataset integrity.

The total number of uploaded images was 7543.
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Dataset Images Captions per Image Total Captions
Our Dataset 7,543 4.57 34,535
SemArt 21,383 1 21,383
ArtPedia 2,930 3.1 9,173

Table 1: Comparison of our dataset versus state-of-the-art caption datasets in CH. Our dataset features a balanced
mix of images and captions per image, achieving the highest total caption count among the datasets.

The dataset health check was based on several
rules:

1. Filter out captions with fewer than two tokens.

2. Filter out captions containing specific words.
E.g. when presented with an image, some
users introduce a caption of an image in the
guidelines rather than the one that corresponds
to the dataset image. Another (general) case
was due to our campaign not allowing vol-
unteers to skip images they didn’t want to
annotate.

3. Eliminate annotations by users who either
didn’t read the guidelines properly or inten-
tionally chose not to follow them. Some ex-
amples we identified that fall in this class are
"aN oLd DrAwInG!!!!!!!!!!!!!!!!!!!!!", "bad
example".

4. Users seem to be remarkably consistent in
providing useless, or high-quality, annotations.
This provided us with yet another criteria to
eliminate all captions from specific users.

Following the dataset health check, 34535 captions
were retained. Our crowdsourced dataset stands
out for its richness (i.e. number of annotations per
images and total annotations) and diversity (i.e. dif-
ferent annotator views, given by the number of an-
notations per image) in comparison to the datasets
that are the largest and most relevant in cultural
heritage, as indicated by the metrics in Table 1.
While it contains fewer images than SemArt, our
dataset offers an average of 4.57 captions per im-
age. The higher caption diversity is crucial to train
more nuanced models, as it reflects how a visual
scene can be described differently - which increases
the power of generalization. In contrast, SemArt
provides only one caption per image (although of
museum-expert quality), which may limit the range
of insights available for each artwork. Although
ArtPedia offers a moderate number of captions per
image (3.1 on average), its total image count is

significantly lower, leading to a smaller pool of
captions overall (9173).

This comparative analysis highlights the balance
achieved in our dataset between the quantity of
images and the variety of annotations. The em-
phasis on obtaining multiple captions per image
enriches the dataset by incorporating a variety of
descriptive styles, subjective interpretations, and
visual details, thus providing a comprehensive base
for fine-tuning models. The iterative process of
data collection and quality checks ensures that our
dataset maintains both breadth and depth, allow-
ing the generation of high-quality, diverse painting
captions.

To measure diversity, we calculated three met-
rics and compared them with the ArtCap dataset.
Our choice is due to the similarity in dataset struc-
ture (e.g. multiply captions per image, focus on
visual content). Diversity was measured using the
following metrics:

• Lexical Diversity: Counts unique words
across captions (e.g., type-token ratio).

• Semantic Diversity: Measures how semanti-
cally different the captions are using embed-
dings.

• Edit Distance/Overlap: Measure by counting
the minimum number of operations required
to transform one string into the other.

Results are shown in Table 2. We will release
the caption dataset after publication.

5 Model architecture and training process

For model training and caption generation exper-
iments, we chose an open-sourced model, the
LLAVA (Large Language and Vision Assistant)
llava-v1.5-7b. LLAVA is a novel end-to-end large
multimodal model that combines a vision encoder
and an LLM for general-purpose visual and lan-
guage understanding. It represents a significant
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Metric Our
dataset

ArtCap Observation

Lexical Diversity 0.5831 0.4765 Our dataset has higher lexical diversity, meaning it uses
a larger variety of unique words relative to its total word
count. This suggests that captions in our dataset are more
varied in vocabulary compared to ArtCap data.

Semantic Diversity 0.8094 0.8236 Both datasets exhibit high semantic diversity, but ArtCap
dataset is slightly more diverse. Captions in ArtCap likely
describe the images using different structure of sentences
more often than in our dataset.

Edit Distance 174.73 44.07 Our dataset has a much higher edit distance, indicating
its captions are structurally more distinct. Captions in
ArtCap dataset are more similar in word arrangement and
structure.

Table 2: Comparative analysis of caption diversity metrics between our dataset and ArtCap. Higher values indicate
greater diversity.

advancement in the field of multimodal AI, demon-
strating impressive multimodal chat capabilities -
sometimes of similar quality of captions as those
generated by the multimodal GPT-4 - and set-
ting a new state-of-the-art accuracy standard for
QA(Rodrigues et al., 2024).

The LLAVA pre-trained visual encoder and the
LLM connect using a simple projection matrix.
This setup allows the model to convert images into
a word embedding space, while textual input is also
transformed into the same space. The image and
word tokens are then passed to a LLaMA (Touvron
et al., 2023) decoder, which produces output.

Retraining or even fine-tuning LLMs typically
demands extensive datasets and significant GPU
hours. This process not only consumes con-
siderable computational resources but also car-
ries the risk of catastrophic forgetting, where the
model loses the knowledge it previously acquired
when too many layers of the network update their
weights. To address these challenges, one of the
parameter-efficient fine-tuning (PEFT) approaches
(Xu et al., 2023) has been used for domain adapta-
tion of the LLAVA model. PEFT methods are de-
signed to adjust only a small subset of the model’s
parameters while keeping the majority of them
fixed. This makes the fine-tuning process more
efficient and less resource-intensive. By focusing
on a limited number of parameters, PEFT tech-
niques significantly reduce the computational load
and the amount of data required, enabling quicker
and more cost-effective adaptation to new domains.

This can lead to a more agile and scalable deploy-
ment of LLMs for specialized application domains,
ensuring that the model remains both accurate and
efficient.

LoRA (Low-Rank Adaptation of Large Lan-
guage Models) (Hu et al., 2021) is one of the PEFT
techniques to train LLMs on specific tasks or do-
mains. This technique introduces trainable rank
decomposition matrices into each layer of trans-
former architecture and also reduces the number of
trainable parameters for downstream tasks while
keeping the pre-trained weights frozen.

To further optimize resource usage and fine-
tuning efficiency, we employed QLoRA (Quan-
tized Low-Rank Adaptation) instead of traditional
LoRA. QLoRA was the most optimal choice be-
cause it reduces the memory footprint even further
by leveraging 4-bit quantization, allowing for the
fine-tuning of LLMs on consumer-grade hardware
without sacrificing model performance. The use
of QLoRA enables efficient memory utilization,
allowing us to fine-tune larger models with fewer
hardware resources, significantly lowering both the
cost and time required for adaptation (Han et al.,
2024).

Our QLoRA(Table 3) configuration is character-
ized by several key parameters such as the rank
and the alpha value, which contribute to better con-
vergence and scalability. Additionally, the use of
mixed-precision training with bfloat16 (BF16) and
TensorFlow32 (TF32) enables faster computation
while minimizing memory requirements. To ensure
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Model Architecture

LoRA Rank (r) 128 LoRA Alpha 256
Vision Tower clip MM Projector Type mlp2xgelu
MM Projector LR 2e-5 Vision Select Layer -2
Quantization Bits 4 Image Aspect pad
Model Max Length 2048

Training Configuration

Train Batch Size 4 Eval Batch Size 4
Grad. Accum. Steps 16 DataLoader Workers 4
Learning Rate 2e-4 Weight Decay 0.0
Warmup Ratio 0.03 LR Scheduler cosine
Training Epochs 10

Table 3: LoRA fine-tuning hyperparameters organized
by model architecture and training configuration.

effective utilization of resources, the data loading
process is optimized with lazy preprocessing and
efficient parallelism (Rasley et al., 2020) using mul-
tiple dataloader workers. The LLAVA architecture
we implement utilizes Vicuna-7B as LLM (Zheng
et al., 2023) and the ViT vision transformer (Doso-
vitskiy et al., 2021) from OpenAI’s CLIP model
(Dai et al., 2023), which incorporates advanced fea-
tures like multimodal projection layers and gradi-
ent checkpointing (See Figure1). See more details
about model parameters and training configuration
in Table 3.

6 Evaluation

We employed multiple evaluation metrics to as-
sess the quality of the image captions generated by
the baseline (LLAVA) and fine-tuned models, in-
cluding Rouge1 (R1), Rouge2 (R2), RougeL (RL),
and RougeLsum (RLsum), which measure n-gram
overlap between generated and reference captions.
Additionally, we included Meteor, Cider, and Clip-
Score, providing a more comprehensive view of
the captioning performance. Rouge metrics are par-
ticularly useful for evaluating fluency and structure
through n-gram and subsequence overlaps, while
Meteor and Cider provide insights into the seman-
tic accuracy; ClipScore assesses the alignment be-
tween the generated captions and the visual con-
tent.

Table 4 presents the comparison between results
with the baseline LLAVA model and its fine-tuned
version using QLoRA - for our dataset and the Se-
mArt dataset. Fine-tuning on our dataset led to
significant improvements over the baseline; for in-
stance, the Rouge1 score increased from 0.31 to
0.43, and Rouge2 rose from 0.09 to 0.18, indicating
a stronger overlap with reference captions. RougeL

and RougeLsum similarly improved from 0.21 to
0.31 and 0.21 to 0.32, respectively, reflecting en-
hanced structural consistency and coherence of gen-
erated captions. The fine-tuned LLAVA model also
demonstrated notable gains in Meteor and Cider
scores, with Cider improving from 0.28 to 0.48,
suggesting a better match with the overall refer-
ence data. Additionally, ClipScore increased from
0.31 to 0.42, indicating a higher alignment between
captions and the visual content of the images.

However, the results on SemArt were more mod-
est. Fine-tuning improved Rouge1 from 0.19 to
0.21 and Rouge2 from 0.027 to 0.11, while the
gains in RougeL and RougeLsum were similarly
limited (0.14 to 0.16). The lower ClipScore of
0.315 for the fine-tuned LLAVA on SemArt, com-
pared to 0.42 on our dataset, indicates that the cap-
tions generated for SemArt images were less con-
textually aligned with the visual content. This dis-
parity suggests that the model’s ability to generate
highly relevant captions is influenced by the char-
acteristics of the dataset used for training, with our
dataset providing a better foundation for capturing
the nuanced relationship between text and imagery.

Overall, the evaluation demonstrates that fine-
tuning using QLoRA can significantly improve the
performance of mMMLs when training for specific
domains, especially when these domains do not
(or cannot) have extensive datasets. Moreover, the
richer and more diverse the manual annotations,
the higher the quality of the generated captions, as
reflected by the lower ClipScore.

7 Limitations and discussion

Given the widespread excitement surrounding
LLM capabilities and despite the improvements our
fine-tuned model brings, we questioned whether
these quantitative results also reflect a better quality
of the generated captions from a human viewpoint.
We thus embarked on an empirical exploration;
our experiments with the baseline LLAVA model
and the improvements that the fine-tuned LLAVA
model achieved point to limitations in terms of
the effectiveness of general-purpose mLLMs in the
absence of domain-specific adaptations.

1. Hallucinations: One of the most notable limi-
tations observed was the baseline model’s tendency
to hallucinate (invent details not present in the ac-
tual artwork). E.g., in the caption of "Palas Athena
in Fight against Centaurs" (Figure 2c), the baseline
LLAVA model generated incorrect elements, such
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Figure 1: Architecture of LLAVA model with QLoRA layer

Model R1 R2 RL RLsum Meteor Cider ClipScore

Baseline LLAVA (Our Dataset) 0.31 0.09 0.21 0.21 0.25 0.28 0.31
Fine-tuned LLAVA (Our Dataset) 0.43 0.18 0.31 0.32 0.31 0.48 0.42
Baseline LLAVA (SemArt) 0.19 0.027 0.14 0.14 0.12 0.19 0.21
Fine-tuned LLAVA (SemArt) 0.21 0.11 0.16 0.16 0.19 0.24 0.315
Note: R = ROUGE (R1 = ROUGE-1, R2 = ROUGE-2, RL = ROUGE-L, RLsum = ROUGE-L summary)

Table 4: Evaluation metrics for LLAVA models fine-tuned using QLoRA on two datasets (Our Dataset and SemArt).

as a dog and a bird, which do not exist in the paint-
ing. Similarly, for "Jupiter and Bellerophon" (Fig-
ure 2a), it inaccurately describes a scene involving
angels when the painting actually features a man
and a winged horse. This may also be interpreted
to some extent as a case of mistaken identity in the
case of the horse, whose wings made the baseline
model believe it is an angel. On the other hand,
the man on the left does not have wings, and the
baseline model hallucinates angel instead. Finally,
in "Annunciation" (Figure 2b), the basic model hal-
lucinates a baby and a potted plant; this last could
also be interpreted as mistaken identity since we
assume the wings are interpreted as greenery. Both
models hallucinate a man in white.

2. Incompleteness and mistaken identity: In
several instances, the model produced captions that
lacked crucial details. For example, in "Annunci-
ation" (Figure 2b), the baseline model’s caption
mentions a woman and a child, omitting - or mak-
ing the mistake - that the second figure is an angel
and he is holding a flower; the baseline model does
not see the wings, nor the flower. Both aspects
are part of a significant religious interaction that is
central to the meaning of the painting. Likewise,
in Figure 2c, the centaurs are interpreted by the
baseline model as horses; in Figure 2a, the model
does not identify a horse at all.

The baseline model also mistakenly identifies

crucial actions. In Figure 2a, the man falls rather
than being lifted, while in Figure 2c, the woman
is killing a beast rather than standing on it. Both
actions are critical to understand the true meaning
embedded in the artpiece, and its symbolism.

These limitations suggest that foundation mod-
els like LLAVA struggle with both accuracy and
completeness in complex visual art contexts. De-
veloping a domain-specific dataset and fine-tuning
mLLM models like LLAVA for art interpretation is
a more reliable approach.

8 Conclusion

This work introduces a novel dataset for caption
generation of paintings sourced from a publicly
available dataset. Our caption dataset was created
through a year-long crowdsourcing campaign on
Zooniverse, with volunteers adhering to explicit
captioning guidelines. We have shown that this is a
valuable resource for research and development in
the field of automated caption generation for visual
art. It can be used to fine-tune mLLMs - such as
LLAVA - for domain adaptation, resulting in signif-
icant improvements in the quality of generated cap-
tions compared to the baseline models. The LoRA
approach to fine-tuning mLLMs appears to be par-
ticularly effective in enhancing the model’s ability
to generate captions that are more coherent, con-
textually aligned, and better capture the nuances of
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(a) "Jupiter and Bellerophon", unknown.
Baseline LLAVA: The image depicts a
painting of a man being lifted into the air
by two angels. The man is positioned in
the center of the scene, with one angel
on his left side and the other on his right
side. The angels are holding the man, and
he appears to be flying through the sky.
In the background, there are two people
standing, possibly observing the scene or
waiting for their turn to be lifted. The
painting captures a moment of wonder
and awe.
Fine-tuned LLAVA: The image features
a painting of a man and a winged horse
flying through the sky. The man falls from
the horse, which is positioned towards
the right side of the scene. The painting
captures the dynamic and dramatic mo-
ment of the man and the horse soaring
through the air. In the background, there
is another man visible, on the left side
of the painting. The scene appears to be
set in a mountainous landscape, with a
mountain visible in the background. The
overall atmosphere of the painting is one
of adventure and freedom.

(b) "Annunciation", D. Ghirlandaio.
Baseline LLAVA: The image depicts a
scene from a painting, featuring a woman
and a child. The woman is kneeling down,
holding a baby, while the child is stand-
ing nearby. The woman appears to be
dressed in a yellow gown, and the child
is wearing a white gown. The painting
is set in a room with a window in the
background. In the room, there is a chair
positioned towards the right side of the
scene, and a potted plant is located on
the left side. Additionally, there is a bowl
placed on the floor, close to the woman
and the child.
Fine-tuned LLAVA: The image features
a painting of a woman sitting in front of
an angel, who is kneeling and holding a
white flower. They appear to be engaged
in a conversation or a religious ceremony.
The woman is wearing a yellow dress,
while the man is dressed in white. In the
background, there is a window with a cur-
tain, which adds to the atmosphere of the
scene. The painting is likely a religious
or historical depiction, as it captures the
interaction between the two individuals.

(c) "Palas Athena in Fight against Cen-
taurs", Milan Thomka Mitrovský.
Baseline LLAVA: The image features
a woman dressed in a warrior costume,
standing on a horse and holding a shield.
She appears to be engaged in a battle or
a mock fight. The horse is positioned in
the center of the scene, with the woman
standing on its back. There are two other
people in the background, one on the left
side and the other on the right side of the
image. The scene also includes a dog,
which is located on the left side of the
image, and a bird, which is flying in the
sky above the woman and the horse.
Fine-tuned LLAVA: The image depicts
a painting of a woman killing a centaur.
The woman is wearing a helmet and is
holding a shield, while the man appears
to be holding a sword. The scene takes
place in a lush green field, with a body of
water in the background. There are sev-
eral other centaurs in the painting, some
of whom are closer to the water and oth-
ers further away. The overall atmosphere
of the painting suggests a battle or a mo-
ment of intense action.

Figure 2: Comparison of generated captions between baseline and fine-tuned LLAVA models on different artworks.

artistic interpretation. We believe that this research
will contribute to further advancements in auto-
mated caption generation for paintings and other
forms of visual art, ultimately enhancing accessi-
bility and understanding of these cultural artifacts.

9 Ethical and broader impact of the work

Participation in the annotation campaign was volun-
tary. Annotators were informed about the purpose,
benefits, risks, and funding behind the study be-
fore participating. The dataset we used as a source
of images has a Creative Commons license and is
openly available. We pseudo-anonymized the col-
lected data based on identifiers. We did not collect
any personally identifiable data beyond user names
on the Zooniverse platform. We recognize no addi-
tional potential for harm in our work beyond those
already incurred by LLMs (e.g. bias), and our ap-
proach fine-tunes one such mLLM model to make

it more accurate for the cultural heritage domain.
AI assistants were not used in this work. Upon
publication, we will release the dataset publicly for
research use, which is classified as a "not high-risk"
according to the EU Artificial Intelligence Act. We
are not aware of any other possible ethical con-
sequences of the proposed dataset and fine-tuned
model.
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Abstract

Language is a cornerstone of cultural identity,
yet globalization and the dominance of major
languages have placed nearly 3,000 languages
at risk of extinction. Existing AI-driven trans-
lation models prioritize efficiency but often fail
to capture cultural nuances, idiomatic expres-
sions, and historical significance, leading to
translations that marginalize linguistic diver-
sity. To address these challenges, we propose
a multi-agent AI framework designed for cul-
turally adaptive translation in underserved lan-
guage communities. Our approach leverages
specialized agents for translation, interpreta-
tion, content synthesis, and bias evaluation,
ensuring that linguistic accuracy and cultural
relevance are preserved. Using CrewAI and
LangChain, our system enhances contextual
fidelity while mitigating biases through exter-
nal validation. Comparative analysis shows
that our framework outperforms GPT-4o, pro-
ducing contextually rich and culturally embed-
ded translations—a critical advancement for
Indigenous, regional, and low-resource lan-
guages. This research underscores the potential
of multi-agent AI in fostering equitable, sus-
tainable, and culturally sensitive NLP technolo-
gies, aligning with the AI Governance, Cultural
NLP, and Sustainable NLP pillars of Language
Models for Underserved Communities. Our
full experimental codebase is publicly avail-
able at: github.com/ciol-researchlab/
Context-Aware_Translation_MAS.

1 Introduction

Language is a vital cultural repository, transmit-
ting traditions, values, and historical narratives
across generations. It preserves oral traditions, folk-
lore, and indigenous knowledge, shaping a com-
munity’s worldview and identity (Goel). How-
ever, globalization, urbanization, and the domi-
nance of English have led to an alarming decline
in linguistic diversity, with nearly 3,000 languages
projected to disappear this century (Kandler and

Figure 1: Our Approach for Preserving Cultural Identity
with Context-Aware Translation Through Multi-Agent
AI Systems

Unger, 2023). This loss severs communities from
their heritage, weakens intergenerational transmis-
sion, and marginalizes minority identities. Despite
growing awareness, traditional preservation meth-
ods remain inadequate; documentation efforts fail
to capture cultural complexity, while machine trans-
lation distorts contextual meaning (Hutson et al.,
2024). The digital linguistic divide further excludes
underrepresented languages, limiting their digital
presence and corpus availability (Bella et al., 2023).
Additionally, economic pressures favor dominant
global languages, leading younger generations to
abandon their native tongues. While technologi-
cal advancements offer potential solutions, current
approaches often focus on efficiency rather than
cultural authenticity, overlooking the need for lin-
guistic preservation beyond translation (Mufwene,
2005). As AI-driven methods become central to
language processing, it is essential to rethink how
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these systems can adapt to cultural and contextual
complexities rather than replace them.

The shortcomings of existing AI-driven lan-
guage models highlight the urgent need for a more
culturally aware and linguistically inclusive ap-
proach. Traditional machine translation systems,
while effective in word-to-word conversion, often
fail to retain cultural and historical depth, with up
to 47% of contextual meaning lost in conventional
translations (Tian et al., 2022). This challenge is
particularly significant for tonal languages, oral tra-
ditions, and indigenous dialects, where subtleties
are essential for accurate interpretation. Addition-
ally, the dominance of English-centric AI mod-
els reinforces linguistic hierarchies, marginalizing
lesser-known languages and limiting their digital
accessibility (Lepp and Sarin, 2024). Compound-
ing this issue, AI trained primarily on Western lin-
guistic paradigms struggles to handle dialectal di-
versity, non-standardized orthographies, and tonal
complexity, making it unsuitable for many under-
represented languages (Kshetri, 2024; Romanou
et al., 2024). Beyond technological constraints,
globalization and socio-economic shifts further ac-
celerate language endangerment, as younger gener-
ations increasingly prioritize global languages over
ancestral ones (Garg, 2024). These challenges ne-
cessitate a shift from isolated, monolithic AI mod-
els to collaborative, multi-agent AI systems capable
of not just translation but interpretation, synthesis,
and evaluation through a cultural lens (Jones et al.,
2025). By integrating context-aware translation,
multimodal AI, and real-time bias detection, an in-
novative AI-driven linguistic framework can bridge
these gaps and establish a more sustainable, cultur-
ally embedded approach to language preservation.

To address these challenges, we propose a Multi-
Agent AI Framework for Cross-Language Under-
standing, designed to enhance the linguistic, cul-
tural, and ethical integrity of machine translations,
as outlined in Figure 1. Unlike traditional NLP
models, which process translation in a linear and
isolated manner, our framework orchestrates multi-
ple AI agents that collaboratively refine linguistic
and cultural adaptation at different stages. The
Translation Agent ensures grammatical accuracy,
while the Interpretation Agent enriches outputs by
embedding historical, social, and contextual mark-
ers. The Content Synthesis Agent structures the
final output, preserving idiomatic expressions, cer-
emonial speech, and linguistic variations for read-
ability and coherence. Finally, the Quality and Bias

Evaluation Agent mitigates distortions by cross-
referencing historical data, detecting biases, and en-
suring fairness through real-time validation mecha-
nisms such as DuckDuckGo search integration.

Our collaborative AI system, developed us-
ing CrewAI and LangChain, is powered by
Aya-Expanse:8b (Dang et al., 2024) via Ollama,
with LiteLLM proxying to optimize model ef-
ficiency. By leveraging this multi-agent ap-
proach, our framework bridges the gap between
low-resource language communities and high-
performance NLP models, offering a scalable, eth-
ically responsible, and culturally sensitive solu-
tion. Furthermore, this paradigm not only enhances
translation quality but also provides a foundation
for digital language preservation, ensuring that lin-
guistic heritage remains accessible and relevant in
the AI-driven era. Our work contributes to sus-
tainable NLP development by promoting equitable
access to AI technologies, aligning with the broader
mission of inclusive and ethical AI for global lin-
guistic diversity.

2 Related Work

The preservation of linguistic diversity and cultural
heritage has been a growing research focus, with
studies exploring both traditional methods and AI-
driven computational techniques. Early efforts em-
phasized community-driven documentation, while
modern advancements leverage machine transla-
tion, generative AI, and multimodal learning to
enhance language sustainability.

2.1 Cultural Language Preservation

Traditional language preservation often relies on
linguistic documentation and community-driven
efforts. Nekoto et al. introduced a participatory
translation approach to enhance neural machine
translation (NMT) for under-resourced languages,
fostering greater involvement from native speak-
ers. Miyagawa (2024) developed a bi-directional
translation system specifically for Ainu, address-
ing its unique linguistic structure and revitalizing
the language’s usage in modern contexts. Louadi
(2024) emphasized the importance of diverse and
inclusive datasets to reduce biases in AI applica-
tions, particularly in language preservation. Hutson
et al. (2024) proposed scalable AI models to pro-
mote the use of mother tongues, enhancing cultural
identity and continuity. Furthermore, Nanduri and
Bonsignore (2023) explored AI-powered language
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Figure 2: Our Workflow of Context-Aware Translation ThroughMulti-Agent AI Systems

learning tools, including bilingual storybooks and
VR simulations, that not only support language
acquisition but also promote cultural appreciation
and ethical practices in the preservation process.

2.2 AI and Computational Techniques for
Language Preservation

With the rapid advancements in AI and deep learn-
ing, researchers have increasingly explored ma-
chine learning, generative AI, and multimodal
techniques for language revitalization. Bizan bin
Ghowar (2023) applied AI to heritage analysis
and NLP-driven historical text processing, aiming
to preserve linguistic traditions through computa-
tional tools. Similarly, Liu et al. (2024) examined
generative AI’s potential in preserving ancient texts
and facilitating multimodal research, highlighting
its value in enhancing the accessibility of historical
languages. However, Putri et al. (2024) pointed out
that while LLMs can generate syntactically coher-
ent text, they often fail to capture the cultural depth
and contextual accuracy crucial for low-resource
languages. This reveals a significant limitation
in generative models, where AI systems lack the
cultural nuances and real-world understanding nec-
essary for effective language preservation. Further
addressing this gap, Myung et al. (2024) introduced
the BLEND benchmark to assess LLMs’ cultural
knowledge across multiple languages, revealing
substantial performance discrepancies for underrep-
resented cultures. In response to these challenges,
AJUZIEOGU (2024) proposed a multimodal gen-
erative AI framework for African language doc-
umentation, integrating neural architectures with
community-driven approaches to mitigate the im-
pact of data scarcity. While these studies high-
light the potential of AI in language revitalization,
they also underscore ongoing challenges in achiev-
ing true cultural adaptation and contextual accu-
racy, particularly in the face of limited and diverse
datasets. This calls for more nuanced, culturally-

aware AI frameworks that can bridge these gaps
and offer robust solutions for underrepresented lan-
guages.

Existing AI models struggle with cultural depth,
linguistic bias, and adaptability, often reinforcing
English-centric hierarchies while failing to inte-
grate underrepresented languages. Current LLM
approaches lack collaborative, multi-agent frame-
works, limiting contextual adaptation and ethical
oversight. Our work distinguishes itself from exist-
ing research by introducing a multi-agent AI frame-
work that specifically addresses the cultural and
contextual shortcomings of traditional AI-driven
translation models. While previous efforts, such
as those by Nekoto et al. and Louadi (2024),
have focused on improving language preservation
through community-driven or single-agent AI ap-
proaches, our framework incorporates specialized
agents—Translation, Interpretation, Content Syn-
thesis, and Quality and Bias Evaluation. Our multi-
agent framework enhances linguistic accuracy and
cultural relevance, addressing the complexities of
low-resource languages and idiomatic expressions.
By using iterative cross-validation with external
sources like DuckDuckGo, we mitigate biases and
ensure cultural fidelity, outperforming traditional
LLMs. This approach offers a novel, inclusive so-
lution for language revitalization and preservation,
overcoming the limitations of prior models.

3 Methodology

This section presents the design and implementa-
tion of our Multi-Agent AI Framework for Cross-
Language Adaptation, focusing on system archi-
tecture, agent roles, and the translation refinement
process.

3.1 System Overview
Our framework operates on a multi-agent architec-
ture, leveraging CrewAI (Duan and Wang, 2024) for
task delegation and collaboration. We employ Aya
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Expanse 8B, an open-weight multilingual LLM
from Cohere for AI, optimized through data ar-
bitrage, multilingual preference training, safety
tuning, and model merging (Dang et al., 2024).
Aya Expanse 8B excels in 23 languages, ensur-
ing robust cross-language performance. We inte-
grate the LiteLLM proxy for optimized inference
and use DuckDuckGo search for real-time exter-
nal validation, allowing for cultural and contex-
tual verification (Saravanos et al., 2022; Agarwal
et al., 2024). The model undergoes 3-5 train-
ing epochs for general adaptation tasks and 10
epochs for fine-tuning on low-resource languages
1. Our agents operate sequentially, with each mod-
ule processing the text iteratively to refine gram-
matical accuracy, cultural fidelity, and bias mitiga-
tion. The system follows a task delegation struc-
ture, where each agent contributes to refining the
output until it meets contextual and ethical stan-
dards. Our full experimental codebase is publicly
available at: github.com/ciol-researchlab/
Context-Aware_Translation_MAS.

3.2 Agent Crew for Linguistic Transformation

Our framework utilizes four autonomous agents,
each designed to address specific aspects of the
translation process. Each agent operates indepen-
dently, contributing its specialized task to ensure a
culturally adaptive and linguistically accurate trans-
lation. The agents are designed to work sequen-
tially with possible back and forth if required, with
each task building upon the previous one to refine
and enhance the output. Below, we describe the
purpose, goals, and design of each of these agents.
Table 1 provides a brief description of the agents.

3.2.1 Translation Agent
The Translation Agent is responsible for convert-
ing the source text from English into the target
language while ensuring syntactic correctness and
linguistic precision. This agent utilizes Neural Ma-
chine Translation (NMT) techniques to generate a
raw translation that preserves the meaning of the
original content. The goal of this agent is to ensure
that the translation remains grammatically accu-
rate, following the rules and structure of the target
language. To achieve this, the agent leverages large-
scale pre-trained models and context-aware mech-
anisms to produce an initial, linguistically sound

1Upon acceptance, we will release the full working code as
an open-source project, ensuring transparency, reproducibility,
and broader accessibility for researchers and developers.

translation. By allowing delegation, the Transla-
tion Agent can also pass its output to other special-
ized agents for further refinement, ensuring that the
translation process is adaptable and efficient.

3.2.2 Interpretation Agent
The Interpretation Agent’s primary purpose is to
ensure that the translated content is culturally rel-
evant and meaningful in the target language. This
agent focuses on adapting idioms, expressions, cul-
tural references, and regional nuances to make the
translation more natural and appropriate for the
target audience. Its goal is not merely linguistic
accuracy but the cultural adaptation of the text, en-
suring that humor, traditions, and local contexts are
accurately conveyed. The agent uses contextual
understanding and cultural knowledge to evaluate
the translation and make necessary changes. Al-
lowing delegation here means the agent can pass
its results to other agents for further analysis or val-
idation, which is essential for complex linguistic
tasks involving culture.

3.2.3 Content Synthesis Agent
The Content Synthesis Agent plays a pivotal role in
structuring the translated text into its final, polished
form. Its responsibility is to ensure that the transla-
tion reads coherently and fluently while preserving
both linguistic accuracy and cultural authenticity.
This agent organizes the text logically, ensuring
that sentences and paragraphs flow smoothly and
that the structure aligns with the conventions of the
target language. Additionally, the Content Synthe-
sis Agent integrates cultural annotations and deci-
sions made by the Interpretation Agent, making
the translated content not only readable but also re-
flective of the cultural and linguistic choices made
throughout the process. This agent’s design does
not allow delegation, ensuring it holds the final
responsibility for the presentation of the output.

3.2.4 Quality and Bias Evaluation Agent
The Quality and Bias Evaluation Agent is tasked
with performing a thorough review of the trans-
lated text to detect any issues related to fairness,
accuracy, or cultural sensitivity. This agent’s role is
to ensure that the translation upholds ethical stan-
dards by checking for bias or misrepresentation
of cultural elements. It cross-references the trans-
lated content with external sources, such as Duck-
DuckGo, to validate the factual accuracy of cultural
references and check the translation against real-
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Table 1: Roles and Capabilities of Different Agents in Our System

world contexts. This agent helps identify poten-
tial errors or distortions that might arise during the
translation process, ensuring the final output is both
accurate and free of harmful bias. By not allow-
ing delegation, this agent ensures that no oversight
occurs in the final evaluation phase.

In summary, the four agents in our framework
work collaboratively to ensure that translations are
linguistically accurate, culturally relevant, and con-
textually sensitive. Each agent brings a specialized
skill set to the process, allowing for a seamless and
adaptive translation workflow. By incorporating au-
tonomous agents for each phase of translation, we
ensure high-quality, culturally rich, and unbiased
results. This workflow follows a sequential but
dynamic structure, ensuring maximum accuracy
and cultural fidelity. The Translation Agent first
generates the raw translation, which is then refined
by the Interpretation Agent to ensure cultural align-
ment. Once adapted, the Content Synthesis Agent
organizes the text into a structured, reader-friendly
format. Finally, the Quality and Bias Evaluation
Agent verifies the correctness, fairness, and rele-
vance of the translation using external sources. If
any issue is detected, the translation is sent back
to the responsible agent for revision. This iterative
back-and-forth process ensures that the final output
is not just a linguistically correct translation but
also a culturally accurate and fair representation of
the original text.

3.3 Iterative Translation Processing and
Output Refinement

Our system follows a well-defined execution
pipeline to ensure high-quality translations. First,
users input a text, which is processed by the Trans-
lation Agent to ensure linguistic accuracy. The
Interpretation Agent then steps in to adapt cultural
references, idioms, and regional expressions, refin-

ing the translation for context. Next, the Content
Synthesis Agent polishes the text, improving clar-
ity and readability while maintaining coherence.
The final step involves the Quality and Bias Evalu-
ation Agent, which cross-validates the translation
for accuracy, detects potential biases, and verifies
cultural elements against reliable external sources.
If inconsistencies or discrepancies are found, the
system revisits the Content Synthesis Agent for nec-
essary revisions before generating the final output.
This iterative process ensures that the translation
preserves cultural nuances, maintains linguistic pre-
cision, and upholds contextual relevance. By com-
bining context-aware refinement with continuous
validation, the system produces translations that are
accurate, culturally sensitive, and fair, offering a
balanced approach to multilingual communication.

4 Results and Findings

As there is no benchmark or evaluation framework
available for most cultural translation aspects of
low-resource models, we adopt a simple qualitative
evaluation to assess our model’s capability. Table 2
discusses the output quality of the model by assess-
ing the translations generated by our multi-agent AI
framework across three cultural contexts—Festival,
Religion, and History—for three languages: Hindi,
Turkish, and Hebrew. Table 3 presents a compar-
ative analysis between our multi-agent AI frame-
work and GPT-4, highlighting key differences in
cultural preservation and contextual depth.

4.1 Evaluation of Model Output Across
Cultural Contexts

Table 2 presents the outputs generated by our
multi-agent AI framework, demonstrating its ef-
fectiveness in translating content across three cul-
tural contexts—Festival, Religion, and History—in
Hindi, Turkish, and Hebrew while ensuring cul-
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Table 2: Model Outputs on Different Linguistic and Cultural Setups

दिवाली भारतका महान प्रकाश उत्सव है जो अच्छाईकी जीत का प्रतीक है। घरोों को

िीयोों तेल के िीपक से सजाया जाता है पररवार लक्ष्मी पूजा करते हैं और फूलोों के धुएों से

आसमान खुदशयोों से भर जाता है।

हर शाम गोंगा निी के तट मनमोहक गोंगा आती से जीवोंत हो उठते हैं जहाों पुजारी

वेदिक मोंत्ोों का उच्चारणकरते हुए सुनहरी लौ वाले िीपक लहराते हैं और भक्तअपनी

मनोकामनाओों के दलए प्रदतदित िीया दिया निी में उतारते हैं।

१८५७का सोंघर्ष भारत केस्वतोंत्ता सोंग्राम की शुरुआत थी। इस युद्ध में रानी लक्ष्मीबाई

मोंगल पाोंडेयऔर बहािुर शाह ज़फ़र जैसे वीरस्वतोंत्ता सेनादनयोों ने दिदटश शासन के

द़िलाफ़ दवद्रोह करके िेशकोआज़ािी कीओरअग्रसरकरने में महत्वपूणष भूदमका

दनभाई। उनकी बहािुरी और बदलिान ने लाखोों भारतीयोों को पे्रररत दकयाऔर एक नई

राष्ट्र ीय पहचान का दनमाषण दकया।

פסוח פסחא ממצריםהיציאהאתהמצייןקדושיהודיחגהוא מתכנסותבמשפחות

מסורתיתלסעודה השחרורסיפורמספרות מצהאוכלות מותססלאלחם ומקיימות

מסורתיותברכות

,  מתחילה בשקיעה ביום שישי עם הדלקת נרות שבת, יום המנוחה השבועי, שבת

כשמשפחות מתאחדות  , ואכילת לחם השבת, (היין.ברכה על )אמירת קדושה 

ברפלקציה רוחנית

חורבן המקדש השני בירושלים על ידי הרומאים סימן נקודת מפנה , לספירה70-ב

,  שימור הזהות היהודית דרך לימוד התורה, שהובילה לגלות.בהיסטוריה היהודית

ותקווה לשוב יום אחד לציון

tural authenticity and contextual relevance. Un-
like conventional translation models that priori-
tize direct linguistic conversion, our approach in-
tegrates cultural adaptation, refining grammatical
precision, idiomatic expressions, and contextual
depth. The Translation Agent ensures structural
accuracy, while the Interpretation Agent adapts id-
iomatic phrases, religious references, and culturally
significant expressions to enhance natural fluency
and cultural immersion.

For instance, in the Hindi translation of Di-
wali, “grand festival of lights” becomes “mahaan
prakaash utsav”, emphasizing brilliance and festiv-
ity, while “victory of good over evil” is rendered
as “acchai ki jeet”, reinforcing the moral essence
of the celebration. Cultural markers such as “Lak-
shmi Puja” remain unchanged, while “diyas” are
translated as “deepak” to preserve their traditional
significance. Similarly, in Turkish translations of
Nevruz, “Bonfire jumping” is translated as “atesin
uzerinde ziplamak”, retaining its ritualistic impor-
tance, and “halk danslariyla” ensures the centrality
of folk dances. Traditional foods such as Baklava
and Pilav are adapted with idiomatic clarity, rein-
forcing their symbolic and cultural relevance. In
the Sema Ceremony of the Whirling Dervishes,
words like “mistik” and “ilahi” effectively capture
its spiritual nature, ensuring linguistic and cultural

accuracy. For Hebrew religious texts, “weekly day
of rest” is translated as “yom hanukha shavu’i”, em-
phasizing Shabbat’s sacred nature, while “begins
at sunset” becomes “matchila beshkia” to maintain
traditional timing. Ritual elements such as “Shab-
bat candles”, “Kiddush”, and “Challah bread” are
explicitly included, ensuring theological precision.
The translation also preserves Shabbat’s commu-
nal and reflective aspects, reinforcing its deeper
spiritual meaning.

Beyond translation, the Content Synthesis Agent
refines coherence and readability, while the Quality
& Bias Evaluation Agent prevents cultural distor-
tions and ensures historical accuracy. This is partic-
ularly crucial in historical translations, such as the
1857 Revolt and the Fall of Constantinople, where
contextual and geopolitical precision is essential.
The results confirm that multi-agent collaboration
enhances cross-language understanding, producing
translations that go beyond literal meaning to retain
cultural significance. By integrating context-aware
adaptation, idiomatic refinement, and external vali-
dation, the framework ensures culturally immersive
and linguistically accurate translations. Table 2 val-
idates the effectiveness of this approach, reinforc-
ing its potential for AI-driven cultural preservation
and cross-linguistic communication.
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Table 3: Model Outputs Comparison with ChatGPT (GPT-4o)

दिवाली भारत का महान प्रकाश उत्सव है जो अच्छाईकी जीतका प्रतीक है। घरों को िीयों तेल
के िीपक से सजाया जाता है पररवार लक्ष्मी पूजा करते हैं और फूलों के धुएं से आसमान
खुशशयों से भर जाता है।

िीवाली, भारत का भव्य प्रकाश पवव, बुराई पर अच्छाई की ववजय का प्रतीक है, जब 
घर िीपों (तेल के िीयों) से सजाए जाते हैं, पररवार लक्ष्मी पूजा करते हैं, और 
आततशबाजी आकाश में खुशशयों की रोशनी बबखेरती है।

हर शाम गंगा निी के तट मनमोहक गंगाआती से जीवंत हो उठते हैं जहां पुजारी वेदिक
मंत्रों का उच्चारणकरते हुए सुनहरी लौ वाले िीपकलहराते हैं और भक्त अपनी मनोकामनाओं
के शलए प्रततष्ठठत िीया दिया निी में उतारते हैं।

हर शाम, पववत्र गंगा निी के तट गंगा आरती की मंत्रमुग्ध कर िेने वाली छटा से 
जीवंत हो उठते हैं, जहााँ पुरोदहत वेि मंत्रों का उच्चारण करते हुए स्वर्णवम िीप 
लहराते हैं, और भक्त दिव्य आशीवावि प्राप्त करने के शलए जल में तैरते िीप अवपवत 
करते हैं।

१८५७ का संघर्व भारत के स्वतंत्रता संग्राम की शुरुआतथी। इस युद्ध में रानी लक्ष्मीबाई
मंगल पांडयेऔर बहािरु शाह जफ़रजैसे वीर स्वतंत्रता सेनातनयों ने बिदटश शासन के ऱ्िलाफ़
ववद्रोह करके िेश कोआजािी कीओर अग्रसर करने में महत्वपूणव भूशमका तनभाई। उनकी
बहािरुी और बशलिान ने लाखों भारतीयों को प्रेररत ककयाऔर एकनई राठरीय पहचान का
तनमावण ककया।

1857 का ववद्रोह, भारत का पहला स्वतंत्रता संग्राम, बहािरु योद्धाओं जैसे रानी 
लक्ष्मीबाई, मंगल पांड ेऔर बहािरु शाह जफर को बिदटश शासन के र्खलाफ उठते 
हुए िेखा, ष्जसने पूरे राठर में स्वतंत्रता की भावना को प्रज्वशलत ककया।

פסחא ממצריםהיציאהאתהמצייןקדושיהודיחגהוא לסעודהמתכנסותבמשפחות

מסורתית השחרורסיפורמספרות מצהאוכלות מותססלאלחם ברכותומקיימות

מסורתיות

שבו משפחות מתאספות לסעודת  , חג הפסח הוא חג יהודי קדוש החוגג את יציאת מצרים

.אוכלות מצה ומברכות ברכות מסורתיות, מספרות מחדש את סיפור הגאולה, הסדר

אמירת  , מתחילה בשקיעה ביום שישי עם הדלקת נרות שבת, יום המנוחה השבועי, שבת

כשמשפחות מתאחדות ברפלקציה רוחנית, ואכילת לחם השבת, (היין.ברכה על )קדושה 

, מתחילה בשקיעת השמש ביום שישי עם הדלקת נרות שבת, יום המנוחה השבועי, שבת

כאשר משפחות מתכנסות יחד להרהור  , ושיתוף חלת שבת( ברכה על היין)אמירת קידוש 

.רוחני

חורבן המקדש השני בירושלים על ידי הרומאים סימן נקודת מפנה , לספירה70-ב

ותקווה  , שימור הזהות היהודית דרך לימוד התורה, שהובילה לגלות.בהיסטוריה היהודית

לשוב יום אחד לציון

חורבן בית המקדש השני בירושלים בידי הרומאים ציין נקודת מפנה  , לספירה70בשנת 

,  לשימור הזהות היהודית דרך לימוד התורה, שהובילה לתפוצות, בהיסטוריה היהודית

.ולטיפוח התקווה לשוב יום אחד לציון

4.2 Comparative Analysis

Table 3 compares our multi-agent AI framework
with GPT-4o, highlighting key differences in cul-
tural preservation, contextual depth, and linguis-
tic expressiveness. Our system outperforms GPT-
4o in two major aspects: evocative language and
contextualization. The Translation and Interpre-
tation Agents incorporate figurative expressions,
idiomatic phrases, and poetic descriptions, mak-
ing the translations more immersive and culturally
resonant.

For instance, in the Hindi translation of Ganga
Aarti, our model renders the phrase as “mohak
chhata chha jati hai” (“a mesmerizing aura”), effec-
tively capturing the spiritual and visual grandeur of
the event, whereas GPT-4o’s simpler rendering of
“bhavya Ganga Aarti” lacks emotional depth. Simi-
larly, in the translation of the 1857 Revolt, our sys-
tem uses “jwalant udaharan” (“a blazing example”)
to emphasize the passion and heroism of freedom
fighters, while GPT-4o remains more neutral in its
phrasing. In Turkish translations, our model adapts
“Bonfire jumping” in Nevruz celebrations as “atesin
uzerinde ziplamak”, effectively reflecting the ritu-
alistic importance, while GPT-4o’s version remains
technically correct but lacks cultural vibrancy. Ad-
ditionally, our Whirling Dervishes translation in-
tegrates “mistik” (mystical) and “ilahi” (divine)
to reinforce the spiritual and meditative essence
of the dance, whereas GPT-4o provides a more
standard description that does not fully capture its
Sufi traditions. For Hebrew religious texts, our

framework ensures spiritual authenticity by explic-
itly incorporating key observances such as Shabbat
candles, Kiddush, and Challah bread, while GPT-
4o omits or generalizes some religious details. In
the Passover translation, our model maintains the
ritualistic depth by carefully referencing traditional
elements like unleavened bread and storytelling,
ensuring greater alignment with Jewish traditions.

Additionally, our agents expand on traditions
by linking events to their historical and cultural
roots, whereas GPT-4o tends to remain neutral and
lacks explanatory richness. Our framework also
enhances transliterated cultural terms by adding
brief clarifiers, making the text more accessible to
native speakers. While GPT-4o ensures grammat-
ical correctness, it often lacks cultural resonance
and emotional warmth, reinforcing the need for a
specialized multi-agent system in cross-language
understanding and preservation.

5 Discussion

Our study presents a multi-agent AI framework
designed to enhance cross-language translation by
integrating linguistic accuracy, cultural adaptation,
and bias mitigation. Unlike conventional LLM
models, our approach distributes tasks across spe-
cialized agents—Translation, Interpretation, Con-
tent Synthesis, and Quality and Bias Evalua-
tion—ensuring contextually enriched and culturally
aligned translations. The Translation Agent guar-
antees grammatical correctness, while the Inter-
pretation Agent adapts idiomatic expressions and
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cultural nuances. The Content Synthesis Agent
refines readability, and the Quality and Bias Eval-
uation Agent validates fairness and authenticity
using external sources. To evaluate our system’s
performance, we tested translations across multiple
cultural domains, including historical narratives,
religious traditions, and festival descriptions. Com-
parative evaluation with GPT-4o (Table 2) reveals
that our framework consistently produces more
evocative, idiomatic, and culturally grounded trans-
lations, demonstrating its ability to capture deeper
contextual meaning across various content types
rather than excelling in a single category. The
agent-based approach effectively addresses limi-
tations in conventional translation models, partic-
ularly in ensuring cultural depth and contextual
relevance (Ogie et al., 2022). By incorporating
external validation mechanisms, our system min-
imizes linguistic distortions and biases, making
it more suitable for real-world multilingual ap-
plications. The results indicate that multi-agent
collaboration enhances cross-language understand-
ing, providing a scalable and adaptable solution
for preserving linguistic heritage and reducing bi-
ases in AI-generated translations. This framework
presents a significant step forward in AI-driven lan-
guage processing, offering a context-aware, cultur-
ally sensitive, and ethically responsible approach
to translation.

5.1 Limitations

Despite its effectiveness, our framework has sev-
eral limitations. The multi-agent collaboration im-
proves fairness and transparency but increases pro-
cessing time compared to single-agent models, re-
ducing efficiency for real-time applications. Al-
though the system supports multiple languages,
challenges persist with low-resource languages due
to limited training data and digital resources, af-
fecting translation quality and adaptability (Gong
et al., 2024). External validation via DuckDuckGo
enhances accuracy but may introduce inconsisten-
cies if sources lack credibility or cultural speci-
ficity (Ootani and Yamana, 2018). Lastly, cultural
subjectivity remains a challenge, as idioms and ex-
pressions often lack direct equivalents, requiring
interpretative adjustments across contexts.

5.2 Future Work

Future research will focus on refining our multi-
agent AI framework to address its current limita-
tions. One area for improvement is optimizing the

processing time for multi-agent collaboration, mak-
ing the system more efficient for real-time appli-
cations without compromising translation quality.
Expanding the framework’s capabilities to better
support low-resource languages through data aug-
mentation and community-driven input is essential
for improving translation adaptability and reducing
biases in underrepresented languages. Addition-
ally, enhancing the external validation mechanisms
to incorporate more reliable and region-specific
sources will further reduce inconsistencies in the
system. Future work will also explore integrating
more advanced cultural adaptation algorithms to
handle nuanced expressions and idioms more effec-
tively across diverse contexts. Moreover, we plan
to expand the system’s scope to include specialized
domains such as legal and medical translations,
where accuracy and cultural sensitivity are crucial.
Collaborative research with cross-regional teams
will be key to ensuring that the framework remains
inclusive and adaptable to global linguistic and cul-
tural needs.

6 Conclusion

Our study introduces a multi-agent AI frame-
work that significantly enhances culturally adaptive
cross-language translation, overcoming key limi-
tations of traditional AI models. By employing
specialized agents for translation, interpretation,
content synthesis, and bias evaluation, our system
ensures greater linguistic accuracy, cultural sen-
sitivity, and contextual depth in translations. Al-
though challenges such as computational efficiency
and coverage for low-resource languages persist,
our approach offers a promising pathway for more
inclusive and context-aware AI-driven translation
systems. The comparative analysis with GPT-4o
further demonstrates the effectiveness of our frame-
work in producing translations that are more cul-
turally embedded and nuanced. As we look ahead,
future work should focus on optimizing real-time
processing capabilities, expanding language sup-
port, and refining external validation techniques
to further enhance the scalability and reliability of
cross-language communication. Ultimately, this
research paves the way for a more equitable, cul-
turally informed, and accurate AI translation land-
scape, contributing to the preservation and revital-
ization of diverse languages and cultures.
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Abstract

In NLP, Zero-Shot Classification (ZSC) has
become essential for enabling models to clas-
sify text into categories unseen during training,
particularly in low-resource languages and do-
mains where labeled data is scarce. While pre-
trained language models (PLMs) have shown
promise in ZSC, they often rely on large train-
ing datasets or external knowledge, limiting
their applicability in multilingual and low-
resource scenarios. Recent approaches lever-
aging natural language prompts reduce the de-
pendence on large training datasets but strug-
gle to effectively incorporate available labeled
data from related classification tasks, especially
when these datasets originate from different
languages or distributions. Moreover, existing
prompt-based methods typically rely on man-
ually crafted prompts in a specific language,
limiting their adaptability and effectiveness in
cross-lingual settings. To address these chal-
lenges, we introduce RoSPrompt, a lightweight
and data-efficient approach for training soft
prompts that enhance cross-lingual ZSC while
ensuring robust generalization across data dis-
tribution shifts. RoSPrompt is designed for
small multilingual PLMs, enabling them to
leverage high-resource languages to improve
performance in low-resource settings without
requiring extensive fine-tuning or high com-
putational costs. We evaluate our approach
on multiple multilingual PLMs across datasets
covering 106 languages, demonstrating strong
cross-lingual transfer performance and robust
generalization capabilities over unseen classes.

1 Introduction

Zero-Shot Classification (ZSC) is a task in NLP
where a model classifies inputs into classes that it
has not seen during training. This task is crucial in
real-world scenarios where some classes are under-
represented with little or no labeled data. Tradition-
ally, two approaches have dominated the landscape:
entailment-based and similarity-based approaches.

Entailment-based approaches (Yin et al., 2019) fo-
cus on understanding relationships between sen-
tences, particularly determining the level of entail-
ment between the document and the potential class
labels. This method requires the model to have a
deep understanding of language structure and logic.
On the other hand, similarity-based approaches
focus on computing the similarity between the in-
put and labels of each class, even if the model
has never encountered them during training. This
method often relies on embeddings or vector rep-
resentations of text, allowing the model to make
inferences based on how closely the input aligns
with class descriptors (Schopf et al., 2023).

However, these methods face inherent draw-
backs, as they depend on Natural Language Infer-
ence or Semantic Text Similarity datasets that re-
quire considerable effort to develop and are suscep-
tible to potential biases (Pavlick and Kwiatkowski,
2019; Kalouli et al., 2023). In light of this, and with
the acknowledgment of the extensive knowledge
embedded in general pre-trained language mod-
els (PLMs) and the potential to extract it, a novel
paradigm has arisen: prompting. Prompting refor-
mulates a task as a cloze-style task using a natural
language prompt, retrieves the model’s masked or
next token prediction, and maps it to the right class
via a verbalizer, while requiring little to no training
data. Nevertheless, traditional prompting methods
are hindered not only by manual effort and inherent
biases of the individuals creating the prompts and
verbalizers, but also by other factors such as the
order of examples in the prompt during in-context
learning (Zhao et al., 2021; Lu et al., 2022).

To address this, Shin et al. (2020) developed an
automated system for generating prompts and ver-
balizers using a limited number of training samples.
Furthermore, Hu et al. (2022) introduced a tech-
nique that eliminates the need for training data by
automatically creating a verbalizer using an exter-
nal knowledge base. Motivated by the goal of elim-
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inating the need for any additional data, Zhao et al.
(2023) proposed a method that forms a verbalizer
using only the PLM’s embedding space, without
requiring any training data or external knowledge
base. This approach, while efficient and effective
in various ZSC tasks, shares a limitation with the
methods of Shin et al. (2020) and Hu et al. (2022):
it relies on language-specific prompts which in-
troduce a language bias, making the method less
effective in multilingual scenarios. Moreover, de-
spite the high efficiency and appeal of methods
that operate without existing data, their inability to
leverage even a minimal amount of available data
from a similar classification task in a high-resource
language, can be seen as a significant limitation in
our data-abundant world.

To address these shortcomings, we suggest to
transform the language-specific hard prompts into
trainable soft prompts (Lester et al., 2021), which
can then be fine-tuned. However, directly adopting
the conventional soft prompt tuning (SPT) setup
leads to overfitting on the seen classes (§7), there-
fore, does not generalize under data distribution
shifts. In response to this constraint, we intro-
duce Robust Soft Prompts (RoSPrompt), a novel
method for cross-lingual zero-shot topic classifica-
tion through few-shot SPT, which exhibits robust
out-of-distribution generalization and strong cross-
lingual transfer performance. RoSPrompt not only
retains the efficiency and effectiveness of leverag-
ing the knowledge of PLMs but also enhances it
by incorporating small sets of existing data. By do-
ing so, we aim to broaden the applicability of ZSC
in a multilingual context, ensuring more accurate
topic classification across diverse languages and
datasets.

Specifically, our approach

(a) enables the training of soft prompts, which
are better suited for ZSC tasks compared to
hand-crafted, natural language hard prompts.

(b) shows strong cross-lingual transfer perfor-
mance after few-shot fine-tuning in English,
with soft prompts significantly improving ac-
curacy compared to hard prompts.

(c) displays significant robustness against data
distribution shifts, enabling the fine-tuning of
the prompt on any available topic classifica-
tion data for subsequent use in diverse topic
classification tasks.

(d) exhibits computational efficiency, as fewer
than 1% of parameters are fine-tuned in com-
parison to full-model fine-tuning.

To showcase the efficacy of our proposed ap-
proach, we conduct a comprehensive evaluation
using three distinct types of multilingual language
models (encoder-only, decoder-only, and encoder-
decoder) and three diverse datasets, encompassing
106 languages, thereby highlighting the versatility
and applicability of our method in cross-lingual
scenarios.

2 Background

Soft Prompt Tuning (SPT) Our approach is
based on SPT (Lester et al., 2021), extending it
specifically for cross-lingual zero-shot topic clas-
sification. SPT appends tunable vectors (soft
prompts) to the input of a PLM, training only
the soft prompts while keeping the original model
weights frozen. This method demonstrates effi-
cacy in various downstream tasks, providing a bal-
ance between model performance and resource
efficiency, and is particularly effective for cross-
lingual transfer (Philippy et al., 2024).

Given an input sequence x and the set of C po-
tential classes C, we define the two main compo-
nents of SPT:

• A soft prompt p that is appended to x in
order to obtain x′ = [x;p], where [·; ·] is the
concatenation function.

• A verbalizer v : T → C which maps the
token predicted by the model to the respec-
tive class. T = {t1, . . . , tC} is a subset of
the model’s vocabulary V and the token tc
"describes" the class c.

If we denote the function performed by the
model as f , with its parameters θ (which are frozen
during SPT), the logits over the vocabulary V for
the next token in the sequence are given by:

fθ(x
′) = {z1, . . . , z|V|}

The predicted class will then be

ŷ = argmax
c∈C

ztc

Nonparametric Prompting (NPPrompt) Zhao
et al. (2023) demonstrated that PLMs possess sig-
nificant innate capabilities for ZSC, even with-
out task-specific fine-tuning. Their technique,
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NPPrompt, involves adding a natural language
prompt to the input example, prompting the model
to fill in the [MASK] for BERT-based models, or pre-
dict the next token for autoregressive and Seq2Seq
models, which are then used for the final classifi-
cation of the sample. Nevertheless, their strategy
is primarily designed for English, as the prompts
employed are in English. Applying their method
to additional languages would necessitate the engi-
neering of new prompts specific to those languages.
Furthermore, despite the appeal of their zero-shot
framework, particularly when there is a lack of fine-
tuning data, it falls short by not accommodating
the use of existing labeled data when it is avail-
able. Therefore, we suggest to extend their method
by transforming the natural language prompt into
a trainable soft prompt (Lester et al., 2021), en-
abling its training through any available topic clas-
sification data in the source language for subse-
quent zero-shot topic classification in any target
language.

3 RoSPrompt

We describe our technique as a hybrid of SPT
(Lester et al., 2021) and NPPrompt (Zhao et al.,
2023). SPT excels in data efficiency but is sensitive
to data distribution shifts, needing unique prompts
for each topic classification dataset. On the other
hand, NPPrompt uses one prompt for various data
distributions but fails to leverage existing data. Our
strategy combines their strengths, using a single,
robust soft prompt for different data distributions
and enhancing data utilization (Figure 1).

Train 
Set 1

Train 
Set n. . .

Test 
Set 1

Test 
Set n

. . .

Train 
Set

Test 
Set 1

Test 
Set n. . .

Soft 
Prompt 1

Soft 
Prompt n

Soft 
Prompt

Test 
Set 1

Test 
Set n

. . .

Hard 
Prompt

Empowers the use 
of existing data

Single prompt 
across tasks

Soft Prompt Tuning
(Lester et al., 2021)

NPPrompt
(Zhao et al., 2023)Ours

Figure 1: Conventional SPT (Lester et al., 2021), while
effective in leveraging existing data, requires distinct
training for each topic classification task. Conversely,
NPPrompt (Zhao et al., 2023) offers versatility with a
single natural language prompt for various tasks but
lacks data leverage. Our method combines the strengths
of both methods, enabling data utilization with a single
soft prompt applicable across diverse topic classification
tasks, while effectively overcoming the drawbacks of
both methods.

Figure 2 provides a graphical illustration of our
approach. The novelty of our method is most ap-
parent in the training phase (§3.1), which involves
three main components: 1) the application of a
multilingual verbalizer; 2) the use of contrastive
label smoothing; 3) the adoption of a custom loss
function penalty. For the inference phase of our
method, we adopt the technique proposed by Zhao
et al. (2023), aligning seamlessly with our goals.

3.1 Training
Below, we detail the three main components of our
training approach.

1) Multilingual Class Description Tokens As
mentioned before, in the standard methodology of
SPT, a class c is characterized, via the verbalizer, by
a single token tc from the vocabulary V . However,
this single token might not fully capture the essence
of the respective class. Moreover, it is confined to
one language, leading to potential inconsistencies
in multilingual settings, where the sample and the
verbalizer token may be in different languages.

Therefore we propose, during training, to extend
the single verbalizer token tc to a multilingual set
of verbalizer tokens Tc = {t(1)c , t

(2)
c , . . .}. These

augmented verbalizer tokens could be additional
descriptive tokens, such as synonyms or transla-
tions of the original label token.

Our method does not mandate a uniform number
of verbalizer tokens across different classes, and
the manual labor involved in generating these labels
is a one-time effort only required for fine-tuning
the soft prompt.

2) Contrastive Label Smoothing Convention-
ally, when pre-training large language models, us-
ing self-supervised tasks such as the masked lan-
guage modeling or next-token prediction objective,
a single token from the vocabulary is considered to
be the gold truth.

Mathematically, given a token vocabulary V ,
y =

[
y1, . . . , y|V|

]
represents the "true" masked

or next token in one-hot encoded form. When us-
ing a "hard" probability distribution, if t∗ is the
"true" token, ∀t ∈ V ,

yt = 1× 1{t=t∗}

for the cross-entropy loss defined as

CE(ŷ, y) = −
|V|∑

t=1

yt × log (ŷt)
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Presentation Title 6

Soft PromptGolf is a game in which players use clubs to hit balls into holes. [MASK]

c Class
Label

Multilingual Class Description Tokens
Tc

1 NATURE [nature], [Nature], [naturaleza], [自然], [طبیعت], [प्रकृति]

2 = 𝑐∗ SPORTS [sports], [sport], [Sport], [deporte], [खेल], [ورزش]

3 ANIMAL [animal], [Tier], [حیوان], [动物]

Model
(frozen)

Soft PromptStaying hydrated is essential for overall well-being. Model

c Class 
Label Top-k nearest tokens to the class label

1 ECONOMY [economy], [Economy], [economía], [οικονομία]

2 HEALTH [health], [Health], [santé], [saúde], [건강], [terveys]

3 ART [art], [Art], [arte], [arts], [Kunst], [artist], [изкуство]

0

1 − 𝜖
|𝑇𝑐∗|

𝜖
𝒱 − σ𝒞 |𝑇𝑐|

Training

Inference (Zhao et al., 2023)
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Loss = +  −
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Figure 2: Visual representation of RoSPrompt. During training, each class is categorized by a multilingual set
of label tokens ( 1⃝). We apply contrastive label smoothing ( 2⃝) to the probability distribution across the entire
vocabulary. To further deter overfitting, we integrate a custom penalty ( 3⃝) into the loss function. During inference,
we retrieve the logits predicted by the model and use the aggregation technique proposed by Zhao et al. (2023) to
make the final prediction.

where ŷ represents the probabilities predicted by
the model.

In other words, this standard method assigns a
probability of 1 to the true token and 0 to the oth-
ers, which might lead to overfitting as the model
becomes overly confident in certain predictions. A
strategy to resolve this is label smoothing (Szegedy
et al., 2016), a regularization technique penalizing
models for over-confident predictions and thereby
mitigating overfitting. Label smoothing achieves
this by shifting from a "hard" probability distri-
bution, where only the true token gets a non-zero
probability, to a "soft" distribution, where small
probabilities are allocated to all or some vocabu-
lary tokens, and the probability for the true token
is reduced.

Our method employs a modified form of con-
ventional label smoothing, which we refer to as
contrastive label smoothing. This variation is de-
signed to handle multiple "true" tokens for each
class. Additionally, it not only prevents overcon-
fident predictions by the model but also penalizes

it for consistently favoring class label tokens over
those without a class assignment. We argue that
this approach leads to improved generalization over
unseen classes in ZSC setups.

If C represents the potential classes of the train-
ing data, we denote (Tc)c∈C as the label class token
collections for each class, where Tc is the collec-
tion of verbalizer tokens of class c. If a sample
belongs to class c∗ we distribute the probabilities
across the vocabulary, ∀t ∈ V , as follows:

yt =





1−ϵ
|Tc∗ | if t ∈ Tc∗

ϵ
|V|−∑

c∈C |Tc| if t /∈
⋃

c∈C
Tc

0 otherwise

In other words we uniformly distribute a collective
probability of 1− ϵ over the label tokens of the true
class, i.e. Tc∗ , and the remaining probability ϵ over
all other tokens in the vocabulary except the label
tokens of other classes.
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3) Penalty In order to further penalize the soft
prompt for overfitting on the seen classes during
training, we additionally add a penalty to the cross-
entropy loss function. We define

¯̂y C\c∗ =

∑

c∈C\c∗

∑

t∈Tc

ŷt

∑

c∈C\c∗
|Tc|

and ¯̂yc∗ =

∑

t∈Tc∗

ŷt

|Tc∗ |

as the average predicted probabilities for all verbal-
izer tokens across all classes except the true class
c∗, and for all verbalizer tokens within the class c∗,
respectively.

With these definitions, we express the penalty Ω
as:

Ω (ŷ) =
¯̂y C\c∗

¯̂yc∗

This penalty simply expresses the ratio of the
average predicted probabilities for the true class
tokens and the class tokens for all other potential
classes.

Hence, the final loss function used in our ap-
proach becomes

L(ŷ, y) = CE(ŷ, y) + α× Ω (ŷ)

where α is the coefficient that controls the influence
of the penalty.

3.2 Inference
During inference we use the methodology proposed
by Zhao et al. (2023).

The verbalizer tokens get automatically chosen
by selecting the the top-k nearest tokens in the
embedding space to each original English class
label tc. More specifically, for a given class c, its
verbalizer tokens are given by

Tc = Top-k
t∈V

{S(emb(t), emb(tc))}

where S(·) is the cosine similarity function.
For a given input document x, the aggregated

prediction score for class c, based on the model’s
output logits for the next or MASK token, ŷ, is
given by

Q(c|x) =
∑

t∈Tc

w(t, tc) · ŷt

where the weight of each token in the verbalizer
for a given class c is given by

w(t, tc) =
exp(S(emb(t), emb(tc)))∑

j∈Tc
exp(S(emb(j), emb(tc)))

The final predicted class is then given by

ĉ = argmax
c∈C

Q(c|x)

This selects the class with the highest aggregated
prediction probability.

4 Experimental Setup

We provide a general description of the datasets for
training and evaluation, along with the models used
in our experiments. Further specific details about
the experimental setup can be found in Appendix
A.

4.1 Datasets

For our experiments, a general English document
classification dataset serves as the source data for
training the soft prompts. We then evaluate these
prompts on three diverse multilingual datasets,
each with its own set of classes.

4.1.1 Training
As training data we use the English DBPedia14
dataset, an ontology classification dataset, com-
piled from Wikipedia’s most frequently used in-
foboxes and containing 14 distinct classes. Ev-
ery class includes 40.000 samples for training and
5.000 samples for testing.

4.1.2 Evaluation
For evaluation we use 3 distinct multilingual topic
classification datasets. Further details being pro-
vided in Appendix A.3.

MLSUM (Scialom et al., 2020), a multilingual news
summarization dataset. We classify articles based
on their summaries, using six main categories
per language, although the exact categories differ
slightly across languages.

MTOP (Li et al., 2021), a multilingual utterance clas-
sification dataset, featuring 11 different domains
and covering 6 languages.

SIB-200 (Adelani et al., 2024), a multilingual topic
classification dataset featuring 7 categories and cov-
ering more than 200 languages.

We focus on using MTOP and MLSUM to test
the robustness of our method under distribution
shifts, but since they are limited to high-resource
languages, we leverage SIB-200 to assess cross-
lingual transfer to low-resource languages, thanks
to its broader language coverage
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4.2 Models

We evaluate our method on three distinct models,
each one based on a different architecture:

XGLM (Lin et al., 2022), a decoder-only model sup-
porting 30 different languages.

mT0 (Muennighoff et al., 2023), an encoder-
decoder model supporting 101 languages, which is
a multi-task fine-tuned version of the mT5 model
(Xue et al., 2021).

XLM-R (Conneau et al., 2020), an encoder-only
model, supporting 100 languages.

More specifically, we use the XGLM-564M,
mT0-base and XLM-RoBERTa-large variants. We
describe them in more detail in Appendix A.4.

4.3 Baselines

We evaluate RoSPrompt against different baselines:

NPPrompt (Zhao et al., 2023), previously de-
scribed in Section 2, using the English hard prompt
"In this sentence, the topic is about [MASK]".

NPPrompt-t, a variant of NPPrompt where the En-
glish prompt is translated into the target language
for inference.1

SPT (Lester et al., 2021), previously described in
Section 2, where a soft prompt is fine-tuned on
English samples using standard SPT practices and
then used with NPPrompt during inference.

Zero-Shot Prompting, where we evaluate genera-
tive LLMs prompted in a zero-shot manner using
a natural language instruction. Specifically, we
use the 8-bit quantized variants of Llama3.1-8B
(Dubey et al., 2024) and Phi3.5-mini (Abdin et al.,
2024). We focus on SIB-200 for this baseline, as
RoSPrompt is not designed for high-resource lan-
guages where smaller models cannot compete with
large LLMs trained on extensive data. For trans-
parency, results on MTOP and MLSUM are in-
cluded in Appendix B, along with further details
on this baseline.

4.4 Technical Details

Our experimental setup includes freezing all model
parameters and appending a soft prompt to the ini-
tial input, as detailed in Section 2. We start by
initializing the soft prompt with the embeddings
of the natural language prompt from Zhao et al.

1Languages unsupported by Google Translate or with syn-
tax that does not place the [MASK] token at the end are ex-
cluded. In Table 2, English prompt performance is used for
reporting.

(2023): "In this sentence, the topic is about". We
then fine-tune this prompt using 8 randomly se-
lected English samples from each class in DBPedia.
Our methodology includes using translations of the
original English label tokens into a diverse range
of languages2, and selecting words that tokenize
as a single token for our multilingual label tokens.
We then assess the model’s performance using the
trained soft prompt on all three evaluation datasets
across all supported languages. During evaluation,
only the original English class names are needed,
with no need for further translation efforts.

To account for variability in few-shot experi-
ments, we repeat each experiment four times using
different random seeds and report the average re-
sults.

5 Results

For each of the three models, our experimental find-
ings are presented in Table 1 for MLSUM and MTOP,
across all languages. Given the extensive range
of languages in SIB-200, we present average re-
sults for each major language family in Table 2,
while detailed results for individual languages are
shown in Appendix C (see Table 10). Overall, our
methodology shows a significant advantage over
NPPrompt in nearly all cases. In particular, our
training method, which leverages a mere 8 sam-
ples per class from an existing topic classification
dataset, generates a soft prompt that is more ef-
fective for ZSC than a natural language prompt,
demonstrating robust generalization capabilities for
unseen classes.

Additionally, we observe that while larger gen-
erative LLMs slightly outperform the smaller
RoSprompt-enhanced LLMs on high-resource lan-
guages, they significantly underperform, often
worse than the random baseline, on low-resource
languages, highlighting the effectiveness of our
method in such scenarios.

6 Ablation Study

To illustrate the individual contributions of each
component in our training method, we carry out
an ablation study. We assess the efficacy of our
original method against variants lacking the loss
penalty, contrastive label smoothing, and/or multi-
lingual labels.

2We used the following languages as they are spoken by at
least one member of our team: de, en, es, fa, fr, hi, ro, sv, uk,
zh.

66



MTOP MLSUM
Model de en es fr hi th de es fr ru

X
G

L
M

RoSPrompt 54.99 64.31 58.95 55.38 56.47 47.59 79.47 70.77 71.60 62.66
NPPrompt 48.72 55.02 47.77 47.57 52.49 49.26 56.30 48.83 43.92 42.97

NPPrompt-t 26.63 55.02 42.03 19.14 - 33.27 61.22 21.68 31.97 38.24
SPT 30.52 31.98 32.51 30.98 28.69 29.46 63.12 53.26 54.00 53.68

m
T

0

RoSPrompt 47.65 53.23 51.48 48.21 49.42 46.28 65.24 50.58 48.00 45.22
NPPrompt 43.14 46.35 48.57 43.60 46.04 38.37 65.07 48.10 43.23 43.14

NPPrompt-t 33.14 46.35 33.36 7.02 - 39.89 59.51 43.36 31.33 26.80
SPT 46.22 52.31 47.87 44.19 44.42 42.98 64.64 52.81 47.32 45.92

X
L

M
-R

RoSPrompt 55.64 63.93 54.79 52.91 62.25 53.28 81.77 65.46 60.66 53.39
NPPrompt 36.38 46.03 35.76 34.95 47.69 39.02 62.38 50.77 52.79 58.17

NPPrompt-t 35.25 46.03 35.29 28.47 - 47.05 72.95 41.89 38.18 48.37
SPT 39.10 43.75 35.29 36.35 40.04 37.55 69.00 57.83 50.40 49.59

Table 1: Comparison of accuracy scores on the MTOP and MLSUM datasets between RoSPrompt and baselines.

Model Afro-
Asiatic

Atlantic-
Congo

Austro-
nesian

Dravi-
dian

Indo-
European

Sino-
Tibetan Turkic Uralic

X
G

L
M

RoSPrompt 69.12 65.32 73.04 64.95 70.80 72.92 72.55 71.51
NPPrompt 60.78 61.76 59.31 58.09 61.48 58.83 62.25 62.26

NPPrompt-t 53.92 58.82 63.73 58.09 54.41 53.68 62.25 40.69
SPT 59.19 55.51 66.05 58.15 60.94 54.05 60.42 66.54

m
T

0

RoSPrompt 71.69 71.69 75.61 75.61 75.75 74.27 74.39 73.10
NPPrompt 57.11 59.13 59.95 61.64 61.52 62.42 61.03 63.40

NPPrompt-t 46.41 51.16 51.84 61.64 54.84 59.47 61.03 53.27
SPT 65.05 66.42 67.37 70.07 69.91 72.18 68.28 69.40

X
L

M
-R

RoSPrompt 72.67 65.69 71.69 66.91 68.65 68.63 67.89 70.59
NPPrompt 57.43 56.62 63.14 64.83 64.20 63.73 65.13 65.69

NPPrompt-t 45.26 38.24 57.25 64.83 52.05 57.84 65.13 57.03
SPT 56.78 52.33 61.96 64.49 61.65 65.28 61.40 57.31

Llama3.1-8B 25.42 18.44 26.42 8.58 39.84 35.29 26.82 44.61
Phi-3.5-mini 42.30 38.11 57.95 7.72 55.17 54.09 46.08 65.03

Table 2: Comparison of accuracy scores on the SIB-200 dataset between RoSPrompt and baselines.

The outcomes of this study, presented in Table
3 for MTOP across three models, indicate that all
three elements are integral to our method’s success.
Notably, the removal of the loss penalty leads to the
most significant decline in performance for XGLM
and mT0, while the lack of multilingual labels has
the greatest negative impact on XLM-R.

XGLM mT0 XLM-R
RoSPrompt 56.28 49.38 57.13

w/o penalty 30.22 31.91 51.59
w/o LS 50.05 49.71 48.18
w/o penalty & LS 29.38 41.53 51.26
w/o ML labels 50.05 50.37 47.40

Table 3: Ablation study results for MTOP.

This could potentially be attributed to XLM-R’s
enhanced code-switching capabilities (Winata et al.,
2021; Zhang et al., 2023), making it more efficient
at using multilingual label tokens during training
compared to XGLM and mT0.

7 Generalized Zero-Shot Learning

In our initial experiments, training (seen) and eval-
uation (unseen) classes were distinct with merely
minimal overlap. In contrast, the Generalized Zero-
Shot Learning (GZSL) settings, which mirror real-
world situations more closely, involve evaluating
on a mix of both seen and unseen classes. Models
in this setting often struggle with overfitting to seen
classes and fail to perform well on unseen classes
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(Xian et al., 2019).
Therefore, we aim to investigate whether our

method is also efficient under GZSL settings. For
this, we fine-tune the soft prompt on a subset of
classes from a dataset, then test it on the entire set
of classes. Considering the potential variability re-
sulting from the specific choice of seen and unseen
classes, we repeat this process four times for each
dataset and model, each time with a different sub-
set of seen classes. We then average the F1 scores
for seen and unseen classes and present them in
Table 4. These experiments are conducted with all
three models, but only for the SIB-2003 and MTOP
datasets, as MLSUM does not support English, and
has varying categories across languages.

SIB-200 MTOP
Unseen Seen Unseen Seen

X
G

L
M SPT 20.02 48.56 28.04 49.04

RoSPrompt 48.68 49.60 62.41 61.50

m
T

0 SPT 31.32 39.44 32.26 23.49
RoSPrompt 67.11 65.44 39.33 52.98

X
L

M
-R SPT 26.88 53.78 17.63 43.88

RoSPrompt 56.64 55.68 62.54 57.96

Table 4: Comparison of average F1 scores for seen and
unseen classes using standard SPT versus RoSPrompt.

For conventional SPT, there is a notable im-
balance in performance between seen and unseen
classes, with seen classes showing higher perfor-
mance, suggesting overfitting to seen classes and
poor generalization to unseen classes. However,
when training the soft prompts using our method,
the performance is more balanced, indicating im-
proved generalization to unseen classes.

8 Contextualizing Our Approach

In this study, we acknowledge that comparing our
approach with NPPrompt may not constitute an
entirely fair comparison. RoSPrompt uses a small
dataset for training, while NPPrompt directly lever-
ages a PLM without additional fine-tuning. How-
ever, it is important to emphasize that the intent of
our research is not to demonstrate RoSPrompt’s per-
formance superiority over NPPrompt. Instead, our

3For computational efficiency during this experiment, we
limited our evaluation to a subset of ten linguistically diverse
languages (en, ru, zh, de, ar, bn, ta, ko, my, sw) instead of all
supported ones.

objective is to illustrate how RoSPrompt’s method-
ology can effectively improve cross-lingual transfer
capabilities of natural language prompts. This as-
pect is vital as our findings indicate that merely
converting hard prompts to soft prompts and then
fine-tuning them using the standard SPT approach
results in non-robust prompts which are ineffective
for Generalized ZSC.

Additionally, while our paper focuses on topic
classification, we believe that our approach could
be equally effective for other types of classifica-
tion tasks as well. Nonetheless, we emphasize the
significance of zero-shot learning in topic classifi-
cation, where classes often change more frequently
over time or across domains, unlike in more stable
tasks like sentiment analysis, where classes show
less variation.

Furthermore, we want to emphasize the three-
fold efficiency of our approach: 1) it is data ef-
ficient, requiring only a small number of labeled
training samples from any comparable classifica-
tion task; 2) it is computationally efficient as fewer
than 0.1% of parameters are fine-tuned compared
to full-model fine-tuning, reducing training time
by approximately 50% in our experiments; 3) it is
memory-efficient, as for n training processes, be-
sides the resulting n prompts that take up a few hun-
dred KBs at most, only one model copy is stored,
in contrast to full-model fine-tuning where each
model occupies several GBs of storage.

Moreover, while our method is theoretically ap-
plicable to larger models with billions of param-
eters, our primary target is smaller LLMs, which
are often sufficient for tasks like zero-shot classifi-
cation but need more focused guidance. These
smaller multilingual models also excel in low-
resource languages, where larger English-centric
models, as we demonstrate, are less effective.

9 Conclusion

In this paper, we introduced RoSPrompt, a novel
approach for cross-lingual zero-shot topic classifi-
cation. It combines the advantages of few-shot
SPT with the extensive knowledge acquired by
language models in their pre-training phase. Our
training method is designed for computational ef-
ficiency and incorporates three key components
to enhance the standard SPT methodology, con-
tributing to RoSPrompt’s cross-lingual abilities and
resilience to data distribution shifts.
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Limitations

Our research was conducted on datasets encom-
passing a variety of classes and data distributions.
However, the absence of multilingual datasets
across entirely distinct domains limits our ability to
test the method’s effectiveness in distant or niche
domains. Therefore, while our results are promis-
ing within the domains we studied, they may not
fully represent the model’s capabilities across all
specific domains.

In addressing the few-shot learning nature of our
approach, varied the training samples across 4 itera-
tions for each experiment to reduce potential biases.
Nonetheless, the specific selection of these samples
can still influence the outcomes due to the inherent
characteristics of few-shot learning. This limitation
suggests that our findings could be partially influ-
enced by the particular datasets used, and might
not entirely reflect the model’s performance with
different or broader data samples.

Ethics Statement

In our work, we prioritized two key ethical aspects,
through which we strive to contribute to the inclu-
sive and responsible advancement of NLP technol-
ogy.

Language Diversity and Equity. Our method
aims to balance performance across various lan-
guages, addressing the common disparity in model
effectiveness between high- and low-resource lan-
guages. By enhancing multilingual capabilities,
RoSPrompt contributes towards more balanced per-
formance across languages, ensuring fair and inclu-
sive technology across diverse linguistic groups.

Environmental Responsibility. Our method is
designed for computational efficiency, requiring
fine-tuning of fewer than 1% of parameters com-
pared to traditional methods. This approach not
only conserves computational resources but also
aligns with environmental sustainability goals by
reducing the energy consumption and carbon foot-
print associated with training and deploying NLP
models.

Acknowledgment

The author Cedric Lothritz is supported by the Lux-
embourg National Research Fund (FNR) PEARL
program, grant agreement 16544475.

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

David Adelani, Hannah Liu, Xiaoyu Shen, Nikita Vassi-
lyev, Jesujoba Alabi, Yanke Mao, Haonan Gao, and
En-Shiun Lee. 2024. SIB-200: A Simple, Inclusive,
and Big Evaluation Dataset for Topic Classification
in 200+ Languages and Dialects. In Proceedings of
the 18th Conference of the European Chapter of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 226–245, St. Julian’s, Malta.
Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan
Liu, Jingang Wang, Juanzi Li, Wei Wu, and Maosong
Sun. 2022. Knowledgeable Prompt-tuning: Incor-
porating Knowledge into Prompt Verbalizer for Text
Classification. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2225–2240,
Dublin, Ireland. Association for Computational Lin-
guistics.

Aikaterini-Lida Kalouli, Hai Hu, Alexander F. Webb,
Lawrence S. Moss, and Valeria De Paiva. 2023. Cur-
ing the SICK and Other NLI Maladies. Computa-
tional Linguistics, 49(1):199–243.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N. Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, and Christian Bizer. 2015. DBpedia – A
large-scale, multilingual knowledge base extracted
from Wikipedia. Semantic Web, 6(2):167–195.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The Power of Scale for Parameter-Efficient Prompt
Tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

69

https://aclanthology.org/2024.eacl-long.14
https://aclanthology.org/2024.eacl-long.14
https://aclanthology.org/2024.eacl-long.14
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2022.acl-long.158
https://doi.org/10.18653/v1/2022.acl-long.158
https://doi.org/10.18653/v1/2022.acl-long.158
https://doi.org/10.1162/coli_a_00465
https://doi.org/10.1162/coli_a_00465
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243


Haoran Li, Abhinav Arora, Shuohui Chen, An-
chit Gupta, Sonal Gupta, and Yashar Mehdad.
2021. MTOP: A Comprehensive Multilingual Task-
Oriented Semantic Parsing Benchmark. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 2950–2962, Online. Association
for Computational Linguistics.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu
Wang, Shuohui Chen, Daniel Simig, Myle Ott, Na-
man Goyal, Shruti Bhosale, Jingfei Du, Ramakanth
Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav
Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettle-
moyer, Zornitsa Kozareva, Mona Diab, Veselin Stoy-
anov, and Xian Li. 2022. Few-shot Learning with
Multilingual Generative Language Models. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9019–
9052, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. ArXiv:1907.11692 [cs].

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
Weight Decay Regularization.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically Ordered
Prompts and Where to Find Them: Overcoming Few-
Shot Prompt Order Sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng Xin Yong, Hai-
ley Schoelkopf, Xiangru Tang, Dragomir Radev,
Alham Fikri Aji, Khalid Almubarak, Samuel Al-
banie, Zaid Alyafeai, Albert Webson, Edward Raff,
and Colin Raffel. 2023. Crosslingual Generaliza-
tion through Multitask Finetuning. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15991–16111, Toronto, Canada. Association
for Computational Linguistics.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,

Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No Language Left Behind: Scaling Human-
Centered Machine Translation. ArXiv:2207.04672
[cs].

Ellie Pavlick and Tom Kwiatkowski. 2019. Inherent
Disagreements in Human Textual Inferences. Trans-
actions of the Association for Computational Linguis-
tics, 7:677–694.

Fred Philippy, Siwen Guo, Shohreh Haddadan, Cedric
Lothritz, Jacques Klein, and Tegawendé F. Bissyandé.
2024. Soft Prompt Tuning for Cross-Lingual Trans-
fer: When Less is More. In Proceedings of the 1st
Workshop on Modular and Open Multilingual NLP
(MOOMIN 2024), pages 7–15, St Julians, Malta. As-
sociation for Computational Linguistics.

Tim Schopf, Daniel Braun, and Florian Matthes. 2023.
Evaluating Unsupervised Text Classification: Zero-
shot and Similarity-based Approaches. In Proceed-
ings of the 2022 6th International Conference on
Natural Language Processing and Information Re-
trieval, NLPIR ’22, pages 6–15, New York, NY, USA.
Association for Computing Machinery.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, and Jacopo Staiano. 2020.
MLSUM: The Multilingual Summarization Corpus.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8051–8067, Online. Association for Computa-
tional Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguistics.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethink-
ing the Inception Architecture for Computer Vision.
In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2818–2826, Las
Vegas, NV, USA. IEEE.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2020. CCNet: Ex-
tracting High Quality Monolingual Datasets from
Web Crawl Data. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
4003–4012, Marseille, France. European Language
Resources Association.

Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu,
Zhaojiang Lin, Andrea Madotto, and Pascale Fung.
2021. Are Multilingual Models Effective in Code-
Switching? In Proceedings of the Fifth Workshop
on Computational Approaches to Linguistic Code-
Switching, pages 142–153, Online. Association for
Computational Linguistics.

70

https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2022.emnlp-main.616
https://doi.org/10.18653/v1/2022.emnlp-main.616
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.48550/arXiv.2207.04672
https://doi.org/10.48550/arXiv.2207.04672
https://doi.org/10.1162/tacl_a_00293
https://doi.org/10.1162/tacl_a_00293
https://aclanthology.org/2024.moomin-1.2/
https://aclanthology.org/2024.moomin-1.2/
https://doi.org/10.1145/3582768.3582795
https://doi.org/10.1145/3582768.3582795
https://doi.org/10.18653/v1/2020.emnlp-main.647
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://doi.org/10.18653/v1/2021.calcs-1.20
https://doi.org/10.18653/v1/2021.calcs-1.20


Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yongqin Xian, Christoph H. Lampert, Bernt Schiele,
and Zeynep Akata. 2019. Zero-Shot Learning—A
Comprehensive Evaluation of the Good, the Bad and
the Ugly. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 41(9):2251–2265.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A Massively Multilingual
Pre-trained Text-to-Text Transformer. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 483–
498, Online. Association for Computational Linguis-
tics.

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Bench-
marking Zero-shot Text Classification: Datasets,
Evaluation and Entailment Approach. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3914–3923, Hong
Kong, China. Association for Computational Linguis-
tics.

Ruochen Zhang, Samuel Cahyawijaya, Jan Chris-
tian Blaise Cruz, Genta Winata, and Alham Fikri Aji.
2023. Multilingual Large Language Models Are Not
(Yet) Code-Switchers. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 12567–12582, Singapore.
Association for Computational Linguistics.

Xuandong Zhao, Siqi Ouyang, Zhiguo Yu, Ming Wu,
and Lei Li. 2023. Pre-trained Language Models
Can be Fully Zero-Shot Learners. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15590–15606, Toronto, Canada. Association
for Computational Linguistics.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate Before Use: Improv-
ing Few-shot Performance of Language Models. In
Proceedings of the 38th International Conference on
Machine Learning, pages 12697–12706. PMLR.

A Technical Details

Access to the code used in our research will pro-
vided in the camer-ready version.

A.1 Training

We conducted all of our experiments using the
Transformers library (Wolf et al., 2020) and ran
them on 4 A100 Nvidia GPUs within a few hours.
We used AdamW (Loshchilov and Hutter, 2019)
as an optimizer. We provide the hyperparameters
used during our experiments in Table 5. Due to
computational constraints, we did not perform ex-
haustive hyper-parameter optimization, but instead
selected hyper-parameters that demonstrated satis-
factory performance in preliminary experiments.

XGLM XLM-R mT0
Batch size 8 8 8

Learning rate 0.01 0.01 0.3
Epochs 10 10 10

α 100 10 200
ϵ 0.2 0.1 0.8

Prompt length 8 8 9

Table 5: Hyperparameters

A.2 Evaluation

During evaluation, NPPrompt (Zhao et al., 2023)
requires a parameter k, which is referred to as the
neighborhood number. In our experimental setup,
for each model and dataset type, we selected the
value of k that achieved the highest average perfor-
mance across the development sets of all supported
languages. The specific values selected for k in the
evaluation of RoSPrompt, NPPrompt (including
NPPrompt-t) and SPT are presented in Tables 6, 7
and 8 respectively.

XGLM XLM-R mT0
SIB-200 3 4 14
MTOP 4 2 8

MLSUM 300 5 7

Table 6: Chosen neighborhood number k values for
RoSPrompt.

XGLM XLM-R mT0
SIB-200 4 3 6
MTOP 3 2 5

MLSUM 5 4 6

Table 7: Chosen neighborhood number k values for
NPPrompt Zhao et al. (2023) and NPPrompt-t (Zhao
et al. (2023) with translated hard prompt).
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XGLM XLM-R mT0
SIB-200 2 17 5
MTOP 100 7 12

MLSUM 200 16 7

Table 8: Chosen neighborhood number k values for
SPT.

Impact of Hyperparameters RoSPrompt’s
training methodology primarily relies on two
numerical hyperparameters: the contrastive label
smoothing factor, denoted as ϵ, and the penalty
strength, represented by α.

In Figure 3, we illustrate RoSPrompt’s perfor-
mance using XGLM and mT0 on the SIB-200
dataset, using a diverse subset of languages4, across
various values for α and ϵ, while maintaining the
other hyperparameter at zero each time. Generally,
we find that both excessively low and high values
for α and ϵ do not lead to optimal outcomes.

Figure 3: Average performance (accuracy) of
RoSPrompt across 10 languages on SIB-200 for dif-
ferent values of ϵ and α.

A.3 Datasets
As source data to train the soft prompts, we use
the DBPedia14 ontology classification dataset5

(Lehmann et al., 2015). It is a subset of the
English version of DBpedia 20146, consisting
of randomly chosen 560 000 training and 70 000
test samples equally distributed across 14 distinct
classes. These classes represent the most common
infobox categories on Wikipedia, including cate-
gories like Company, Artist, Athlete, Village,
Animal, among others.

4en, ru, zh, de, ar, bn, ta, ko, my, sw
5https://huggingface.co/datasets/dbpedia_14
6https://downloads.dbpedia.org/wiki-archive/

data-set-2014.html

For evaluation we use three different multlingual
datasets:
MLSUM (Scialom et al., 2020), a multilingual news
summarization dataset. However, each article-
summary pair is also labeled with its respective
news category. Therefore, in our experiments, we
use, for each article, the summary for its classi-
fication. Given the differing data sources for dif-
ferent languages, the categories across languages
slightly differ. More specifically we use articles on
society, politics, culture, sports, economy
and science for Spanish, Russian and French and
articles on politics, sports, economy, travel,
car and education for German. This selection
amounts to 8935, 612, 5950, 5315 test samples for
German, Russian, French and Spanish respectively.
MLSUM is licensed under the MIT License7.

MTOP8 (Li et al., 2021), a multilingual utterance
classification dataset, featuring 11 different do-
mains, such as alarm, reminder, recipes or
weather. The dataset covers 6 languages: English,
German, Spanish, French, Hindi and Thai, with
respective test sample counts of 4386, 3549, 2998,
3193, 2789, and 2765. MTOP is licensed under the
Creative Commons Attribution-ShareAlike 4.0 In-
ternational License9.

SIB-20010 (Adelani et al., 2024), a multilin-
gual topic classification dataset covering 203
languages. The dataset is derived from the
FLORES-200 benchmark (NLLB Team et al.,
2022) and consists of 701 training, 99 validation
and 204 test samples in each language. It fea-
tures 7 distinct classes: geography, politics,
science/technology, travel, sports, health
and entertainment. SIB-200 is licensed under
the Apache License 2.011.

A.4 Models

In our work, we use the following models:
XGLM564M

12 (Lin et al., 2022) is a decoder-only mul-
tilingual model supporting a diverse selection of 30
languages. Pre-trained on the CC100-XL dataset,

7https://opensource.org/license/mit/
8https://huggingface.co/datasets/mteb/mtop_

domain
9https://creativecommons.org/licenses/by-sa/4.

0/
10https://github.com/dadelani/sib-200
11https://www.apache.org/licenses/LICENSE-2.0.

txt
12https://huggingface.co/facebook/xglm-564M
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MTOP MLSUM
Model de en es fr hi th de es fr ru

Llama3.1-8B 83.26 93.50 85.32 83.15 84.69 75.26 78.13 70.21 68.27 53.92
Phi-3.5-mini 79.57 86.34 78.62 78.52 70.49 66.22 77.08 71.17 66.91 59.64

Table 9: Accuracy scores on the MTOP and MLSUM obtained through zero-shot prompting.

an expansion of CC100 (Conneau et al., 2020; Wen-
zek et al., 2020), it features 564 million parameters,
24 layers, a hidden dimension size of 1024, and 16
attention heads.

XLM-RLarge
13 (Conneau et al., 2020) is an encoder-

only multilingual RoBERTa-based (Liu et al., 2019)
model supporting 100 languages, pre-trained on
CC100 (Conneau et al., 2020; Wenzek et al., 2020)
using the MLM objective. It consists of 550 million
parameters, 24 hidden layers, a dimension of 1024,
and 16 attention heads.

mT0Base
14 (Muennighoff et al., 2023) is an encoder-

decoder model supporting 101 languages. It is an
mT5 model (Xue et al., 2021) that has been multi-
task fine-tuned on the xP3 dataset15 (Muennighoff
et al., 2023). It features 584 million parameters,
12 encoder and decoder layers, 12 attention heads,
and a hidden dimension size of 768.

B Additional Details on "Zero-Shot
Prompting" Baseline

For this baseline, we used the 8-bit quantized
versions of Llama3.1-8B16 (Dubey et al., 2024)
and Phi-3.5-mini17 (Abdin et al., 2024), which
have been designed with robust multilingual ca-
pabilities. Llama3.1-8B is a transformer-based
language model with 8.03 billion parameters, de-
signed for efficient text generation tasks. Phi-3.5-
mini, a smaller variant, has 3.82 billion parameters
and shares a similar transformer architecture opti-
mized for lightweight inference. Both models were
prompted using the prompt shown in Figure 4 and
used with 8-bit quantization.

The results on MTOP and MLSUM are provided
in Table 9.

13https://huggingface.co/xlm-roberta-large
14https://huggingface.co/bigscience/mt0-base
15https://huggingface.co/datasets/bigscience/

xP3
16https://huggingface.co/meta-llama/Llama-3.

1-8B-Instruct
17https://huggingface.co/microsoft/Phi-3.

5-mini-instruct

I will provide text and potential
categories, and I would like you
to classify the text into one
of the given categories based on
its content. Please ensure the
classification is accurate and
consistent.

Categories:
- Label 1
- Label 2
- ...

Text: "{Document}"

Only return the category name.

Figure 4: The prompt used for the Zero-Shot LLMs
baseline with Llama3.1-8B and Phi-3.5-mini.

C Full Results for SIB-200

Table 10 presents the experimental results for each
language on SIB-200, with average values per lan-
guage family reported in Table 2 in Section 5.
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afr_Latn 74.02 63.24 62.75 74.39 69.85 62.75 38.73 59.07 44.12 74.51
als_Latn 75.37 62.75 56.86 70.47 69.24 65.69 24.02 61.15 30.88 58.82
amh_Ethi 64.71 55.39 - 63.11 65.56 59.80 - 62.38 2.45 3.92
arb_Arab 69.12 60.78 53.92 59.19 71.69 62.25 64.71 71.08 72.67 69.61 55.39 71.69 48.53 72.06
asm_Beng 72.30 62.75 - 59.31 15.20 11.76
azb_Arab 65.07 54.41 - 58.58 59.80 57.35 - 49.02 23.04 37.25
azj_Latn 75.37 63.24 - 69.73 67.52 69.61 - 67.16 33.33 52.94
bel_Cyrl 74.02 62.75 60.29 69.36 67.89 64.71 44.61 66.67 44.61 51.47

ben_Beng 69.36 61.27 61.27 59.44 72.30 57.35 - 69.85 67.28 64.22 - 59.07 31.86 25.00
bos_Latn 68.14 64.71 60.29 58.70 48.53 60.29
bul_Cyrl 69.49 63.73 57.35 63.73 77.45 63.24 55.88 74.02 68.26 66.18 59.80 67.77 51.96 67.65
cat_Latn 71.81 65.69 59.80 59.19 79.90 65.20 51.47 71.32 69.61 64.71 59.31 67.77 53.43 75.98
ceb_Latn 69.12 61.27 54.41 69.12 29.90 65.20
ces_Latn 75.25 62.25 50.98 71.81 65.93 64.71 53.92 64.83 55.88 72.06
cym_Latn 63.97 55.88 32.84 63.48 65.69 59.80 46.57 59.19 28.92 49.51
dan_Latn 73.77 64.22 61.76 72.06 69.00 67.16 38.24 64.22 52.94 74.51
deu_Latn 70.22 62.25 48.04 66.91 75.12 66.18 62.25 72.55 69.36 68.14 50.49 64.34 66.67 80.39
ell_Grek 69.36 57.84 52.45 62.75 73.65 58.82 65.20 69.49 69.12 70.10 47.06 64.83 51.47 43.63
eng_Latn 73.53 63.73 63.73 69.00 79.41 65.20 65.20 73.53 68.01 61.76 61.76 52.33 75.98 83.33
epo_Latn 77.08 67.16 40.20 73.04 67.65 67.16 20.59 59.44 43.14 62.25
est_Latn 69.36 61.76 22.55 65.56 73.28 66.18 45.59 72.30 69.73 66.18 47.06 58.21 36.76 55.88
eus_Latn 71.20 63.73 - 60.17 74.51 63.73 - 74.02 65.81 58.82 - 58.33 31.37 52.45
fin_Latn 73.65 62.75 58.82 67.52 72.92 62.25 52.45 67.28 71.45 66.18 59.31 60.17 47.06 69.12
fra_Latn 71.08 58.33 36.76 60.05 77.70 64.22 58.33 70.71 66.18 65.20 31.86 60.17 65.20 78.92
gaz_Latn 44.24 35.29 29.41 38.48 9.31 25.98
gla_Latn 60.42 48.53 38.24 56.13 59.19 54.90 41.67 53.19 13.24 30.88
gle_Latn 69.00 60.78 29.90 69.24 63.60 57.84 44.61 56.86 19.61 42.16
glg_Latn 76.47 67.65 47.55 76.47 68.75 64.71 52.45 68.50 52.94 77.94
guj_Gujr 74.02 65.20 - 69.24 68.26 60.29 - 64.09 6.86 2.94
hat_Latn 65.81 59.80 62.25 48.41 69.73 55.39 40.69 67.40 18.63 54.41
hau_Latn 60.91 51.47 42.65 61.64 60.54 59.31 45.59 51.10 23.53 33.33
heb_Hebr 73.41 59.80 51.47 68.26 67.28 65.20 41.67 64.83 52.45 58.33
hin_Deva 67.89 62.25 - 58.09 72.43 62.25 - 71.45 71.20 65.69 - 65.56 50.00 55.39
hrv_Latn 68.26 66.67 62.75 58.09 48.04 64.22
hun_Latn 72.92 61.76 - 68.63 69.98 64.71 - 53.55 50.00 70.10
hye_Armn 71.69 61.27 65.69 66.54 70.10 66.67 68.14 63.60 11.27 25.00
ibo_Latn 71.45 62.25 55.88 68.75 24.51 34.80
ind_Latn 73.04 59.31 63.73 66.05 75.61 67.16 57.84 72.92 71.69 67.16 63.73 67.28 52.94 79.41
isl_Latn 70.96 61.27 53.92 69.61 67.77 67.65 39.22 58.82 24.51 48.53
ita_Latn 72.43 63.24 48.53 63.24 75.00 63.24 53.43 73.16 66.79 65.69 44.61 63.73 64.22 79.41
jav_Latn 66.54 60.78 51.96 66.67 19.12 61.76
jpn_Jpan 72.30 62.25 - 59.68 75.49 62.75 - 72.18 69.12 64.22 - 64.22 49.51 72.55
kan_Knda 72.92 62.25 - 68.75 65.20 66.18 - 66.05 8.82 2.45
kat_Geor 74.14 62.25 58.33 72.30 70.47 66.18 55.88 65.93 5.39 18.63
kaz_Cyrl 76.96 63.24 - 71.20 73.04 70.10 - 69.24 28.92 56.86
khk_Cyrl 69.73 58.33 - 69.85 65.69 60.29 - 53.92 20.10 34.80

khm_Khmr 71.57 65.69 61.27 70.71 66.54 66.67 52.45 64.71 3.43 4.90
kir_Cyrl 70.83 60.78 - 69.00 69.49 66.67 - 61.76 22.55 50.00

kmr_Latn 57.35 52.94 - 57.84 64.09 59.31 - 61.40 20.10 43.14
kor_Hang 68.38 60.78 - 62.99 71.57 59.31 - 68.87 69.00 63.24 - 62.62 45.59 73.53
lao_Laoo 74.39 65.69 61.76 74.02 68.63 61.27 60.78 65.44 3.92 2.94
lit_Latn 74.02 64.71 64.71 69.98 66.05 67.65 25.98 57.35 36.76 59.31
ltz_Latn 66.42 55.88 44.61 66.54 23.53 65.69
lvs_Latn 74.26 61.76 47.55 70.22 69.12 62.75 24.51 48.53 38.24 56.37

mal_Mlym 72.06 58.33 - 68.26 70.10 66.18 - 64.83 8.33 10.78
mar_Deva 71.45 61.27 - 67.52 67.03 61.27 - 57.60 35.29 33.33
mkd_Cyrl 76.47 60.78 63.73 72.06 70.83 61.27 59.80 62.38 40.20 63.24
mlt_Latn 68.26 58.82 27.45 66.18 28.92 65.69
mri_Latn 56.13 47.06 26.47 58.09 11.76 32.35

mya_Mymr 72.30 62.75 - 61.40 71.32 58.33 - 70.71 68.38 61.76 - 68.38 2.45 3.92
nld_Latn 76.35 63.73 66.18 74.63 70.34 68.14 51.96 60.29 58.82 79.41
nno_Latn 74.14 63.73 - 69.24 69.98 62.75 - 66.30 40.69 75.00
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nob_Latn 75.25 62.75 58.82 70.59 70.96 64.71 38.73 62.62 51.47 73.53
npi_Deva 73.04 62.25 - 70.34 69.85 66.18 - 65.44 25.98 45.10
nya_Latn 70.59 61.76 - 69.24 15.69 38.24
pan_Guru 72.30 61.76 - 71.94 9.31 2.94
pbt_Arab 66.91 55.88 - 67.65 65.07 62.75 - 62.62 23.04 38.24
pes_Arab 75.00 60.29 - 68.75 68.75 65.69 - 61.03 45.10 52.94
plt_Latn 67.28 55.88 - 66.54 62.99 54.90 - 48.04 13.24 42.65
pol_Latn 75.98 62.75 54.41 74.14 66.42 64.71 47.55 64.95 57.84 78.43
por_Latn 72.92 64.71 50.49 66.18 76.35 67.16 37.25 74.02 70.34 66.67 57.35 68.63 60.78 77.45
quy_Latn 45.71 44.12 - 32.48 14.71 41.18
ron_Latn 72.43 64.22 37.25 75.86 71.32 68.63 56.86 62.01 50.00 72.55
rus_Cyrl 70.22 60.78 57.84 64.95 75.49 63.73 61.27 72.55 68.75 69.12 65.69 67.28 59.80 75.98
san_Deva 64.34 62.25 - 59.93 18.63 41.18
sin_Sinh 72.18 60.29 - 69.12 68.14 62.25 - 60.05 4.41 3.92
slk_Latn 70.96 62.25 31.86 69.61 67.77 69.12 65.20 63.85 44.61 71.57
slv_Latn 72.43 62.25 52.94 73.53 65.93 64.71 61.27 62.62 40.20 67.65
smo_Latn 60.91 50.49 49.51 63.48 13.24 33.33
sna_Latn 67.03 59.31 48.53 64.71 15.20 39.71
snd_Arab 65.32 58.33 43.63 63.85 67.40 58.82 16.67 55.15 26.47 32.84
som_Latn 59.44 54.90 36.76 60.05 59.19 55.39 39.71 52.21 12.75 36.76
sot_Latn 70.34 58.33 46.57 67.40 14.71 34.80
spa_Latn 74.39 60.29 44.12 55.88 78.19 67.65 56.86 74.02 66.67 65.69 46.57 68.50 68.63 80.39
srp_Cyrl 76.84 64.22 64.71 71.08 69.36 62.75 57.35 59.56 46.08 60.78
sun_Latn 73.04 60.29 54.90 70.83 68.14 67.16 57.35 67.40 17.16 62.25
swe_Latn 72.92 62.25 55.88 70.96 71.81 67.16 57.35 66.67 54.90 75.49
swh_Latn 65.32 61.76 58.82 55.51 71.69 61.76 49.51 68.87 65.69 62.75 50.00 55.27 28.43 44.12
tam_Taml 67.65 60.78 - 61.40 76.10 62.75 - 71.32 66.05 63.24 - 63.48 10.29 15.20
tel_Telu 62.25 55.39 - 54.90 75.12 63.24 - 71.94 67.77 63.73 - 63.60 6.86 2.45
tgk_Cyrl 70.47 60.29 57.84 66.79 23.04 35.78
tgl_Latn 71.94 63.73 59.80 68.63 41.67 70.10
tha_Thai 67.65 58.82 53.92 59.31 73.28 62.25 63.73 70.96 69.12 65.69 54.90 68.87 52.45 54.90
tur_Latn 72.55 62.25 - 60.42 74.39 61.27 - 71.69 67.89 65.20 - 63.11 42.16 70.10
uig_Arab 67.16 62.25 - 59.93 15.20 9.31
ukr_Cyrl 73.65 62.75 63.24 71.32 67.89 69.61 51.96 66.79 50.00 69.61
urd_Arab 67.65 56.86 - 55.27 71.81 59.80 - 69.00 70.83 61.76 - 65.69 53.92 40.69
uzn_Latn 74.63 63.24 - 69.49 69.00 64.71 - 59.56 22.55 46.08
vie_Latn 69.61 66.18 58.33 59.31 72.79 62.25 62.75 70.34 66.79 68.14 54.90 62.50 44.12 69.61
xho_Latn 69.36 61.27 50.49 67.89 52.82 50.49 26.47 49.39 16.18 42.16
ydd_Hebr 60.66 53.43 43.14 59.80 62.25 51.47 30.39 43.14 16.67 18.14
yor_Latn 55.88 49.51 40.69 59.07 14.22 30.88
zho_Hans 73.53 54.90 44.61 46.69 77.21 63.24 58.33 74.88 68.87 63.24 56.86 65.56 54.90 78.92
zho_Hant 74.14 65.69 61.76 70.96 70.22 66.18 54.90 61.89 48.53 79.41
zsm_Latn 73.16 65.69 55.88 69.36 69.61 65.69 58.33 60.42 38.73 74.51
zul_Latn 67.77 58.82 55.88 65.44 18.63 40.20

Table 10: Comparison of accuracy scores on the SIB-200 dataset between RoSPrompt and different baselines across
all supported languages. For each language, the best overall result is underlined, and the best result within each
column group is highlighted in bold.
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Abstract

This study investigates zero-shot and few-shot
cross-lingual transfer effects in Part-of-Speech
(POS) tagging and Named Entity Recognition
(NER) for Hamshentsnag, an endangered West-
ern Armenian dialect. We examine how dif-
ferent source languages, Western Armenian
(contact cognate), Eastern Armenian (ances-
tral cognate), Turkish (substrate or contact-
induced), and English (non-cognate), affect the
task performance using multilingual BERT and
BERTurk. Results show that cognate varieties
improved POS tagging by 8% F1, while the
substrate source enhanced NER by 15% F1.
BERTurk outperformed mBERT on NER but
not on POS. We attribute this to task-specific ad-
vantages of different source languages. We also
used script conversion and phonetic alignment
with the target for non-Latin scripts, which al-
leviated transfer.

Introduction

This study examines cross-lingual transfer from
contact and cognate variety languages in Part-
of-Speech (POS) and Named Entity Recognition
(NER) tagging for a truly low-resource and en-
dangered language Hamshentsnag1 (hyh). While
supervised sequence tagging is a solved problem
for high-resource languages (Bohnet et al., 2018),
it is indeed difficult for truly low-resource settings
with mean accuracies below 50% (Sonkar et al.,
2023; Cho et al., 2018; Kann et al., 2020; Malmasi
et al., 2022; Choenni et al., 2023), especially in the
dearth of available annotated data.

NLP technologies remain limited for under-
served communities, and model accuracies in vari-
ous NLP tasks are significantly lower for languages

1https://glottolog.org/resource/languoid/id/hams1239

and cultures that are less represented (Myung et al.,
2024). Many available solutions include either
continual mixed language pre-training (Liu et al.,
2021), using parallel corpora (Ramesh et al., 2022),
or employing cross-lingual transfer methods from
a higher-resource to a lower-resource language by
fine-tuning pre-trained models to increase perfor-
mance in downstream NLP tasks (Eronen et al.,
2023; Cotterell and Duh, 2017). To this end, we
have curated a small Hamshentsnag dataset with
online resources and working together with the
Hemshin community (data elicitation) and em-
ployed zero-shot and few-shot cross-lingual trans-
fer by testing two models (i) multilingual BERT
(mBERT) (Devlin et al., 2019) and BERT model for
Turkish (BERTurk) (Schweter, 2020) for sequence
tagging. The source languages were Western Ar-
menian - hyw, Eastern or Standard Armenian - hy;
and Standard Modern Turkish - tr), and English
(en) that have more resources available (Figure 1).
We use the terminology in Table 1 to refer to these
languages in the present study. Among the source
languages, tr is a substrate to the target; hyw and
hy are cognates that share structural similarity with
the target, and English (as a reference level for our
comparisons) has no contact and little typological
similarity.

From a typological background, hy and hyw are
distinct dialects of Armenian, but to some degree
they are mutually intelligible. hyw has phonologi-
cal and syntactic differences from hy. hyw retains
most of the features of Classical Armenian (Dum-
Tragut, 2009), whereas hyw underwent relatively
more morpho-phonological and morpho-syntactic
simplifications. hyh (the target language) is closest
to hyw, while being highly influenced by tr due
to prolonged contact. Moreover, the interaction
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between the historical hyw and hyh speakers led
to potential linguistic exchange or shared features
(Khanjian, 2013).

The Hamshentsnag2 Language

Hamshentsnag (hyh) is considered a dialect of
Western Armenian (hyw) (Vaux, 2001), which be-
longs to the Armenic branch of the Indo-European
family. Following the claims (Vaux, 2007) about
hyh’s typological status, its syntax (Günay et al.)
and lexicon, we selected typologically similar lan-
guages to transfer knowledge from, which are: hyw,
hy, and tr. Our decision behind choosing these
three source languages comes from the following
features of hyh: the typological landscape of hyh
resembles hyw, hy, and tr, in terms of its syntax
and morphology. The shared similarities between
these three languages are listed below (1), (2). The
similarities between the Armenic languages are ev-
ident. All of the words in (1-a) to (1-e) in bold are
postpositions, which are commonly attested in the
languages in question (Stevick, 1955). The impor-
tance that this carries comes from the ordering in
the nominal domain w.r.t. each language, (1) is just
one example.

(1) a. dun-e medan hedev hyh

b. dun ertale jedk hyw

c. tun-e mat’neluc het’o hy

d. ev-e girdikten sonra tr

e. ‘after entering the home’ en

Furthermore, the boldfaced morphemes in (2-a)
(2-b) (2-c) are the definite (DEF) markers, which
are obligatory with proper names. (2-e) is the trans-
lation. The boldfaced morpheme in (2-d) is not
a definite marker but a genitive (GEN) suffix, it
resembles the Hamshentsnag morphology -i-n (-
GEN-DEF) in terms of its form.

(2) a. Hasan-i-n u Ahmed-i-n... hyh

b. Hasmig-n u Aram-e... hyw

c. Hasmig-n u Aram-n... hy

d. Hasan-ın ve Ahmet-in... tr

e. ‘Hasan and Ahmet...’ en

In all three Armenic languages, even the definite
2Hamshentsnag has other names as well: Homshetsi,

Homshetsma. We have been advised by the native speak-
ers to use Hamshentsnag when referring to it.

marker is subject to the same phonological (3) and
morphological (4) constraints (Sigler, 1997):

(3) /-DEF/ → [e] / [CONSONANT]__
(4) /-DEF/ → [n] / __[CLITICal, u, ...]

Ultimately, the aforementioned observations
veered us in selecting these three languages as
sources, in addition to English as a reference level.

Related Work

To our knowledge, there is no computational work
specifically on hyh. However, there are studies that
investigate mBERT’s performance on a variety of
low-resource languages. Among them, Lauscher
et al. (2020) examined languages from 8 different
language families on different NLP tasks and found
that transfer performance was strongly aligned with
the linguistic similarity of the target and source
languages. Pires et al. (2019) also showed that
mBERT performed surprisingly well in zero-shot
transfer for the POS and NER tasks across many
languages and even scripts.

Rahimi et al. (2019) proposed two models (one
with an unsupervised transfer and another with a
supervised transfer setting by using a small set of
100 target sentences) and evaluated them in a NER
task. Using only English as a source language in an
unsupervised setting often did not transfer well as
opposed to the oracle choice of the source language.
Furthermore, in their experiments, script mismatch
decreased direct transfer.

Similar to the present study, Şaziye Betül Öza-
teş et al. (2025) and Karagöz et al. (2024) eval-
uated cross-lingual transfer in both mBERT and
BERTurk. The authors introduced OTA-BOUN,
a Universal Dependencies (UD) treebank for his-
torical Turkish, and fine-evaluated mBERT and
BERTurk on POS and NER. They reported im-
provements when combined with Standard Mod-
ern Turkish in the training data, alluding to cross-
lingual transfer from a higher-source but out-of-
domain variety.

However, languages may not be represented
equally in multilingual models. Wu and Dredze
(2020) tested mBERT on 153 languages in total
for POS and NER, and found improvements in the
performance when paired with similar languages
to the target, although mBERT is claimed to still
learn even in the absence of a shared lexicon or
domain across languages (Conneau et al., 2020b),
with the caveat that models like mBERT should
not be employed alone for low-resource languages.
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Figure 1: Geographical distribution of Armenian languages in the Caucasus region. The map shows three varieties:
Hamshentsnag in northeastern Turkey, Western Armenian’s historical speaking area, and Eastern Armenian in
modern Armenia. The hatched pattern indicates Turkish linguistic contact areas, while the dotted line between
Hamshentsnag and Western Armenian represents a possible historical contact zone.

Term Definition

Target The language of interest for which NLP tools are being developed (Hamshentsnag
in this study)

Substrate Source (SS) Language that historically influenced the target language through language
contact (e.g., Turkish)

Ancestral Cognate Source (ACS) Ancestral language that shares a common ancestor with the target language with
no contact (e.g., Eastern Armenian)

Contact Cognate Source (CCS) Language that both influenced the target through contact and shares ancestry
with it (e.g., Western Armenian)

Non-Cognate Source (NCS) Language with no historical contact or a close genetic relationship to the target
language (e.g., English)

Table 1: Our Definitions of Language Types

Otherwise, as the authors showed, mBERT per-
formed worse than monolingual models for lower-
resource languages. Furthermore, as Artetxe et al.
(2020) report, it is not only multilingual models
that can learn to generalize to unseen languages,
but monolingual models may also transfer at a lexi-
cal level and become compatible with mBERT or
even perform better. As far as we know, there re-
mains a paucity of research specifically looking
at the effects of contact and cognate source lan-
guages on the target performance in the context of
zero-shot and few-shot cross-lingual transfer from
a typological perspective. Also, working together
with the community is essential when developing
NLP technologies for endangered languages (Liu
et al., 2022; Zhang et al., 2022). Therefore, we
aim to bridge this gap by investigating how lever-
aging contact and cognate source languages affects
the performance of NLP models specifically for
Hamshentsnag and also by collaborating with the
Hemshin community and curating relevant linguis-
tic data for few-shot transfer.

Data Resources for Hamshentsnag

Endangered languages come with the cost of the
scarcity of data. We alleviated this problem by col-
lecting primary data from four native speakers of
the language, who agreed to participate in the data
collection process, and written informed consent
was obtained from all consultants.3 Our data col-
lection process was mostly in the form of a Q&A,
where the consultants were asked to translate the
prepared sentences. Additionally, the consultants
were asked to produce sentences about a specific
topic. As a second resource, we also utilized a
voluntary and nonprofit journal titled GOR4, that
aims to preserve the culture, the language, and the
history of the Hamshen people. We have benefited
from the open-source Hamshen stories that can be
found online, which were written in the target lan-
guage. Lastly, we have benefited from the work of
Yenigül (2021), which included in-depth interviews

3Data elicitation experiments received ethical approval.
4https://gordergi.blogspot.com
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with the Hamshen and personal narratives in the
target language.

Ultimately, these three approaches increased the
number of tokens in our dataset in the following
ways: the first approach was tailored towards giv-
ing us detailed and crucially more directed natu-
rally produced data, while the second and third ap-
proaches were aimed at being efficient with regards
to time management in augmenting our dataset, as
well as representing the Hamshentsnag language
as intended.

Text Normalization and Challenges in
Transliteration

The curated data (stored in a text document) were
normalized and standardized. The sentences col-
lected for the POS task were further reformatted
according to the CoNLL-U format. Because there
is no standardized spelling system for the target lan-
guage, we detected some orthographic inconsisten-
cies (due to speaker variation) and fixed them using
Regular Expressions (Regex) together with a re-
searcher who is a native speaker of Hamshentsnag.
Since it is spelled using the Latin alphabet, no
transliteration was needed.

Additionally, to test multilingual transfer effects,
we used Western Armenian (hyw) and Eastern Ar-
menian (hy) datasets. Using transliteration (i.e.,
the process of converting text from one writing sys-
tem to another based on phonetic correspondences)
and phonetic transcriptions are known to allevi-
ate cross-lingual transfer (Murikinati et al., 2020;
Bharadwaj et al., 2016). For this reason, since these
dialects use the Armenian script, we also prepared
versions of these datasets which were transliter-
ated into Latin using the transliterate5 pack-
age in Python. However, the transliteration out-
putted by the program significantly differed from
the spelling of Hamshentsnag in our corpus given
the phonological and orthographic differences be-
tween the dialects. Key issues included historical
orthographic discrepancies, phonemic variations
across dialects, positional allophones, and individ-
ual speaker idiosyncrasies. To address these and
align the transliteration of hyw and hy with the tar-
get hyh, we developed dynamic context-sensitive
rules using Regex (see Table 2) by relying on the
linguistic judgments and having community valida-
tion from our native speaker consultants.

5https://pypi.org/project/transliterate

Experimentation

Models The sequence labeling experiments (POS
and NER) were implemented using the Flair frame-
work (Akbik et al., 2019). For this task, Google’s
multilingual BERT (mBERT) (Devlin et al., 2019)
and BERTurk (Schweter, 2020) (both of which are
cased) were fine-tuned with different training sets,
resulting in 9 experiments for POS, and 7 experi-
ments for NER (16 in total) for each model (mm-
BERT and BERTurk).

mBERT is a multilingual encoder-only model
that shares the same architecture with BERT (De-
vlin et al., 2019) and was trained on 104 differ-
ent languages. Since hyh has close contact with
tr as illustrated in Figure 1, we also decided to
test BERTurk (Schweter, 2020), which is another
BERT model trained on a large corpus of Turk-
ish. We also considered XLM-R (Conneau et al.,
2020a) but our preliminary experiments showed
it underperformed, so we focused on mBERT and
BERTurk.

For the fine-tuning, we used the AdamW opti-
mizer with 0.01 weight decay, a learning rate of
5e-5, and a batch size of 32 for a maximum of 15
epochs with early stopping (patience = 5). All ex-
periments were conducted on Google Colab using
a Tesla T4 GPU.

POS Data For the POS task, the training datasets
include four different languages, as can be seen
in Table 3. Our own Hamshentsnag (hyh) dataset
for POS, described in detail in Section 1, has 373
sentences for the train set, 153 sentences for the
development set, and 153 sentences for the test
set, all of which were annotated for UPOS by
the authors along with native speaker consultants.
While the train and development sets come from
the same resources (speaker elicitation and open-
source Hemshin stories), the test set contains sen-
tences from a different domain (personal experi-
ence narratives and dialogues).

The UPOS training data for other higher-
resource languages were obtained from Univer-
sal Dependency (UD) Treebank datasets. These
include Western Armenian (hyw), Eastern or Stan-
dard Armenian (hy), and Turkish (tr) to investigate
how language contact and cognateness (i.e., typo-
logical similarity) contribute to possible multilin-
gual transfer effects. We also trained the model
with English (en) to test the effect of a high-
resource language with no contact and little typo-
logical similarity. All testing was conducted only
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Armenian Ch. transliterate Our Transliteration IPA Transcription

է, ե† ē, e† e, ye† /E/, /je/†

ու ow u /u/
ը ë ğ /@/
շ š ş /S/
չ č ç /tS/
ժ ž j /Z/
ղ ġ ğ /K/
ռ ṙ r /r/ or /R/‡

ջ ǰ c/ç /dZ/ or /tS/‡

ո ò vo† or o /vo/† or /O/
և ew yev† or ev /jev/† or /ev/
ձ j c or ts /

>
dz/ or /

>
ts/‡

ւ w v /v/

Table 2: Transliteration of the Armenian Script
† only word-initially

‡ in HYW

on the target language (Hamshentsnag or hyh).

Dataset # Sents. # Tokens

hyh (ours) 373 2,394
hyw (Yavrumyan et al., 2017) ∼5,000 ∼73,000
hy (Yavrumyan et al., 2017) ∼2,000 ∼34,000
tr (Türk et al., 2022) ∼10,000 ∼120,000
en (Silveira et al., 2014) ∼13,000 ∼216,000

Table 3: POS Datasets Used for Training

NER Data We report three languages for the
NER task (Table 4). Our own hyh developing NER
corpus includes a small set of 143 sentences for
the training set (all annotated for PERSON (N = 88)
and LOCATION (N = 93) entities by the authors
under native speaker consultation, consistent with
the BIO annotation scheme. Due to the scarcity of
open-source data and limitations in linguistic elici-
tation in Hamshentsnag, other entity types (such as
ORGANIZATION) occurred very sparsely and thus
were not annotated. Other 46 sentences were cu-
rated for the development set, and 115 sentences
for the test set (with 109 PER and 58 LOC enti-
ties). Like the POS experiment, while the training
and development sets in NER came from similar
domains and sources (sentences elicited through
native speakers and open-source online stories), the
test set exclusively included sentences from a dif-
ferent domain and source (personal narrative and
dialogues). The NER training set included three
higher-resource languages: hy, tr and en, all of
which had more than 150K tokens, compared to
our own hyh corpus with 2K tokens. hyw dialect
was excluded from NER experiments due to the
non-availability of data for this task. Like the previ-

ous task, all the testing was done only on the target
Hamshentsnag.

Dataset # Sents. # Tokens

hyh (ours) 143 1785
hy (Yavrumyan, 2024) ∼1,000 ∼150,000
tr (Tür et al., 2003) ∼20,000 ∼450,000
en (Sang and Meulder, 2003) ∼15,000 ∼200,000

Table 4: NER Datasets Used for Training

The descriptions of the model and source combi-
nations for both POS and NER tasks can be found
in Table 5.

Experiment Results

POS Each of the 18 models (9 mBERT, 9
BERTurk) were fine-tuned and tested on the target
UPOS tags in the test set three times and we report
the mean macro-averaged precision, recall, and F1
scores obtained from these experiments. Table 6
illustrates the results for the mBERT models. Zero-
shot models (with only hyw, hy, tr, and en), we can
see that English as a non-contact and non-cognate
language performed worse, followed by Turkish
(as a substrate or contact-only source). The cog-
nate varieties Eastern and Western Armenian had
the best performance. The baseline F1 achieved by
the model trained only on our low-resource cor-
pus (mBERThyh) was 0.63, which could be im-
proved when other contact or cognate languages
were added to the training data up to 0.68. The
combination of hyh and hyw resulted in the highest
recall (0.70). However, the model trained with both
the target and English did not show transfer effects.

The BERTurk models exhibited similar trends in
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Model Description Train Language

mBERT/BERTURKHYH mBERT/BERTURK fine-tuned only with our own small corpus
reported in this study

Target

mBERT/BERTURKHYW
† mBERT/BERTURK fine-tuned only with the

UD_Western_Armenian-ArmTDP Treebank for POS
CCS

mBERT/BERTURKTR mBERT/BERTURK fine-tuned only with the UD_Turkish-
BOUN Treebank for POS and MilliyetNER dataset for NER

SS

mBERT/BERTURKHY mBERT/BERTURK fine-tuned only with the UD_Armenian-
ArmTDP Treebank for POS and ArmTDP-NER dataset for
NER

ACS

mBERT/BERTURKEN mBERT/BERTURK fine-tuned only with the UD_English-EWT
for POS and English CoNLL-2003 dataset for NER

NCS

mBERT/BERTURKhyh+HYW
† mBERT/BERTURK fine-tuned with both our hyh corpus and

hyw dataset only for POS
Target + CCS

mBERT/BERTURKhyh+TR mBERT/BERTURK fine-tuned with both our hyh corpus and tr
datasets for POS and NER

Target + SS

mBERT/BERTURKhyh+HY mBERT/BERTURK fine-tuned with both our hyh corpus and hy
datasets for POS and NER

Target + ACS

mBERT/BERTURKhyh+EN mBERT/BERTURK fine-tuned with both our hyh corpus and en
datasets for POS and NER

Target + NCS

Table 5: Model Descriptions and Dataset Types Used in the Training Set. CCS: Contact Cognate Source, SS:
Substrate Source, ACS: Ancestral Cognate Source, and NCS:Non-Cognate Source.
† These models are only for the POS task since there is no available NER data for hyw.

Model Precision Recall F1

mBERTHYH 0.64 0.65 0.63
mBERTHYW 0.45 0.37 0.38
mBERTTR 0.34 0.27 0.27
mBERTHY 0.47 0.35 0.38
mBERTEN 0.22 0.22 0.19
mBERTHYH+HYW 0.67 0.70 0.67
mBERTHYH+TR 0.67 0.66 0.66
mBERTHYH+HY 0.69 0.69 0.68
mBERTHYH+EN 0.67 0.61 0.63

Table 6: mBERT Results on hyh Test Set for POS

POS tagging to the mBERT models, with cognate
languages demonstrating superior performance
compared to non-cognate languages (Table 7).
The baseline model, BERTURKHYH, achieved an F1
score of 0.64, which is comparable to the mBERT
baseline. When combined with other languages,
the BERTurk models showed improvements, with
BERTURKhyh+HYW and BERTURKhyh+TR achieving the
highest F1 scores of 0.68. Notably, BERTURKhyh+TR
also attained the highest precision (0.70), while
BERTURKhyh+HYW achieved the highest recall (0.70).
However, similar to the mBERT results, the model
trained with English (BERTURKhyh+EN) showed the
least improvement, with an F1 score of 0.60.

NER As in the first experiment, each of the
16 models (8 mBERT, 8 BERTurk) were tested
on target NER annotations. The baseline model,

Model Precision Recall F1

BERTURKHYH 0.67 0.66 0.64
BERTURKHYW 0.43 0.38 0.38
BERTURKTR 0.30 0.28 0.26
BERTURKHY 0.45 0.34 0.36
BERTURKEN 0.21 0.22 0.18
BERTURKhyh+HYW 0.67 0.70 0.68
BERTURKhyh+TR 0.70 0.69 0.68
BERTURKhyh+HY 0.67 0.67 0.65
BERTURKhyh+EN 0.63 0.59 0.60

Table 7: BERTurk Results on hyh Test Set for POS

mBERThyh, achieved an F1 score of 0.52 (Table 8).
Among the zero-shot models, Turkish (mBERTTR)
achieved the highest precision (0.67) but suffered
from low recall (0.31), resulting in a F1 score of
0.35. The model trained on English (mBERTEN)
performed the worst, with an F1 score of 0.31.
When combined with other languages, the mBERT
models showed notable improvements: Specifi-
cally, mBERThyh+TR achieved the best performance,
with an F1 score of 0.60. In contrast, the model
trained with English (mBERThyh+EN) showed limited
improvement, achieving an F1 score of 0.47, which
is lower than the baseline.

The BERTurk models, on the other hand, demon-
strated stronger performance for NER, with the
baseline model (BERTURKhyh) achieving an F1
score of 0.57, outperforming its mBERT counter-
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Model Precision Recall F1

mBERThyh 0.57 0.48 0.52
mBERTTR 0.67 0.31 0.35
mBERTHY 0.54 0.33 0.41
mBERTEN 0.46 0.25 0.31
mBERThyh+TR 0.79 0.51 0.60
mBERThyh+HY 0.65 0.45 0.52
mBERThyh+EN 0.58 0.41 0.47

Table 8: mBERT Results on hyh Test Set for NER

part (Table 9). Among zero-shot models, Turk-
ish (BERTURKTR) performed better than English,
though both fell short of the baseline. Com-
bining the target language with other languages
yielded improvements, with BERTURKhyh+TR achiev-
ing the highest F1 score of 0.64. Adding Armenian
(BERTURKhyh+HY) also showed competitive results,
while English (BERTURKhyh+EN) did not improve the
baseline scores.

Taken together, our findings show that leverag-
ing typologically related or contact languages en-
hanced model performance in sequence tagging for
hyh. Cognate varieties (hyw, hy) improved POS
tagging by 8% F1, while substrate language (tr)
boosted NER by 15% F1. We also observed that
BERTurk consistently outperformed mBERT on
NER but not in POS. This result perhaps could be
attributed to the substrate influence of tr, which
shares lexical and cultural overlap with the target.
In contrast, POS tagging might depend more on
structural cues, where cognate varieties like hy
and hyw (more so possibly due to an additional
historical contact with the target) perform better
due to their syntactic and morphological conver-
gence with the target language. Overall, both ex-
periments highlight the importance of task-specific
language selection for cross-lingual transfer in truly
low-resource NLP.

Model Precision Recall F1

BERTURKhyh 0.74 0.49 0.57
BERTURKTR 0.49 0.43 0.46
BERTURKHY 0.61 0.38 0.48
BERTURKEN 0.57 0.33 0.40
BERTURKhyh+TR 0.77 0.54 0.64
BERTURKhyh+HY 0.74 0.53 0.62
BERTURKhyh+EN 0.60 0.55 0.57

Table 9: BERTurk Results on hyh Test Set for NER

Effects of Script and Transliteration We also
experimented with the impact of script and pho-
netic transliteration on model performance, fo-

cusing specifically on BERTurk. For POS tag-
ging, Eastern (Standard) Armenian using the Ar-
menian script achieved a macro-averaged F1 score
of 0.31. When transliterated to Latin using the
transliterate package in Python, the F1 score
improved to 0.33. Further improvement was ob-
served with our custom transliteration alignment
method, which achieved an F1 score of 0.36, as
reported earlier. Similarly, for NER, the Arme-
nian script yielded an F1 score of 0.41, while Latin
transliteration using the transliterate package
improved the score to 0.46. Our transliteration
alignment method achieved the highest F1 score of
0.48. These results demonstrate that script conver-
sion and phonetic alignment enhance model perfor-
mance, particularly for languages with non-Latin
scripts, aligning well with Muller et al. (2021).

Conclusion

This study explored zero-shot and few-shot
cross-lingual transfer for part-of-speech (POS)
and named entity recognition (NER) tagging in
Hamshentsnag, a truly low-resource and endan-
gered language. By leveraging contact and cognate
source languages (Western Armenian, Eastern Ar-
menian, and Turkish), we demonstrated that typo-
logically similar languages significantly improve
model performance in sequence tagging tasks. Our
experiments revealed that cognate languages, par-
ticularly Western Armenian, enhanced POS tag-
ging performance, while Turkish, as a substrate
language, transferred most in NER. Additionally,
BERTurk outperformed mBERT in NER tasks,
likely due to the lexical and cultural overlap be-
tween Turkish and Hamshentsnag. Overall, these
findings underscore the importance of selecting
task-specific source languages for cross-lingual
transfer, especially in low-resource settings. Fur-
thermore, our work highlights the value of com-
munity collaboration and phonetic transliteration
in improving model performance for endangered
languages, offering a pathway for future research
in under-resourced NLP.
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Limitations

This study has several limitations that warrant con-
sideration: (i) the dataset for Hamshentsnag re-
mains small due to the lack of open-source on-
line resources and due to working with a relatively
small number of language consultants, which in-
evitably leads to a rather restricted amount of data
collection process. This may limit the generaliz-
ability of our findings. In addition, (ii) our prelim-
inary hyh dataset at this stage includes sentences
from similar domains (mostly stories, personal ex-
periences, and dialogues) and lacks other domains,
which might reduce transferability. Furthermore,
(iii) the reliance on transliteration for Armenian
scripts introduced potential inconsistencies, de-
spite our efforts to align transliterations with native
speaker input. Finally, (iv) while BERTurk showed
promise, its performance may not extend to other
low-resource languages without similar substrate
influences since it is a monolingual model.
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Abstract
We introduce Nayana, a scalable and efficient
framework for adapting Vision-Language Mod-
els (VLMs) to low-resource languages. Despite
significant advances, modern VLMs remain
constrained by the scarcity of training data in
non-English languages, limiting their global
applicability. Our framework addresses this
fundamental challenge through a novel layout-
aware synthetic data generation pipeline com-
bined with parameter-efficient adaptation tech-
niques. Instead of requiring extensive manu-
ally annotated datasets, Nayana enables exist-
ing models to learn new languages effectively
using purely synthetic data. Using Low-Rank
Adaptation (LoRA), we demonstrate this ca-
pability across ten Indic languages: Bengali,
Gujarati, Hindi, Kannada, Malayalam, Marathi,
Odia, Punjabi, Tamil, and Telugu. Through
extensive experiments in OCR tasks, we show
that models can achieve strong performance in
new languages without the traditional require-
ments of large-scale annotated datasets or ex-
tensive model modifications. Nayana’s success
in adapting VLMs to new languages with syn-
thetic data establishes a practical pathway for
extending AI capabilities to underserved lan-
guage communities, particularly in scenarios
where annotated data is scarce or unavailable.

1 Introduction

Vision-Language Models (Wang et al. (2024); Wu
et al. (2024); Abdin et al. (2024); Chen et al. (2024);
Liu et al. (2024a); Wei et al. (2024a)) have demon-
strated remarkable success in high-resource lan-
guages like English. However, these advancements
have not translated across all languages due to a
fundamental challenge: the scarcity of high-quality
training data. This limitation is particularly evident
in languages with complex scripts, where creat-
ing large-scale manually annotated datasets is both
time-consuming and prohibitively expensive. This
has limited the adoption of VLMs for document
understanding tasks across diverse languages.

Nayana is an adaptive framework designed to
bridge this gap by enabling existing VLMs to learn
new languages effectively without requiring exten-
sive annotated datasets. While this paper demon-
strates Nayana’s capabilities through OCR tasks
across ten Indic languages, the framework’s ap-
proach is inherently flexible and can extend to other
tasks and language families. Our methodology
eliminates the traditional requirement of annota-
tion by combining synthetic data generation with
efficient model adaptation techniques.

The main contributions of this paper are:

1. Novel Synthetic Data Generation Pipelines:
A layout-aware synthetic data generation
pipeline that automates the creation of train-
ing datasets while preserving visual and struc-
tural relationships in documents. This ap-
proach significantly reduces the dependency
on manually annotated data for low-resource
languages.

2. Systematic Analysis of LoRA-based Adap-
tation: We conduct a comprehensive evalu-
ation of different LoRA techniques and con-
figurations to determine their effectiveness in
multilingual adaptation. Our analysis explores
whether supervised fine-tuning can enhance
language transfer and identifies the optimal
configurations for adapting VLMs to new lan-
guages with minimal computational overhead.

3. Comprehensive Empirical Validation:
Through extensive experimentation and
evaluation across ten Indic languages, we
provide strong evidence that our synthetic
data approach matches the performance
of traditional OCR Models, establishing a
scalable path forward for language adaptation
in VLMs.
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2 Related Work

Recent Vision Language Models like Qwen 2.5
VL (Wang et al., 2024), Deepseek-VL2 (Wu et al.,
2024), InternVL 2.5 (Chen et al., 2024), Llava-
NeXT (Liu et al., 2024a), Phi 3.5 Vision (Abdin
et al., 2024) have advanced significantly in OCR,
captioning, and visual question answering (An-
tol et al., 2015). These developments stem from
parameter-efficient fine-tuning, synthetic data gen-
eration, and improved multimodal architectures.

Parameter-efficient fine-tuning methods are cru-
cial for adapting VLMs to specific tasks and lan-
guages. Low-Rank Adaptation (Hu et al., 2021)
enables efficient parameter updates through low-
rank matrix injection in transformer layers.

Multilingual OCR and document understanding
have progressed substantially, with systems like
Tesseract (Smith, 2007) and PaddleOCR (Du et al.,
2020) establishing foundations for multilingual text
recognition. Transformer-based approaches like
ViLanOCR (Cheema et al., 2024) leverage syn-
thetic data for improved performance on underrep-
resented languages, while LLaVA-NeXT (Liu et al.,
2024a) advances OCR through high-resolution pro-
cessing and improved visual instruction tuning for
training.

Synthetic data generation addresses data scarcity
in low-resource settings. SynthVLM (Liu et al.,
2024b) uses diffusion models to create image-text
pairs, while DocSynth300K (Zhao et al., 2024)
demonstrates the effectiveness of generated data
for document understanding tasks.

OCR-free approaches offer alternatives to tradi-
tional pipelines. DocPedia (Feng et al., 2024) pro-
cesses documents in the frequency domain, while
TextHawk2 (Yu et al., 2024) employs decoder-only
architecture with efficient tokenization. Solutions
like DocLayout-YOLO (Zhao et al., 2024), Donut
(Kim et al., 2021) and Nougat (Blecher et al., 2023)
have also explored document understanding with-
out traditional OCR models.

Despite advances in parameter-efficient fine-
tuning, synthetic data generation, and OCR-free
approaches, challenges persist in adapting VLMs
to low-resource languages. Our work introduces
language-agnostic synthetic pipelines, combines
parameter-efficient tuning with high-resolution vi-
sion encoders, and extends OCR-free paradigms to
low-resource languages.

3 Synthetic Data Generation: A Scalable
Cross-Lingual Framework

The cornerstone of our work lies in developing a
sophisticated pipeline for generating high-fidelity
synthetic training data that preserves the intricate
relationships between document layout, visual ele-
ments, and textual content across languages. Our
framework addresses the fundamental challenge
of data scarcity in low-resource languages through
a novel approach that combines advanced docu-
ment understanding, a state-of-the-art English OCR
model, and context-aware translation mechanisms.
This section details the architectural components
and methodological innovations that enable scal-
able, high-quality dataset generation for multilin-
gual document understanding tasks.

The pipeline’s design emphasizes three critical
aspects: preservation of document structure and
visual hierarchy, accurate text recognition across
diverse scripts, and contextually appropriate trans-
lation that maintains semantic integrity. Through
careful orchestration of these elements, we achieve
a system capable of generating training data that
closely mirrors the complexity and nuance of natu-
rally occurring documents while scaling efficiently
across multiple languages and document types.

3.1 Seed Dataset Collection

The foundation of our synthetic data generation
pipeline rests upon a meticulously curated corpus
of English-language documents, encompassing ap-
proximately 14,000 distinct samples. Our primary
source materials comprise research papers from
arXiv (2,000 documents), medical literature from
PubMed (1,000 documents), newspaper articles
(1,000 pages), and marketing materials (10,000
samples). This collection represents a strategic bal-
ance across multiple domains and document types,
carefully selected to capture the diverse spectrum
of real-world document layouts, content structures
and ensures comprehensive coverage of various
typographical elements, structural patterns, and
domain-specific formatting conventions that char-
acterize modern document ecosystems.

The academic papers, drawn from arXiv’s ex-
tensive repository, provide exemplars of complex
multi-column layouts, mathematical notation, and
intricate figure-text relationships. Medical litera-
ture from PubMed introduces specialized termi-
nology and standardized reporting formats, while
newspaper pages contribute examples of dynamic
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Figure 1: Nayana’s end-to-end synthetic data generation pipeline. Starting from English document images, our
pipeline generates multilingual datasets for OCR and Document level OCR tasks while preserving layout integrity
and visual characteristics. The pipeline processes approximately one image every 3-5 seconds, enabling rapid
dataset generation at scale.

layout patterns and diverse content organization.
Marketing materials round out the collection with
their rich variety of creative layouts, typographical
treatments, and visual design elements.

3.2 Multi-stage Processing Pipeline

Our processing methodology employs a sophis-
ticated multi-stage approach that preserves doc-
ument integrity while enabling efficient multilin-
gual adaptation. The pipeline initiates with high-
resolution document preprocessing, converting all
inputs to standardized 300 DPI images to ensure
consistent quality and feature preservation across
source formats. This standardization step estab-
lishes a robust foundation for subsequent process-
ing stages.

The layout analysis phase employs an optimized
implementation of DocLayout-YOLO (Zhao et al.
(2024)), which systematically identifies and classi-
fies document regions including text blocks, titles,
figure captions, tables, and visual elements. While
our initial research explored ensemble-based ap-
proaches using multiple layout detection models,
empirical evaluation demonstrated that our opti-
mized single-model implementation achieves com-
parable accuracy with significantly reduced com-
putational overhead.

Text extraction and visual analysis proceed

through a carefully orchestrated sequence of opera-
tions. Each identified text region undergoes precise
optical character recognition to extract English text
from our diverse document collection. We selected
Tesseract (Smith (2007)) as the pipeline’s OCR
model amongst state-of-the-art candidates includ-
ing PaddleOCR (Du et al. (2020)) and EasyOCR
due to its high accuracy at low compute expendi-
ture. The extracted text then undergoes comprehen-
sive visual attribute analysis. This includes back-
ground and text color detection, font size estima-
tion, and preservation of critical styling metadata.
Our implementation maintains strict fidelity to the
original document’s visual hierarchy and structural
relationships throughout this process.

The translation phase employs a sophisticated
multi-engine approach, leveraging several state-of-
the-art translation services: Google Translate API,
Microsoft Azure Translate, IndicTrans2 (Gala et al.
(2023)), and advanced language models such as
Llama3.1 405B (Dubey et al. (2024)). This di-
verse ensemble of translation engines enables ro-
bust context-aware translation, with each service
contributing its unique strengths in handling differ-
ent aspects of document context, technical termi-
nology, and formatting conventions.

Our system dynamically selects the most appro-
priate translation based on context, domain, and
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Figure 2: End-to-end Nayana system architecture: (1) A synthetic data generation pipeline transforming English
documents into multilingual training data while preserving layout and visual fidelity, (2) OCR model with LoRA
adapters for efficient multilingual adaptation, and (3) Training pipeline with Supervised Fine-Tuning (SFT). The
modular architecture processes documents in 3-5 seconds while enabling rapid adaptation to new languages with
high accuracy.

language pair, ensuring optimal translation quality
across diverse document types. The final stage in-
volves precise layout-preserving text replacement
(Zhao et al. (2024)), incorporating dynamic font
size adjustments and maintaining visual hierarchy
while ensuring color contrast preservation.

3.3 Pipeline Performance Characteristics
Our pipeline achieves remarkable efficiency met-
rics, demonstrating both speed and accuracy at
scale. Processing individual documents in approx-
imately 3-5 seconds, the system maintains excep-
tional performance across all processing stages
while enabling rapid dataset generation for new lan-
guages. The optimized DocLayout-YOLO (Zhao
et al. (2024)) implementation consistently achieves
95.8% accuracy in structural analysis, while the
OCR model and sophisticated translation architec-
ture work in concert to ensure high-quality text
extraction and translation.

The system’s effectiveness is particularly evident
in its data multiplication capabilities. Through our

augmentation strategies and multi-task generation
approach where we use the layout data to extract
region-specific information, we achieve an output
multiplication factor of 7-10× images per source
document. This rich extraction process yields di-
verse training signals including layout structures,
text content. The extracted multi-modal elements
can be leveraged for training various downstream
models such as VLMs for Visual Question An-
swering (Antol et al., 2015), Information Extrac-
tion systems, Multi-Modal Retrievers(Faysse et al.,
2025).This multiplication effect significantly am-
plifies the utility of our seed dataset, enabling the
creation of comprehensive training sets from a
relatively modest collection of source documents.
The combination of speed, multiplication factor,
and rich multi-modal data extraction makes our
pipeline particularly effective for rapidly bootstrap-
ping vision-language capabilities in new languages
and diverse document understanding applications.
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4 Architectural Innovation:
Parameter-Efficient Cross-Script
Learning

The adaptation of vision-language models (VLMs)
for multilingual document understanding presents
a fundamental architectural challenge: How to ef-
fectively extend models trained primarily on Latin
scripts to handle dramatically different writing sys-
tems while maintaining computational efficiency.
This section details our systematic exploration of
architectural approaches, empirically-driven design
decisions, and the development of our parameter-
efficient adaptation methodology.

Our initial investigation began with a compre-
hensive evaluation of contemporary VLM architec-
tures, analyzing their fundamental capabilities in
handling text-dense images. This exploration re-
vealed a critical insight: while many models excel
at general visual understanding, they often strug-
gle with the precise geometric and spatial relation-
ships inherent in document processing. Through
extensive experimentation with architectures rang-
ing from traditional CNN-based models to state-of-
the-art transformer variants, we identified several
key architectural requirements that would prove
crucial for successful cross-script adaptation.

4.1 Foundation Model Selection and Analysis

The selection of an appropriate foundation model
emerged from a rigorous empirical study evaluating
multiple state-of-the-art architectures. Our inves-
tigation focused particularly on models’ ability to
handle the unique challenges presented by Indic
scripts, including complex ligatures, overlapping
characters, and varied writing directions. Initial
experiments with popular vision-language models
revealed significant limitations in handling dense
textual content, despite their strong performance
on general vision-language tasks.

The breakthrough came through our analysis
of GOT OCR (580M parameters) (Wei et al.
(2024b)), which demonstrated exceptional perfor-
mance across key metrics. Based on published
benchmarks, GOT OCR achieved superior results
with an Edit Distance of 0.035/0.038 and F1-scores
of 0.972/0.980 for English and Chinese respec-
tively, significantly outperforming larger models
like Qwen-VL-Max (>72B parameters) (Wang
et al. (2024)) and Vary (7B parameters) (Wei et al.
(2024a)). More importantly, its architecture demon-
strated remarkable flexibility in handling non-Latin

scripts, likely due to its original design for handling
both English and Chinese characters – writing sys-
tems with significantly different visual characteris-
tics.

Our choice of GOT OCR (Wei et al. (2024b))
was further validated through its optimal balance
of performance and efficiency due to its:

• Superior vision transformer backbone archi-
tecture compared to contemporary VLM de-
signs

• Specialized text detection heads optimized for
dense textual content

• Efficient parameter count (580M) enabling
practical deployment while maintaining state-
of-the-art performance

The model’s architecture, particularly its atten-
tion mechanisms and hierarchical feature process-
ing, provided an ideal foundation for our cross-
script adaptation strategy. Notably, its transformer-
based design facilitated efficient parameter adap-
tation through Low-Rank Adaptation (Hu et al.
(2021)), enabling us to preserve the model’s fun-
damental visual understanding while extending its
capabilities to new scripts.

During our initial exploration phase, we pur-
sued several alternative approaches that, while ul-
timately unsuccessful, provided crucial insights.
We conducted extensive experiments with vocab-
ulary expansion techniques, hypothesizing that di-
rect modification of the tokenization layer would
enable better handling of Indic scripts. These ex-
periments involved:

• Direct vocabulary expansion with script-
specific tokens

• Hierarchical tokenization schemes for han-
dling complex ligatures

• Script-aware embedding layer modifications

Despite systematic exploration of these ap-
proaches with various hyperparameter configura-
tions, the results consistently plateaued at 50-60%
accuracy for both training and evaluation. This
empirical evidence led us to a crucial realization:
the challenge lay not in the vocabulary represen-
tation but in the fundamental visual processing of
different scripts.
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4.2 Cross-Modal Alignment Learning

The Cross-Modal Alignment (CMA) phase extends
GOT OCR’s (Wei et al., 2024b) capabilities beyond
its original English and Chinese training domain
through a two-phase training approach. Built on
GOT OCR’s task-token architecture (e.g., <OCR>),
our adaptation strategy systematically builds mul-
tilingual capabilities while preserving the model’s
core strengths.

The first phase focuses on section-level training
15, where we use layout-preserving translation to
create training pairs from dense textual sections.
By unfreezing all major components (ViTDet vi-
sion encoder, MLP projection layer, and Qwen
0.5B language model), we enable comprehensive
adaptation to new language patterns. Ablation stud-
ies confirmed this phase’s criticality - attempts to
skip directly to document-level training resulted in
stalled learning and hallucinations.

The second phase transitions to document-level
OCR 10, training on complete document images
while selectively freezing components. We main-
tain the trained visual features by freezing the ViT-
Det vision encoder while continuing to train the lan-
guage model and projection layer. This approach
successfully extends the model’s capabilities to
new languages while preserving its performance
on English and Chinese texts.

Table 1: Training Phase Configuration Summary

Component Phase 1 Phase 2

ViTDet Vision Encoder Unfrozen Frozen
MLP Projection Layer Unfrozen Unfrozen
Qwen 0.5B LLM Unfrozen Unfrozen
Training Data Text-heavy Sections Complete Documents

4.3 Single-Language Adaptation Results

4.3.1 Hindi Adaptation Performance
Our initial experiments with Hindi adaptation re-
vealed several crucial insights about parameter-
efficient adaptation strategies. The choice of
85,000 image-text pairs was determined through ex-
tensive preliminary testing, which showed that this
dataset size provided optimal coverage of Hindi
script variations while remaining computationally
manageable.

The results in Table 2 demonstrate a clear pro-
gression in adaptation effectiveness across different
configurations. The baseline LoRA configuration
(r=32, α =64) established fundamental script adap-
tation but showed limitations in handling complex

Hindi character combinations, as evidenced by its
BLEU score of 0.29. The optimal configuration
(r=64, α=128) achieved substantially better per-
formance, with a BLEU score of 0.58, through
improved capacity for modeling intricate script-
specific features.

Particularly noteworthy is the preservation of En-
glish language capabilities. While the higher-rank
LoRA configuration showed a slight decrease in
English BLEU scores (from 0.84 to 0.79), it main-
tained strong overall performance (F1: 0.86, ME-
TEOR: 0.88), suggesting effective balance between
adaptation and preservation of base capabilities.

Table 2: Hindi Adaptation Performance Comparison

Configuration Lang BLEU↑ ANLS↑ F1↑ METEOR↑

LoRA Hindi 0.29 0.71 0.56 0.57
(r=32, α=64) English 0.84 0.97 0.91 0.91

LoRA Hindi 0.58 0.91 0.76 0.77
(r=64, α=128) English 0.79 0.97 0.86 0.88

Full Hindi 0.50 0.86 0.75 0.73
Fine-tune English 0.74 0.95 0.85 0.85

4.3.2 Tamil Adaptation Performance
The Tamil adaptation experiments presented unique
challenges due to the script’s distinctive charac-
teristics, including its cursive nature and complex
grapheme structure. Table 3 reveals several impor-
tant patterns in adaptation behavior. The LoRA
configuration (r=64, α=128) demonstrated remark-
able robustness in handling Tamil’s unique script
features, achieving a BLEU score of 0.37 despite
the script’s significant divergence from the model’s
original training domain. This performance is par-
ticularly impressive given Tamil’s complex vowel
modification system and the presence of compound
characters that can span multiple positions. The
comparison with full fine-tuning is especially illu-
minating. While full fine-tuning achieved reason-
able performance (ANLS: 0.79), it showed signifi-
cant degradation in English capabilities, suggesting
potential catastrophic forgetting. In contrast, our
LoRA approach maintained strong performance
across both languages, with English metrics re-
maining notably stable (BLEU: 0.78, F1: 0.87).

4.4 Multi-Language Adaptation
We investigated three distinct approaches to han-
dling multiple scripts simultaneously, each offering
unique insights into cross-lingual transfer. The
Single LoRA approach emerged as particularly ef-
fective, demonstrating strong performance across
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Table 3: Tamil Adaptation Performance Comparison

Configuration Lang BLEU↑ ANLS↑ F1↑ METEOR↑

LoRA Tamil 0.37 0.87 0.66 0.64
(r=64, α=128) English 0.78 0.96 0.87 0.88

Full Tamil 0.17 0.79 0.44 0.44
Fine-tune English 0.69 0.96 0.76 0.80

multiple languages without requiring explicit lan-
guage specification during inference. When lan-
guage tags were provided both during training and
inference, we observed further improvements in
performance. A notable advantage of this approach
was its ability to leverage cross-script learning -
for instance, the model showed improved handling
of Marathi text despite being primarily trained on
Hindi, suggesting effective transfer between related
Devanagari scripts. The Multi-LoRA approach,
training separate LoRA modules for each language,
achieved strong language-specific performance but
sacrificed the beneficial cross-script transfer effects
observed in the single LoRA strategy. Despite its
strong per-language performance, this approach’s
inability to leverage script similarities represented
a significant limitation in the multilingual context.
Nayana We also explored a Merged LoRA strat-
egy, where independently trained language-specific
LoRAs were combined using model merging tech-
niques. While this approach showed promising
results for both languages, it did not outperform
the single LoRA approach’s ability to capture cross-
script features.

Table 4: Multi-Language Adaptation Performance
(Hindi + Kannada) in a single LoRA

Configuration Lang BLEU↑ ANLS↑ F1↑ METEOR↑

Single Hindi 0.64 0.89 0.85 0.84
LoRA Kannada 0.52 0.72 0.55 0.43

English 0.79 0.97 0.86 0.88

5 Results

5.1 Evaluation Methodology
Our evaluation framework was designed to pro-
vide rigorous, comprehensive assessment across
diverse document types and writing systems. We
constructed a carefully balanced test set compris-
ing 500 images per language, strategically dis-
tributed across different document categories to
ensure broad coverage of real-world scenarios. The
dataset draws 40% of its content from academic
papers sourced from arXiv, another 40% from med-

ical literature in PubMed, and the remaining 20%
split equally between newspaper content and ad-
vertising materials. This distribution reflects the
varying complexity and specialized requirements
of different document processing applications.

To ensure methodological rigor and fair cross-
linguistic comparison, we developed parallel ver-
sions of each document across all ten languages
while maintaining identical visual layouts and con-
tent structures. This parallel corpus approach en-
ables precise isolation of script-specific challenges
while controlling for variations in document com-
plexity and formatting. Such controlled compar-
ison proves essential for understanding the true
impact of script differences on model performance.

5.2 Comparative Analysis
Our comprehensive evaluation framework encom-
passes three distinct categories of document pro-
cessing systems, each representing different ap-
proaches to multilingual document understanding.
We first examined traditional OCR systems, includ-
ing industry standards like Tesseract Smith (2007)
and PaddleOCR (Du et al. (2020)), which have
established strong baselines in multilingual text
recognition. These systems, while specialized for
OCR tasks, provide important reference points for
performance evaluation.

The second category comprises recent vision-
language models, including cutting-edge systems
like Phi-3.5 Vision (Abdin et al. (2024)) and Llama-
3.2 (Dubey et al. (2024)). These models, de-
spite their impressive capabilities in general vision-
language tasks, demonstrate the ongoing chal-
lenges in specialized document processing. Our
analysis of their performance reveals important
insights about the limitations of general-purpose
architectures when applied to script-specific docu-
ment understanding tasks.

Our Nayana-OCR variants, built upon the GOT
OCR (Wei et al. (2024b)) architecture, represent the
third category. Through extensive training on ap-
proximately 850,000 synthetic images spanning 10
Indic languages, these models demonstrate signifi-
cant advantages in multilingual document process-
ing. The results reveal substantial improvements
across key metrics, most notably a 76% reduction
in Character Error Rate compared to the base GOT
OCR model. This improvement is particularly sig-
nificant given that it maintains consistency across
all evaluated languages.

The performance gains extend beyond simple
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Table 5: Average performance metrics across all evaluated languages. Results show mean values for each model
across the ten tested languages. Lower values (↓) are better for CER and WER, while higher values (↑) are better for
other metrics. Best results in each category are highlighted in bold.

Model CER↓ WER↓ BLEU↑ ANLS↑ METEOR↑

Tesseract 0.206 0.583 0.318 0.797 0.540
PaddleOCR 0.621 0.880 0.020 0.287 0.069

Llama-3.2 11B 3.858 3.900 0.007 0.091 0.055
Phi-3.5 Vision 2.420 2.461 0.007 0.086 0.044
Qwen2-VL 2B 1.776 1.793 0.025 0.129 0.086

GOT-OCR 0.945 1.041 0.016 0.071 0.052
Nayana-OCR 0.227 0.463 0.395 0.796 0.630

character recognition. Our models show markedly
improved BLEU scores, indicating enhanced capa-
bility in handling complex linguistic structures and
maintaining semantic coherence. The reduced stan-
dard deviations across performance metrics suggest
robust cross-language stability, a crucial factor for
practical deployment in multilingual environments.
These improvements stem from our innovative ap-
proach to model adaptation and the sophisticated
synthetic data generation pipeline described in pre-
vious sections.

5.3 Detailed Performance Analysis

Examining Table 6, several patterns emerge that
illustrate the strengths and limitations of different
approaches. Traditional OCR systems like Tesser-
act (Smith (2007)) show strong performance in
character-level accuracy (CER: 0.206) but struggle
with higher-level semantic understanding, as evi-
denced by lower BLEU scores (0.318). In contrast,
Nayana-OCR achieves competitive character-level
accuracy (CER: 0.227) while substantially outper-
forming all baselines in semantic metrics (BLEU:
0.395).

The performance gap between general-purpose
vision-language models and specialized OCR sys-
tems is particularly noteworthy. Despite their
larger parameter counts, models like Llama-3.2
11B (Dubey et al. (2024)) and Phi-3.5 Vision (Ab-
din et al. (2024)) show significantly higher error
rates across all metrics. This disparity underscores
the importance of architectural choices specifically
optimized for document understanding tasks.

5.4 Limitations and Future Work

While our approach demonstrates significant
progress, several limitations should be noted.

When compared to traditional OCR systems, our
models show higher inference latency, reflecting
the complexity of vision-language processing. Per-
formance variations across scripts suggest room for
improvement in handling certain complex writing
systems. Additionally, our synthetic data genera-
tion, while efficient, may not capture all real-world
variations in document layouts and styles.

Future work will focus on expanding the diver-
sity of seed datasets, incorporating more complex
document structures, and developing specialized
architectures that better balance performance and
computational efficiency. We also plan to explore
how our synthetic data approach can benefit other
vision-language tasks and create open-source tools
to facilitate broader adoption of multilingual vision-
language technologies.

6 Conclusion

This work establishes that vision-language models
can be effectively adapted to new languages us-
ing purely synthetic data, reducing dependency on
costly manual annotation. Our results demonstrate
that Nayana provides a practical, scalable solution
for extending AI capabilities to low-resource lan-
guages. By achieving strong performance across
diverse scripts while maintaining computational
efficiency, our framework opens new possibilities
for democratizing AI technologies across linguistic
boundaries. The success of our approach not only
validates the effectiveness of synthetic data gener-
ation and efficient adaptation techniques but also
establishes a promising direction for developing
more inclusive AI systems that can serve diverse
linguistic communities worldwide.
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A Appendix

A.1 Language-wise Performance Analysis

Table 6: Detailed Performance Analysis Across Languages. The table compares various OCR models across
multiple languages using metrics such as CER, WER, BLEU, ANLS and METEOR.

Model CER↓ WER↓ BLEU↑ ANLS↑ METEOR↑
Hindi

Tesseract 0.090 0.287 0.636 0.908 0.791
PaddleOCR 0.414 0.864 0.023 0.575 0.117
Phi-3.5 Vision 2.878 2.500 0.023 0.126 0.069
Llama-3.2 11B 4.654 3.455 0.020 0.116 0.070
Qwen2-VL 2B 2.360 2.022 0.066 0.172 0.153
GOT OCR base 1.013 1.190 0.004 0.052 0.043
Nayana-OCR 0.160 0.297 0.532 0.850 0.756

Kannada
Tesseract 0.155 0.609 0.259 0.847 0.541
PaddleOCR 0.814 0.918 0.020 0.110 0.048
Phi-3.5 Vision 2.655 2.877 0.006 0.084 0.046
Llama-3.2 11B 4.670 4.991 0.004 0.075 0.047
Qwen2-VL 2B 1.394 1.599 0.013 0.075 0.063
GOT OCR base 0.936 1.008 0.019 0.067 0.063
Nayana-OCR 0.361 0.648 0.341 0.740 0.554

Tamil
Tesseract 0.265 0.811 0.109 0.750 0.324
PaddleOCR 0.545 1.076 0.003 0.450 0.051
Phi-3.5 Vision 1.531 2.033 0.000 0.082 0.035
Llama-3.2 11B 3.009 4.229 0.002 0.086 0.052
Qwen2-VL 2B 1.260 1.515 0.007 0.125 0.053
GOT OCR base 0.956 1.020 0.013 0.056 0.051
Nayana-OCR 0.181 0.551 0.377 0.829 0.592

Telugu
Tesseract 0.158 0.589 0.296 0.821 0.551
PaddleOCR 0.435 0.934 0.014 0.550 0.088
Phi-3.5 Vision 2.442 2.464 0.001 0.067 0.036
Llama-3.2 11B 2.736 3.586 0.015 0.090 0.068
Qwen2-VL 2B 1.580 1.696 0.010 0.115 0.065
GOT OCR base 0.925 1.007 0.022 0.075 0.066
Nayana-OCR 0.282 0.065 0.241 0.733 0.522

Odia
Tesseract 0.290 0.681 0.155 0.703 0.403
PaddleOCR 0.639 0.742 0.020 0.111 0.030
Phi-3.5 Vision 2.311 2.168 0.000 0.090 0.018
Llama-3.2 11B 2.880 2.908 0.005 0.088 0.042
Qwen2-VL 2B 1.247 1.345 0.012 0.092 0.060
GOT OCR base 0.926 1.000 0.020 0.078 0.042
Nayana-OCR 0.311 0.566 0.305 0.738 0.551
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Model CER↓ WER↓ BLEU↑ ANLS↑ METEOR↑
Punjabi

Tesseract 0.203 0.532 0.356 0.803 0.568
PaddleOCR 0.717 0.811 0.010 0.095 0.029
Phi-3.5 Vision 3.431 2.896 0.001 0.083 0.034
Llama-3.2 11B 5.801 4.535 0.000 0.065 0.029
Qwen2-VL 2B 1.260 1.515 0.007 0.125 0.053
GOT OCR base 0.954 0.994 0.010 0.066 0.046
Nayana-OCR 0.159 0.440 0.435 0.853 0.693

Malayalam
Tesseract 0.355 0.828 0.065 0.663 0.258
PaddleOCR 0.788 0.895 0.036 0.125 0.073
Phi-3.5 Vision 1.993 2.489 0.000 0.070 0.039
Llama-3.2 11B 2.988 3.807 0.001 0.081 0.051
Qwen2-VL 2B 1.394 1.599 0.013 0.075 0.063
GOT OCR base 0.956 1.174 0.011 0.064 0.047
Nayana-OCR 0.270 0.694 0.248 0.740 0.516

Marathi
Tesseract 0.157 0.460 0.513 0.862 0.738
PaddleOCR 0.355 0.849 0.035 0.630 0.154
Phi-3.5 Vision 1.592 2.063 0.023 0.150 0.073
Llama-3.2 11B 2.421 2.724 0.007 0.108 0.074
Qwen2-VL 2B 1.251 1.269 0.069 0.248 0.181
GOT OCR base 0.915 0.988 0.021 0.095 0.060
Nayana-OCR 0.143 0.457 0.540 0.866 0.753

Gujarati
Tesseract 0.148 0.446 0.534 0.871 0.733
PaddleOCR 0.800 0.914 0.026 0.124 0.068
Phi-3.5 Vision 3.329 3.008 0.006 0.091 0.047
Llama-3.2 11B 2.401 2.724 0.007 0.108 0.074
Qwen2-VL 2B 5.050 4.312 0.006 0.092 0.042
GOT OCR base 0.940 1.047 0.020 0.081 0.057
Nayana-OCR 0.172 0.451 0.476 0.839 0.707

Bengali
Tesseract 0.241 0.590 0.259 0.738 0.492
PaddleOCR 0.704 0.798 0.014 0.096 0.029
Phi-3.5 Vision 2.041 2.110 0.008 0.014 0.042
Llama-3.2 11B 7.021 6.039 0.009 0.093 0.044
Qwen2-VL 2B 0.967 1.054 0.048 0.174 0.127
GOT OCR base 0.926 0.983 0.019 0.080 0.048
Nayana-OCR 0.235 0.460 0.452 0.776 0.656
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A.2 Model Output Analysis
To evaluate the practical effectiveness of our model, we present a visual comparison between input
documents and their corresponding Document Level OCR outputs. Figures 3 and 4 demonstrate the
model’s performance on Hindi and Bengali documents respectively.

The results demonstrate the model’s robust performance across different Indic scripts. Note the
preservation of both textual content and document structure in the generated outputs, highlighting the
effectiveness of our approach in handling diverse document layouts and writing systems.

Figure 3: Hindi Document Processing: Comparison between the original document (left) and the model’s OCR
output (right), demonstrating accurate text recognition and formatting preservation.

Figure 4: Bengali Document Processing: Visual comparison showing the model’s capability to accurately process
Bengali script while maintaining structural fidelity.
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Figure 5: Kannada Document Processing: Comparison between the original document (left) and the model’s OCR
output (right)

A.3 Training Dynamics Analysis

A.3.1 Single Language LoRA Adaptation

We first analyze the training dynamics for individual languages using LoRA with rank=64 and α=128.
Figure 6 shows the training curves for Hindi and Kannada.

Figure 6: Single Language LoRA Training Dynamics: Training and loss curves for Hindi (purple) and Kannada
(orange) using LoRA (r=64, α=128). Both languages show stable convergence patterns with Hindi achieving slightly
faster convergence.

A.3.2 Multi-Language Joint Training

Building on the single language results, we investigate joint training on Hindi and Kannada. Figure 7
demonstrates the effectiveness of our multi-language approach.

Figure 7: Joint Hindi-Kannada Training: The model maintains strong performance while learning both languages
simultaneously, suggesting effective parameter sharing between related scripts.

A.3.3 Comparative Analysis of Joint vs Individual Training

To validate our multi-language approach, we compare joint training performance against individual
language models. Figure 8 presents this critical comparison, where the orange line represents Kannada
with rank 64 LoRA, the neon line shows the joint Hindi-Kannada LoRA (rank 64), and the green line
indicates Hindi with rank 64 LoRA adaptation.
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Figure 8: Comparative Analysis: Joint Hindi-Kannada training (r=64, α=128) versus individual language models.
The joint model (neon) achieves comparable performance to individual Hindi (green) and Kannada (orange) models
while using fewer parameters, demonstrating efficient cross-lingual transfer.

A.3.4 Vocabulary Expansion Experiments
Our initial experiments explored vocabulary expansion as a potential approach for handling multiple
scripts. Figure 9 illustrates these challenges, comparing standard LoRA adaptation (purple lines) against
vocabulary expansion attempts (grey lines).

Figure 9: Vocabulary Expansion Analysis: Attempts to expand model vocabulary for Hindi showed poor convergence
across different configurations. The standard vocabulary with LoRA adaptation (purple) proved more effective than
expanded vocabulary approaches (grey), leading us to abandon the vocabulary expansion strategy.

A.4 Data Generation Examples
A.4.1 Page-Level Translation Examples
Our pipeline demonstrates robust translation capabilities while preserving document structure across all
supported languages. Figures 10, 11, 12, 13 and 14 showcase these capabilities across different Indic
scripts.

A.4.2 Section-Level Translation Examples
Figures 15, 16, 17 and 18 showcase section level translation capabilities across different Indic scripts.
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Figure 10: Page-level translation examples showing Hindi (left) and Tamil (right) translations with preserved
document layout.

Figure 11: Page-level translation examples demonstrating Kannada (left) and Bengali (right) translations.
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Figure 12: Page-level translation examples showing Malayalam (left) and Gujarati (right) translations.

Figure 13: Page-level translation examples demonstrating Marathi (left) and Telugu (right) translations.
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Figure 14: Page-level translation examples showing Odia (left) and Punjabi (right) translations.

Figure 15: Section-level translation examples showing English (original), Hindi, and Tamil translations.

Figure 16: Section-level translation examples showing Kannada, Malayalam, and Bengali translations.

Figure 17: Section-level translation examples showing Gujarati, Marathi, and Odia translations.

Figure 18: Section-level translation examples showing Punjabi and Telugu translations.
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A.5 Data Augmentation Examples

Figure 19: Document degradation examples showing (from left to right): background texturization, printer drum
defects, ink mottling effect, and letterpress impression.

Figure 20: Document degradation examples showing (from left to right): lighting gradient, line degradation, shadow
effects, and ink bleeding.
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Abstract

This paper is a critical reflection on the epis-
temic culture of contemporary computational
linguistics, framed in the context of its growing
obsession with tables with numbers. We ar-
gue against tables with numbers on the basis of
their epistemic irrelevance, their environmental
impact, their role in enabling and exacerbat-
ing social inequalities, and their deep ties to
commercial applications and profit-driven re-
search. We substantiate our arguments with
empirical evidence drawn from a meta-analysis
of computational linguistics research over the
last decade.

1 Introduction

Throughout its evolution, computational linguis-
tics has undergone multiple identity crises. In its
present from, and despite its logical origins and
linguistic ambitions, it is almost entirely aligned
with positivist principles and ideals (Church and
Liberman, 2021). The imprint of this alignment is
an idealization of experimental quantification, most
commonly manifesting in the form of tables with
numbers. Tables with numbers can certainly be
useful. That said, their centrality in contemporary
computational linguistics research is indicative of
both scientific reductionism and technological ob-
session. Beneath the numbers lie signs of a field in
disarray: a waning reliance on theory (linguistic or
otherwise), nowadays substituted by model scale;
a disproportionate representation of big industry
and big academia, in turn associated with a lack
of transparency, accessibility and inclusion; an ex-
perimental paradigm dominated by stagnant “task-
and-benchmark” practices, detached from technical
rigor as well as scientific insight; and a progres-
sive estrangement from societal, humanistic and
environmental context. And while the community
seems to be both alert to and uneasy with the cur-
rent state of affairs (Michael et al., 2023; Gururaja

et al., 2023), a holistic analysis of these issues has
been long missing from the literature.

In this paper, we brave a look under the number
rock. We conduct a critical assessment of the epis-
temic culture of computational linguistics, focusing
specifically on its relation to tables with numbers.
We narrow down on four axes of interest:

• The epistemological preconditions that
granted tables with numbers the status of
scientific currency, and the mechanisms that
affect their actual value (§2).

• Their environmental footprint and the norma-
tive discourse around it (§3).

• Their cause-and-effect relation to the perpetu-
ation and exacerbation of inequality and harm-
ful power structures (§4).

• Their intrinsic ties with corporate interest,
profit, and the accumulation of technoscien-
tific capital (§5).

2 The Multiple Facets of Number

The field’s dominant scientific approach embodies
a wildly exaggerated version of positivism. This is
evident both in the themes prevalent in the main-
stream discourse, and in those notably absent from
it. In this context, two critical perspectives arise.
First, how faithfully does computational linguistics
actually adhere to its positivist posture? And sec-
ond, what are the implications of computational
linguistics as a singularly positivist discipline? We
begin by addressing the former, setting off with a
simplified introduction to the positivist worldview
and its tenets.

2.1 Number as Virtue

As a scientific meta-theory, positivism asserts that
knowledge is the yield of systematic, unbiased and
reproducible observation. A prospective theory is
evaluated based on how well it can predict and in-
terpret observations. An impartial and irrefutable
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Distribution of number of numbers per paper, 2014 - 2023

Figure 1: Box- and swarm-plots of the distribution of the
number of experimental results per paper, grouped by
year. We manually count the number of numbers within
tables from the 50 most cited papers per year. We do
not include numbers that pertain to descriptive dataset
statistics, nor numbers reporting dispersion statistics
(e.g., confidence intervals, standard deviations etc.). The
pattern indicates a marked upwards trend over time.
Most (75%) contemporary papers contain 100 to 300
numbers, while some (25%) contain up to 1 000.

evaluation is what ensures theories can be refuted
and reliably compared. Ultimately, the essence
of scientific progress lies in the iterative process
of theory testing, rejection, and refinement. This
worldview holds truth as objective and unique, as-
serted as such by reproducibility, generalization,
neutrality, and universality (Ayer, 1959). Tables
with numbers attain epistemic significance in bear-
ing witness to this (idealization of) truth.

2.2 Number as Number

Alas, linguistic theories have fallen short of his-
torical expectations. To date, there is no hint of
a consensus on what a concretely implementable
mechanization of human language should (or even
could) look like. In lieu of theories, computational
linguistics had to turn to the next best thing: mod-
els.1,2 Models promise less but do more, prioritiz-

1This is one reading. Another reading is that when ma-
chine learning “solved” vision, it moved over to NLP, setting
aside linguistic expertise to make room for all the luggage it
brought with it.

2The modern tendency to look for a theory within the
model (see Baroni (2022); Piantadosi (2023), inter alia) is
further evidencing the poverty of historical theories.

ing tangible solutions over abstract notions of in-
quisitive deduction. Apart from this deviation, the
positivist methodological narrative is easy to rec-
ognize in the field’s experimental pipeline. Large
datasets are heralded as authoritative collections of
empirical observations, systematically condensing
linguistic truth. Datasets enact “benchmarks”, stan-
dardized and fair test suites through which we can
“track progress”, i.e., decide whether a model ad-
vances science, and if so, by how much. Congruent
with the literature’s makeup over the last decade,
this suggests that contributions may come in one
of two primary forms: models and benchmarks,
dual facets of one and the same thing – tables with
numbers.

Nonetheless, in having discarded theory, the
model-and-benchmark pipeline fails to uphold the
scientific promise upon which it was built. A
first problem lies in the fact that the models de-
veloped and adopted nowadays are almost exclu-
sively generic and theory-neutral (Sutton, 2019). In
making no assumptions and yielding no hypotheses
over their domain, they are infallible in all aspects
except for their performance (Schlangen, 2021).
The side effect is that the field’s progress translates
to technical know-how rather than an advance in the
sum total of “pure” knowledge (Krenn et al., 2022;
Messeri and Crockett, 2024). Other than modeling
insights, nothing gets in and nothing gets out, con-
fining a traditionally interdisciplinary endeavour to
a technocratic and opinionless monoculture.

A second, perhaps bigger, problem lies in the
reductionist view of language faculty as something
that can be broken apart into high-level “tasks”, at
the intersection of which one can find, and there-
fore quantify, “understanding” (Raji et al., 2021).
The verity of this assumption is not immediately ob-
vious; modern models breeze through benchmarks,
yet we remain as far as ever from attaining a holis-
tic and comprehensive computational account of
language. The picture is sufficiently clear: side-
tracked by models and benchmarks, computational
linguistics has given way to natural language pro-
cessing: a domain-specific engineering discipline
that is happy to answer more questions than it asks.

2.3 Number as Nothing
Ironically, the remarkable ease of model iteration
(as compared to the painstakingly slow process
of theory iteration) is an inflationary factor for
the epistemic value of numbers. When experi-
mental superiority becomes a prerequisite to publi-
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cation (Rogers, 2020), all publications invariably
achieve it, rendering both the message (experi-
mental superiority) and the messenger (publica-
tions) meaningless. Immediate, short-sighted gains
dominate the research agenda, and difficult ques-
tions become eschewed for the sake of incremental
tweaks and micro-improvements (Bhattacharya and
Packalen, 2020). Short-sighted goals are echoed in
short-term memory, leading to plentiful instances
of knowledge recycling, paper duplication and ci-
tation amnesia (Singh et al., 2023). The over-
standardization of form gradually turns into an
equilibrium of intent – contributions are pushed
towards structural and semantic uniformity, end-
ing up virtually indistinguishable from one another.
The frantic pace of “progress” turns scientific en-
terprise into a competition for experimental supe-
riority, eroding integrity and transparency. The
most successful models are too time- and resource-
consuming to replicate and cross-validate, lead-
ing to statistically insignificant tables filled with
under-sampled and noisy numbers of dubious qual-
ity and utility (Dodge et al., 2019; Ethayarajh and
Jurafsky, 2020; Belz et al., 2021). Scientific com-
munication espouses sales pitch aesthetics, exag-
gerating merit, obscuring weakness and purpose-
fully avoiding critical self-reflection and honest
self-assessment (Smaldino and McElreath, 2016;
Lipton and Steinhardt, 2019). After a bountiful
decade of benchmarking frenzy, there is now grow-
ing consensus that annotation is subjective (Geva
et al., 2019; Plank, 2022), datasets are statistically
biased, and models are sensitive to heuristics and la-
bel noise (McCoy et al., 2019; Geirhos et al., 2020)
– the numbers have been lying all along (Recht
et al., 2019; Liao et al., 2021)!3 Put simply, the
more tables with numbers there are, the less a table
with numbers means, and the less it can be trusted.

2.4 Number as Vice

Its failure to really adhere to the positivist ethos
does not absolve computational linguistics from
having adopted it in the first place. The idealiza-
tion of science as an entity far and above subjective
human reference provides the grounds for its dis-
connect from social context; there’s no reflection
on its production and consumption, the people in-
volved in it and the people affected by it, or its ef-

3The fact that benchmarking is being made obsolete by
a handful of closed source models far beyond the commu-
nity’s reach is clearly just a coincidence to the timing of this
realization.

fect on broader society and the world at large. This
detachment is reinforced by a techno-determinist
narrative of a “progress” moving of its own accord,
which the scientist neither can influence, nor is re-
sponsible for (Wyatt, 2008). Tables with numbers
are the embodiment of techno-determinism. The
quest for experimental superiority (i.e., “progress”)
is perceived as a self-efficient treadmill that con-
tinues on, regardless of who walks it – there’s no
challenging the pace.

Setting off from a different axiomatization of
scientific truth allows for different inference paths.
By reflecting on the philosophy of contemporary
computational linguistics, we are afforded the op-
portunity to challenge this particular interpretation
of progress – not just for its lack of scientific merit,
but more importantly for its active role in perpet-
uating and amplifying social and environmental
harm. We build on this perspective in the following
sections.

3 Resource Exhaustion

As the field is witnessing a constant influx of pro-
gressively larger models, each vying for supremacy
over increasingly more challenging benchmarks, ta-
bles are growing in both size and count; see Fig. 1.
Meanwhile, the numbers within are getting more
resource-intensive by the day (Sharir et al., 2020).
As a result, the environmental footprint of con-
temporary research is expanding at an alarming
rate (Strubell et al., 2019; Li et al., 2023).

3.1 No NLP to Be Done on a Dead Planet

The point has resonated with the ecological sen-
sibilities of the community, prompting a number
of responses to the issue. By now, these have
come to coalesce into a niche of their own, united
under the common banner of a so-called “green
AI” (Schwartz et al., 2020). So far, most of this
green literature has gravitated around two thematic
pillars (Verdecchia et al., 2023). The first involves
matters of high-level policy: promoting greener
models, raising awareness, stamping algorithms
and models with eco-labels, etc. The second in-
volves matters of low-level practice: truncating
or quantizing models, optimizing resource utiliza-
tion, improving performance-to-emission ratios,
etc. While both are valuable research avenues, nei-
ther really addresses the essence of the problem:
the benchmarking practice itself. Indeed, ecologi-
cally rooted condemnations of the current modus

106



operandi are rare and far between (with Brevini
(2020, 2021, 2022, inter alia) and Heilinger et al.
(2024) being among the few notable exceptions).

In this case, failing to note the obvious is not
(just) a problem of deductive inadequacy; the omis-
sion is actually a take in disguise. An ideologi-
cal child of techno-determinism, on the one hand,
and eco-modernism, on the other, it implicitly pro-
claims that there is no standing in the way of
progress – yet good progress can save the world!
The incompatibility of these two positions is glar-
ing. There is little point debating the inherent
benevolence of a progress that we cannot contest
or control. That said, there is no need to shy away
from connecting the dots either. Experimental ob-
session negatively contributes to a rapidly deterio-
rating environment, and computational linguistics
can never truly be “green” as long as it remains
attached to it. The ecologically responsible course
of action is not to alleviate the effects – it is to
dismantle the cause.

4 Institutional Bias & Privilege

Besides environmental concerns, keeping up with
contemporary research trends comes at a (literal)
heavy price. As the cost of the “state of the art”
explodes at a super-exponential rate (Sharir et al.,
2020; Epoch AI, 2023; Perrault and Clark, 2024,
inter alia), the severe budget inequalities in higher
education become further pronounced (O’Sullivan,
2016; Goyes and Skilbrei, 2023), and the mini-
mum requirements for scientific relevance becom-
ing prohibitively high for smaller and lesser-funded
institutions to acquire and maintain (Ahmed and
Wahed, 2020); see also Fig. 2. Consequently, a
few dominant institutions get to consolidate their
competitive advantage by effectively gatekeeping
the means necessary to conduct exactly the kind of
research that is perceived as groundbreaking and
impactful (Münch, 2014). This is problematic on
multiple levels.

4.1 Science of the Few

To begin with, the insurmountable entry barrier
perpetuates and exacerbates a cycle of entrenched
privilege, where only a few voices retain access to
the platforms of expression. This disparity trans-
lates the lack of diversity in what research is done
to a lack of diversity in who gets to do it (Ahmed
and Wahed, 2020; Perrault and Clark, 2024). For
those favored, the cycle is no easier to break. The
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Figure 2: Contemporary model training costs compared
to the total annual R&D budgets of select U.S. insti-
tutions in 2022. The cost of training a large model is
comparable to the budget of a university in the top 15th
percentile, which is two orders of magnitude larger than
the median budget. Budget data sourced from the 2022
report by the US National Center for Science and Engi-
neering Statisticsa. Model cost estimates from Epoch
AI (2023). The U.S. was the globe’s highest spender for
the year, in terms of R&D expenditures.
a https://ncsesdata.nsf.gov/profiles/

current status quo presents a very alluring prospect:
a research recipe that is universally recognized as
superior, and that only few have the ingredients
necessary to implement. Opting out is not just a
matter of critical reflection – it is actually harmful
to one’s own interests (as measured in publications,
citation counts, employment opportunities, etc.).
Beyond the individual, the same dynamics appear
at the institutional scale. Steering a unit away from
the competition for experimental superiority and
towards niche research means condemning it into
academic obscurity and irrelevance; both too easy
to mistake for incompetence. This further disin-
centives scientific plurality, placing the field on a
convergent path toward a strict hierarchy of method-
ologies and ideas, mirrored in a dual hierarchy of
institutions and individuals (Rungta et al., 2022).

Effect being all too easy to mistake for cause,
a few institutions have by now come to be lauded
as hubs of research pioneers, their output singled
out and preemptively lauded on the basis of origin
alone (Rigney, 2010; Brennen et al., 2019). Privi-
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leged individuals are granted undue influence over
the field’s trajectory, effectively getting to dictate
both what questions to ask (e.g., which datasets
to tackle), and where to look for the answers (e.g.,
which models to adopt). This concentration of
technical and scientific authority creates clearly
delineated points of vulnerability for the field. Al-
ternative viewpoints and methodologies are at an
increased risk of being left unnoticed or becoming
squelched, suppressing innovation and inducing in-
ertia. Worse yet, it allows for the biases, norms and
opinions of a few dominant actors to be perpetu-
ated unhindered, except now disguised as universal
and irrefutable truths characterizing the entire dis-
cipline.

4.2 Science for the Few
This last issue is exacerbated exactly by the inher-
ent narrowness of these biases, norms and opinions.
Prestigious (read: wealthy) institutions are neither
evenly distributed across geographic regions, nor
equally accessible across social, cultural, ethnic
and economic backgrounds. As such, the perspec-
tives and priorities they represent are inevitably
skewed towards certain demographics, fostering
homogenization at the expense of further marginal-
izing under-represented groups and identities (Am-
sler and Bolsmann, 2012; Shamash, 2018; Field
et al., 2021; Talat et al., 2022; Hershcovich et al.,
2022; Bender and Grissom II, 2024; Perrault and
Clark, 2024, inter alia). On the premise that cul-
tural diversity is indeed worth nurturing and pre-
serving (Harmon, 2001), the absence of plurality
caused by this delegation of scientific and techno-
logical authority is bad – for any scientific field.
For a field like computational linguistics in particu-
lar, it is catastrophic. Allowing research agendas to
be shaped by a handful of actors endorses hegemo-
nialism: not just technological and scientific, but
importantly also cultural and linguistic.

This is particularly evident in the stark geo-
graphic disparity between citation-producing net-
works and centers of linguistic diversity (Rungta
et al., 2022). Trending terms like “natural language
understanding” carefully conceal the assumptions
made on which languages are actually worth un-
derstanding – or what understanding means, for
that matter (Bender et al., 2021). The perspective
that chasing after benchmarks and competing for
the top spots in scoreboards carries some inherent
value to the study of language becomes immedi-
ately exposed as biased and flawed upon noticing

that the majority of benchmarks and scoreboards
pertain only to a minuscule fragment of the globe’s
peoples (Joshi et al., 2020; Ruder, 2022).

Finally, a disproportionate allocation of re-
sources creates the necessary preconditions for sci-
entific tokenism. Technological abundance for the
few is indistinguishable from technological sparsity
for the many. The surging pressure for inclusivity
is temptingly easy to relieve, either by reducing the
bar when it comes to work in under-represented
languages and cultures, or by “allowing” it to co-
exist along the mainstream as a secondary, self-
referential niche. And while this might indeed
expedite its progress or increase its visibility, it car-
ries the risk of negatively impacting its (perceived)
quality, further cementing the gap between cen-
ter and periphery worlds – in terms of language,
culture and research alike.

4.3 From Inequality to Alienation
Along the same lines, in monopolizing the re-
sources essential for “frontier” research, “world-
class” institutions gain a competitive edge in attract-
ing highly sought-after global talent. Predictably,
transnational academic mobility flows along re-
search capacity gradients shaped by global wealth
inequalities (Bilecen and van Mol, 2017). The
exclusivity of “frontier” research turns academic
mobility into a violent dilemma: move, or (aca-
demically) perish. Built on this premise, “frontier”
research cannot but carry a commodified and so-
cially charged undertone (Stein, 2017).

Two orthogonal aspects of this perspective share
a single common effect. First, the same process
that accelerates well-funded and globally competi-
tive research decelerates regional institutions and
projects by starving them of (yet) another precious
resource: talent (Auriol et al., 2013; van der Wende,
2015, inter alia). Second, the inherently globalized
nature of benchmarking and its constructed sig-
nificance means that researchers employed abroad
are predominantly engaged with work far detached
from their own cultural and linguistic heritage. The
mirror image of an international researcher push-
ing the boundaries of “cutting-edge” research is an
expatriated researcher not getting their own mother
tongue up to speed with that very same research.
This reveals benchmarking as a driver for scientific
assimilation, which turns linguistic coverage into
a matter of institutionalized charity – left to the
discretion of exactly those fueling (and benefiting
from) its absence.
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5 Science & Profit

Albeit alarming, institutional bias is to some extent
mitigated by a common (if subjective and vague)
promise of scientific integrity, a culture of trans-
parency and openness, a shared strive for intel-
lectual inquiry, and the self-regulatory effect of
the (occasionally functional4) peer-reviewing sys-
tem. However, as the race for experimental supe-
riority intensifies, turning increasingly exclusive,
each new milestone gains greater appeal. Beyond
signaling intellectual achievement or academic ac-
complishment, this appeal extends to the material
plane. There, leading the benchmark race trans-
lates to a tangible competitive edge in commercial
(and/or state) applications. The allure of such an
edge has been persistently attracting profit-driven
entities into the computational linguistics ecosys-
tem. Over the span of a decade, these entities have
evolved from circumstantial players to dominant
figureheads. For such entities, none of the safe-
guards above hold. This reality poses an existential
threat for the field; a threat which nonetheless re-
mains largely unaddressed.

5.1 Stand on the Shoulders of (Tech) Giants

The current state of affairs can be traced to a histor-
ical affinity between computational linguistics and
machine learning (Manning, 2015). Such an affin-
ity is hardly surprising. Language poses challenges
at a variety of modalities and difficulty scales, en-
acting a boundless source of benchmarks for ma-
chine learning models. Conversely, models and
techniques developed for language-related tasks
have frequently demonstrated their versatility as
general-purpose machine learning tools, making
their way to distant or even unrelated disciplines.
Until recently, this reciprocal relationship has been
beneficial to both fields. In the last few years, how-
ever, and as the pace of progress in machine learn-
ing has been consistently exceeding expectations,
computational linguistics has lost its primacy, be-
coming increasingly dependent on imported ex-
pertise. This trend is reflected in the silent but
perfectly evident shift of the field’s main inquiries,
which have gradually moved from the computa-
tional study of language to an evaluation arena for
application-oriented machine learning. And even
though this transition might disappoint or alienate
some, there is not much inherently wrong about it;
after all, it is not uncommon for a research field

4See Rogers (2020) and Rogers and Augenstein (2020).

to retroactively change direction, or even be alto-
gether absorbed or subsumed by another. What is
problematic in the present context is the nature of
the subsumer.

The main pathology of machine learning, hav-
ing become synonymous with AI, is none other
than its public and commercial appeal. The com-
mercialization of science demands tangible advan-
tages against competitors: the product is easier to
sell when it’s visibly and quantitatively better than
alternatives. The success of this commercializa-
tion depends largely on “wow!” factors: publicity
stunts, catchy claims, and a degree of speculative
futurism (Funk, 2019). For the global actors in-
vested in the AI race, the concept of performance
is thus of prime interest (Bourne, 2024). Current
technology dictates one base ingredient as the nec-
essary and sufficient condition for performance:
scale (Epoch AI, 2023). And so, we get once more
caught up in a vicious cycle. As profit requires per-
formance, performance requires scale, and scale re-
quires budget, a positive feedback loop ensures the
growth of a handful of tech giants – at a rate far ex-
ceeding that of even the wealthiest research institu-
tion. And as performance just so happens to be our
currency of choice when quantifying scientific ad-
vancement (Birhane et al., 2022), machine learning
research becomes de facto dominated by exactly
these giants (Perrault and Clark, 2024; de Sousa,
2024). This elevates the resource allotment prob-
lems discussed earlier to an altogether different
scale: what’s at stake now is not just equal and fair
access to an equal and fair science, but rather the
very idea of independent scientific inquiry (Abdalla
and Abdalla, 2021; Jurowetzki et al., 2021).

5.2 Research (and Development)
In practice, as long as computational linguistics
research remains results-oriented, reliance on tech-
nology and infrastructure provisioned by tech gi-
ants is a nonchoice – there is, after all, no one else
to provision them from (Whittaker, 2021; Abdalla
et al., 2023; Ferrari, 2023). One might argue that
such an arrangement is not without merits. The nar-
rative would usually be that putting corporate tech-
nology into the scientific spotlight facilitates the
assessment of its risks and potentials, promoting
accountability through transparency. Conversely,
integrating corporate resources into academia accel-
erates the actualization of research and increases its
impact: rough prototypes turn into concrete tools,
ensuring that scientific advancements reach the pub-
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Figure 4: Citation share by organization in ⋆ACL confer-
ences over the last 10 years. Colors are inherited from
Fig. 3, when applicable. The 19 organizations listed
amount for approximately one third of the total citations
during this period. We associate (i) papers to authors, by
parsing the ACL bibliography file, (ii) authors to affili-
ations, by crawling google scholar with scholarly,
and (iii) papers to publication counts, using Zotero
and the ZoteroCitationCountsManager plugin. We
collapse affiliations to organizations (i.e., remove job ti-
tles and departments) by instructing mistral-7B (Jiang
et al., 2023). We compose and aggregate over the above
to produce a map from organizations to citation counts,
disregarding organizations with less than 5 citations as
likely parsing errors. The result is imperfect: there are
multiple sources of error, and affiliations at retrieval
time are likely to differ from those at publication time.
Nonetheless, it paints a sufficiently clear picture of
which organizations are exerting the most influence in
the field, and what the extent of this influence is.

lic domain faster. But such a narrative depends on,
and in fact presupposes, an alignment between sci-
entific and commercial agendas. The implication is
that the pursuit of knowledge becomes conditional
on its compatibility with the interests and capabili-
ties of big tech, i.e., the very same actors academia
was supposed to scrutinize in the first place.

The conflict of interest is immediately apparent.
The overwhelming power asymmetry between big
tech and academia (be it big or otherwise) erodes
any potential merits that could ever be argued for.
Under the present conditions, the scientific spot-
light can no longer be critical or investigative. Con-
ferencing devolves to a campaigning stage, a tick-
eted tech show, and a marketplace where for the
colossi to display their latest wares and recruit new
talent; see Fig. 3, and juxtapose with Fig. 4. Cor-
porate resources do not “spill over”, nor do they
“trickle down” – they are rationed; a means of sci-
entific coercion (Noble, 1979; Moore et al., 2011;
Phan et al., 2022). Corporate interests do not ac-
tualize knowledge – they predate, appropriate and
monetize it (Rikap and Lundvall, 2022). Ideas that
survive the ecosystem’s selection process do not
turn into socially relevant tools – they turn into
economically viable products (Dale, 2019; Klinger
et al., 2020; Luitse and Denkena, 2021). Scien-
tific involvement itself degrades into a “networking
filter”: an inconvenient but unavoidable stepping
stone towards a high-stakes career in tech (Ahmed
et al., 2023; Gofman and Jin, 2024). The researcher
becomes a glorified spokesperson for big tech, a
consumer of their infrastructure, a public advocate
of their science, a safety net between them and
the public – an eager and dispensable part of their
production pipeline.

The extent and degree of the infiltration have be-
come impossible to ignore. We are on the verge of a
corporate takeover, legitimized by an acquired taste
for big datasets, big models and big numbers. Put
simply, we have been voluntarily handing the field
over to an industry we are realistically incapable of
challenging, let alone regulating.

5.3 (The Irrelevance of) Corporate Ethics
As of late, the community’s growing aware-
ness (Michael et al., 2023) of these developments
and their public ramifications has spurred numer-
ous works on so-called “AI ethics”. The conver-
sation is heavily skewed by well-documented lob-
bying efforts and a broader ethics-washing cam-
paign aimed at soothing public concern and deter-
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ring regulatory oversight. The “debate” often re-
volves around virtue signaling gestures, assertions
of corporate responsibility (or accusations of its
absence), suggestions for self-regulatory account-
ability guidelines, techno-positive musings of an
all-inclusive tomorrow, “critical” perspectives from
within, vague calls for a misconstrued “democrati-
zation”, and the like. In their majority, these works
range from malicious manipulation at worst, to
harmful diversions at best (Ochigame, 2019; Ben-
kler, 2019; Slee, 2020; Hagendorff, 2020; Whit-
taker, 2021; Phan et al., 2022; Seele and Schultz,
2022; Himmelreich, 2023, inter alia).

This premeditated and narrow notion of ethics
subtly chooses to ignore the possibility of us reap-
propriating the scientific discourse. Besides negoti-
ating matters of representation and inclusion, bias
aversion, model explainability, linguistic diversity,
open-sourcing, carbon impact, etc. as they arise
within the current environment, we have a far more
fundamental series of questions to be confronted
with. Are we assuming that big tech, running ram-
pant on the field’s collective advancements, will (or
even can) ever align their agenda with the public’s
interests? Do we trust them with upholding the
values of scientific integrity and technological ac-
countability? Are we at peace with the prospect of
a privatized and application-centric future for com-
putational linguistics, removed from the world, its
people and their needs? If the answer to the above
is no, how can we justify our implicit yet unwaver-
ing support and commitment to big tech’s cause
throughout the last decade? Why are we so sus-
ceptible to their influence, so eager to adopt their
values and principles, so tolerant of their techno-
logically exclusionary practices? Ultimately, what
benefits do we get to derive from contributing to
their endeavors – and at what cost?

6 Ways Ahead

The paradigm shift advocated for might seem rad-
ical or untenable. In reality, it is neither. The
epistemic rewiring it calls for can be set in motion
with as little as individual adjustments in research
consumption and production attitudes.

As readers, we need to stop allowing ourselves
to be dazzled by big numbers. We must ask what
their utility and cost are, who benefits from them,
and who bears their expense. We should not only
grow resilient to hollow benchmarking hypes, but
also openly refute and disarm them.

As authors, colleagues and advisors, we have
to be conscious of our (and each other’s) research
goals and practices. We ought to look beyond num-
bers and benchmarks and focus on what questions
our research really answers. We must challenge
the notion of science as a competition or enterprise,
and scorn endeavors that depend solely on exper-
imental superiority to be deemed successful. We
must be mindful and explicit of the resources we
use and their accessibility, but also of the artifacts
we produce and their inclusivity. Above all, it is
our responsibility to be vocal and assertive about
the issues in our field; despite –or rather in spite of –
normative resistance and calls for conformity and
“moderation”.

As reviewers, we should each recognize our re-
spective academic privileges, and be cautious in our
technical demands; not everyone has access to the
same number of GPUs. Conversely, we should not
be intimidated by big tables and bold face fonts; we
need to be critical of the research we are exposed
to, and call out opaque methodologies, exclusion-
ary practices and useless flourishes. Finally, our
exclusive access to the reviewing process means it
is our own duty to monitor it; each one of us has a
role in identifying and confronting poor practices.

7 Conclusion

We discussed tables with numbers, and related
them to several issues that affect contemporary
computational linguistics research. We argued that
the focus on experimental superiority has shifted
research priorities towards technical optimization,
at the expense of theoretical depth and societal con-
text. This has led to an inflationary effect on the
epistemic value of experimental results, rendering
them (and, by extension, the field itself), increas-
ingly meaningless. We explained how the pres-
sure for experimental superiority, while advancing
technology, has fostered environmental degrada-
tion, institutional biases, and the commodification
of research. To address these issues, we urge the
field to critically reassess its methodologies, and
prioritize a more holistic and socially responsible
approach to scientific inquiry, balancing technical
achievements with ethical and environmental con-
siderations. Such a shift is essential for ensuring
that advancements in computational linguistics pos-
itively contribute to scientific knowledge, societal
well-being, cultural diversity, and environmental
sustainability.
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Limitations

We tried to substantiate our claims with (references
to) empirical evidence and contemporary critical
perspectives. Nonetheless, this paper is first and
foremost an opinion piece; the ideas presented are
the product of subjective and ideologically signed
mental processes. For a reader that ascribes to
the epistemic foundations of positivism, this is an
argumentative weakness. For us, it is a strength.
We acknowledge our biases and limitations, and
welcome critiques from all angles; a broader dis-
cussion on the field’s epistemic culture is exactly
what our work hopes to instigate.

Our analysis is by no means exhaustive, espe-
cially considering the complexity and volatility of
the subject matter. The most critical omission, due
to the temporal gap between writing this piece (Au-
gust 2024) and getting it published (March 2025),
is a reflection on how recent political developments
have further validated the transient and opportunis-
tic nature of big tech’s so-called ethics. Following
the change in power after the USA 2024 elections,
tech companies have been increasing their stakes in
transnational military and surveillance applications,
while simultaneously backpedaling on their own
commitments on ecological sustainability and so-
cial diversity, equity and inclusion. We defer a dis-
cussion on the military-industrial complex emerg-
ing from key players in the language technology
industry for another occasion.

Finally, there are several experiments we would
have hoped to carry out to quantify some of our
claims, but we failed to bring to fruition. We ex-
plicitly mention them here for the sake of clarity
and transparency, and to bring them to the attention
of other interested parties:

• A paper-wise computational cost estimation
would allow a quantification of the financial
entry barrier to modern research. Overlaid
with citation counts, this would allow answer-
ing whether the most impactful papers are
really just the most expensive ones.

• A longitudinal topic modeling analysis could
provide evidence for the narrowing of re-
search topics and methodologies over the last
decade. Combined with an evolutionary anal-
ysis of writing norms (e.g., paper structure),
this would allow us to correlate homogeniza-
tion of tone with the loss of content diversity.
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