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Abstract

Automatic poetry generation is an immensely
complex task, even for the most advanced
Large Language Models (LLMs) that requires a
profound understanding of intelligence, world
and linguistic knowledge, and a touch of cre-
ativity. This paper investigates the use of LLMs
in generating Russian syllabo-tonic poetry of
various genres and styles. The study explores a
character-level tokenization architectures and
demonstrates how a language model can be
pretrained and finetuned to generate poetry re-
quiring knowledge of a language’s phonetics.
Additionally, the paper assesses the quality of
the generated poetry and the effectiveness of
the approach in producing different genres and
styles. The study’s main contribution is the in-
troduction of two end-to-end architectures for
syllabo-tonic Russian poetry: pretrained mod-
els, a comparative analysis of the approaches,
and poetry evaluation metrics.

1 Introduction

Automatic poetry generation is a challenging task
that requires systems capable of handling multiple
levels of language understanding, including deep
comprehension of text, linguistic and world knowl-
edge, common sense, creativity, and an awareness
of syllabic and rhythmic structures.

As a form of artistic expression, poetry has been
produced in numerous languages, each with its own
unique poetic traditions and forms. While most
poetry generation systems focus on English and
Chinese, there are also efforts targeting other lan-
guages (Hämäläinen and Alnajjar, 2019; Hämäläi-
nen et al., 2022; Chudoba and Rosa, 2024). How-
ever, the task of automatically generating poetry
in Russian remains underexplored and presents
unique challenges.

To address this gap, we explore neural net-
work architectures for the automatic generation

of syllabo-tonic*1 Russian poetry. Specifically, we
investigate whether transformer-based models can
effectively handle end-to-end generation of Russian
syllabo-tonic poetry across various genres, styles,
and forms. Our analysis reveals that mainstream
byte pair encoding (BPE) tokenization often fails
to align well with the structural units of Russian
syllabo-tonic versification. To address this, we pro-
pose and evaluate language models with character-
and syllable-level tokenization, training and testing
their performance on the poetry generation task.

We also conduct a detailed study of poetry met-
rics (subsection 5.1) and share our experiences us-
ing existing methods to assess the quality of gen-
erated poems. These methods include automatic
evaluation (Table 3) of fluency and poeticness for
several models, as well as human evaluation of the
overall quality of poetry generated by models with
character-, syllable-, and BPE-based tokenizations
(Table 1).

The contributions of our work are as follows:

• We propose several architectures utilizing
character-level tokenization, including the
CharLLaMa model, based on the Llama archi-
tecture (Touvron et al., 2023), and the Char-
Mamba model, based on the Mamba selective
state space architecture (Kheradmand et al.,
2023). We have released the weights for the
CharLLaMa-1.3B 2 and CharLLaMa-2.6B 3

models;

• We compare character- and syllable-level lan-
guage models with baseline language models
after supervised finetuning (subsection 3.2) on
diverse poetry genres;

1All poetry terms marked with * are defined in the Glossary
in Appendix A.

2https://huggingface.co/ai-forever/
charllama-1.3B

3https://huggingface.co/ai-forever/
charllama-2.6B
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• We developed and open-sourced a library for
Russian poetry stress placement and meter
evaluation.4

• We demonstrate that small-sized language
models with syllable-level tokenization can
compete with larger general-purpose models
in poetry generation tasks.

2 Related work

Creativity has been shown to be closely linked
to human intelligence (Frith et al., 2021), mak-
ing computational creativity a compelling area of
research (Colton and Wiggins, 2012), including
the study of creativity in LLMs (Franceschelli and
Musolesi, 2024). Generative poetry, related to
artistic creativity (Ismayilzada et al., 2024), dif-
fers from other natural language generation do-
mains (Gatt and Krahmer, 2018) by its special lex-
ical and phonological constraints, as well as spe-
cialized metrics to evaluating the quality of gener-
ated poems (see Chen et al. (2024) as an example).
Recent advancements in LLMs have significantly
improved the quality of poetry generation, to the
extent that humans often cannot reliably distinguish
between poems authored by humans and those gen-
erated by LLMs (Porter and Machery, 2024).

Tokenization approaches. Despite the progress of
current generative models, there remains potential
for further improvement in the quality of poetry
generation. One area of research is alternative to-
kenization methods for LMs that circumvent the
shortcomings of the currently mainstream BPE to-
kenization. In the case of syllabic or syllabo-tonic
poetry, improvements can be achieved by using
character- or syllable-level tokenization (Belouadi
and Eger, 2022; Yu et al., 2024; Chen et al., 2024).

Character- and byte-level tokenization has been
used in various systems for automatic poetry gen-
eration based on recurrent neural networks (Zhang
and Lapata, 2014; Yan, 2016; Xie et al., 2017; Hop-
kins and Kiela, 2017; Tikhonov and Yamshchikov,
2018). After the invention of the transformer archi-
tecture, its applicability with character-based text
representation for poetry generation was also in-
vestigated (Belouadi and Eger, 2022). The need to
train the transformer language model from scratch
limits the availability of such experiments. In the
case of English language, there are open-source

4https://github.com/Koziev/
RussianPoetryScansionTool

foundation models pretrained on vast corpora: CA-
NINE (Clark et al., 2022) and ByT5 (Xue et al.,
2022). CANINE is a family of encoder trans-
former models with tokens corresponding to Uni-
code codepoints. This model was utilized by Zhang
et al. (2024) in melody-to-lyrics generation system.
ByT5 implements an encoder-decoder architecture
with byte-level tokenization. An example of its use
for generating Czech poetry is available in Chu-
doba and Rosa (2024).

Syllable-level tokenization is a specialized vari-
ant of subword unit tokenization. Its effec-
tiveness for generating poetry has been studied
for several languages: Italian (Zugarini et al.,
2019), Czech (Chudoba and Rosa, 2024), Viet-
namese (Nguyen et al., 2021). Similar to character-
level tokenization, syllable-level tokenization ne-
cessitates either resource-intensive pretraining of a
language model from scratch or additional finetun-
ing of a pretrained model with byte-pair encoding
tokenization.

Generative poetry evaluation. A comprehensive
evaluation of generative poetry models, like other
creative models for open-ended tasks, poses signif-
icant challenges. Metrics designed for reference-
based tasks, such as machine translation, are often
unsuitable for this purpose. While perplexity is a
commonly used metric for assessing generative po-
etry models (Yan, 2016; Che et al., 2017; Zugarini
et al., 2019; Zhang et al., 2023; Hu et al., 2024), it
has notable limitations (Kuribayashi et al., 2021;
Wang et al., 2022). A standard alternative is to
evaluate and compare generated poems using hu-
man assessors, either experts or non-professionals.
However, this approach is costly and difficult to
scale. In this context, the LLM-as-a-judge method,
which has been applied to evaluate poems (Zhang
et al., 2024) and prose (Yang et al., 2024), offers a
promising solution for creative computation tasks.

Poetic texts exhibit structural properties that are
well-suited for formal evaluation, such as adher-
ence to syllable count per line, regularity in the
alternation of stressed and unstressed syllables (po-
etic meter*), and rhyme schemes*. A significant
advantage of this approach is the potential for full
automation. Corresponding metrics can be com-
puted during the evaluation phase, as demonstrated
by Nguyen et al. (2021); Possi et al. (2023); Chu-
doba and Rosa (2024).
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3 Data

To train and evaluate poetry generation models, we
required a substantial amount of Russian poetry
data. However, publicly available datasets, such
as Shavrina and Shapovalova (2017); Plecháč et al.
(2023), are limited in size and insufficient for train-
ing generative models, particularly those based on
transformer architectures.

To address this limitation, we collected a large
volume of amateur poetry from various Internet
sources (Appendix E). These sources often lack
editorial oversight, leading to frequent spelling
and punctuation errors that can negatively impact
model performance. To mitigate this issue, we de-
veloped a rule-based spelling correction algorithm
to address the most common errors. Further details
about this algorithm are provided in Appendix B.

The collected poems also frequently exhibit de-
fects in adhering to poetic meter* and rhyme*.
Since these defects cannot be automatically cor-
rected, we excluded such samples from the finetun-
ing dataset. To identify meter- and rhyme-related
defects, we used our custom library, described in
3.3.

3.1 Pretraining Dataset

Our pretraining dataset consists of two parts: 1)
prose texts and 2) poetry texts. All texts have been
annotated for stress with the library described in
3.3. The sources of the prose samples are presented
in Appendix E.

To ensure that various data types are well-
represented in the pretraining texts, the poetic data
was upsampled (He and Garcia, 2009), as it consti-
tuted only half the volume of prose data. Based on
our experiments, a fourfold upsampling of poetry
is near optimal: more aggressive upsampling leads
to a significant increase in plagiarism in the gener-
ated text, as models begin to reproduce memorized
training data.

The resulting dataset contains 65 billion char-
acters. The prose and poetry texts were randomly
mixed and segmented into 1024-character blocks,
starting with either <prose> or <poetry> tokens
to identify the content. This setup allows models
to generate poetry without extra finetuning by sim-
ply using the <poetry> token and an optional seed
fragment. However, to better control the poem’s
theme, style, and sentiment, instructive finetuning
is needed.

3.2 Finetuning Dataset

Instructive prompts. All samples in the fine-
tuning dataset consist of an instructional prompt
with specific parameters paired with a poem. This
approach enables flexible control over the genera-
tion process by allowing users to specify all require-
ments directly in the prompt. This distinguishes
it from models that rely on keyword-based seeds,
as commonly used in systems like Boggia et al.
(2022).

To streamline the creation of instructional
prompts, we automated the generation process us-
ing an LLM, leveraging the collected poems as
input. Manual prompt collection is both time-
expensive and resource-demanding, making our
automatic approach more efficient. The LLM ana-
lyzes a given poem — examining its genre, struc-
ture, and other key elements before generating a
synthetic prompt. The input provided to the LLM
follows the following structure (example is trans-
lated from Russian):

Analyze the poem below in the genre
“GENRE”. Identify the main character,
central idea, author’s message, key con-
flict, emotions, vivid metaphors, and all
proper names in the poem. Insert these
into the “TEMPLATE” to create a task
for a poet. Output only the resulting task
sentence: “POEM”

TEMPLATE refers to a syntactic variation incorpo-
rating elements such as sentiment, emotion, length,
and poetic meter* to create diverse prompts. Ad-
ditional examples, including the original Russian
version, are provided in Appendix F.

Quality. The quality of the finetuning dataset sig-
nificantly affects poem generation results. Conse-
quently, we focused extensively on cleaning the
collected data. The dataset preparation code con-
tains procedures for correcting typographic defects,
including normalizing spaces, correcting commas,
spell checking (Appendix B), and a set of filters for
rejecting obviously bad poems. The filters include
a set of heuristics for detecting the most common
defects such as the repetition of some particles, as
well as checking for compliance with a number
of poetic rules. The latter is implemented through
the tool described in 3.3. Poems with severe meter
defects and missing rhymes are excluded from the
finetuning dataset, resulting in less than 15% of the
collected data being utilized.
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Genres. In forming a corpus of poems for pretrain-
ing and finetuning, we did not limit its composi-
tion to any particular genre, style, or form, unlike
many other works e.g. (Lo et al., 2022). As a
result, the corpus contains, in addition to lyrics
with different poetic meter*, tonality, and theme,
also comic, satirical, and ironic poems, including
a number of hard forms: pirozhki*, chastushka*,
rubai*, limericks*, sonnets*, poems for children,
poetic riddles, hymns (Greene et al., 2012, page
356), congratulations in verse etc.

The finetuning dataset comprises a total of
1,704,418 samples, distributed across various gen-
res as follows: 52.7% lyrics, 24% hard forms,
11.9% humor and satirical poetry, 5% poems for
children, and 6.4% others. The primary sources of
poetry include:

• stihi.ru5 (72%),

• poetory.ru6 (2.8%),

• chitalnya.ru7 (1.7%).

3.3 Accentuation and Poetry Scansion
For syllabo-tonic* poetry, the placement of stress
marks follows specific rules for alternating stressed
and unstressed syllables. Our algorithm supports
five meters: trochee*, iamb*, dactyl*, amphibrach*,
and anapest*. These five meters account for ap-
proximately 97% of all poems in the dataset. The
remaining 3% include dolniks* and some excep-
tional cases (e.g., in the artishoki* genre).

For each stanza, the algorithm selects an optimal
meter based on the reference sequence of stressed
and unstressed syllables for the meter, the positions
of ideal stresses, and whether these ideal stresses
align with the permissible stress patterns of the
words.

Russian pronunciation allows for variability in
word stress, making automatic stress placement
a computationally intensive task. The accentua-
tor supports two main cases of variability: 1) cer-
tain phrases in the Russian language deviate from
standard rules (there are several hundred of these
phrases), 2) some words allow for variations in
stress within the same grammatical form. To ad-
dress this efficiently, the algorithm implements a
beam search. For each line, there are two variants
of stress placement, respectively, resulting in two

5https://stihi.ru/
6https://poetory.ru/
7https://www.chitalnya.ru

clauzula* variants. The one that provides the best
rhyme combination can be selected among these
options.

4 Pretrained Models

The goal of this paper was to investigate whether
using a character-level tokenizer and pretraining
with it could improve automatic poetry generation.
We hypothesized that character-level tokenization
would represent text more accurately for poetry
generation compared to byte-pair encoding. To test
this hypothesis, we used two model architectures,
which are described in detail below.

4.1 CharLLaMa
The CharLLaMa models follow the LLaMa archi-
tecture (Touvron et al., 2023). The only differences
are: 1) character-level tokenization, 2) adjusted in-
ternal dimensions. We pretrain the models on the
data described in 3.1. CharLLaMa is optimized to
handle character-level tokenization and complex se-
quential patterns, aiming to outperform BPE-based
models in capturing Russian poetry language struc-
ture. The initialization of the tokenizer vocabulary
(a set of tokens for the tokenizer) was performed
as follows: 1) the frequencies of Unicode symbols
in the pretraining corpus were analyzed; 2) rare
symbols with a frequency below 1000 have been
excluded. This yields a vocabulary of 375 tokens,
including special tokens <s>, </s>, <pad>, <unk>,
and two special tokens for marking fragments of
prose and poetry.

Two model variants were pretrained: 1.3B and
2.6B parameters (detailed specifications of the mod-
els are in Table 2).

Model training. CharLLaMa-1.3B model was
pretrained over 14 days using 1 DGX 8*A100,
leveraging CUDA V12.3.107 environment, and the
CharLLaMa-2.6B was pretrained over 24 days us-
ing 1 DGX 8*H100 respectively. The learning
parameters are listed in Table 7.

4.2 CharMamba
When using character-level tokenization, it’s im-
portant to consider that it tends to make token se-
quences longer than methods like BPE or syllable-
level tokenization due to the higher fertility8 as
shown in Table 8. Consequently, both model train-
ing and inference may take longer, in addition to

8Tokenization fertility was defined and analyzed for the
BERT tokenizer in https://juditacs.github.io/2019/
02/19/bert-tokenization-stats.html
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increased memory consumption during autoregres-
sive text generation and the time taken for generat-
ing text.

Given these limitations, we opted for the Mamba
architecture as the second model for exploration,
following the approach outlined in (Gu and Dao,
2023). Mamba is based on advancements in
structured state space models, with an efficient
hardware-aware design similar to FlashAttention,
enabling it to be more efficient and faster that
transformer-based models. We adopted the Mamba
implementation from the official repository 9 and
pretrain CharMamba on the dataset described in
3.1.

Model training. The CharMamba-1.3B model
was pretrained over 5 days using 1 DGX A100
system with 8 GPUs, utilizing CUDA V12.3.107.
The training parameters are detailed in Table 7.

4.3 Syllabo-tonic GPTs

Syllabo-tonic GPTs (stGPT) are based on the GPT-
2 architecture (Radford et al., 2019), with mod-
ifications limited to tokenization and the size of
hidden layers. We conducted experiments using
two model variants: a 100M-parameter model (re-
ferred to as “stGPT small”) and a 350M-parameter
model (referred to as “stGPT medium”). Detailed
specifications for both models are provided in Ta-
ble 2.

Both models were pretrained on 3.1 and fine-
tuned on 3.2 with hyperparameters listed in Table
7.

The tokenization algorithm for these models
works as follows. First, the text is split into sylla-
bles, ensuring that each syllable contains exactly
one vowel or consists of a single consonant (as
in the case of certain prepositions and particles).
Second, stressed syllables are marked using the
“combining acute accent” symbol,10 placed after
the vowel. Third, the token sequences in each line
of the poem are reversed from right to left, so that
the last token of the line appears first, followed
by the penultimate token, and so on. This reversal
simplifies the model’s task of selecting rhyming syl-
lables during generation, reducing the likelihood
of unsuccessful poem generation. Without this
technique, the model might struggle to choose a
rhyme that satisfies both lexical and grammatical
constraints when reaching the end of a line. A

9https://github.com/state-spaces/mamba
10https://unicodeplus.com/U+0301

similar approach has been used by Benhardt et al.
(2018); Van de Cruys (2020).

5 Experimental Poetry Generation

5.1 Metrics

Evaluating generative LMs, especially for poetry, is
challenging (Hämäläinen and Alnajjar, 2021) due
to the lack of ground truth answers and the subjec-
tive nature of poetry evaluation. Both automatic
tests and manual evaluations can assess poetry gen-
eration models. Poetry features strict structural
requirements, such as syllabo-tonic forms that ad-
here to specific patterns of stressed and unstressed
syllables. These elements can be verified algorith-
mically.

We introduced the metric technicality, calcu-
lated using the tool described in 3.3. A penalty is
applied if the ideal meter requires an unstressed
syllable, but the actual syllable in this position is
stressed. More than two consecutive unstressed
syllables are also penalized. A score of 0 indicates
that the text does not match the typical patterns of
syllabo-tonic poetry, while a score of 1 indicate
a perfect match to a classic meter. Intermediate
scores correspond to texts with varying numbers
of defects; the closer the score to 1, the fewer the
defects.

In addition to poetic meter, poems are typically
expected to include rhyme. To evaluate the mod-
els’ ability to generate rhymes, we measure the
rhyming level as the proportion of quatrains with
an ABAB rhyme scheme*. While this is a simplified
approach — since generated poems may exhibit
other rhyme schemes (e.g., ABBA, AABB, AABA) —
the ABAB scheme is the most common in lyric po-
etry and represents the majority of samples in the
training data.

Perplexity is a widely used automatic metric for
evaluating the fluency of generated poems (Yan,
2016). It is calculated using a pretrained LMs.
For our experiments, we used the ruGPT3-medium
model11 to compute perplexity. However, it is im-
portant to note that available LMs are typically
trained on general-purpose text and may not fully
capture the grammatical and stylistic nuances spe-
cific to poetry.

Out-of-vocabulary (OOV) rate is a simple met-
ric used to detect abnormalities in generated poems.
It measures the proportion of words in a text that do

11https://huggingface.co/ai-forever/
ruGPT3-medium_based_on_gpt2
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not appear in the finetuning dataset. A higher OOV
rate indicates a greater likelihood of encountering
unusual or nonsensical vocabulary in the generated
text. The OOV rate is not a completely reliable in-
dicator of vocabulary defects, as poetry generation
is an open-ended task with no fixed dictionary. Lex-
ical innovations, such as neologisms and creative
word formation, are common in poetry. Poets often
experiment with language boundaries, producing
works like Lewis Carroll’s "Jabberwocky" (Carroll,
2001) and its translations into Russian,12 which
consist of unconventional or invented words, or
the Russian genre of "zaum,"13. However, in prac-
tice, "broken" vocabulary in generated poems often
arises not from the model’s creativity, but from a
domain shift caused by finetuning language models
like Mistral, ByT5, or ruGPT3-medium on poetic
texts. This shift occurs because poetic language
differs significantly from prose in terms of vocab-
ulary, syntax, and the extensive use of figurative
language. As a result, despite its limitations, the
OOV rate is a simple and interpretable metric that
provides a reasonable estimate of lexical defects.

Side-by-side human evaluation. A team of an-
notators evaluated the generated poems by compar-
ing their outputs side-by-side with human-authored
poems. Each annotator was given a prompt along
with pairs of texts and instructed to select the text
that best represented a poem in response to the
given prompt. The criteria for comparing the texts,
arranged in descending order of importance, were
as follows:

• Poeticness: the text must be poetic and adhere
to the rules of Russian syllabo-tonic versifica-
tion.

• Fluency, coherence, and meaningfulness: the
text must be free of grammatical errors and
convey meaning.

• Prompt relevancy: the text must be relevant to
the given prompt.

The prompts were generated using an LLM in
a zero-shot setting, following a prompt schema
similar to the one used for the finetuning dataset
(3.2). For evaluation, we selected prompts suitable
for poems with lengths ranging from 4 to 8 lines.

12https://prosodia.ru/catalog/stikhi/
lyuis-kerroll-drug-moy-boysya-barmaglota/

13https://library.fiveable.me/key-terms/
world-literature-ii/zaum

Author 1 Author 2 Num. of pairs
CharMamba-1.3B human 873
CharLLaMa-1.3B human 840
CharLLaMa-1.3B CharMamba-1.3B 686

Table 1: Statistics of poem pairs used in the side-by-side
evaluation study.

The total number of annotated pairs is 2,399,
with detailed statistics provided in Table 1.

5.2 Experiments

Comparison with BPE models. In the first experi-
ments, we evaluate the pretrained models listed in
Section 4 and several foundation models with BPE
tokenization: ruGPT3-large14; Mistral-7B-v0.115;
FRED-T5-1.7B16. All models were finetuned on
the instruction dataset (subsection 3.2).

Syllabo-tonic tokenization. In the second part of
the experiments, we examined the syllabo-tonic
tokenization of the text. Tokens in this approach
correspond to syllables, with separate tokens for
stressed and unstressed syllables. This type of tok-
enization attempts to overcome the main limitation
of character-level tokenization, which is the dif-
ficulty of capturing longer contexts. On average,
syllables in the Russian language consist of approx-
imately 2.3 letters, which aligns well with BPE
tokenization.

We tested two models with 100M and 350M
capacities, named “stGPT small” and “stGPT
medium”. Table 2 presents the models’ parame-
ters. These models were pretrained on a dataset de-
scribed in Section 3.1, then finetuned on the dataset
described in Section 3.2. Training hyperparameters
are presented in Table 7.

Table 4 shows the technicality scores for both
human- and LM-authored poems across several
genres.

Low-Rank Adaptation (LoRa). Full finetuning
was used for all compared models. Our experi-
ments with LLama 8B and LoRa demonstrated a
significant degradation of the technicality of the
generated poems, so we did not use this training
option for the final comparison.

14ruGPT3-large is the Russian analog of the GPT-2 model,
presented as a family of models of different sizes (Zmitrovich
et al., 2024). The large version has 760M parameters

15Mistral-7B-v0.1 is the pretrained generative text model
with 7 billion parameters proposed by the MistralAI team

16FRED-T5-1.7B (Zmitrovich et al., 2024) is the encoder-
decoder pretrained model created for the Russian language
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Model N_positions N_embd N_head N_layer Num_parameters

stGPT small 1024 768 12 12 132,694,272
stGPT medium 1024 1024 16 24 365,840,384
CharLLaMa-1.3B 1024 1536 32 29 1,369,634,304
CharLLaMa-2.6B 2048 2064 24 28 2,641,199,664
CharMamba-1.3B — 1320 — 31 1,238,287,360

Table 2: Model characteristics of the explored architectures. N_positions - number of positional embeddings, N_emb
- token embedding size, N_head - number of transformer self-attention heads, N_layer - number of stacked decoder
layers, Num_parameters — number of models parameters.

Model Sampling parameters Technicality Rhyming level Perplexity OOV rate
stGPT medium temp=0.9 top_p=0.75 0.72 0.467 70.28 0.004
stGPT small temp=0.8 top_p=0.8 0.70 0.472 59.30 0.004
CharLLaMa-2.6B temp=0.75 top_p=0.6 0.59 0.339 55.56 0.009
CharLLaMa-1.3B temp=0.75 top_p=0.6 0.58 0.352 50.71 0.011
CharMamba-1.3B temp=0.65 top_p=0.75 0.57 0.293 42.60 0.003
Mistral-7B-v0.1 temp=0.65 typical_p=0.75 0.57 0.192 72.41 0.012
FRED-T5-1.7B temp=0.8 typical_p=0.7 0.26 0.126 38.44 0.0029
ruGPT3-large temp=0.9 typical_p=0.7 0.06 0.002 45.59 0.0060
ByT5-large temp=0.9 top_p=0.7 0.02 0.001 124.62 0.016
ByT5-small temp=0.9 top_p=0.7 0.01 0.0 341.65 0.035
Human n/a 0.81 0.683 72.81 0.0038

Table 3: Automatic metrics for models trained on the finetuning dataset (subsection 3.2). Lower OOV rate values
indicate better performance, while higher values of technicality and rhyming level are preferred. temp in sampling
parameters stands for temperature.

Author sonnets rubai limericks chastushka depressyashka artishok poroshok
stGPT medium 0.712 0.596 0.613 0.689 0.591 0.361 0.578
stGPT small 0.699 0.559 0.636 0.702 0.533 0.266 0.567
CharLLaMa-2.6B 0.469 0.499 0.439 0.546 0.511 0.518 0.499
CharLLaMa-1.3B 0.495 0.522 0.484 0.568 0.504 0.487 0.496
CharMamba-1.3B 0.416 0.526 0.409 0.557 0.505 0.439 0.467
FRED-T5-1.7B 0.209 0.24 0.128 0.289 0.345 0.064 0.305
ruGPT3-large 0.059 0.063 0.048 0.079 0.132 0.031 0.064
Human 0.555 0.644 0.644 0.701 0.64 0.88 0.642

Table 4: Technicality scores for model- and human-authored poems across different genres. Higher technicality
values indicate better performance.
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Token-less models. We have also explored the
performance of token-less models from ByT5 fam-
ily (Xue et al., 2022). These models employ a tok-
enizer that operates at the byte level for utf-8 text
encoding. It was expected that this tokenization
approach would also allow the model to process
individual characters of the text, thus helping the
model acquire the Russian phonetics.

Finetuning with instructive samples. All samples
for finetuning consist of an instructional prompt
and poem text. For decoder models, that is, all
except FRED-T5-1.7B, a special token separates
the prompt and the poem. Samples were randomly
combined into fixed-size batches with the right
padding using a <pad> token. Prompt tokens were
excluded from backpropagation in decoder models
by setting an attention mask for each sample.

Experimental setup. The automatic metrics for all
experiments were calculated uniformly according
to the protocol described below.

• The CharLLaMa, CharMamba, and stGPT
were trained from scratch according to the
procedure described in Section 4, and subse-
quently trained on the finetuning dataset (sub-
section 3.2). Other models were trained only
on the finetuning dataset. Models were fine-
tuned using the transformers library v.4.36.2.
The finetuning hyperparameters are described
in the Appendix 7.

• To evaluate all the experiments and mod-
els, we use the test set of 1000 instructional
prompts, each instructing to “Compose a qua-
train about <theme>...” and being up to 200
characters long. All compared models were
prompted to generate lyrics quatrains. If a
model produced more than four lines, only
the first four were considered. Per-genre eval-
uation was performed using 600 instructions
following the format “Compose a poem in
genre <genre> about <theme>”.

• Nucleus sampling (Holtzman et al., 2019) was
used as a generation algorithm for all mod-
els. For each prompt, a single sequence of
tokens was generated and used as the result
for evaluation. The sampling parameters were
optimized for each specific model, with slight
variations, as different models have distinct
optimal configurations for these parameters.

6 Results

The results of the experiments are shown in Tables
3 for 1000 lyrics quatrains and Table 4 of Appendix
refers for 600 generations of several other genres.
The metrics indicate that poorly written poems can
have lower perplexity, while human-authored po-
ems have higher perplexity. As noted by Yi et al.
(2018), it is essential to focus not only on the ab-
solute value of perplexity but also on how well the
obtained perplexity value fits within the range of
values typical for works written by people. It can
be helpful to approximate the corresponding distri-
bution with a Gaussian distribution with a specific
mean and variance.

The automatic evaluation results show that the
fine-tuned ruGPT3-large and ByT5 models per-
formed poorly in poetry generation, while Mistral-
7B-v0.1 achieved better scores. However, Mistral-
7B-v0.1’s generated poems had higher perplexity
and included many out-of-vocabulary words, likely
due to its limited pretraining on Russian texts. De-
spite this, Mistral outperformed other models using
BPE and byte-level tokenization, coming close to
specialized character-level models. The FRED-
T5-1.7B-based model performed slightly worse
in terms of technical quality and rhyme but pro-
duced texts with fewer language errors, as shown
by its lower perplexity and fewer out-of-vocabulary
words.

Experiments with stGPT demonstrated that trans-
former models using syllable-level tokenization
achieved the highest technicality scores among all
models. For sonnets, stGPT even surpassed human-
written poems in terms of technicality. However,
this tokenization method has several limitations, as
discussed in Section D. Additionally, while these
models excel in technicality, they often produce
texts with grammatical and fluency issues. These
flaws do not affect technicality or rhyming metrics
but reduce the overall quality of the poetry. Due to
these limitations, we chose not to scale these mod-
els to a capacity comparable to CharLLaMa-1.3B,
and no full-scale side-by-side evaluations were per-
formed.

Human side-by-side evaluation results. We used
expert side-by-side evaluations to assess poem qual-
ity, applying the Bradley-Terry model (Hunter,
2003) from the choix library17. This model was
used to compare poems written by humans with

17https://github.com/lucasmaystre/choix
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Author Bradley-Terry Rate
Human 1.49
CharLLaMa-1.3B 0.23
CharMamba-1.3B -0.20

Table 5: Bradley-Terry ratings for the compared models.

those generated by the models, as shown in Table 5.
Based on the side-by-side evaluation results, two

key conclusions emerge: (1) automatic metrics
alone are insufficient for a comprehensive and ob-
jective assessment of generative poetry, and (2)
the significant gap between human-authored and
generated poems suggests the need for further ex-
perimentation.

7 Conclusion

To summarize, our work focuses on generating Rus-
sian syllabo-tonic poetry across various genres and
styles. We experimented with different approaches,
such as character-level tokenization, using the Char-
LLaMa and CharMamba architectures. We exten-
sively compared these character-level models with
baseline models using various tokenization meth-
ods, finetuning them across datasets with different
domain and rhythm structures. As part of our re-
search, we created a new poetry spell-checking
algorithm and accentuation system, which we have
made available as open-source. Additionally, we
released the top-performing pre-trained model for
the Russian poetry generation. Finally, we pro-
pose poetry evaluation metrics and share insights
on utilizing existing methods to assess the quality
of generated poetry models.
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Limitations

This study has several significant limitations, which
are discussed below.

Length of context. Although our generative LMs
achieve solid results and promote state-of-the-art
performance on various tasks, their context win-
dow size limits the model application on long-
context tasks. The window size for CharLLaMa-
1.3B and CharMamba-1.3B is 1024 tokens, and
for CharLLaMa-2.6B, it is 2048 tokens. Remem-
ber that char tokenization imposes stricter limits
on the number of words for processed sequences
compared to models with BPE tokenization. The
window context can include a much larger number
of tokens, resulting in fewer words in the same con-
text. However, poems are primarily short, and the
context is not critical for them.

Speed and optimization. Longer token sequences
in models with char-level tokenization lead to in-
creased overhead (kv-cache for CharLLaMa mod-
els) and time for autoregressive inference compared
to models with BPE tokenization. This is the trade-
off between the quality of poems and speed. The
research regarding optimization has been left for
future work.

Data biases. The generated poems are a result
of the data used in the training. However, it’s im-
portant to note that the study has limitations due
to biases present in the training data, especially
concerning Russian cultural aspects and copyright
constraints. Because the data is culturally biased
towards the Russian language, it cannot be directly
applied to other languages.

New language models. New pretrained language
models1819 and enhanced versions of the models20

discussed in this paper are released frequently. The
findings presented in Section 6 should not be gen-
eralized to these newer models, as modifications to
the model architecture or pretraining pipeline may
significantly impact their performance in generat-

18https://huggingface.co/yandex/
YandexGPT-5-Lite-8B-pretrain

19https://huggingface.co/t-tech/T-pro-it-1.0
20https://huggingface.co/mistralai/

Mistral-7B-Instruct-v0.3
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ing Russian-language poetry.

Ethical Consideration

Human creativity and possible misuse. Poetry is
a form of creative expression and is often protected
by copyright. AI-generated poetry should not in-
fringe upon the rights of original creators. In our
research, we only used licensed and open data for
training. We must make efforts to avoid creating
content that closely mimics or plagiarizes exist-
ing works. This helps maintain honesty and clar-
ity in distinguishing between human and machine-
generated art. We leave it to future work to address
this issue.

Biases and data quality. Poetry is deeply rooted
in cultural contexts. Understanding the cultural
significance of certain themes, symbols, and lan-
guage is crucial. The pretraining data for poetry
generation of the presented models includes large
segments from the internet domain and cultural
specifics of Russian literature and cultural biases,
consequently containing various stereotypes and
biases. Therefore, such models are not transfer-
able to other languages. We collected the datasets
used to train poetry-generating AI to be diverse and
representative of a wide range of poets and experi-
ences. This helps to ensure that the output reflects
a broad spectrum of human expressions. We under-
stand that AI systems can unintentionally produce
harmful content, such as violent, discriminatory, or
otherwise inappropriate language. Ensuring that
the poetry generated is free from such content is a
key ethical responsibility.

Energy Efficiency and Usage. We compute the
CO2 emissions from pretraining and finetuning as
Equation 1 (Strubell et al., 2019):

CO2 =
PUE ∗ kWh ∗ ICO2

1000
(1)

The power usage effectiveness (PUE) of our data
centers is 1.3. The resulting CO2 emission val-
ues are CharLLaMa-1.3B — 837 kg, CharLLaMa-
2.6B — 2008 kg, and CharMamba-1.3B — 732 kg,
respectively. Model compression techniques and
parameter-efficient finetuning methods can reduce
the computational costs associated with model in-
ference.

AI-assistants Help. We used Grammarly21 and

21https://app.grammarly.com/

DeepSeek22 to improve and proofread this paper,
correcting grammatical, spelling, and style errors
and paraphrasing sentences. As a result, some parts
of our publication may be flagged as AI-generated
or AI-edited.

We must consider ethical implications to ensure
the responsible use of AI and respect for human
creativity and culture. Developers and users of AI
poetry tools should maintain responsible practices,
honoring human creativity and the cultural signifi-
cance of poetry.
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each new line (or paragraph, or other recurring
feature in the text) spells out a word, message, or
the alphabet. For more information see (Dunphy
and Bratu, 2010, page 8).

Amphibrach is a metrical foot consisting of a
stressed syllable between two unstressed sylla-
bles (Greene et al., 2012, page 31).

Anapest is a metrical foot consisting of two un-
stressed syllables followed by one stressed sylla-
ble (Greene et al., 2012, page 37).

Chastushka is a humorous quatrain with a
simple rhyming scheme - see more details at
(Nikolyukin, 2001, page 598).

Clauzula is the final part of a verse or stanza*

starting from the last ictus* (Greene et al., 2012,
page 141).

Dactyl is a metrical foot consisting of one
stressed syllable followed by two unstressed sylla-
bles (Greene et al., 2012, page 179).

Dolnik is the type of poetic meter in Russian po-
etry, the peculiarity of which is a variable number
of unstressed syllables between ictuses*. More in-
formation is available at (Nikolyukin, 2001, page
235).

Ictus is a stressed syllable (Greene et al., 2012,
page 362).

Iamb is a metrical foot consisting of one un-
stressed syllable followed by one stressed sylla-
ble (Greene et al., 2012, page 360).

Limerick is a five-line poem with a rhyme
scheme* AABBA, imitating the corresponding
genre of English poetry (Lear, 2011).

Metrical foot is a regularly repeating pattern of
1 stressed and 1 to 2 unstressed syllables. There
are two variants of disyllabic meter, called iambic*

and trochee*, and three variants of trisyllabic meter,
called amphibrach*, dactyl*, and anapest*. The
main poetic meters that occur in training data are
presented in Table 10.

Pirozhki, poroshki, depressyashki, artishoki
are comic quatrains written without capital letters
and punctuation marks, often with deliberate devia-
tions from the rules of spelling. For each of these
forms, there are strict constraints on the number of
syllables, meter, and rhyme — see more details at
the link

Poetic meter refers to the recurring pattern of
stressed and unstressed syllables in lines of poetry.
A comprehensive discussion of poetic meter and
its nuances can be found in (Fussell, 1979).

Rhyme scheme describes which lines in a
stanza* rhyme with each other, that is, contain the
same or similarly sounding stressed endings of the
lines (Hollander, 2014). Rhyme schemes presented
in the finetune dataset (subsection 3.2) are listed in
Table 11.

Rubai is a classical Persian poetry form, typi-
cally a quatrain with AABA or AAAA rhyming -
see more details at (Greene et al., 2012, page 1227).

Stanza is a group of lines separated by blank
lines from other stanzas. See (Greene et al., 2012,
page 809) for more information.

Syllabo-tonic versification is based on 1) a fixed
number of syllables in lines and 2) a regular pattern
of stressed and unstressed syllables. In English-
language literature, the term “accentual-syllabic” is
more commonly used (Fussell, 1979, page 6), while
“syllabo-tonic” is more common in scientific litera-
ture devoted to Slavic languages and Russian ver-
sification in particular (Wachtel, 2004). Given the
specialization of this article on Russian-language
poetry, we decided to use the “syllabo-tonic” vari-
ant.

Sonnet is a fixed verse poetic form consisting
of 14 lines with constrained rhyming. For more
information see (Fuller, 2017).

Trochee is a metrical foot consisting of one
stressed syllable followed by one unstressed sylla-
ble (Greene et al., 2012, page 870).

B Fixing the spelling, punctuation, and
tokenization issues

A significant portion of the training data was
scraped from online sources, in particular from
amateur poetry sites. The significant number of
spelling and punctuation errors in these texts forced
us to take special measures to clean the training
data. A detailed description of the cleaning proce-
dure is presented below.

We analyzed the collected poems described in
section 3 for the most frequent misspellings and
typos. As a result, many typos and common errors,
which occurred up to 10 times in an 8 GB corpus,
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were corrected to their appropriate forms. Table 6
presents the 10 most frequent corrections. Based
on this analysis, we created a “white list”, which
served as the reference dictionary for identifying
out-of-vocabulary words in the poetry corpus. We
use dictionary-based replacements and heuristic
rules for common spelling errors. When the algo-
rithm detects a mistake, it checks if the correction
exists in the reference dictionary and fixes it. We
have developed about 30 rules based on regular
expressions for this purpose. The typical problem
cases are described below:

• Replace visually similar Latin characters with
Cyrillic ones when they appear together in a
word.

• Replace the combination of the letter "i" and
the Unicode symbol U+0306 with the stan-
dalone Russian letter "j".

• To differentiate between Russian and English
symbols, check for surrounding Cyrillic char-
acters when dealing with single-letter words
containing symbols from the character set [K,
O, C, A, B, o, a, c, k, y].

• Replace various Unicode space characters23

with the standard space character (U+0020).

• Handle cases where standard ASCII punctu-
ation marks are replaced with full-width or
half-width Unicode counterparts to convert
them back to their ASCII prototypes.

The code implementing the above rules, along with
all dictionary files, is publicly available as open
source.24

One common issue in internet-sourced poetry
texts is the presence of unnecessary commas. In
generated poems, extra commas, especially be-
tween the subject and predicate, greatly reduce
the quality of the text. To address this, we have
implemented an algorithm that uses the perplexity
of ruGPT3-medium25 as an indicator of text like-
lihood. The algorithm functions by sequentially
removing all commas from a sentence, except for
the last one, and then comparing the perplexity of
the sentence before and after each removal. If the

23In the texts collected on the Internet, nearly all the whites-
pace characters listed in the table https://www.unicode.
org/Public/UCD/latest/ucd/PropList.txt are found

24https://github.com/Koziev/Spellchecker
25ai-forever/ruGPT3-medium_based_on_gpt2

Defective text Corrected text Share, %
vraz v raz 2.3
kak-budto kak budto 2.0
gde to gde-to 2.0
Kak-budto Kak budto 1.6
kogda to kogda-to 1.5

Table 6: The top frequent replacements in the corpus.
The tokens are transliterated from Russian.

perplexity significantly decreases after a comma
is removed, that comma is deemed unnecessary
and is eliminated. This method has the advantage
of not requiring training on a specialized model.
However, one drawback is that perplexity can be
unreliable for short texts, as language models tend
to consider shorter texts as less likely overall.

The above procedure affected about 10% of all
collected data.

C Examples

Figure 1 presents a sample poem generated by our
top model and its translation to English.

D Tokenizer Discussion

The use of language models with character-level
tokenization is described in a number of papers
(Belouadi and Eger, 2022; Yu et al., 2024). Com-
pared to mainstream BPE tokenization and similar
approaches, representing text at the character level
makes it easier for the language model to handle
poetry. For syllabo-tonic poetry, the key limita-
tion lies in a strictly defined order of alternation
of stressed and unstressed vowels (coinciding with
syllables for the Russian language), as well as a
certain number of syllables in each line. In BPE to-
kenization, different tokens contain different num-
ber of vowels. Therefore, the LM needs a more
pretraining data to collect information about the
composition of the tokens. In addition, taking into
account vowel stress in the BPE scheme requires
additional effort.

A compromise option can be considered a
syllable-level representation of the text (Zugarini
et al., 2019; Vechtomova et al., 2020). The disad-
vantage of this text representation is the difficulty
of tokenizing for prose in some cases, for example,
in multilingual contexts, when the syllabication
rules differ for different languages.

Additionally, syllable-level tokenization, similar
to BPE, performs poorly in some scenarios where
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Figure 1: The example of the generated poem. The English version is translated from the Russian.

Model learning_rate lr_scheduler_type floating type optimizer
CharLLaMa-1.3B 2e-5 constant fp16 adamw_torch
CharMamba-1.3B 2e-5 linear fp16 adamw_torch
CharLLaMa-2.6B 2e-5 constant bf16 adamw_torch
stGPT small 5e-5 constant bf16 adamw_torch
stGPT medium 5e-5 constant bf16 adamw_torch
Mistral-7B-v0.1 2e-5 constant bf16 adamw_torch
FRED-T5-1.7B 1e-4 constant bf16 adafactor
ByT5-small 1e-4 constant bf16 adafactor

Table 7: The hyperparameters of the models are in the finetuning stage for the experiments. The parameters were
selected specially for each model.

the LM is required to understand the character-level
composition of tokens, such as acrostics*.

Unfortunately, character-level tokenization has
some disadvantages. They arise from the fact that
token sequences are lengthened in comparison with
BPE and syllable-level tokenization. Because of
this, the time required for model pretraining and
finetuning increases substantially. Memory con-
sumption for the autoregressive text generation
scheme and the time of this generation also in-
creases.

Table 8 compares tokenization approaches for
LMs described in Section 5.2.

E Pretraining Data Sources

The pretraining data is drawn from two sources: po-
etry and prose, with the proportion of each detailed
in Table 9.

For prose, the following datasets were used as
sources for the pretraining data:

• “YandexQ”26 is a dataset of questions and an-
swers scraped from Yandex.Q in the Internet
domain. There are 836810 answered ques-
tions out of the total of 1297670.

• “Mail Question Answering” 27 is a set of
26https://huggingface.co/datasets/its5Q/

yandex-q
27https://huggingface.co/datasets/Den4ikAI/

mailruQA-big

question-answering pairs from real users.

• Instruction set of conversational agents 28 is a
Russian instruction set of conversational do-
main.

• ruWikiHow29 is a public dataset based on the
parsed WikiHow source.

• Wikidepia30 contains cleaned articles from
Wikipedia dumps31, one subset per language,
each having a single train split. The Russian
section was utilized for pretraining.

• Habr32 is a dataset of posts and comments
from habr.com33, a Russian collaborative blog
in the technical domain.

F Prompt Design

For every poem in the finetuning dataset (subsec-
tion 3.2), we create a synthetic prompt that varies
in parameters (emotion, length, poetic meter*, etc.).
The Russian example of the prompt for the creation

28https://huggingface.co/datasets/Den4ikAI/
russian_instructions_2

29Den4ikAI/ruWikiHow_instructions
30https://huggingface.co/datasets/wikimedia/

wikipedia
31https://dumps.wikimedia.org/
32https://huggingface.co/datasets/IlyaGusev/

habr
33https://habr.com/
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Model Tokenizer Characters per token
w/o accentuation

Characters per token
with accentuation

ByT5 ByT5Tokenizer 0.56 0.55
CharLLaMa CharacterTokenizer 1.00 1.00
Mistral-7B-v0.1 LlamaTokenizerFast 1.98 1.74
Llama-2 LlamaTokenizerFast 2.10 1.79
ruGPT3 GPT2TokenizerFast 3.20 2.12
FRED-T5-1.7B GPT2Tokenizer 3.20 2.12
stGPT StressedGptTokenizer n/a 2.30

Table 8: Comparative results of tokenizers from the experiments described in Section 5.2. Characters per token is
the default metric for tokenizer vocabularies of different sizes, obtained using the BPE and Unigram algorithms.
N/A indicates cases where accentuation is required by design.

Type Number of characters Share, %
Prose 39,364,771,098 60.76
Poetry 25,427,281,242 39.24

Table 9: Statistics and proportion of prose and poetry
texts in the pretraining dataset (subsection 3.1).

Meters Share, %
iambic 57.88
trochee 34.28
amphibrachium 3.91
dactyl 2.24
anapaest 1.57
others 0.12

Table 10: The main poetic meters* and their proportions
in the finetuning dataset (subsection 3.2).

Rhyming scheme Share, %
-A-A 34.94
ABAB 34.68
---- 16.09
AABB 11.26
ABBA 1.99
A-A- 0.55
AABA 0.4
others 0.9

Table 11: The most frequent rhyming schemes in the
finetuning dataset.

of the synthetic prompt for the specific poem is
presented in Figure 2.
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Figure 2: An example of the prompt and generated text. The yellow text represents a poem, while the red text
denotes the TEMPLATE. The template is modified by the LLM based on its parameters and the analysis of the input
poem, generating a instructive prompt for new poem creation.
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