
Proceedings of LaTeCH-CLfL 2025, pages 272–277
May 4, 2025 ©2025 Association for Computational Linguistics

Identifying Small Talk in Natural Conversations

Steffen Frenzel1 and Annette Hautli-Janisz2

1University of Potsdam, 2University of Passau
steffen.frenzel@uni-potsdam.de, annette.hautli-janisz@uni-passau.de

Abstract

Small talk is part and parcel of human inter-
action and is rather employed to communi-
cate values and opinions than pure information.
Despite small talk being an omnipresent phe-
nomenon in spoken language, it is difficult to
identify: Small talk is situated, i.e., for inter-
preting a string of words or discourse units,
outside references such as the context of the in-
terlocutors and their previous experiences have
to be interpreted. In this paper, we present a
dataset of natural conversation annotated with a
theoretically well-motivated distillation of what
constitutes small talk. This dataset comprises
of verbatim transcribed public service encoun-
ters in German authorities and are the basis for
empirical work in administrative policy on how
the satisfaction of the citizen manifests itself
in the communication with the authorities. We
show that statistical models achieve compara-
ble results to those of state-of-the-art LLMs.

1 Introduction

Small talk is an omnipresent phenomenon when
people interact with each other. There is a variety
of reasons why people engage in small talk, for
instance to exhibit politeness, to build a connec-
tion with strangers or to start a conversation. From
a linguistic point of view, small talk is a highly
interesting type of conversation, for it is not pri-
marily focused on the exchange of information –
one could even argue that the topic of the conver-
sation does not really matter – but rather about the
exchange of values and opinions. From a computa-
tional point of view, small talk is a challenging phe-
nomenon because it is highly context dependent,
i.e., the individual background of the interlocutors
together with the situational context determines the
scope and content of the small talk. The genre they
mostly appear in, namely conversations, is under-
represented in terms of resources overall, but in
terms of small talk in particular.

But small talk is crucial for socio-linguistic anal-
yses of conversations. The source of the data in
this paper are public service encounters in Germany
(Espinoza et al., 2024), i.e., direct conversations
between citizens and representations of the state
where citizens ask for support or benefits from the
representatives. Previous work in administrative
policy shows that even if the decision of the state
is not in favor of the citizen, emphatic communi-
cation yields satisfaction scores that parallel those
of favorable decisions (Guy et al., 2014). There-
fore, being able to measure and identify relation-
building blocks of conversation paves the way for
meaningful sociolinguistic analyses of conversa-
tions at scale. The challenges are two-fold: From
a theoretical point of view, concrete definitions for
the concept of small talk are lacking, making the
process of generating annotation guidelines tricky.
Moreover, small talk is mostly performed in con-
versations – those are time-consuming to record
and to transcribe, making sufficient training data
expensive.

The contributions of this paper are three-fold:
First, we put forward theoretically-motivated anno-
tation guidelines that can be used to annotate small
talk in transcribed conversations. We also present
a new, human-annotated small talk dataset con-
taining more than 2,600 utterances from German
public service encounters. Lastly, we show that
statistical models such as Logistic Regression or
Support Vector Machines achieve results compara-
ble to state-of-the-art LLMs after thorough training.
Our error analysis demonstrates the difficulties of
classifying small talk automatically.

2 Background

2.1 Theoretical conceptions of small talk
There is an abundance of literature on naming and
defining the concept of small talk. It is investi-
gated with a focus on its social functions (Fried-
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laender, 1922; Malinowski, 1949; Ventola, 1979;
Coupland et al., 1992; Eggins and Slade, 2004;
Senft, 2009; Chen et al., 2022), its impact on con-
versational structures (Laver, 1975; Edmondson
and House, 1981; Schneider, 1988) and with re-
spect to cultural differences (Isbister et al., 2000;
Endrass et al., 2011). Regarding the topics cov-
ered in small talk, Schneider (1988) develops a
taxonomy of topics distinguishing between topics
concerning the immediate situation, the external
situation and the communication situation. Isbis-
ter et al. (2000) shows that certain conversational
topics are perceived as safe or unsafe depending
on the cultural background of the subjects. In a
follow-up study, Endrass et al. (2011) investigate
how the prototypical distribution of conversation
topics turns out for German and Japanese.

An example of what we consider small talk is
shown in Figure 1. Prototypical topics according to
Schneider’s (1988) taxonomy appear (‘family’ and
‘holidays’), but they are dependent on situational
context (here, pre-christmas). These topics appear
frequently in our dataset since they are connected to
the main purpose of the conversation (applying for
family benefits, for example). Other topics from
Schneider’s taxonomy (e.g., ‘music’ or ‘sports’)
appear rarely or not at all. For the purpose of the
annotation guidelines, we apply the theoretical con-
cept of small talk topics to the conversational and
cultural context of our dataset.

1. Citizen: Yes, in four weeks!

2. Official: Crazy, completely crazy!

3. Citizen: [laughs] And the children are
already going crazy at home. I mean it’s
not normal anymore!

4. Official: Already? Because of Christmas?

5. Citizen: Yes, well I have decorated the
house already, you know? So yes, they are
really exited.

6. Official: Ah, nice!

Figure 1: Example of small talk (translated, German
original transcript id: 202111240815el4d0y4nMAYMS)

2.2 Small talk in NLP
With the rise of conversational AI systems there has
been a growing interest in modeling and generating
small talk (also under the labels ‘chitchat’, ‘infor-
mal conversation’, ‘off-topic’ talk etc.) (Sun et al.,
2021; Choudhary and Kawahara, 2022; Stricker
and Paroubek, 2024b,a, inter alia). Different at-

tempts were made to equip conversational agents
with small talk functions (Bickmore and Cassell,
2001; Cavazza et al., 2010; Mattar and Wachsmuth,
2012; Zhao et al., 2022) since several studies in-
dicate they can help establishing a personal bond
with the user (Reeves and Nass, 1996; Morkes et al.,
1998; Chao et al., 2021). Chiu et al. (2022) and Liu
et al. (2023) focus on generating transitions from
small talk to task-oriented dialogue.

For English, a few attempts to classify small
talk have been made. Stewart et al. (2006) detect
small talk in conversational telephone speech us-
ing supervised models, based on their taxonomy
on simple lexical and syntactic features. Arguello
and Rosé (2006) employ lexical and syntactic fea-
tures into their classification model. Joty et al.
(2013) develop an unsupervised topic segmenta-
tion model that detects small talk as ‘off-topic’ seg-
ments. Konigari et al. (2021) test for the first time
a transformer-based model for off-topic detection
in open-domain conversations. Lai et al. (2022)
introduce a human-annotated dataset for chit-chat
detection in English livestreaming videos.

For German, similar work is lacking. This car-
ries over to studies using the latest generation of
LLMs, which have not been tested on such a task
and also not against traditional text classification
models. This is the starting point of this paper: We
introduce a novel dataset for German small talk1

and show that statistical models are on a par with
the latest generation of LLMs for predicting small
talk in natural conversation.

3 Annotation study

3.1 Dataset
Our experiments are conducted on the PSE v1.0
dataset (Espinoza et al., 2024), a collection of ver-
batim transcribed Public Service Encounters in vari-
ous German authorities that were recorded between
2021 and 2023. The dataset consists of 106 con-
versations with a total of more than 31,000 speaker
turns and 433,780 tokens. PSEs are usually ini-
tiated by a citizen’s application for social bene-
fits. During those meetings the public official has
to determine eligibility and extent of the support,
which means that the conversations cover highly
personal topics. The representatives are therefore
interested in creating an open conversational atmo-

1The dataset and the full annotation guidelines are
available on Github: https://github.com/steffrenzel/
naacl_2025_smalltalk_detection
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sphere, with small talk being one of the linguistic
mechanisms to achieve this goal.

3.2 Manual annotation of small talk
For the scope of this paper, small talk is assumed to
be polite conversation about light topics (Schneider,
1988). We refine the concept by having its purpose
be the maintenance of social relations which are
used to create a basis for the main discussion of a
conversation. This kind of conversation is techni-
cally not restricted to certain topics, but it is usu-
ally about things that the speakers can easily agree
on. Situational context and cultural background
of the speakers can have an influence on the form
of small talk, both on the length and the primary
goal, as well as the choice of topics (Isbister et al.,
2000; Mattar and Wachsmuth, 2012). We do not
assume a constraint on the timing of small talk in
conversations, because interlocutors can structure
a conversation by continually inserting small talk
sections (Schneider, 1988; Chen et al., 2022).

Based on these aspects we iteratively derive an-
notation guidelines by conducting manual multiple-
person annotation rounds. Initial attempts with
a 6-step Likert scale yield only slight agreement
across annotators on individual speaker moves (on
average 0.24 Cohen’s Kappa). For the final dataset,
we use complete conversations and subsequently
annotate each speaker move with a binary value
(‘no small talk’, ‘small talk’), enabling the use of
context in the prediction (more on this in Section
4). With this adjustment, agreement between the
two annotators of the main study is 0.534 Cohen’s
Kappa for 700 speaker moves, which corresponds
to moderate agreement (Viera and Garrett, 2005).
Overall, Both annotators are native speakers of Ger-
man and students in computational linguistics.

4 Predicting small talk

4.1 Training
We use four different models to identify small talk,
two statistical models (Logistic Regression and
SVM) and two language models (GBERT, GPT-4)
to see how more expensive models fare in compari-
son with smaller models.

The baseline is Logistic Regression, with
tf-idf vectorization for training and test set
(German stopwords are removed by the vec-
torizer) and with sentence embeddings from
paraphrase-multilingual-MiniLM-L12-v2
(Reimers and Gurevych, 2019). For SVM,

we again use tf-idf versus sentence embed-
dings and conduct 5-fold cross-validation with
StandardScaler from scikit-learn. Fine-
tuning is performed using GridSearchCV. Again,
both tf-idf vectors and sentence embeddings are
used for vectorization.

The first language model is GBERT, a BERT
model specifically trained on German data (Chan
et al., 2020), with the optimal settings determined
by GridSearchCV (see Table 1). We also use GPT-
4.o (OpenAI and et al., 2024) with zero-shot, few-
shot and task framing prompting.

4.2 Results
The classification models show moderate perfor-
mances. Interestingly, the final results of the differ-
ent models are fairly close together, despite differ-
ing model complexity fine-tuning options. The full
results are listed in Table 1. The weighted average
F1-score is used here as the main evaluation metric.

LR needs thorough fine-tuning to achieve good
results. Since we are dealing with an imbalanced
dataset (the negative class is much more frequent
than the positive class), the model tends to over-fit
quickly and develops a bias to the majority class.
To mitigate this, instead of the classes, the proba-
bilities for each class are extracted and a manual
decision boundary is applied to balance the output.
This works fairly well and the final runs lead to the
best overall results in the model comparison.

SVM performs slightly different in comparison
to LR. In both cases, embeddings work signifi-
cantly better than tf-idf vectors, which is to be ex-
pected. Despite the tf-idf vectors being less mean-
ingful, SVM can still get reasonable results from
them. In combination with sentence embeddings,
the models performance is only slightly worse than
the best run of LR.

The GBERT model leads to the worst overall
performance. Training epochs and batch-size have
to be kept small in order to mitigate over-fitting.
The relatively small size of the training dataset in
combination with the class imbalance again led
to a biased classification. Several attempts were
made to mitigate this effect, using class weights as
well as minority class oversampling using SMOTE
(Blagus and Lusa, 2013). However, these attempts
did not lead to better performance.

Finally, we also test GPT-4.o using different
prompting strategies. For the zero-shot runs, we
just provide instructions but do not give any ex-
amples from our dataset, resulting in an F1-score
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Model Vectorization Hyperparameters Acc Prec Rec F1 Support (0 / 1)

LR
tf-idf penalty=L2,

solver=liblinear,
boundary=0.16

0.51 0.75 0.51 0.56 514 (417/97)

distilbert penalty=L2,
solver=liblinear,
boundary=0.2

0.71 0.75 0.71 0.73 514 (417/97)

SVM
tf-idf C=2.0, kernel=’poly’,

gamma=’auto’,
weight=’balanced’

0.60 0.62 0.57 0.59 514 (417/97)

distilbert C=.0, kernel=’poly’,
gamma=’auto’,
weight=’balanced’

0.70 0.69 0.67 0.68 514 (417/97)

GBERT - epochs=3,
batch-size=16,
warm-up-steps=500

0.61 0.66 0.53 0.59 514 (417/97)

GPT-4.o - Few-Shot, temp=0.3 0.65 0.72 0.65 0.68 514 (417/97)

Table 1: Best results across models and configurations, weighted average is used to account for class imbalance.

of 0.62. In the few-shot approach we add a few
examples for both classes to the prompt. This ap-
proach works best, with an F1-score of 0.68. In the
chain-of-thought run, we asks the model to explain
its decisions, which does not work well since the
model constantly predicts the negative class. For
all these runs, the temperature is set to 0.3 – higher
temperatures lead to less reproducible results and
do not improve performance.

4.3 Error analysis
Both the manual annotation and the automatic clas-
sification show the difficulties in identifying small
talk in our dataset. A qualitative analysis of the
results shows major differences in how the classes
are distributed over the course of a conversation.

Since the human annotators were given tran-
scripts of complete conversations and their task
was to classify on utterance level, they were aware
of the conversational context. In both manual an-
notations, it is rare for a single utterance to be
classified as small talk, while the surrounding ut-
terances are not small talk. Instead, usually longer
sections of a conversation are continuously iden-
tified as small talk - these occur particularly fre-
quently at the beginning and end of a conversation.
The biggest discrepancies between the two human
annotators arise when identifying the transitions be-
tween small talk and other parts of the conversation.
This shows once again that it is difficult to clearly
distinguish small talk from other parts of conver-
sation - there is often a ‘transition zone’ that can

be interpreted differently despite comprehensive
annotation guidelines.

Classification models that learn the concept of
small talk only indirectly from the training data,
on the other hand, often classify stand-alone utter-
ances positively, while the surrounding utterances
are classified negatively. Presumably, lexical and
semantic criteria are more important here than the
position in the conversation and the contextual ut-
terances.

5 Conclusion

The error analysis has shown which problems re-
main in the classification of small talk. Complex
classification models such as neural networks and
transformer-based models are less suitable for this
task until more training data is available. LLMs
achieve in general good results in classifying the
data, but prompting is the only way to control the
classification. Simple classification models are
labor-intensive as they have to be precisely fine-
tuned. Ultimately, however, they provide the most
transparent classifications and - at least in our study
- achieved results comparable to those of LLMs.

Limitations

Operationalizing the concept of small talk for this
task remains the biggest challenge. We learned in
the process of (re-)designing the manual annota-
tion that conversational context is key information
for the human annotators. However, this kind of
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information needs to better implemented into the
automatic classification, e.g. by engineering addi-
tional features.
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