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Abstract

Developing specialised language models for
low-resource domains typically involves a
trade-off between two specialisation strategies:
adapting a general-purpose model through con-
tinued pretraining or retraining a model from
scratch. While adapting preserves the model’s
linguistic knowledge, retraining benefits from
the flexibility of an in-domain tokeniser – a po-
tentially significant advantage when handling
rare languages. This study investigates the
impact of tokenisation, specialisation strategy,
and pretraining data availability using classical
scholarship – a multilingual, code-switching
and highly domain-specific field – as a case
study. Through extensive experiments, we as-
sess whether domain-specific tokenisation im-
proves model performance, whether character-
based models provide a viable alternative to
subword-based models, and which specialisa-
tion strategy is optimal given the constraints
of limited pretraining data. Contrary to prior
findings, our results show that in-domain to-
kenisation does not necessarily enhance perfor-
mance. Most notably, adaptation consistently
outperforms retraining, even with limited data,
confirming its efficiency as the preferred strat-
egy for resource-constrained domains. These
insights provide valuable guidelines for devel-
oping specialised models in fields with limited
textual resources.

1 Introduction

Transformer-based language models have achieved
remarkable success through transfer learning,
where models pretrained on large general-purpose
corpora are fine-tuned for downstream tasks.
Though relatively straightforward, this approach
proves more challenging for tasks involving highly
domain-specific fields or rare languages. In such
settings, it might be beneficial – if not essential –
to develop specialised language models (e.g. Lee
et al., 2019; Chalkidis et al., 2020; Schweter et al.,

2022; Yamshchikov et al., 2022). However, there is
no consensus on the optimal specialisation strategy
– whether to pretrain a model from scratch or to
adapt an existing one.

Adapting involves further pretraining a generic
model on domain-specific data. The approach
has been shown to increase downstream perfor-
mance (e.g. Peters et al., 2019; Gururangan et al.,
2020), while preserving the broad linguistic knowl-
edge acquired during the initial pretraining phase.
However, this strategy does not grant infinite flex-
ibility. A key obstacle to specialisation often lies
in the model’s predefined vocabulary. Commonly
used subword tokenisation methods (e.g. Wu et al.,
2016; Kudo and Richardson, 2018) tie the model to
a fixed vocabulary, which can be suboptimal or ut-
terly inappropriate for certain languages. Thus, sev-
eral tokenisation-free models have been developed
to address this issue. CANINE (Clark et al., 2022)
and CHARFORMER (Tay et al., 2022) use a broad
set of Unicode points as a vocabulary. However,
while they circumvent tokenisation issues, these
models often perform below their subword-based
counterparts and significantly limit the maximum
input sequence length.

While domain-specific tokenisation may im-
prove model performance, modifying the model’s
vocabulary and embeddings requires retraining
from scratch. This creates a critical trade-off be-
tween optimising tokenisation at the cost of pre-
trained knowledge or leveraging existing models
despite suboptimal tokenisation. As the decision
is constrained by the availability of pretraining
data, the dilemma is particularly crucial in low-
resource settings. Studies reporting superior results
from retraining domain-specific models (e.g. Lee
et al., 2019; Schweter et al., 2022) often have ac-
cess to extensive training resources. While some
studies claim better results with smaller pretrain-
ing datasets (Riemenschneider and Frank, 2023;
Manjavacas Arevalo and Fonteyn, 2021), many
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advocate for adapting over retraining (Konle and
Jannidis, 2020; Gururangan et al., 2020), but few
systematically control for tokenisation, leaving its
precise role in model performance an open ques-
tion.

This study examines these specialisation strate-
gies in the context of classical scholarship, a field
characterised by intense multilingualism, frequent
code-switching, and highly domain-specific vocab-
ulary. These factors, along with the extensive use
of rare characters and diacritics, pose significant to-
kenisation challenges, particularly for texts with a
high proportion of Latin and ancient Greek, which
are often absent from generic multilingual models,
making the field an ideal case study for tokenisa-
tion and specialisation strategies. While character-
level models may offer greater adaptability, sub-
word tokenisers often struggle with historical texts
due to transcription errors, spelling variations, and
morphological inconsistencies. Retraining also
remains impractical given the scarcity of clean
textual data. Although this study assembles the
largest classics-related corpus to date, it remains
constrained to 1.4B tokens for six languages, less
than half the 3.3B tokens used by the first mono-
lingual BERT (Devlin et al., 2019). This study
assesses the impact of tokenisation, specialisation
strategy, and the availability of domain-specific
data. It asks three research questions: What are the
benefits of in-domain tokenisation? Do character-
based models provide a viable and more adaptable
alternative to subword models? Finally, which spe-
cialisation strategy is most effective given the con-
straints of available data?

2 Related work

Domain- and language-specific tokenisation
Rust et al. (2021) investigated the impact of tokeni-
sation on the performance of various monolingual
and multilingual language models. The authors
found a beneficial impact in utilising dedicated
monolingual tokenisers. More specifically, their
research reveals that languages well-represented
within the multilingual model’s (mBERT) train-
ing data (e.g. English or Japanese) suffer min-
imal performance loss when compared to their
monolingual counterparts. However, for languages
less represented in the multilingual training data
such as Finnish, the multilingual model’s tokeniser
performed worse than its monolingual counter-
part. Consequently, mBERT performed signifi-

Table 1: Overview of domain-specific language models.
Tok. indicates whether the tokeniser is Generic or In-
Domain. Str. indicates the (best) specialisation strategy
used: Re-Training or Adapting. Gen. and Spec. refer to
the size of the generic and domain-specific pretraining
data (in billion words).

Paper Lang. Tok. Dom. Gen. Spec. Str.

Devlin (2019) Eng G Gen. 3.3 - -
Liu (2019) Eng G Gen. 33 - -
Conneau (2020) Multi G Gen. 250 - -
Beltagy (2019) Eng ID Science 3.3 3.17 RT
Lee (2019) Eng G Medical 3.3 18 AD
Chalkidis (2020) Eng G Law 3.3 2.5 AD
Manjavacas (2021) Eng ID History - 3.9 RT
Schweter (2022) Multi ID History - 30 RT
Gabay (2022) Fra ID History - 0.19 RT
Hosseini (2021) Eng G History 3.3 5.4 AD
Brandsen (2021) Dut G Archeo. 2.4 0.66 AD
Bamman (2020) Lat ID Anc. Lg. - 0.64 RT
Singh (2021) Gre ID Anc. Lg. - <0.1 RT
Yamshchikov (2022) Gre G Anc. Lg. 3.0 0.01 AD
Riemenschneider (2023) Multi ID. Anc. Lg. - 0.57 RT

cantly worse than the ad-hoc pretrained Finnish
BERT, with an average drop of 3.8 points in F1
and accuracy across multiple downstream tasks.
Detailing these analyses for large language mod-
els, Ali et al. (2024) show that the size and speci-
ficity of the vocabulary as well as the tokenisa-
tion method could account for differences of 5% to
15% in a wide variety of downstream tasks. Their
study further demonstrates that while multilingual
tokenisers are more efficient with a larger vocabu-
lary (82,000 to 100,000), English monolingual to-
kenisers find an optimal range between 33,000 and
45,000 tokens. Table 1 provides a general compari-
son between models, pretraining and adapting data
as well as tokenisation and specialisation strategies.

Byte- and character-level tokenisation In an
exploratory study, Choe et al. (2019) showed that
byte-level language models could match the per-
plexity of word-level models when given the same
parameter budget. Building upon their research,
Clark et al. (2022) released CANINE, which shows
gains over mBERT (Devlin et al., 2019) by work-
ing with characters instead of subword tokens.
While different character-level tokenisation strate-
gies have been proposed by competing models such
as CHARFORMER (Tay et al., 2022) and Charac-
terBERT (Boukkouri et al., 2020), ByT5 (Xue et al.,
2022) is the first to show that byte-level tokenisa-
tion can outperform word-level tokenisation on a
wide range of tasks. The authors argue that byte-
level tokenisation is more efficient than character-
level tokenisation, given that it allows for a smaller
vocabulary size and a more efficient use of the
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model’s parameters. In their experiments, ByT5
outperformed T5 (Raffel et al., 2020) on a wide
range of tasks, including translation, summarisa-
tion, and question answering. Furthermore, the
authors show that ByT5 is more robust to out-of-
domain data than T5, suggesting that byte-level
tokenisation can improve the generalisation capa-
bilities of language models.

Domain-Specific Language Modelling Domain-
specific language models have been developed for
law (Chalkidis et al., 2020), biomedicine (Lee
et al., 2019), science (Beltagy et al., 2019),
history (Schweter et al., 2022), and classical
philology (Riemenschneider and Frank, 2023).
BioBERT (Lee et al., 2019), trained on 18B to-
kens of biomedical texts, retained BERT’s vocab-
ulary and weights, while SciBERT (Beltagy et al.,
2019) explored both an adapted and a fully re-
trained model, demonstrating a slight superiority
of in-domain tokenisation. In the legal domain,
Chalkidis et al. (2020) compared retraining and
adapting strategies for LegalBERT. However, the
authors only assessed the performance of their
adapted model on downstream legal tasks, allowing
no comparison with the retrained model. Manjava-
cas Arevalo and Fonteyn (2021) compared the per-
formance of a generic BERT, a historical-adapted
BERT (Hosseini et al., 2021) and MacBERTh, a
model pretrained on a corpus of 3.9B tokens com-
posed of historical English exclusively. Despite
sharing the same architecture, MacBERTh outper-
formed the two other models across a range of his-
torical NLP tasks. This aligns with broader findings
indicating that domain-specific models generally
surpass generic ones within their fields (Schweter
et al., 2022; Gabay et al., 2022; Konle and Jannidis,
2020; Manjavacas and Fonteyn, 2022; Gururangan
et al., 2020).

Modelling classical scholarship and ancient
languages In the field of classical studies, the
development of domain-specific language mod-
els is made particularly crucial by the under-
representation – if not the complete absence – of
ancient languages in generic pretraining corpora.
This absence is especially problematic in the case
of ancient Greek, which exhibits a complex mor-
phology, a rich inflectional system, and profuse
usage of diacritics which radically distinguishes it
from modern, simplified Greek. Recent years have
therefore seen several efforts to develop language
models tailored to ancient languages. Bamman

and Burns (2020) released a LatinBERT which out-
performed the state of the art. Most interestingly,
these results are obtained with a relatively small
pretraining corpus of 640M tokens gathered from
diverse sources, showing that a dataset roughly
one-fourth the size of BERT’s could be leveraged
to train a model achieving state-of-the-art perfor-
mance. For ancient Greek, two notable studies
stand out. Yamshchikov et al. (2022) adapt a mod-
ern Greek BERT to ancient Greek, while Singh
et al. (2021) leverage online available corpora to
train an ancient Greek model from scratch. Both
studies show that language-specific models outper-
form generic monolingual and multilingual models
on ancient Greek NLP tasks. Finally, in a more
recent study, Riemenschneider and Frank (2023)
released a collection of BERT- and T5-based an-
cient Greek and trilingual (Latin, Greek and En-
glish) models geared towards philology. Trained
on slightly more data than the previous studies, the
authors demonstrate that their models outperform
the former models by a considerable margin across
a range of philology-related tasks.

3 Pretraining data

In order to amass sufficient in-domain pretrain-
ing data to conduct our experiments, numerous
classics-related corpora are gathered in a new Clas-
sical Scholarship Corpus (CSC). The final Clas-
sical Scholarship Corpus contains 1.4B tokens
of domain-specific clean texts written in ancient
Greek, Latin, English, French, German, and Ital-
ian. At the time of writing, our CSC is likely the
largest corpus of clean texts gathered in the field
so far. Texts are sourced through agreements with
major publishers and providers or via web scraping.
Hence, some corpora contain copyright-protected
material. In total, 30 corpora are marshalled includ-
ing notably Brill-KIEM1, Internet Archive2, the
Corpus Thomisticum3, Perseus and First1KGreek4,
and JSTOR5. The many challenges and peculiar-
ities of classics-related data make data-cleaning
a critical pre-processing step. This step notably
involves the removal of documents with a high
rate of optical character recognition errors. This
is achieved by filtering out texts containing a low
proportion (<65%) of alphanumeric characters or

1https://github.com/kiem-group/pdfParser
2https://web.archive.org/
3https://www.corpusthomisticum.org/
4https://www.opengreekandlatin.org/
5https://www.jstor.org/
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a high proportion (>30%) of words not found in
standard dictionaries. Corpora are also cleaned
from recurring text spans such as headers, footers
or webpage trademarks.

4 Methods

4.1 Evaluation methods
In line with Ali et al. (2024) and Rust et al. (2021),
tokenisation is evaluated both intrinsically and ex-
trinsically. Intrinsic evaluation is conducted using
fertility, a widely adopted metric defined as the
average number of tokens required to represent a
word and measured on a 32M-tokens left-out set of
the CSC. Extrinsic evaluation is established by the
models’ performance on downstream tasks.

These include four classics-related token classifi-
cation tasks, all evaluated using macro-average F1
score, precision and recall. The first task involves
Latin part-of-speech tagging with EvaLatin (Sprug-
noli et al., 2020), a dataset comprising about
300,000 tokens. The second involves bibliograph-
ical entity recognition with EpiBau6, a dataset of
1.1M English tokens annotated with ca. 37k entity
mentions. Third comes multilingual named entity
recognition with AjMC-NE-Corpus (Romanello
and Najem-Meyer, 2024), a dataset of 111k to-
kens annotated with 7.3k named entities in English,
German and French (AjNER(de|en|fr)). Finally, text
anchors recognition is evaluated with the AjMC-
LL-Corpus7, a dataset of 145k tokens annotated
with 9.1k entity mentions in English, German and
French (AjLR). Text anchors (lemmata) are specific
to classical commentaries, and serve the purpose of
linking commentary glosses to their corresponding
text.

4.2 Base models
Two multilingual transformer encoders are re-
trained, adapted, and fine-tuned in our experiments:
XLM-RoBERTa-base (Conneau et al., 2020), a
subword-based, multilingual transformer encoder
featuring a 250,000 SentencePiece tokeniser (Kudo
and Richardson, 2018) and trained on 100 lan-
guages, including Latin and modern Greek, and
CANINE-C (Clark et al., 2022), a character-based
transformer encoder featuring a 40,000 Unicode
points vocabulary and trained on 104 languages,
including Latin and modern Greek8. Though CA-

6https://github.com/mromanello/EpibauCorpus
7Unpublished at time of writing as partially copyrighted.
8Since the authors did not release their implementation,

a customised pretraining pipeline is used to train CANINE

hmB. PhilB. XLM-R XLM-R (In-domain)

Size (k) 33 64 250 250 82 33

Fertility 2.05 1.93 2.08 1.52 1.61 1.80

Table 2: Fertility scores of in-domain and generic to-
kenisers. Lower fertility scores indicate that fewer to-
kens are required to represent a word.

NINE’s architecture necessarily differs from XLM-
RoBERTa’s, both models use the same 12-layers
transformer stack and feature comparable param-
eter counts (121M vs 125M). Though these dif-
ferences hamper an absolutely controlled compar-
ison, our goal is also to provide researchers with
an investigation of existing solutions and their re-
spective upsides and shortcomings. Therefore, we
also fine-tune two additional models for broader
comparison purposes: hmBERT (Schweter et al.,
2022), a BERT-based subword model trained on
a 130GB corpus of historical texts and newspa-
pers, including German, French, Swedish, Finnish
and English, and PhilBERTa (Riemenschneider and
Frank, 2023), a BERT-based model trained for clas-
sical scholarship, primarily geared towards Latin
and ancient Greek, but also including English.

5 Experiments and results

5.1 What are the benefits of in-domain
tokenisation?

Fertility To assess the benefits of specialised to-
kenisers, three XLM-R tokenisers are trained on the
CSC: a large tokeniser of 250,000 tokens, equat-
ing XLM-R’s original vocabulary size, an inter-
mediary tokeniser of 82,000 tokens, and a small
tokeniser of 33,000 tokens. Fertility scores are dis-
played in Table 2. As expected, fertility decreases
(i.e. improves) with the domain-specificity of the
tokeniser and its vocabulary size, showing that a
larger specialised vocabulary requires fewer tokens
to represent the same word.

5.1.1 Extrinsic evaluation
Models To evaluate the effects of tokenisation ex-
trinsically, four XLM-R models are pretrained from
scratch on in-domain data exclusively, with the
different tokenisers. XLM-RRT-G-250 is ReTrained
using XLM-R’s original Generic vocabulary. XLM-
RRT-ID-(250|82|33) are ReTrained using In-Domain vo-
cabularies of 250,000 82,000, and 33,000 tokens

on in-domain data (See https://github.com/sven-nm/
shiba-canine).
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respectively. All models are pretrained for three
epochs on the CSC and fine-tuned on each down-
stream task for 40 epochs, leaving other recom-
mended hyperparameters unchanged.

Results Results are shown in Table 3. Surpris-
ingly, the model retrained with the generic to-
keniser (XLM-RRT-G-250) outperforms those trained
with in-domain tokenisers on all tasks, with an
overall improvement of 8.4 points in F1 score over
XLM-RRT-ID-250. This result is particularly unex-
pected as the in-domain tokenisers are specifically
designed to improve model performance on classi-
cal scholarship tasks. Interestingly, we observe a
negative correlation between F1 scores and vocabu-
lary sizes which is also incoherent with the fertility
scores presented above: a better (i.e. lower) fertility
usually implies a better tokeniser.

Analyses As no straightforward explanation jus-
tifies this result, further analyses are conducted.
Our hypothesis is that in-domain tokenisation re-
sults in a substantially sparser token distribution,
as specialised vocabularies contain more tokens fit-
ting the precise needs of a relatively small domain-
specific corpus. Hence as more tokens are used,
their average frequency across the corpus dimin-
ishes. Token frequency was measured on a 300M
subset of the CSC for each tokeniser and supports
this hypothesis. While XLM-R’s generic tokeniser
only needs 95,754 of its 250,000 tokens in its vo-
cabulary to segment the corpus, its in-domain coun-
terpart uses 246.864 tokens. Hence, the model
based on the former benefits from 6,137 token oc-
currences on average, while the model based on
the latter must learn from a much sparser distri-
bution of tokens, averaging to 1,701 occurrences
per unique token. Furthermore, quantiles show that
the generic vocabulary also leads to a much higher
concentration of used tokens, with 75% of used
tokens having over 1.1k occurences, versus 0.5k
for XLM-R-ID-250.

While XLM-RRT-ID-33 performs significantly bet-
ter than its 250 and 82 counterparts, it still does not
surpass the model based on the generic tokeniser.
This result raises two considerations. First, it sup-
ports the idea that enhancing token density leads to
significantly better results, especially in the case of
relatively limited pretraining data. While intrinsic
evaluation metrics such as fertility may provide a
valuable insight on tokeniser performance in do-
mains provided with abundant training data, the
results provided here show token density to be a sig-

nificantly more reliable predictor of extrinsic per-
formance. Hence, researchers working in resource-
limited environments should be advised to take this
metric into account when choosing the vocabulary
size of an in-domain tokeniser. Second, it shows
that contrary to a generally supported claim (Rust
et al., 2021; Beltagy et al., 2019; Ali et al., 2024),
in-domain tokenisation does not necessarily imply
better model performance. One possible explana-
tion for this outcome is that the tokeniser’s training
corpus may simply be too limited in size to support
the development of robust subword units. While
in-domain tokenisers may lead to the best perfor-
mance when given sufficient token density, they
still do not outperform the generic tokeniser, sug-
gesting that a more robust tokenisation might be
obtained by training the tokeniser on larger cor-
pora.

5.2 Do character-based models provide a
viable and more adaptable alternative to
subword models?

This second series of experiments provides a com-
parison between generic and adapted versions of
CANINE (character-based) and XLM-R (subword-
based). Generic versions (XLM-R and CANINE)
use the checkpoints provided by each model’s au-
thors. Adapted versions ( XLM-RAD and CANINE-
CAD) are further pretrained on the CSC for three
epochs. The last adapting checkpoints were shown
by pre-tests to yield the best downstream results
and are therefore fine-tuned for 40 epochs on each
downstream task. Though XLM-R largely outper-
forms CANINE-C on all tasks, the latter shows
much higher gains from adaptation, with improve-
ments up to 15% F1 score for AjNERen. Though
the model’s performance is still lower than XLM-
R’s, the gap is significantly reduced. Interestingly,
adaptation significantly degrades the performance
of CANINE-C on lemma recognition, while it gen-
erally benefits on all other tasks and models. Error
analysis shows this effect to be due only to a signif-
icant precision drop on greek-only entities.

Discussion It remains to be seen whether the
higher adaptability of CANINE-C is due to its
character-based tokenisation or to other factors
such as the model’s architecture or pretraining ob-
jectives, which are not controlled in these experi-
ments. However, these results confirm the model’s
claimed adaptability across languages (Clark et al.,
2022) and suggest that researchers thoroughly de-
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Model EpiBau EvaLat. AjLR AjNERde AjNERfr AjNERen Avg

hmBERT 0.847 0.934 0.889 0.904 0.835 0.846 0.876
PhilBERTa 0.781 0.925 0.619 0.775 0.602 0.690 0.732

CANINE-C 0.729 0.890 0.749 0.809 0.712 0.616 0.751
CANINE-CAD 0.794 0.899 0.708 0.824 0.789 0.766 0.796

XLM-R 0.854 0.944 0.875 0.907 0.856 0.838 0.879
XLM-RRT-G-250 0.818 0.912 0.807 0.879 0.802 0.794 0.835
XLM-RRT-ID-250 0.788 0.895 0.668 0.809 0.722 0.683 0.761
XLM-RRT-ID-82 0.769 0.900 0.668 0.824 0.783 0.735 0.780
XLM-RRT-ID-33 0.787 0.905 0.761 0.848 0.814 0.795 0.818
XLM-RRT-G-250-300M 0.623 0.684 0.578 0.670 0.587 0.542 0.614
XLM-RRT-G-250-600M 0.734 0.771 0.711 0.786 0.701 0.687 0.732
XLM-RAD 0.844 0.948 0.896 0.935 0.871 0.869 0.894
XLM-RAD-EP5 0.868 0.952 0.896 0.924 0.895 0.886 0.903
XLM-RAD-300M 0.860 0.948 0.897 0.911 0.886 0.867 0.895
XLM-RAD-600M 0.858 0.947 0.909 0.923 0.886 0.875 0.900

Table 3: F1 scores of all models across downstream tasks. Results are reported for models with three epochs of
pretraining. The average F1 score is equally weighted across all tasks. The best results across all models are
highlighted in bold.

prived of generic subword models usable in their
research field may find significant benefits in adapt-
ing CANINE-C to their domain. However, in the
current state, CANINE remains significantly less
capable than XLM-R.

5.3 Which specialisation strategy is most
effective given the constraints of available
data?

The goal of this last series of experiments is to de-
termine whether retraining or adapting yields best
results depending on the quantity of available data.
Although limited to the case of classics, these ex-
periments may provide valuable insights for other
domains with similar characteristics.

Models To address the question, six variants of
XLM-R are trained, each being either ReTrained
or ADapted on 300M, 600M or 1.4B tokens (XLM-
R(RT|AD)-(300M|600M|∅)). As the generic tokeniser has
been shown to yield the best results in the first
research question, it is used for the three retrained
models, also allowing for a fairer comparison with
adapted models, as the latter necessarily keeps the
model’s original vocabulary. In the experiments
involving a subset of the pretraining data, model
checkpoints are compared after an equal number
of training steps as opposed to an equal number

of epochs. This method is chosen in order to keep
the amount of pretraining tokens the only changing
variable.

Results XLM-RAD outperforms all other mod-
els trained on the entirety of CSC by a signifi-
cant margin. This result shows the superiority of
adapted models over both retrained and generic
models. As XLM-RAD performs best, it is also
further pretrained for two additional epochs, reach-
ing a total of five epochs (XLM-RAD-EP5), show-
ing an overall improvement in performance and
producing the best model overall. Table 3 also
shows the results of models pretrained on 300M,
600M, and 1.4B tokens. Surprisingly, results show
that 300M and 600M models yield even better re-
sults than the model trained on the entire corpus
(XLM-RAD). This unexpected outcome might be
due to the fact that models are here compared at
an equal number of training steps, and not at an
equal number of training epochs. This implies that
data-ablated models have been exposed to fewer
distinct examples but have encountered these exam-
ples with greater frequency. When compared with
a model trained for an approximately equal number
of epochs on the entire corpus, the latter overtakes
the former. Hence, the model trained on the en-
tire corpus continues to improve after three epochs

257



and finally yields the best results at five epochs,
which corresponds approximately to the number
of epochs run by XLM-RAD-300M. In any case, the
observed differences are very small, and lead to the
more reasonable conclusion that the model’s perfor-
mance is not significantly affected9 by the amount
of in-domain data it is further pretrained on. This
very encouraging result suggests that researchers
working in resource-constrained environments can
still benefit from adapting models to their domain,
even if they only have access to a small amount of
data.

This is not the case with retrained models, whose
performance pronouncedly drops when further pre-
trained on ablated data. This result is consistent
with the trend observed in recent years, which
shows that the results of pretrained models are very
sensitive to the amount of data they are pretrained
on. Hence, while adapting XLM-R with 1.4B as
opposed to 300M tokens causes the model’s aver-
age performance to drop 0.1%, retraining, the same
deprivation implies a remarkable drop of 22.9% F1
score on average.

6 General discussion

The importance of tokenisation The conclu-
sions of these experiments are multifaceted. First,
experiments confirm previous findings on the criti-
cal role of tokenisation (Ali et al., 2024; Rust et al.,
2021). Our experiments compare the performance
of two XLM-R models pretrained on the same data
but using two distinct tokenisers of equal size: a
generic and a domain-specific tokeniser. As shown
in Table 3, our results reveals differences ranging
up to 7% on average downstream F1 scores. This
substantial difference underscores the necessity of
a meticulous examination of this oft-overlooked
stage of model development.

Second, unlike previous studies, these experi-
ments illustrate that in-domain tokenisation does
not necessarily lead to better performance. Anal-
yses indicate that intrinsic tokenisation evalua-
tion methods relying on fertility do not correlate
with downstream results. On the contrary, in a
resource-limited environment, lower (i.e. better)
fertility also leads to a lower average token fre-
quency and less performant models. We argue that

9McNemar’s tests show average differences above 0.038%
in F1 score to be statiscally significant (p < .05). Thus, the
difference between XLM-RAD-EP5 and XLM-RAD-600M is not
statistically significant, as is the difference between XLM-RAD
and XLM-RAD-300M.

in low-resource settings, tokenisation should bal-
ance input sequence length and token-type density.
While high-fertility, small-sized tokenisers produce
longer input sequences by breaking words into
smaller subwords, they also enable more frequent
representation of each token within the corpus,
which correlates with model performance. This
study therefore advocates the adoption of token
density as a novel intrinsic evaluation metric.

Although smaller in-domain tokenisers consis-
tently yield better results than their larger in-
domain counterparts, they still do not surpass the
performance of a larger, generic tokeniser. This im-
proved performance may be attributable to the sub-
stantially larger size training corpus, which could
favour a more robust and efficient vocabulary. This
hypothesis is left for future research.

The potential of character-based models The
second series of experiments consistently shows
that CANINE-C is outperformed by XLM-R across
all downstream tasks. However, the limits of this
comparison must be highlighted. Notably, the two
models are pretrained on different corpora with
distinct training objectives and exhibit slight archi-
tectural differences, with CANINE-C incorporating
downsampling and upsampling convolutional lay-
ers around its central transformer blocks. Thus,
the findings merely indicate that even in a domain
where tokenisation is suboptimal, XLM-R achieves
better performance than CANINE-C.

Second, the results demonstrate CANINE-C’s
strong adaptability to the domain, with the adapted
model yielding an average improvement of 5% in
F1 score over the generic model. This improvement
is substantial when compared to XLM-R’s average
improvement of 1.5% in F1 score. Researchers
working with highly specific or underrepresented
languages not covered by large multilingual mod-
els may therefore find character-based models like
CANINE-C advantageous when adapted to their
domain.

The superiority of adapted models Finally, the
third series of experiments shows an undeniable
superiority of adapted models over retrained and
generic models, regardless of the amount of avail-
able pretraining data. This result aligns with
the principle that adaptation preserves the exten-
sive linguistic knowledge embedded in the generic
base-model, a solid foundation difficult to repli-
cate when training from scratch on limited re-
sources. Although retraining has shown success
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in domain-specific fields with ample pretraining
corpora, such as biomedical or legal domains,
resource-constrained fields appear to benefit most
by leveraging the power of scale utilised by the
model during its original pretraining. The find-
ings also reveal that an adaptation corpus of 300M
tokens already achieves 75% of the overall perfor-
mance gains, indicating adaptation as an efficient
and resource-effective specialisation strategy. As
the superiority of adaptation over retraining is espe-
cially evident in data-ablation scenarios, it suggests
that researchers and practitioners working with lim-
ited pretraining data should prioritise this approach.
Moreover, adaptation may offer the only viable
pathway to specialising large language models, an
approach also left for future work.

7 Conclusion

This study provides a comprehensive analysis of
the impact of tokenisation and specialisation strate-
gies on the performance of language models in
the field of classical scholarship. Our results show
that in-domain tokenisation does not necessarily
lead to better model performance in a resource-
constrained environment, and that token density is
a more reliable predictor of extrinsic performance.
Our experiments also show that character-based
models can offer a viable alternative to subword
models, especially when adapted. Finally, we show
that adaptation is the most effective specialisation
strategy in a resource-constrained environment, and
that even relatively small adaptation corpora can
yield significant performance gains. These findings
provide valuable insights for researchers working
in resource-limited environments and highlight the
importance of tokenisation and specialisation strate-
gies in the development of large language models.
We leave the investigation of our findings in other
historical domains for future work, make our mod-
els available to the research community10.
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