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Introduction

Welcome to the 4th International Workshop on Knowledge-Augmented Methods for Natural Language
Processing (KnowledgeNLP’25), held in conjunction with NAACL 2025. KnowledgeNLP will take pla-
ce on May 3rd, 2025, allowing for both virtual and in-person attendance in New Mexico, USA.

Recent progress in large-scale models like ChatGPT has significantly advanced NLP capabilities. Howe-
ver, these models face limitations in memorizing rare information, are prone to hallucinations, and cannot
access up-to-date information. Additionally, their fixed parameter size prevents them from fully encap-
sulating the continuously evolving world knowledge.

The field of knowledge-augmented NLP spans a wide array of techniques and applications. Acquiring
relevant knowledge is challenging due to its diversity and distribution across numerous sources. On-
ce acquired, effectively representing and utilizing this knowledge to support model predictions presents
another major challenge. This workshop seeks to bring researchers together to share their insights and
progress in this domain, aiming to highlight the importance of knowledge-augmented NLP.

In response to our call for papers, we received 48 submissions. Each submission was rigorously reviewed
by at least three Program Committee members selected for their expertise. Based on the reviewers’ feed-
back, we accepted 28 papers, including 6 oral presentations and 22 poster presentations. We are honored
to invite five keynote speakers: Prof. Doug Downey (Allen Institute for AI and Professor Northwestern
University), Prof. Graham Neubig (Carnegie Mellon University), Dr. Yunyao Li (Adobe), Prof. Yu Su
(Ohio State University), Prof. Manling Li (Northwestern University).

We hope you find the workshop papers insightful and inspiring. We express our gratitude to the keynote
speakers for their engaging talks, the authors for their valuable contributions, and the Program Commit-
tee members for their thorough reviews. Special thanks to the emergency reviewers for their expertise
and to the NAACL 2025 workshop chairs for their support during the organization process.
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Abstract

The similarity between the question and in-
dexed documents is a crucial factor in doc-
ument retrieval for retrieval-augmented ques-
tion answering. Although this is typically the
only method for obtaining the relevant docu-
ments, it is not the sole approach when deal-
ing with entity-centric questions. In this study,
we propose Entity Retrieval, a novel retrieval
method which rather than relying on question-
document similarity, depends on the salient en-
tities within the question to identify the retrieval
documents. We conduct an in-depth analysis
of the performance of both dense and sparse
retrieval methods in comparison to Entity Re-
trieval. Our findings reveal that our method not
only leads to more accurate answers to entity-
centric questions but also operates more effi-
ciently.

� https://github.com/shavarani/EntityRetrieval

1 Introduction

Information retrieval has significantly enhanced the
factual reliability of large language model (LLM)
generated responses (Shuster et al., 2021) in ques-
tion answering (Zhu et al., 2021; Zhang et al.,
2023). This improvement is particularly evident
in Retrieval-Augmented Generation (RAG; Lewis
et al., 2020b; Izacard and Grave, 2021b; Singh
et al., 2021), which typically employs the Retriever-
Reader architecture (Chen et al., 2017). RAG re-
trievers can be sparse (Peng et al., 2023), dense
(Karpukhin et al., 2020), or hybrid (Glass et al.,
2022), while the readers are usually generative lan-
guage models1 such as BART (Lewis et al., 2020a),
T5 (Raffel et al., 2020), or GPT-4 (OpenAI, 2023)
that generate answers based on the documents iden-
tified by the retriever. Recent RAG methodolo-
gies leverage the in-context learning capabilities of
LLMs to incorporate retrieved documents into the

1The readers in the original architecture were designed to
extract answer spans rather than generate answers.

prompt (Shi et al., 2023; Peng et al., 2023; Yu et al.,
2023).

Entity-centric questions seek concise factual an-
swers about the real world, typically in the form
of single words or short phrases. These answers
often reference or directly stem from a knowl-
edge base entity (Ranjan and Balabantaray, 2016),
and Retrieval-Augmentation enhances LLM per-
formance in answering such questions, particularly
for rare entities that appear infrequently in LLM
training and fine-tuning data (Kandpal et al., 2023).

But is there a correlation between the quality
of the retrieved documents and the generated re-
sponse quality? Sciavolino et al. (2021) found that
dense retrievers retrieve less relevant documents
for answering entity-centric questions than sim-
pler sparse retrievers. Additionally, Cuconasu et al.
(2024) show that the presence of irrelevant doc-
uments leads to worse answers. These findings
underscore the crucial role of the retrieval module,
particularly for entity-centric questions.

In this paper, we propose Entity Retrieval (Fig-
ure 1b), which uses salient entities in the question
to lookup knowledge base (e.g., Wikipedia) arti-
cles that correspond to each entity. Each article is
truncated to the first W words to form a document
set that augments the question passed to the LLM.

Our contributions are as follows: (1) we pro-
pose Entity Retrieval, a novel method of acquiring
augmentation documents using salient entities in
the questions, (2) we compare the retrieval per-
formance quality of several retrieval techniques
(both dense and sparse) to Entity Retrieval for ques-
tions within two entity-centric question answering
datasets, (3) we study the Retrieval-Augmentation
quality of the compared techniques and Entity Re-
trieval, using salient entity annotations of the ques-
tions, and (4) we examine the application of a re-
cent state-of-the-art entity linking method for En-
tity Retrieval in the absence of entity annotations
in entity-centric questions.
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Figure 1: Entity Retrieval simplifies the process of obtaining augmentation documents by replacing the need
to search through large indexed passages with a straightforward lookup. For Q: What is the capital of
Seine-Saint-Denis? Entity Retrieval considers the first few sentences of Seine-Saint-Denis Wikipedia article
which states “Its prefecture is Bobigny.” and returns A = Bobigny where the other retrieval methods return
A = Saint-Denis or A = Paris.

2 Retrieval for Retrieval-Augmentation

Retrieval-Augmentation (Lewis et al., 2020b) can
be employed as a method of converting Closed-
book question answering2 (Roberts et al., 2020)
into extractive question answering (Abney et al.,
2000; Rajpurkar et al., 2016), where the answers
can be directly extracted from the retrieved docu-
ments. Despite the abundance of effective retrieval
techniques for Retrieval-Augmented Question An-
swering in existing literature (Zhan et al., 2020a,b;
Yamada et al., 2021; Chen et al., 2022; Izacard
et al., 2022; Santhanam et al., 2022; Ni et al., 2022,
inter alia.), this section will concentrate on a select
few methods3 utilized to study answering entity-
centric questions in this paper.

BM25 (Robertson et al., 1994, 2009) is a prob-
abilistic retrieval method that ranks documents
based on the frequency of query terms appearing in
each document, adjusted by the length of the docu-
ment and overall term frequency in the collection.
It operates in the sparse vector space, relying on
precomputed term frequencies and inverse docu-
ment frequencies to retrieve documents based on
keyword matching.

DPR (Dense Passage Retrieval; Karpukhin et al.,
2020) leverages a bi-encoder architecture, wherein
the initial encoder processes the question and the
subsequent encoder handles the passages to be re-
trieved. The similarity scores between the two
encoded representations are computed using a dot
product. Typically, the encoded representations of

2Closed-book QA focuses on answering questions without
additional context during inference.

3We selected the methods supported by pyserini.io for
the similarity between the underlying modules, minimizing
discrepancies across different implementations.

the second encoder are fixed and indexed in FAISS
(Johnson et al., 2019), while the first encoder is op-
timized to maximize the dot-product scores based
on positive and negative examples.

ANCE (Xiong et al., 2021) is another dense re-
trieval technique similar to DPR4. It employs one
encoder to transform both the questions and pas-
sages into dense representations. The key distinc-
tion from DPR is that ANCE uses hard negatives
generated by periodically updating the passage em-
beddings during training, which helps the model
learn more discriminative features, thereby enhanc-
ing retrieval performance over time.

3 Entity Retrieval for Question
Answering

While quite powerful, most Retrieval-Augmented
systems are notably time and resource-intensive,
necessitating the storage of extensive lookup in-
dices and the need to attend to all retrieved docu-
ments to generate the response (see Section 4.7).
This attribute renders such methods less desirable,
particularly given the drive to run LLMs locally
and on mobile phones (Alizadeh et al., 2023).

Entity recognition has been an integral com-
ponent of statistical question answering systems
(Aghaebrahimian and Jurčíček, 2016, inter alia).
Additionally, the extensively studied field of
Knowledge Base Question Answering (Cui et al.,
2017, inter alia) has underscored the significance
of entity information from knowledge bases in
question answering (Salnikov et al., 2023). A tra-
ditional neural question answering pipeline may

4We have also implemented DKRR (Izacard and Grave,
2021a), however, due to its significantly poorer performance
compared to other methods, we exclude it from our analysis.

2
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Figure 2: The first paragraph of the Wikipedia article
typically provides an informative summary for the en-
tity. For example, the first paragraph of Swan Lake
Wikipedia article contains the answer to “Who is the
composer of The Swan Lake ballet?”

contain entity detection, entity linking, relation
prediction, and evidence integration (Mohammed
et al., 2018; Lukovnikov et al., 2019), where entity
detection can employ LSTM-based (Hochreiter and
Schmidhuber, 1997) or BERT-based (Devlin et al.,
2019) encoders. Inspired by this body of work,
we investigate the relevance of retrieval based on
entity information as an alternative strategy to the
proposed retrieval methods of Section 2, especially
for answering entity-centric questions with LLMs.

Our proposed method, Entity Retrieval, lever-
ages the salient entities within the questions to iden-
tify and retrieve their corresponding knowledge
base articles. We will then truncate these articles
to the first W words5 to form the list of the doc-
uments augmenting entity-centric questions when
prompting LLMs. Figure 1 presents a schematic
comparison between Entity Retrieval and other re-
trieval methods in identifying retrieval documents
to enhance question answering with LLMs. Fig-
ure 2 provides an intuitive example to motivate the
effectiveness of Entity Retrieval.

4 Experiments and Analysis

4.1 Setup

We focus on Wikipedia as the knowledge base and
utilize the pre-existing BM25, DPR, and ANCE re-
trieval indexes in Pyserini (Lin et al., 2021). These
indexes, follow established practices (Chen et al.,
2017; Karpukhin et al., 2020) and segments the arti-
cles into non-overlapping text blocks of 100 words,
resulting in 21,015,300 passages. For dense retriev-
ers, the passages are processed with a pre-trained

5The first sentences of Wikipedia articles have been proven
informative for document classification (Shavarani and Sekine,
2020) as well as question answering (Choi et al., 2018).

context encoder, generating fixed embedding vec-
tors stored in a FAISS index (Douze et al., 2024).
Our experimental entity-centric questions are en-
coded using the question encoder, and the top k
relevant passages to the encoded question are re-
trieved from the FAISS index. For BM25 sparse
retriever, the passages are stored in a Lucene in-
dex and the questions are keyword-matched to this
index.

As outlined in Section 3, the document retrieval
process will require loading the entire index (as
well as the question encoder for dense retrieval)
into memory which entails significant time and
memory consumption. To address this challenge,
following Ram et al. (2023), we treat document
retrieval as a pre-processing step, caching the most
relevant passages for each question before conduct-
ing the question answering experiments.

For Entity Retrieval, similar to BM25, DPR,
and ANCE, we maintain document lengths at 100
words. However, our approach diverges in sourc-
ing documents: rather than drawing from a large
index of 21 million passages, we employ the salient
entities within the question and retrieve their corre-
sponding Wikipedia articles, which we then trun-
cate to the initial 100 words.

We conduct our Retrieval-Augmented Question
Answering experiments using LLaMA 3 model6,
and in all such experiments7, we prevent it from
generating sequences longer than 10 subwords.

We do not use any instructional question-answer
pairs in the prompts of our models8. In the Closed-
book setting, the prompt includes only the question,
along with a simple instruction to answer it. In
Retrieval-Augmented settings using BM25, DPR,
and ANCE, the prompt incorporates pre-fetched
retrieved documents from the corresponding re-
trieval index alongside the question and the instruc-
tion. Similarly, in the Entity Retrieval settings,
the prompt consists of the first W words of the
Wikipedia articles corresponding to the salient en-
tities in the question. We follow Ram et al. (2023)
for question normalization and prompt formulation.
Appendix A provides the prompts, and example
retrieved documents for each setting.

6https://llama.meta.com/llama3/.
7We run our experiments on one server containing 2 RTX

A6000s with 49GB GPU memory each.
8Further exploration into few-shot experimental setups

involving additional (context, question, answer) in-context
examples is left for future investigation.

3
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4.2 Data

We use the following datasets in our experiments9:
EntityQuestions (Sciavolino et al., 2021) is cre-

ated by collecting 24 common relations (e.g., ‘au-
thor of’ and ‘located in’) and transforming fact
triples (subject, relation, object) that contain these
relations, into natural language questions using pre-
defined templates. The dataset comprises 176,560
train, 22,068 dev, and 22,075 test question-answer
pairs. To expedite our analytical experiments in
this paper, given the extensive size of the dev and
test sets, we constrain the question-answer pairs
in these subsets to those featuring salient entities
within the top 500K most linked Wikipedia pages,
as suggested by Shavarani and Sarkar (2023). Thus,
the dev and test subsets of EntityQuestions consid-
ered in our experiments consist of 4,710 and 4,741
questions, respectively.

FactoidQA (Smith et al., 2008) contains 2,203
hand crafted question-answer pairs derived from
Wikipedia articles, with each pair accompanied by
its corresponding Wikipedia source article included
in the dataset.

StrategyQA (Geva et al., 2021) is a complex
boolean question answering dataset, constructed
by presenting individual terms from Wikipedia
to annotators. Its questions contain references to
more than one Wikipedia entity, and necessitate
implicit reasoning for binary (Yes/No) responses.
The dataset comprises 5,111 answered questions
initially intended for training question answering
systems, with the system later tested on test set
questions with unreleased answers. This train-
ing set is split into two subsets resulting in train
and train_filtered subsets containing 2,290 and
2,821 questions, respectively.

4.3 Evaluation

We evaluate the performance of the retrieval meth-
ods using the following metrics; in each of which
a document is considered relevant if it contains
a normalized form of the expected answer to the
question:

• nDCG@k (normalized Discounted Cumula-
tive Gain at rank k; Järvelin and Kekäläinen,
2002) evaluates the quality of a ranking sys-
tem by considering both the relevance and
the position of documents in the top k results.

9Please note that since Entity Retrieval does not involve
training, all mentioned dataset subsets (e.g., train, dev, or test)
will be used for evaluation regardless of their names.

Mathematically, it is represented as

nDCG@k =

∑k
i=1

2ri−1
log2(i+1)

∑|RELk|
i=1

2ri−1
log2(i+1)

Where, ri denotes the relevance score of a
document at the ith position for a question,
with relevance score ri = 1 if the document
is relevant, and ri = 0, otherwise. RELk
refers to the relevant subset of the retrieved
documents. nDCG@k scores range between
0 and 1, where a score of 1 signifies an opti-
mal ranking with the most relevant documents
positioned at the top.

• MRR (Mean Reciprocal Rank; Voorhees and
Harman, 1999) is the average of the reciprocal
ranks of the first relevant document for each
question. Mathematically, it is represented as

MRR =
1

|Q|

|Q|∑

j=1

1

rj

where |Q| represents the total number of ques-
tions and rj denotes the rank of the first rele-
vant document for the j-th question.

• Top-k Retrieval Accuracy, as reported by Sci-
avolino et al. (2021), is calculated as the num-
ber of questions with at least one relevant
document in the top k retrieved documents
divided by the total number of questions in
the dataset.

We evaluate the performance of the Retrieval-
Augmented Question Answering models with each
retrieval method as follows:

• For FactoidQA and EntityQuestions datasets,
we use OpenQA-eval (Kamalloo et al., 2023)
scripts to evaluate model performance, and
report exact match (EM) and F1 scores by
comparing expected answers to normalized
model responses.

• For StrategyQA, we present accuracy scores
by comparing model responses to the expected
boolean answers in the dataset. As well, to
assess model comprehension of the task, we
count the number of answers that deviate from
Yes or No and report this count in a distinct
column labeled “Inv #” for each experiment.
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Figure 3: nDCG@k scores evaluate the quality of BM25, DPR, ANCE, and Entity Retrieval by considering both the
relevance and the position of documents in the top k retrieved passages for each question. Note that Entity Retrieval
typically results in k=1 document since the datasets under study often have one salient entity. The horizontal lines
aid in visually comparing the performance of Entity Retrieval, which averages one document, to other methods
retrieving k>1 documents.

4.4 Entity Retrieval Performance using
Question Entity Annotations

We begin our analysis by comparing Entity Re-
trieval performance to BM25, DPR, and ANCE.
For this experiment, we calculate nDCG with vari-
ous retrieved document sets of size k = 1, 2, 3, 4,
5, 20, and 100. We use the entity annotations pro-
vided with the questions from FactoidQA and the
dev set of EntityQuestions to fetch their correspond-
ing Wikipedia articles, excluding StrategyQA from
our analysis as it does not include entity annota-
tions. On average, FactoidQA and EntityQuestions
datasets contain one salient entity per question.

Apart from a few questions, the majority of Fac-
toidQA questions, and all questions in the Enti-
tyQuestions dataset, contain only one entity annota-
tion (leading to one augmentation document). This
puts Entity Retrieval at a disadvantage. To address
this, we consider truncating the Entity Retrieval
documents to varying lengths. We compare Entity
Retrieval using the first 100 words (equivalent to
the size of documents returned by BM25, DPR,
and ANCE, noted as ER100w) and also consider
the first 50, 300, and 1000 words of the retrieved
Wikipedia articles (noted as ER50w, ER300w, and
ER1000w). A 300-word Entity Retrieval document
matches the word count of three documents re-
turned by BM25 or DPR.

Figure 3 presents the computed nDCG@k scores
across varying document sizes, highlighting the su-
perior performance of Entity Retrieval over other
retrieval methods in the context of the entity-centric
datasets under study. Notably, ER1000w, which

corresponds to ten BM25 retrieved passages in
terms of word count, exhibits a retrieval perfor-
mance on par with 100 retrieved documents in Fac-
toidQA and surpasses BM25, the top-performing
retriever on EntityQuestions, by 25%. This im-
pressive performance by Entity Retrieval can be
attributed to its ability to retrieve fewer, yet more
relevant, documents. This observation aligns with
the conclusion drawn by Cuconasu et al. (2024),
which emphasizes that the retrieval of irrelevant
documents can negatively impact performance. En-
tity Retrieval effectively minimizes the retrieval of
such documents. Further insights can be gleaned
from the comparison of nDCG scores along the
x-axis of the plots in Figure 3. As the number of
retrieved documents increases, the likelihood of
retrieving irrelevant documents also rises, leading
to a decline in retrieval performance when moving
from 1 to 5 retrieved documents.

Table 1 showcases the calculated MRR scores,
emphasizing the quicker attainment of relevant re-
trieval documents in Entity Retrieval compared to
other retrieval methods. Concurrently, Figure 4
illustrates the impact of incrementing the number
of retrieved documents on the expansion of the ex-
pected answers’ coverage for the EntityQuestions
dev subset.

While it may be appealing to consider 100 or
more documents to simultaneously enhance both
nDCG and Retrieval Accuracy, it is important to
note that 100 retrieved documents would comprise
10,000 words. This could potentially overwhelm
the model with excessive noise (irrelevant docu-
ments), and as well, could make it extremely costly
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FactoidQA EntityQuestions (dev)

BM25 0.245 0.522
DPR 0.209 0.456
ANCE 0.222 0.536

ER50w 0.097 0.435
ER100w 0.131 0.516
ER300w 0.185 0.610
ER1000w 0.272 0.695

Table 1: MRR scores comparing the retrieval quality
of BM25, DPR, ANCE, and Entity Retrieval through
the average of the reciprocal ranks of the first relevant
document for each question.

to execute Retrieval-Augmented Question Answer-
ing, especially when the cost of API calls is cal-
culated per token. We would need at least 10,000
tokens (optimistically, assuming each word equates
to only one token) in addition to the tokens in the
question. These factors suggest that retrieving a
few documents for each question is more benefi-
cial.

Taking these considerations into account, along
with the nDCG@k, MRR, and Retrieval Accuracy
results from this section, we gain a comprehensive
understanding of the trade-off between the quality
of the retrieved documents, which diminishes as we
consider more documents, and the answer coverage,
which increases as the model has a higher chance
of encountering the right document with the correct
hint for the answer. Consequently, we opt for k = 4
as a default, and we will always retrieve the top-4
documents in our Retrieval-Augmented Question
Answering experiments.

4.5 Retrieval-Augmented Question Answering

Next, we examine the effectiveness of our proposed
Entity Retrieval method compared to other retrieval
methods in improving the quality of responses to
entity-centric questions. We explore three settings:
Closed-book, Retrieval-Augmented, and Entity Re-
trieval with question entity annotations (Section
4.1). The primary purpose of using question entity
annotations is to demonstrate their ability to accu-
rately identify relevant augmentation documents.
These experiments establish an expected perfor-
mance ceiling for Entity Retrieval and can inspire
future research to meet or exceed this threshold.

The initial eight rows of Table 2 present the
results of our experiments using LLaMA 3 (8B)
model. Upon examining these results, it is evident
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Figure 4: Retrieval Accuracy scores showcasing the
correlation between the number of retrieved documents
and the expected answers’ coverage in EntityQuestions
(dev) subset.

that ER100w, the most analogous Entity Retrieval
setting to other retrieval methods, outperforms in
terms of both EM and F1 scores. This setting, like
the other retrieval methods, returns 100-word doc-
uments. However, as we noted earlier, Entity Re-
trieval generally retrieves fewer documents overall,
making it both more accurate and more efficient.

Our dense retrieval results align with the obser-
vations of Sciavolino et al. (2021), asserting that
entity-centric questions indeed challenge dense re-
trievers. Although the BM25 method proves suc-
cessful in enhancing the results compared to the
Closed-book setting, it is noteworthy that even En-
tity Retrieval with the initial 50 words of the articles
corresponding to the salient entities within ques-
tions yields superior results. This is particularly sig-
nificant when compared to other retrieval methods
which necessitate indexing the entire knowledge
base on disk and loading the index into memory; a
process required in inference time where caching
is not an option.

4.6 Entity Retrieval in absence of Question
Entity Annotations

Section 4.5 establishes Entity Retrieval as a viable
augmentation method for entity-centric questions.
Next, we aim to reach the established performance
ceiling in the absence of question entity annota-
tions. Here, we examine the potential of entity
linking as an automated method to provide these
annotations. Our primary research question is: how
effectively can current entity linking methods help
Entity Retrieval achieve optimal performance?

Ideally, we would like to evaluate all recent en-
tity linking methods to identify the most effective
one. However, due to time and budget limitations,
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LLaMA3
(8B)

FactoidQA EntityQuestions

dev test

EM F1 EM F1 EM F1

Closed-book 30.5±0.4 39.3±0.0 22.9±0.5 37.9±0.7 22.9±0.2 38.3±0.5

Retrieval-Augmented QA

BM25 32.4±0.8 42.6±0.3 23.7±0.3 38.5±0.6 23.4±0.2 38.7±0.3

DPR 29.8±1.0 38.9±1.1 21.9±0.3 36.2±0.2 20.7±0.6 35.4±0.4

ANCE 30.4±0.4 39.9±0.3 23.1±0.5 37.9±0.4 22.7±0.5 37.9±0.6

Entity Retrieval w/ Question Entity Annotations

ER50w 34.4±0.5 43.7±0.5 24.9±0.1 41.2±0.1 24.1±0.6 41.1±0.3

ER100w 33.6±0.3 42.9±0.4 26.3±0.2 42.8±0.1 25.7±0.1 42.4±0.0

ER300w 33.7±0.9 43.0±1.1 26.2±0.3 42.7±0.1 25.5±0.7 42.4±0.8

ER1000w 35.0±0.3 44.9±0.5 25.1±0.4 41.9±0.4 24.2±0.9 41.1±0.6

Entity Retrieval w/ SPEL Entity Annotations

ERSp50w 29.6±0.3 38.6±0.5 24.1±0.5 39.1±0.2 23.6±0.8 39.4±0.5

ERSp100w 28.7±0.9 37.7±1.0 24.8±0.5 40.0±0.2 24.4±0.3 39.9±0.2

ERSp300w 26.9±0.4 35.6±0.5 24.5±0.3 39.9±0.4 24.4±0.5 40.2±0.3

ERSp1000w 21.7±0.7 30.8±1.0 24.2±0.2 39.6±0.3 22.9±0.5 39.0±0.7

Table 2: Question answering efficacy comparison between Closed-book and Retrieval-Augmentation using BM25,
DPR, ANCE, and Entity Retrieval. EM refers to the exact match between predicted and expected answers,
disregarding punctuation and articles (a, an, the).
⋆ Results represent the average of three runs, accompanied by a margin of error based on a 99% confidence interval.

we depend on the recent benchmarking studies by
Ong et al. (2024) to choose a method. They ex-
amine the latest entity linking methods in terms of
performance against unseen data and endorse SPEL
(Shavarani and Sarkar, 2023) as the top performer.
Consequently, we investigate Entity Retrieval using
entities identified with SPEL, while reserving the
examination of other entity linking techniques for
Entity Retrieval for future research.

We maintain the Entity Retrieval settings as be-
fore, defining ERSp50w, ERSp100w, ERSp300w,
and ERSp1000w for performing entity linking with
SPEL, then retrieving the Wikipedia articles corre-
sponding to the SPEL identified entities, and using
the first 50, 100, 300, and 1000 words of these ar-
ticles as documents to augment the question when
prompting the LLM. Table 3 presents the aggre-
gated entity identification statistics of SPEL across
various subsets of each dataset under study.

The final four rows of Table 2 showcase the com-
parative results of utilizing entities identified by
SPEL for Entity Retrieval. Given that one-third
of EntityQuestions and approximately half of Fac-
toidQA lack identified annotations, the exact match

Max. Avg. Linked %

FactoidQA 8 0.8 56.5%
EntityQuestions 3 0.7 65.6%
StrategyQA 4 1.1 74.9%

Table 3: Maximum and Average SPEL identified en-
tity count as well as the total percentage of questions
with at least one identified entity in each dataset. SPEL
successfully identifies and links entities in 1,244 Fac-
toidQA, 3,108 EntityQuestions (dev), 3,095 EntityQues-
tions (test), 1,735 StrategyQA (train), and 2,094 Strat-
egyQA (train_filtered) questions. For the remaining
questions in each dataset where no entities are identi-
fied, they will be introduced to the LLM without any
augmented documents in the Entity Retrieval settings.

scores reveal that Entity Retrieval performs ro-
bustly and surpasses BM25, the top-performing
competitor, for EntityQuestions while approaching
DPR’s performance for FactoidQA. This under-
scores the potential of Entity Retrieval within this
paradigm. In addition, the disparity between the
results with and without question entity annota-
tions strongly indicates the necessity for further
research in Entity Linking, which could enhance
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Question Who performed Alexis Colby? What is the capital of Seine-Saint-Denis?
Answer Joan Collins Bobigny

Closed-Book Diana Ross Paris
BM25 Linda Evans Saint-Denis
DPR Alexis Cohen Saint-Denis
ANCE Nicollette Sheridan performed Alexis Colby. Saint-Denis
ERSp100w Joan Collins Bobigny

Question Where did John Snetzler die? Where was Brigita Bukovec born?
Answer Schaffhausen Ljubljana

Closed-Book He died in London, England, in 178 Brigita Bukovec was born in Slovenia
BM25 John Snetzler died in London. Slovenia
DPR John Snetzler died in London in Slovakia
ANCE in England Rîbnit,a
ERSp100w Schaffhausen Ljubljana

Table 4: Example questions from EntityQuestions (dev) to demonstrate the performance of Entity Retrieval.

LLaMA3
(8B)

train train_filtered

Acc. Inv # Acc. Inv #

BM25 43.5±0.6 608±14 48.9±0.7 673±12

ANCE 46.6±1.3 552±11 51.8±0.7 647±35

ERSp50w 50.1±1.1 370±28 56.3±0.9 417±21

ERSp100w 50.3±1.4 369±15 56.2±0.8 384±9

ERSp300w 46.2±1.3 504±17 53.5±1.5 546±20

ERSp1000w 39.5±1.4 775±6 43.4±0.5 919±14

Table 5: Comparison of Entity Retrieval using SPEL identified entities to the best-performing dense and sparse
retrieval methods of Table 2 on the StrategyQA dataset. Given the expected boolean results for StrategyQA questions,
we restricted LLaMA 3 to generate only one token. Acc. indicates the fraction of answers that correctly match the
expected Yes or No responses in the dataset, while Inv # represents the count of labels that are neither Yes nor No,
but another invalid answer.
⋆ Results represent the average of three runs, accompanied by a margin of error based on a 99% confidence interval.

entity-centric question answering as a downstream
task. Table 4 provides some example questions
where Entity Retrieval has led to better answers.

Table 5 compares of the performance of Entity
Retrieval using SPEL identified entities against
other retrieval methods on the StrategyQA dataset.
The results clearly demonstrate the superior perfor-
mance of Entity Retrieval over the top-performing
retrieval methods of Table 2. It is important to note
that the 100-word setting (ERSp100w) is the most
analogous to other retrieval methods. Interestingly,
the results from the 1000-word setting suggest that
longer documents do not necessarily enhance the
model’s recall. In fact, beyond a certain length,
the model may become overwhelmed by the sheer
volume of noise, leading to confusion. Lastly, the
invalid count values suggest that Entity Retrieval
is more effective in assisting the model to com-
prehend the boolean nature of expected responses,
eliminating the need to rely on retrieval from mil-

lions of passages.

4.7 Real-time Efficiency Analysis

Our analysis thus far has primarily focused on the
retrieval performance, without consideration for
the time and memory efficiency; crucial factors in
retrieval method selection. In this section, we shift
our focus to these aspects.

We begin by replacing our pre-built retrieval
cache document sets with the original retrieval
modules that were used in creating the cached
sets. We load the indexes and the necessary mod-
els for fetching the retrieval documents. We then
record the peak main memory requirement of each
method during the experiment. It is important to
note that all retrieval methods primarily rely on
main memory, with minimal differences in GPU
memory requirements. Therefore, we report an
average GPU memory requirement of 35GB for
LLaMA 3 (8B) and exclude it from our results ta-
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Total
Time

Disk
Storage

Main
Memory

BM25 45min 11GB 2.3GB
ANCE 960min 61.5GB 64.2GB
ERSp100w 34min 9.4GB 6.3GB

Table 6: Comparison of the required resources for each
retrieval method in real-time execution. The reported
total time values exclude the time taken to load the
indexes and models, focusing solely on the time used to
answer the questions.

ble. We then feed all 2,203 FactoidQA questions
into the BM25, ANCE, and Entity Retrieval (using
SPEL identified entities) to fetch the top-4 docu-
ments. We report the total time taken to generate
answers to all the questions, which includes the
time for querying the BM25 or ANCE indexes in
the Retrieval-Augmented settings, or the time for
performing on-the-fly entity linking and fetching
the Wikipedia articles from disk in the Entity Re-
trieval setting. Additionally, we keep track of all
the pre-built models and indexes that each method
requires for download and storage. We report the
total size of all downloaded files to disk.

Table 6 presents our findings on time and mem-
ory requirements. It is evident that ANCE requires
significantly more time to fetch and provide doc-
uments, six times more disk space to store its in-
dexes, and over ten times higher main memory
demands to load its dense representations10. In con-
trast, BM25 and Entity Retrieval are more resource-
friendly. Notably, Entity Retrieval is 25% faster
than BM25 in response generation while demand-
ing the total memory and disk space of a stan-
dard personal computer. Future research can be di-
rected towards reducing the memory requirements
of Entity Retrieval; a direction which we find quit
promising.

5 Related Work

Similar to our studies, Kandpal et al. (2023) inves-
tigate the impact of salient entities on question an-
swering, and propose constructing oracle retrieval
documents as the 300-word segment surrounding
the ground-truth answer from the Wikipedia page
that contains the answer (entity name). Our ap-
proach leverages salient entities from questions
without directly involving answers. Additionally,
they primarily use entities to classify questions

10Our empirical results demonstrate that DPR follows the
same trend.

into those concerning frequent knowledge base en-
tries versus those about rare entries on the long-
tail, whereas our approach assigns a more substan-
tial role to entities, treating them as pointers guid-
ing the retrieval of relevant documents to augment
questions.

Sciavolino et al. (2021) compare DPR and BM25
retrievers for entity-centric questions, and demon-
strate that DPR greatly underperforms BM25. They
attribute this to dense retrievers’ difficulty with
infrequent entities, which are less represented in
training data. In contrast, BM25’s frequency-based
retrieval is not sensitive to entity frequency. We
take a parallel approach and propose a simple yet ef-
fective method that leverages salient entities in the
question for identifying augmentation documents.

Similar to our studies, Dhingra et al. (2020);
Asai et al. (2020) focus on answering questions
with minimal lexical overlap between the retrieved
documents and the question text. However, they
emphasize multi-hop question answering, using en-
tity linking to extract entities from the question
and leveraging knowledge base articles to guide
the multi-hop process. In contrast, we utilize entity
links to directly identify augmentation documents.
Sun et al. (2018) employ entity linking to iden-
tify entities in the question, generating a set of
seed entities, which are then expanded using the
PPR algorithm to create a subgraph of the knowl-
edge base containing relevant entities. A graph
propagation algorithm subsequently learns repre-
sentations for each node in the subgraph, and each
representation is binary classified to determine if it
answers the question. Our approach differs as we
focus on using LLMs, employing entity linking in
a Retrieval-Augmented setting without relying on
graph propagation.

6 Conclusion

In this study, we focused on Retrieval-Augmented
Question Answering, and explored various retrieval
methods that rely on the similarity between the
question and the content of the passages to be re-
trieved. We introduced a novel approach, Entity
Retrieval, which deviates from the conventional
textual similarity-based mechanism. Instead, it cap-
italizes on the salient entities within the question to
identify retrieval documents. Our findings indicate
that our proposed method is not only more accu-
rate but also faster in the context of entity-centric
question answering.
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Limitations and Ethical Considerations

Our proposed Entity Retrieval method is specif-
ically tailored for answering entity-centric ques-
tions, with its performance heavily reliant on the
presence of question entities. In scenarios where
entity annotations are absent, the method’s effec-
tiveness is directly tied to the performance of exter-
nal entity linking methods. We acknowledge that
our exploration of potential entity linking methods
has not been exhaustive, and further investigation
may yield insights that could enhance the Entity
Retrieval method, even in the absence of question
entity annotations.

Furthermore, we recognize that entity linking
can occasionally result in ambiguous entities. Our
research has not delved into the impact of such am-
biguities on the Entity Retrieval method, and we
propose that future studies should focus on ensur-
ing the selection of the most contextually appropri-
ate entities for retrieval.

Our research is primarily centered on Wikipedia
as the knowledge base, a choice heavily influenced
by previous studies for the sake of comparability.
However, we acknowledge the importance of ex-
ploring other knowledge bases and ontologies, par-
ticularly in different domains, such as UMLS (Bo-
denreider, 2004) in the medical field.

In terms of benchmarking, we have compared
the Entity Retrieval method against a limited se-
lection of existing retrieval methods, guided by
our judgement, experience, and considerations of
implementation availability. We concede that our
comparison has not been exhaustive, and this rea-
soning extends to our comparison using different
LLMs and their available sizes.

Our research is on English only, and we acknowl-
edge that entity-centric question answering in other
languages is also relevant and important. We hope
to extend our work to cover multiple languages in
the future. We inherit the biases that exist in the
data used in this project, and we do not explicitly
de-bias the data. We are providing our code to the
research community and we trust that those who
use the model will do so ethically and responsibly.
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A Example Prompts for Different
Experimental Settings

In this section, we present the prompts used in our
experimental settings. For each setting, we provide
the prompt template, and explain the processes

needed to obtain the augmentation documents if a
Retrieval-Augmented setting is being discussed.

A.1 Closed-book Setting
In this setting, we do not have any augmentation
documents, so the prompt contains the instruction,
followed by the question:

Answer this question:
Q: {question}
A:

Here is an example prompt with the question
mentioned in Figure 1 and Table 4:

Answer this question:
Q: What is the capital of Seine-Saint
-Denis?

A:

A.2 Retrieval-Augmented Settings
In this setting, we examine two variations of
prompts based on the number of available aug-
mented documents. For a single document, the
prompt is as follows:

{document}

Based on this text, answer this
question:
Q: {question}
A:

When multiple documents are available, they are
presented sequentially, followed by the instruction
and question:

{document1}

{document2}

...

{documentN}

Based on these texts, answer this
question:
Q: {question}
A:
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Doc# Content

1 Pierrefitte-sur-Seine<newline>Pierrefitte-sur-Seine Pierrefitte-sur-Seine is a commune in the
Seine-Saint-Denis department and Ile-de-France region of France. Today forming part of the
northern suburbs of Paris, Pierrefitte lies from the centre of the French capital. The town
is served by Pierrefitte - Stains railway station on line D of the RER regional suburban rail
network. The south of the commune, where the National Archives of France relocated in 2013,
is also served by Saint-Denis - Universite station on Paris Metro Line 13. This station lies
on the border between the communes of Pierrefitte-sur-Seine and Saint-Denis. Primary and
secondary schools in the commune include:

2 "Saint-Ouen, Seine-Saint-Denis"<newline>Saint-Ouen, Seine-Saint-Denis Saint-Ouen () is
a commune in the Seine-Saint-Denis department. It is located in the northern suburbs of
Paris, France, from the centre of Paris. The communes neighbouring Saint-Ouen are Paris,
to the south, Clichy, to the west, Asnieres-sur-Seine and L’Ile-Saint-Denis, to the north, and
Saint-Denis to the east. The commune of Saint-Ouen is part of the canton of Saint-Ouen, which
also includes L’Ile-Saint-Denis and part of Epinay-sur-Seine. Saint-Ouen also includes the
Cimetiere de Saint-Ouen. On 1 January 1860, the city of Paris was enlarged by annexing
neighbouring communes. On that occasion, a part of the commune of Saint-Ouen

3 "Ile-de-France"<newline>of France. The population of immigrants is more widely distributed
throughout the region than it was in the early 2000s, though the concentrations remain high in
certain areas, particularly Paris and the department of Seine-Saint-Denis. The proportion of
residents born outside of Metropolitan France has dropped since the 1999 census (19.7 percent)
and the 2010 census (23 percent). . The Petite Couronne (Little Crown, i.e. ""Inner Ring"") is
formed by the 3 departments of Ile-de-France bordering with the French capital and forming
a geographical ""crown"" around it. The departments, until 1968 part of the disbanded Seine
department, are Hauts-de-Seine, Seine-Saint-Denis

4 "Saint-Denis, Seine-Saint-Denis"<newline>Saint-Denis, Seine-Saint-Denis Saint-Denis () is
a commune in the northern suburbs of Paris, France. It is located from the centre of Paris.
Saint-Denis is a subprefecture () of the department of Seine-Saint-Denis, being the seat of the
arrondissement of Saint-Denis. Saint-Denis is home to the royal necropolis of the Basilica
of Saint Denis and was also the location of the associated abbey. It is also home to France’s
national football and rugby stadium, the Stade de France, built for the 1998 FIFA World Cup.
Saint-Denis is a formerly industrial suburb currently changing its economic base. Inhabitants
of Saint-Denis are called

Table 7: Top 4 documents retrieved from the BM25 Lucene index for the question What is the capital of
Seine-Saint-Denis? from the EntityQuestions (dev) dataset.

Next, we examine the various Retrieval-
Augmentation techniques studied in this paper:
BM25, DPR, and ANCE, showcasing their top four
retrieved documents for What is the capital of
Seine-Saint-Denis?. Tables 7, 8, and 9 present
these retrieved documents. The finalized prompt
template will include the four retrieved documents
alongside the question, as previously discussed.

In analyzing the retrieved documents, you can
verify the originating Wikipedia articles mentioned
in the beginning of each passage. Notably, passages
are drawn from three or four different articles, and

given the entity-centric nature of the question, rely-
ing on multiple sources could mislead the LLM, as
suggested by Cuconasu et al. (2024). Additionally,
these methods primarily focus on lexical similar-
ity, particularly the presence of capital, Seine,
Saint, and Denis. However, this focus has not
consistently led to retrieval of passages containing
the correct answer: Bobigny.

A.3 Entity Retrieval Settings

For Entity Retrieval, we utilize an entity linker
to identify entities within the question. In this
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Doc# Content

1 "L’Ile-Saint-Denis"<newline>L’Ile-Saint-Denis L’Ile-Saint-Denis (the island of Saint Denis) is
a commune in the northern suburbs of Paris, France. It is located from the center of Paris. The
commune is entirely contained on an island of the Seine River, hence its name. Several transit
connections are located nearby. The closest station to L’Ile-Saint-Denis is Saint-Denis station,
which is an interchange station on Paris RER line D and on the Transilien Paris - Nord suburban
rail line. This station is located in the neighboring commune of Saint-Denis, from the town
center of L’Ile-Saint-Denis. Tram T1 stops near Ile-Saint-Denis’s town hall. Bus route 237

2 "15th arrondissement of Paris"<newline>15th arrondissement of Paris The 15th arrondissement
of Paris (""XV arrondissement"") is one of the 20 arrondissements of the capital city of France.
In spoken French, this arrondissement is referred to as ""quinzieme"". The arrondissement,
called Vaugirard, is situated on the left bank of the River Seine. Sharing the Montparnasse
district with the 6th and 14th arrondissements, it is the city’s most populous arrondissement.
The ""Tour Montparnasse"" - the tallest skyscraper in Paris - and the neighbouring Gare
Montparnasse are both located in the 15th arrondissement, at its border with the 14th. It is also
home to the convention center

3 "L’Ile-Saint-Denis"<newline>few of the students were White. There are three primary schools
in the commune: Ecole Samira Bellil, Ecole Paul Langevin, and Ecole Jean Lurcat. College
Alfred Sisley, a junior high school, is on the island. L’Ile-Saint-Denis L’Ile-Saint-Denis (the
island of Saint Denis) is a commune in the northern suburbs of Paris, France. It is located from
the center of Paris. The commune is entirely contained on an island of the Seine River, hence its
name. Several transit connections are located nearby. The closest station to L’Ile-Saint-Denis is
Saint-Denis station, which is an interchange station on Paris RER line D and

4 "2nd arrondissement of Paris"<newline>2nd arrondissement of Paris The 2nd arrondissement
of Paris (""II arrondissement"") is one of the 20 arrondissements of the capital city of France.
In spoken French, this arrondissement is colloquially referred to as ""deuxieme"" (second/the
second). Also known as Bourse, this arrondissement is located on the right bank of the River
Seine. The 2nd arrondissement, together with the adjacent 8th and 9th arrondissements, hosts
an important business district, centred on the Paris Opera, which houses the city’s most dense
concentration of business activities. The arrondissement contains the former Paris Bourse
(stock exchange) and a large number of banking headquarters, as

Table 8: Top 4 documents retrieved from the DPR index for the question What is the capital of
Seine-Saint-Denis? from the EntityQuestions (dev) dataset.

study, we employed SPEL, though any suitable
entity linking method can be used. The primary re-
quirement is that the linker accepts a string (the
question) as input and returns a list containing
(begin character, end character, identified
entity) tuples. The begin character and end
character values help determine the order of en-
tity annotations in the text, ensuring proper se-
quence if the returned list is unordered.

The identified entity values are then used
to search the Wikipedia dump on disk, fetching
articles corresponding to the identified entities. Ef-
ficient implementation of this lookup process is cru-
cial for the method’s performance. Our approach

involves a two-step indexing and lookup process.
First, we index the file bytes marking the beginning
of each Wikipedia article in the dump file. When
an article is needed, we use this index to locate
the byte number and employ the seek method to
navigate to the correct position in the file and read
the article.

After gathering the relevant articles, we truncate
each one to the first W words (suffixed with the
Wikipedia identifier, as per convention) to create a
list of augmentation documents to accompany the
question when querying the LLM.

To prompt the LLM, we use the same prompts
previously mentioned. If no entities are found in
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Doc# Content

1 "L’Ile-Saint-Denis"<newline>L’Ile-Saint-Denis L’Ile-Saint-Denis (the island of Saint Denis) is
a commune in the northern suburbs of Paris, France. It is located from the center of Paris. The
commune is entirely contained on an island of the Seine River, hence its name. Several transit
connections are located nearby. The closest station to L’Ile-Saint-Denis is Saint-Denis station,
which is an interchange station on Paris RER line D and on the Transilien Paris - Nord suburban
rail line. This station is located in the neighboring commune of Saint-Denis, from the town
center of L’Ile-Saint-Denis. Tram T1 stops near Ile-Saint-Denis’s town hall. Bus route 237

2 "L’Ile-Saint-Denis"<newline>few of the students were White. There are three primary schools
in the commune: Ecole Samira Bellil, Ecole Paul Langevin, and Ecole Jean Lurcat. College
Alfred Sisley, a junior high school, is on the island. L’Ile-Saint-Denis L’Ile-Saint-Denis (the
island of Saint Denis) is a commune in the northern suburbs of Paris, France. It is located from
the center of Paris. The commune is entirely contained on an island of the Seine River, hence its
name. Several transit connections are located nearby. The closest station to L’Ile-Saint-Denis is
Saint-Denis station, which is an interchange station on Paris RER line D and

3 "Saint-Denis, Seine-Saint-Denis"<newline>one private elementary, middle, and high school
(""Ensemble Scolaire Jean-Baptiste de la Salle-Notre Dame de la Compassion"") and one
private middle and high school (""College et lycee Saint-Vincent-de-Paul""). Saint-Denis is
twinned with: Saint-Denis, Seine-Saint-Denis Saint-Denis () is a commune in the northern
suburbs of Paris, France. It is located from the centre of Paris. Saint-Denis is a subprefecture ()
of the department of Seine-Saint-Denis, being the seat of the arrondissement of Saint-Denis.
Saint-Denis is home to the royal necropolis of the Basilica of Saint Denis and was also the
location of the associated abbey. It is also home to France’s

4 "Saint-Ouen, Seine-Saint-Denis"<newline>Saint-Ouen, Seine-Saint-Denis Saint-Ouen () is
a commune in the Seine-Saint-Denis department. It is located in the northern suburbs of
Paris, France, from the centre of Paris. The communes neighbouring Saint-Ouen are Paris,
to the south, Clichy, to the west, Asnieres-sur-Seine and L’Ile-Saint-Denis, to the north, and
Saint-Denis to the east. The commune of Saint-Ouen is part of the canton of Saint-Ouen, which
also includes L’Ile-Saint-Denis and part of Epinay-sur-Seine. Saint-Ouen also includes the
Cimetiere de Saint-Ouen. On 1 January 1860, the city of Paris was enlarged by annexing
neighbouring communes. On that occasion, a part of the commune of Saint-Ouen

Table 9: Top 4 documents retrieved from the ANCE index for the question What is the capital of
Seine-Saint-Denis? from the EntityQuestions (dev) dataset.

the question, we refer to the prompt in Appendix
A.1. If one entity is recognized, resulting in one
augmentation document, we use the first prompt
from Appendix A.2. If multiple entities are iden-
tified, we use the second prompt from the same
appendix section. In rare cases where the num-
ber of identified entities exceeds k (the expected
number of documents to retrieve), we simply con-
sider the first k unique entities to form the list of
augmentation documents.

Table 10 presents the single document re-
trieved for What is the capital of
Seine-Saint-Denis?, which contains the answer:
Bobigny. Examining the lexical distribution in

this document, we observe that unlike the BM25
method, Entity Retrieval treats the salient entity
Seine-Saint-Denis as an atomic term rather than
emphasizing each word in the question. This fo-
cused approach, coupled with the retrieval of fewer
documents, allows the model to concentrate on the
relevant information, reducing noise and potential
confusion.

However, the effectiveness of Entity Retrieval
in real-world scenarios, where question entity an-
notations are not available, largely depends on the
quality of the entity linker used to identify salient
entities in the question. Therefore, further research
into developing more accurate entity linking mod-
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Doc# Content

1 Seine-Saint-Denis<newline>Seine-Saint-Denis In 2019, it had a population of 1,644,903 across
40 communes. In French, the learned but rarely used demonym for the inhabitants of Seine-
Saint-Denis is ; more common is . The department is surrounded by the departments of
Hauts-de-Seine, Val-de-Marne, Paris, Val-d’Oise, and Seine-et-Marne. It is thus the only
one of the five French departments surrounded entirely by other departments of the same
region. Image:Petite couronne.png The most populous commune is Saint-Denis; the prefecture
Bobigny is the eleventh-most populous. As of 2019, there are 5 communes with more than
70,000 inhabitants: is made up of three departmental and 40

Table 10: The only document retrieved by Entity Retrieval using SPEL annotations for the question What is the
capital of Seine-Saint-Denis? from the EntityQuestions (dev) dataset. SPEL identifies only one entity in the
question: Seine-Saint-Denis and returns the first 100 words (considering W=100) of its Wikipedia article as the
retrieved document. The answer to the question: Bobigny is highlighted for ease of verification.

els could enhance Entity Retrieval performance.

17



Proceedings of the 4th International Workshop on Knowledge-Augmented Methods for Natural Language Processing (KnowledgeNLP’25), pages 18–36
May 3, 2025 ©2025 Association for Computational Linguistics

ELECTRA and GPT-4o:
Cost-Effective Partners for Sentiment Analysis

James P. Beno
Stanford Engineering CGOE

jim@jimbeno.net

Abstract

Bidirectional transformers excel at sentiment
analysis, and Large Language Models (LLM)
are effective zero-shot learners. Might they per-
form better as a team? This paper explores col-
laborative approaches between ELECTRA and
GPT-4o for three-way sentiment classification.
We fine-tuned (FT) four models (ELECTRA
Base/Large, GPT-4o/4o-mini) using a mix of re-
views from Stanford Sentiment Treebank (SST)
and DynaSent. We provided input from ELEC-
TRA to GPT as: predicted label, probabilities,
and retrieved examples. Sharing ELECTRA
Base FT predictions with GPT-4o-mini signifi-
cantly improved performance over either model
alone (82.50 macro F1 vs. 79.14 ELECTRA
Base FT, 79.41 GPT-4o-mini) and yielded the
lowest cost/performance ratio ($0.12/F1 point).
However, when GPT models were fine-tuned,
including predictions decreased performance.
GPT-4o FT-M was the top performer (86.99),
with GPT-4o-mini FT close behind (86.70) at
much less cost ($0.38 vs. $1.59/F1 point). Our
results show that augmenting prompts with pre-
dictions from fine-tuned encoders is an efficient
way to boost performance, and a fine-tuned
GPT-4o-mini is nearly as good as GPT-4o FT
at 76% less cost. Both are affordable options
for projects with limited resources.

1 Introduction

Sentiment analysis—the computational study of
opinions, attitudes, and emotions in text (Medhat
et al., 2014)—has seen major advances from trans-
former architectures (Vaswani et al., 2017). Bidi-
rectional encoders like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and ELECTRA (Clark
et al., 2020) excel at sentiment analysis when fine-
tuned, and Large Language Models (LLM) like
GPT (Radford et al., 2018) are strong zero-shot
and few-shot learners (Kheiri and Karimi, 2023).

Recent work has explored collaboration between
these models, such as using GPT to augment data of
minority classes before fine-tuning with RoBERTa

(Kok-Shun et al., 2023), using GPT for aspect
extraction and RoBERTa for sentiment scoring
(Qian et al., 2024), and escalating to LLMs when
RoBERTa classification confidence was low (An-
drade et al., 2024). However, leveraging external
knowledge of sentiment from fine-tuned encoders
to enhance LLMs remains under-explored.

This research investigates collaborative ap-
proaches between ELECTRA and GPT-4o models
(OpenAI, 2024b,c) for three-way sentiment clas-
sification (negative, neutral, positive) of reviews.
Our research focused on the following hypotheses:
Providing predictions from a fine-tuned ELECTRA
as context to a GPT model will improve classi-
fication performance (H1). The improvement in
performance will be less for a fine-tuned GPT (H2).
The format of predictions in the prompt will affect
performance (H3). Including similar examples in
the prompt will improve performance (H4).

These hypotheses build on ELECTRA’s strength
in capturing nuanced sentiment patterns when fine-
tuned (Clark et al., 2020; Potts et al., 2021; B
et al., 2023), and GPT’s versatility through in-
context learning (Radford et al., 2019; Liu et al.,
2019; Kocoń et al., 2023; OpenAI, 2024a)—they
can perform well across diverse tasks when given
the appropriate context through prompting (Liu
et al., 2023; Khattab et al., 2024). Although they
may struggle with emotion and nuance (Kocoń
et al., 2023), retrieved examples can improve per-
formance (Zhang et al., 2023).

To test these hypotheses, we established four
baselines and conducted 28 experiments across
three sentiment classification datasets: Stanford
Sentiment Treebank (SST), and DynaSent Rounds
1 and 2. We used ELECTRA Base/Large and GPT-
4o/4o-mini, each of which were fine-tuned (FT) on
a merge of SST and DynaSent reviews.

We investigated the effects of different prompt
augmentation scenarios using Declarative Self-
improving Python (DSPy) (Khattab et al., 2024),
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a framework for programming language models.
We started with a prompt to classify a review, and
augmented it with knowledge from ELECTRA in
the form of: the predicted class label, the probabili-
ties of each class, similar reviews with their class
labels, and combinations. We evaluated classifica-
tion performance with the macro average F1 score,
and cost-effectiveness by dividing total fine-tuning
costs by the F1. Our key insights are the following.

Sharing predictions boosted performance.
Augmenting GPT-4o-mini (not fine-tuned) with
predictions from ELECTRA Base FT significantly
improved performance over either model alone. It
also yielded the lowest cost/performance ratio.

Adding probabilities or examples did not help.
Using probabilities, or including few-shot exam-
ples, did not improve performance more than the
predicted label alone for both GPT models.

Fine-tuned GPTs performed best. GPT-4o
FT-M alone achieved the highest overall perfor-
mance on the merged test set, with GPT-4o-mini
FT closely following at significantly lower cost.

Sharing predictions hurt fine-tuned GPTs.
When GPT models were fine-tuned, including
ELECTRA predictions decreased performance—
even when fine-tuned with the same inference-time
prompt that included the ELECTRA prediction.
Fine-tuning with the prediction for more epochs
allowed GPT to discriminate better. Performance
improved, but the cost grew significantly.

Fine-tuned ELECTRA Large outperformed
base GPTs. ELECTRA Large fine-tuned was the
best performing encoder model, and was better than
both GPT-4o and GPT-4o-mini base models.

These findings offer affordable options for
projects with limited resources. If fine-tuning via
API is an option, a fine-tuned GPT-4o-mini is
nearly as good as GPT-4o FT at 76% less cost. Al-
ternatively, augmenting LLM prompts with predic-
tions from fine-tuned encoder models is an efficient
way to boost performance. For projects that want
to stay local, a fine-tuned ELECTRA Large model
is quite capable, and better than default GPTs.

The key contributions of this research are:

• Proposes a novel collaboration where fine-
tuned bidirectional encoders assist GPT mod-
els with the task of sentiment classification.

• Demonstrates that augmenting GPT prompts
(not fine-tuned) with predictions from fine-
tuned encoders significantly improves classifi-

cation performance and reduces costs, achiev-
ing the lowest cost/performance ratio.

• Evaluates various formats for incorporating
encoder output into GPT prompts, and offers
practical guidelines to maximize performance.

2 Prior Literature

2.1 MLMs and ELECTRA

Masked Language Models (MLM) like BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019) employed bidirec-
tional encoding to obtain holistic representations
of text. RoBERTa (Robustly Optimized BERT Pre-
training Approach) (Liu et al., 2019) optimized the
pre-training approach, but both models were ineffi-
cient because learning only occurred in about 15%
of the tokens that were masked.

This led to the development of ELECTRA (Ef-
ficiently Learning an Encoder that Classifies To-
ken Replacements Accurately) (Clark et al., 2020).
ELECTRA was pre-trained with two models using
replaced token detection. As a result, it learned
from all tokens and had comparable or better per-
formance in a variety of tasks with less compute.

ELECTRA was found to be a top performer in
sentiment classification on datasets such as SST
(Clark et al., 2020), DynaSent (Potts et al., 2021),
and IMDB movie reviews (B et al., 2023). It was
also found to be better suited for prompt-based
learning due to its use of a discrimnator (Xia et al.,
2022). We chose to use ELECTRA for these rea-
sons, in addition to observing a performance gain
relative to RoBERTa in early trials.

2.2 GPT Models

Bidrectional transformers seemed to have an edge
over early autoregressive models like GPT (Rad-
ford et al., 2018) for sentiment analysis. But that
edge is being whittled away by the successors of
GPT pre-trained at a massive scale: GPT-3, GPT-
3.5, GPT-4, and GPT-4o (OpenAI, 2024a,b,c).

For sentiment analysis of social media posts,
Kheiri and Karimi (2023) found that GPT mod-
els significantly outperformed a number of prior
models on the SemEval 2017 dataset. In contrast,
Kocoń et al. (2023) found that, although ChatGPT
is versatile and competent across a wide range of
tasks, it did not perform as well as RoBERTa—
especially for pragmatic tasks involving detection
of emotional and contextual nuances. They pro-
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Table 1: Examples of Merged Training Dataset

Index Sentence Label Source

0 Those 2 drinks are part of the HK culture and has years of history.
It is so bad.

negative dynasent_r2

1 I was told by the repair company that was doing the car repair
that fixing the rim was "impossible" and to replace it.

negative dynasent_r1

2 It is there to give them a good time . neutral sst_local
3 Like leafing through an album of photos accompanied by the

sketchiest of captions .
negative sst_local

4 Johnny was a talker and liked to have fun. positive dynasent_r1

pose that fine-tuning ChatGPT may be necessary,
which we explore in this research.

2.3 Collaborative Approaches

Recent work has revealed several promising ap-
proaches for collaboration between these models.

Kok-Shun et al. (2023) explored a unique frame-
work that chains GPT and RoBERTa for emotion
detection. They used GPT’s generative capabili-
ties to augment training data for minority classes.
The augmented dataset is then used to fine-tune
RoBERTa on emotion detection.

Qian et al. (2024) tapped the strengths of dif-
ferent models in a Natural Language Processing
(NLP) pipeline to analyze stadium reviews. One
GPT-3.5 model was fine-tuned to extract experi-
ence aspects, while another classified these aspects
into categories. A RoBERTa model then performed
sentiment scoring on the extracted aspects. We
are chaining ELECTRA and GPT-4o in a similar
manner here, but in a different order.

Andrade et al. (2024) investigated the benefits
of collaboration between MLMs and open LLMs
for sentiment classification, similar to the current
research. In their “Call-My-Big-Sibling” (CMBS)
approach, the initial classification is done with a
calibrated RoBERTa model. If RoBERTa has low
confidence on the classification, an open LLM like
Llama 2 (Touvron et al., 2023) is invoked to per-
form the classification task instead.

In CMBS, the final prediction is either made by
RoBERTa or Llama 2—it’s a decision tree. In con-
trast, our approach always passes the ELECTRA
prediction to the LLM. If we had to come up with
a similar analogy, it would be “Show-Me-Your-
Answers” (SMYA). And then it’s up to the LLM
to decide if it follows the ELECTRA prediction, or
decides to classify the review differently.

Most recently, Charpentier and Samuel (2024)
created GPT-BERT, a hybrid model that learns bidi-
rectional representations like an MLM, but is also

generative like a GPT. By shifting the prediction
of masked tokens one position to the right, GPT-
BERT can be trained on both MLM and autoregres-
sive objectives without changing architecture. In
the BabyLM Challenge 2024 benchmark, it outper-
formed models trained on only one objective, show-
ing there is potential in this combined approach.

Table 2: Label Distribution for the Merged Dataset

Split Negative Neutral Positive

Train 21,910 49,148 31,039
Validation 1,868 1,669 1,884
Test 2,352 1,829 2,349

Table 3: Contribution of Sources to the Merged Dataset

Dataset Samples Percent (%)

DynaSent R1 Train 80,488 78.83
DynaSent R2 Train 13,065 12.80
SST-3 Train 8,544 8.37

Total 102,097 100.00

3 Data

Models were trained and evaluated in English on
a merge of movie reviews from the Stanford Senti-
ment Treebank (SST) (Socher et al., 2013) and busi-
ness reviews from DynaSent Rounds 1 and 2 (Potts
et al., 2021), licensed under Apache 2.0 and Cre-
ative Commons Attribution 4.0 respectively. See
Table 1 for examples. By default, SST is a five-way
classification (positive, somewhat positive, neutral,
somewhat negative, negative). The positive and
negative classes were combined to produce SST-3
(positive, neutral, negative).

The SST-3, DynaSent R1, and DynaSent R2
datasets were randomly mixed to form a Merged
dataset with 102,097 Train examples, 5,421 Valida-
tion examples, and 6,530 Test examples. See Table
2 for the distribution of labels, and Table 3 for a
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Table 4: Models Used in Research

Model Provider Access Identifier

ELECTRA Base Hugging Face Local google/electra-base-discriminator
ELECTRA Large Hugging Face Local google/electra-large-discriminator
GPT-4o OpenAI API gpt-4o-2024-08-06
GPT-4o-mini OpenAI API gpt-4o-mini-2024-07-18

breakdown of sources. It’s worth noting that the
source datasets all have class imbalances. Merging
the data helps mitigate this imbalance, but there is
still a majority of neutral examples in the training
split. Another potential issue is that the models will
learn the dominant dataset, which is DynaSent R1.
As a test, the minority classes were over-sampled
to create a new balanced dataset. When this was
evaluated, the performance did not improve.

4 Models

Four models were fine-tuned and evaluated in this
research, both individually and in collaboration
with each other: ELECTRA Base and Large, and
GPT-4o and 4o-mini. See Table 4 for details.

ELECTRA (Clark et al., 2020), released with an
Apache 2.0 license, was chosen as the bidirectional
transformer because its pre-training architecture
gives it an advantage over MLMs. It also outper-
formed RoBERTa in early trials. We evaluated both
the Base (110M parameters) and Large (335M pa-
rameters) variants.

To function as a classifier, ELECTRA’s output
is sent through a mean pooling layer. A classifier
head is appended with 2 hidden layers of dimen-
sion 1024, and a final output dimension of 3. Swish
GLU (Shazeer, 2020) was used as the hidden ac-
tivation function, and dropout layers were added
with a rate of 0.3. See Appendix B for more details
on the model architecture and hyper-parameters.

For comparison and collaboration, two GPT
models were used via OpenAI’s API: GPT-4o (Ope-
nAI, 2024b) and GPT-4o-mini (OpenAI, 2024c).
Although the full specifications are not public, they
are state-of-the-art autoregressive language mod-
els with strong zero-shot capabilities. GPT-4o is
described as a “high-intelligence flagship model
for complex, multi-step tasks.” GPT-4o-mini is
described as an “affordable and intelligent small
model for fast, lightweight tasks.”

5 Methods

Our research progressed through the following
stages. Code and datasets are available at: https:
//github.com/jbeno/sentiment.

5.1 ELECTRA Baseline & Fine-tuning

We first developed a training pipeline to sup-
port interactivity and distributed training across
multiple GPUs. Training progress was tracked
through Weights and Biases so we could monitor
train/validation metrics (loss, macro F1, accuracy)
across epochs. The final models were selected
from checkpoints at convergence, or just before
train/validation metrics started to diverge.

Two baseline models were established by train-
ing only classifier heads for ELECTRA Base and
Large. Hyper-parameters were consistent with
the fully fine-tuned versions. The fine-tuning pro-
cess involved a number of trials on Lambda Labs
multi-GPU instances to identify the best hyper-
parameters, optimizer, and learning rate schedule.
See Appendix B for the final configuration.

We also explored alternative approaches includ-
ing an ensemble of binary classifiers, and additional
fine-tuning on DynaSent R2 and SST-3, but these
did not outperform our initial approach.

5.2 GPT Data Preparation & Fine-tuning

To use OpenAI’s fine-tuning API, we converted the
Merged training data to JSONL format that defined
the System, User, and Assistant roles. We noticed
that if the context at inference time varied even
slightly from the fine-tuning context, performance
would suffer. So we created three templates to
enable better comparisons between fine-tuned and
default models using the same DSPy signatures
(see Appendix D):

• Minimal (FT-M): No prompt other than Sys-
tem role. User role only contained the review
sentence.

• Prompt (FT): Default fine-tuning. User role
included full DSPy prompt.
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• Prompt with Label (FT-L): User role in-
cluded DSPy prompt with ELECTRA pre-
dicted label.

We included the ELECTRA predictions in the
third template to align the fine-tuning context with
the inference time context, but also to provide an
opportunity for the GPT models to learn from the
ELECTRA predictions. In total there were 9 fine-
tuning jobs (see Table 5, and Appendix C for GPT
fine-tuning details).

Table 5: Fine-Tuning Job Details

Model Code Format Epochs

4o-mini FT-M Minimal 1
4o-mini FT Prompt 1
4o-mini FT-L Prompt w/Base Label 1
4o-mini FT-L Prompt w/Base Label 5
4o-mini FT-L Prompt w/Large Label 1
4o-mini FT-L Prompt w/Large Label 5
4o FT-M Minimal 1
4o FT Prompt 1
4o FT-L Prompt w/Large Label 1

5.3 DSPy Signatures & Modules
With DSPy, you create modules (ex: Classify, Clas-
sifyWithExamples), signatures (input/output tem-
plates, ex: review + examples → classification),
define metrics (ex: classification_match) and eval-
uators of data, and use optimizers to find the best
performing prompt or module parameters.

We explored a variety of approaches to inte-
grating ELECTRA’s output into GPT’s decision-
making process. Each approach was implemented
as a custom DSPy signature and module (see Ap-
pendix E for the full examples).

Classification Prompt. Prompt to “Classify the
sentiment of a review as either ‘negative’, ‘neutral’,
or ‘positive’.” One input field ‘review’ described
as “The review text to classify.” and one output
field ‘classification’ described as “One word rep-
resenting the sentiment classification: ‘negative’,
‘neutral’, or ‘positive’ (do not repeat the field name,
do not use ‘mixed’)”.

Predicted Label. Classification prompt with
an additional input field ‘classifier_decision’ de-
scribed as “The sentiment classification proposed
by a model fine-tuned on sentiment.” During eval-
uation, the DSPy module first sends the review
through the ELECTRA model to obtain its predic-
tion. This output is then inserted into the signature.

Probabilities. Classification prompt, but in-
stead of ‘classifier_decision’ it featured three input

fields for the probabilities of each class as obtained
from the ELECTRA model. For example: ‘nega-
tive_probability’ was described as “Probability the
review is negative from a model fine-tuned on sen-
timent”. The float is converted to a percent to make
it easier for the model to interpret.

Prediction & Probabilities. Same as Probabili-
ties, but it also included the ‘classifier_decision’ to
emphasize the final decision made by ELECTRA.

Top Examples. A custom retriever was created
from 300 reviews in the Validation split. During
inference, input text is run through the fine-tuned
ELECTRA Large model to extract the output repre-
sentations (prior to the classifier head). The top five
matches and class labels based on cosine similarity
are shown as few-shot examples. This signature
had ‘classifier_decision’ plus an ‘examples’ field
described as “A list of examples that demonstrate
different sentiment classes.”

Balanced Examples. If ELECTRA was wrong,
and the Top Examples were all of the same class,
it might be hard for GPT to make an independent
decision. To compensate, in Balanced Examples,
a different retriever was used that retrieved a total
of six examples (the top two examples from each
class) to ensure the few-shot examples with true
labels did not bias the answer toward a particular
class—although that might be desirable sometimes.

All of the Above. And lastly, a final DSPy signa-
ture had all of the above context from ELECTRA
included: classification prompt, predicted label,
probabilities, and top five examples (not balanced).
It was unclear if providing all this information
would help GPT make a decision, or if the large
number of tokens would dilute the signal.

We then conducted two of the four baselines,
and 26 of the 28 experiments (see Table 6) using
these DSPy signatures and modules. The fine-tuned
ELECTRA models and retriever were instantiated
locally for inference, and the GPT models were
accessed via OpenaAI API. To address single-run
concerns, each baseline and experiment was run a
second time with a different random seed (123 vs.
42) and temperature (0.1 vs. 0.0).

6 Results

Our experiments revealed significant differences
in performance across baseline, fine-tuning, and
collaborative scenarios. See Table 6 for the mean
macro average F1 between the two runs. Appendix
A has the raw data of each run.
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Table 6: Summary of Model Configuration, Test Set Performance, and Cost

Merged3 DynaSent R1 DynaSent R2 SST-3 Cost ($)5

ID1 GPT2 ELECTRA Description Macro F14 Macro F14 Macro F14 Macro F14 FT /F1

B1 — Base Baseline, Classifier head 69.51 ± 0.20 70.86 ± 0.15 61.39 ± 0.28 60.60 ± 0.36 0.65 0.01
B2 — Large Baseline, Classifier head 67.94 ± 0.08 69.70 ± 0.04 59.78 ± 0.00 57.95 ± 0.37 2.51 0.04
B3 4o-mini — Baseline (Zero shot) †79.41 ± 0.16 81.16 ± 0.05 77.02 ± 0.47 69.99 ± 0.97 — —
B4 4o — Baseline (Zero shot) 79.97 ± 0.24 80.95 ± 0.25 80.14 ± 0.12 72.08 ± 0.17 — —

E1 — Base FT Fine-tune all layers †79.14 ± 0.22 82.12 ± 0.02 70.67 ± 1.64 69.04 ± 1.29 9.73 0.12
E2 — Large FT Fine-tune all layers 82.76 ± 0.57 86.22 ± 0.44 77.33 ± 1.46 71.77 ± 1.22 53.26 0.65

E3 4o-mini Base FT Prompt, Label †82.50 ± 0.34 86.40 ± 0.15 75.33 ± 1.22 70.88 ± 1.20 9.73 0.12
E4 4o-mini Large FT Prompt, Label 83.80 ± 0.43 87.71 ± 0.27 78.73 ± 1.12 71.77 ± 1.10 53.26 0.64
E5 4o-mini Large FT Prompt, Label, Examples (Few shot) 83.42 ± 0.30 86.94 ± 0.28 79.50 ± 1.12 72.33 ± 0.49 53.26 0.64
E6 4o-mini Large FT Prompt, Label, Balanced Ex. (Few shot) 82.98 ± 0.42 86.28 ± 0.62 79.87 ± 0.36 71.98 ± 0.75 53.26 0.64
E7 4o-mini Large FT Prompt, Probs 83.27 ± 0.37 86.60 ± 0.23 79.41 ± 0.69 72.26 ± 1.03 53.26 0.64
E8 4o-mini Large FT Prompt, Label, Probs 83.66 ± 0.32 87.22 ± 0.28 79.98 ± 0.36 71.78 ± 1.06 53.26 0.64
E9 4o-mini Large FT Prompt, Label, Probs, Examples 83.19 ± 0.39 86.58 ± 0.60 78.99 ± 0.42 71.94 ± 0.64 53.26 0.64

E10 4o-mini FT — Fine-tune w/prompt 86.70 ± 0.11 89.65 ± 0.30 87.00 ± 0.13 75.83 ± 0.21 33.15 0.38
E11 4o-mini FT 5 — Fine-tune w/prompt (5 epochs) 84.86 ± 0.13 87.74 ± 0.13 86.22 ± 0.40 75.38 ± 0.32 165.75 1.95
E12 4o-mini FT-M — Minimal fine-tune 86.51 ± 0.06 89.57 ± 0.18 87.13 ± 0.22 75.74 ± 0.17 16.60 0.19
E13 4o-mini FT Base FT Prompt, Label, FT w/prompt 81.06 ± 0.52 84.67 ± 0.14 73.06 ± 2.03 69.70 ± 1.77 42.88 0.53
E14 4o-mini FT-L Base FT Prompt, Label, FT w/prompt, label 81.84 ± 0.26 85.20 ± 0.06 77.29 ± 1.22 70.70 ± 1.39 49.31 0.60
E15 4o-mini FT-L 5 Base FT Prompt, Label, FT w/prompt, label (5 epochs) 83.67 ± 0.30 86.38 ± 0.51 81.19 ± 0.62 75.02 ± 0.03 207.64 2.48
E16 4o-mini FT Large FT Fine-tune w/prompt 83.94 ± 0.09 87.57 ± 0.11 80.17 ± 0.28 72.46 ± 0.00 86.41 1.03
E17 4o-mini FT-L Large FT Fine-tune w/prompt, label 84.12 ± 0.06 87.58 ± 0.10 80.75 ± 0.20 73.34 ± 0.06 92.84 1.10
E18 4o-mini FT-L 5 Large FT Fine-tune w/prompt, label (5 epochs) 84.83 ± 0.06 87.75 ± 0.17 84.37 ± 0.81 75.59 ± 0.01 251.17 2.96

E19 4o Large FT Prompt, Label 83.19 ± 0.01 85.71 ± 0.00 82.06 ± 0.11 73.48 ± 0.06 53.26 0.64
E20 4o Large FT Prompt, Label, Examples (Few shot) 83.29 ± 0.28 86.11 ± 0.14 81.48 ± 0.07 72.96 ± 1.27 53.26 0.64
E21 4o Large FT Prompt, Label, Balanced Ex. (Few shot) 83.19 ± 0.28 86.01 ± 0.19 81.04 ± 0.21 72.88 ± 1.03 53.26 0.64
E22 4o Large FT Prompt, Probs 82.99 ± 0.47 86.37 ± 0.45 78.42 ± 1.05 71.90 ± 1.04 53.26 0.64
E23 4o Large FT Prompt, Label, Probs 83.31 ± 0.33 86.69 ± 0.35 79.46 ± 0.33 72.17 ± 0.97 53.26 0.64
E24 4o Large FT Prompt, Label, Probs, Examples 83.04 ± 0.42 86.53 ± 0.29 78.47 ± 1.00 71.83 ± 1.20 53.26 0.64

E25 4o FT — Fine-tune w/prompt 86.79 ± 0.06 90.46 ± 0.03 88.14 ± 0.28 73.09 ± 0.01 276.24 3.18
E26 4o FT-M — Minimal fine-tune 86.99 ± 0.00 90.57 ± 0.00 89.00 ± 0.00 73.99 ± 0.00 138.37 1.59
E27 4o FT Large FT Fine-tune w/prompt 84.03 ± 0.30 87.90 ± 0.13 80.01 ± 0.73 72.00 ± 1.15 329.50 3.93
E28 4o FT-L Large FT Fine-tune w/prompt, label 84.37 ± 0.19 87.81 ± 0.09 81.28 ± 1.03 73.10 ± 0.66 383.10 4.55

Bold = best overall, highlighted = best in section
†Scores relevant to Hypothesis 1 (ELECTRA prediction improving non-fine-tuned GPT performance)
1 Some ID numbers changed from their original ID in the research repo.
2 GPT fine-tuning types: FT = fine-tune with prompt, FT-M = minimal without prompt, FT-L = with prompt including ELECTRA label, FT 5 = 5 epochs vs. 1
3 Merged dataset: Combination of test splits from DynaSent R1/R2 and SST-3
4 Each experiment was run twice with different random seeds (42, 123) and temperature (0.0, 0.1); values reported are means ± standard deviations. Standard

deviations are based on two runs (n=2) and should be interpreted with caution.
5 Cost: FT = Fine-tuning cost, no inference-time API charges. Ratio is FT cost divided by F1 score.

Baselines. Regarding baselines, both GPT mod-
els outperformed the ELECTRA classifiers, with
GPT-4o achieving a 79.97 mean macro F1 and GPT-
4o-mini scoring 79.41, compared to ELECTRA
Base (69.51) and Large (67.94). This demonstrates
the strong zero-shot capabilities of GPT models.

Fine-tuning. Fine-tuning improved perfor-
mance across all models. ELECTRA Base’s mean
macro F1 increased from 69.51 to 79.14, while
ELECTRA Large showed greater gains, improv-
ing from 67.94 to 82.76. This improvement is the
result of fine-tuning all layers—the baselines had
the same classifier head. Fine-tuned GPT models
had the highest scores (see Figure 2), with GPT-4o-
mini FT rising from 79.41 to 86.70, and GPT-4o
FT-M achieving 86.99 with the minimal template.

Sharing Predictions. The effect of adding
ELECTRA predictions to GPT prompts depended
on if the GPT model was fine-tuned (see Figure 1

Figure 1: Change in Mean F1 from Adding Predictions

for the differences in mean F1). Sharing ELEC-
TRA Base predictions with GPT-4o-mini (not fine-
tuned) significantly improved the macro F1 in
round one from 79.52 to 82.74 (p < 0.0001, Mc-
Nemar’s test and bootstrap analysis), a +3.22 gain.
There was an even greater gain of +3.97 points
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when ELECTRA Large predictions were shared
(from 79.52 to 83.49, p < 0.0001). Similarly, in-
cluding ELECTRA Large predictions with GPT-4o
improved the macro F1 from 80.14 to 83.18 (p <
0.001) in round one, a +3.04 gain.

However, sharing ELECTRA predictions with
fine-tuned GPT models actually decreased perfor-
mance. GPT-4o-mini FT’s mean macro F1 dropped
from 86.70 to 81.06 when including ELECTRA
Base predictions, and to 81.84 when fine-tuned
with the predictions included in the prompt. Sim-
ilarly, GPT-4o FT’s mean F1 fell from 86.79 to
84.03 when including ELECTRA Large predic-
tions, and to 84.37 when fine-tuned with them.

Few-shot Examples. Some contexts performed
better than others for specific model combinations
(see Figure 3). Providing few-shot examples in ad-
dition to the predicted label was mostly the same or
worse than using the label alone. However, when
looking at the more challenging DynaSent Round 2
dataset, GPT-4o-mini saw some benefit. Including
just the ELECTRA Large predicted label produced
a mean macro F1 of 78.73. Adding examples in-
creased the mean macro F1 to 79.50 (+0.77), and
balanced examples increased it to 79.87 (+1.14).

Sharing Probabilities. Using probabilities in-
stead of (or in addition to) the predicted label was
mostly the same or worse than using the label alone.
However, similar to using examples, the more chal-
lenging datasets saw some benefit. For DynaSent
Round 2, GPT-4o-mini had a mean macro F1 of
78.73 with just the ELECTRA Large predicted la-
bel. Using probabilities instead changed it to 79.41,
and using the label with probabilities increased it
to 79.98. A similar minor improvement was seen
with SST on this dataset.

Datasets. Performance also varied across
datasets. GPT-4o FT-M achieved the top scores
on DynaSent R1 (90.57 mean macro F1) and Dy-
naSent R2 (89.00). Surprisingly, GPT-4o-mini FT—
the smaller model—performed best on SST-3 with
a 75.83 mean macro F1, exceeding even GPT-4o
FT’s performance of 73.99.

Cost. The most cost-effective approach was
ELECTRA Base FT with GPT-4o-mini (not fine-
tuned) at $0.12 per F1 point. GPT-4o-mini FT
provided a good compromise at $0.38 per F1 point,
while GPT-4o FT-L with ELECTRA Large FT
proved most expensive at $4.55 per F1 point.

7 Analysis

H1. Sharing predictions would boost perfor-
mance. The significant improvement in GPT-4o-
mini’s performance when augmented with ELEC-
TRA Base FT or Large FT predictions strongly
supports H1. We also saw a similar boost for GPT-
4o with ELECTRA Large FT predictions.

However, following ELECTRA’s predictions
had mixed results. When GPT-4o-mini changed
its decision and followed ELECTRA Base FT in
round one, it was correct 548 times and wrong
412 times (+136 net improvement, 57.08% suc-
cess rate). When GPT-4o changed its decision and
followed ELECTRA Large FT, it was correct 521
times and wrong 481 times (+40 net improvement,
52% success rate).

Most of the improvement was in the neutral
and positive classes (see Figure 4). There was
barely any improvement in the negative class, but
importantly—it didn’t worsen. ELECTRA Base FT
had more than double the incorrect negative predic-
tions, but GPT-4o-mini did not follow them. The
negative class was 21.46% of the Merged dataset,
so ELECTRA may not have learned it well. Con-
versely, GPT-4o followed more of the negative pre-
dictions, and performance suffered.

DynaSent R1 was the dominant source of the
Merged dataset (80,488 samples, or 78.83%), and
saw the most improvement. It could be that ELEC-
TRA learned this dataset the most, but it also repre-
sented less challenging reviews.

H2. Improvement would be less for fine-tuned
GPTs. H2 was supported more strongly than an-
ticipated. For a fine-tuned GPT model, including
the ELECTRA prediction actually decreased per-
formance (see Figure 1). Initially, we thought this
was because the fine-tuning context did not include
the ELECTRA prediction in the prompt. But we
still saw a decrease in performance (although less)
when it was included.

GPT was trained to be a helpful chat assistant
that thinks through problems, evaluates informa-
tion critically, and synthesizes knowledge. When
presented with an ELECTRA prediction, it can de-
cide when to follow the prediction and when to
rely on its own judgment. In contrast, when fine-
tuned specifically for sentiment classification, the
model is optimized to map directly from input text
to sentiment labels, potentially bypassing the criti-
cal thinking that made the base model effective at
filtering ELECTRA’s suggestions.
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Figure 2: Mean Macro F1 Scores on Merged Dataset by Experiment

Figure 3: Impact of Context on Mean F1 Score

It may also be that it takes more time to learn
the nuances of when ELECTRA is right vs. wrong.
When we extended fine-tuning from 1 to 5 epochs,
GPT was better able to discriminate ELECTRA’s
predictions. The follow rate decreased from
96.34% to 89.66%, and the discrimination gap—
the difference between following correct and in-
correct predictions—went from 16.89% to 35.95%.
Although additional epochs improved performance,
it comes with a significant increase to the cost:
$207.64 to $251.17 vs. only $33.15 to just fine-
tune GPT-4o-mini—with better performance.

H3. Format of prediction would impact per-

Figure 4: Incorrect Predictions by Label (Round 1)

formance. Although using the predicted label
alone was best, GPT-4o-mini saw more variabil-
ity in performance between the different contexts,
as shown in Figure 3. However, for GPT-4o, there
was not much of a difference when looking at the
mean change in F1 score.

H4. Including examples would improve per-
formance. Contrary to this hypothesis, including
examples did not improve performance for either
GPT-4o-mini or GPT-4o when looking at the mean
change in F1 score. It either had no effect (GPT-4o)
or actually decreased performance (GPT-4o-mini).
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8 Conclusion

This research investigated collaborative approaches
to sentiment classification between bidirectional
transformers and LLMs. Our results show that
augmenting prompts with predictions from a fine-
tuned ELECTRA can significantly improve per-
formance when the GPT model is not fine-tuned—
up to +4.39 points of gain in the mean macro F1
score. Including probabilities or similar examples
improved performance slightly on the more chal-
lenging datasets. However, this collaborative ben-
efit disappeared when the GPT models were fine-
tuned.

It is possible that the fine-tuning process hinders
the critical thinking that’s present in the default
GPT models. Fine-tuning over more epochs im-
proves the situation—GPT gets smarter about when
to follow ELECTRA vs. when to ignore it. How-
ever, this comes at a significant cost increase—six
to seven times the cost of fine-tuning GPT-4o-mini
alone, and the performance is still not comparable.

Our findings offer several cost-effective paths
for sentiment analysis projects. For organizations
that can fine-tune via API, GPT-4o-mini FT offers
nearly equivalent performance to GPT-4o FT-M
(86.70 vs 86.99 mean macro F1) at 76% lower
cost ($0.38 vs $1.59/F1 point). For those with
data privacy concerns or resource constraints, GPT-
4o-mini with ELECTRA Base FT had the best
cost/performance ratio ($0.12/F1 point). Projects
that need to stay completely local can fine-tune
ELECTRA Large, which outperformed both base
GPT models.

Future work could explore optimization of
inference-time prompts through DSPy, and alter-
nate System role instructions during fine-tuning.
In addition, this collaborative approach could be
extended to different datasets/domains, classifica-
tion tasks, and model pairings. There may also be
potential for including multiple predictions from
an ensemble of models. A new collaborative sce-
nario would be fine-tuning GPTs on the ELECTRA
output representations.

9 Limitations

The cost/performance evaluation only considered
the fine-tuning costs to achieve the reported macro
F1 on the test set. In practice, there may be ongoing
costs for inference time API calls for hosted GPT
models. The time and cost required to fine-tune
different datasets will vary, and this will affect the

relative cost/performance differences.
Our research was limited to GPT-4o and GPT-

4o-mini from OpenAI, but there are many GPT-
style models available. Some of these are open
source and can be fine-tuned locally or on hosted
compute resources, such as Llama 2 or 3 from Meta
(Touvron et al., 2023; Dubey et al., 2024). The cost
of fine-tuning an open source GPT model without
API fees was not evaluated.

Resource and time constraints prevented us from
exploring every possible collaborative scenario.
Once we saw ELECTRA Large FT performed bet-
ter than ELECTRA Base FT, we only evaluated the
output from Large in the different prompt contexts
for both GPT-4o and GPT-4o-mini.

Many experimental runs involved prompting the
GPT models, and these prompts could be further
optimized with frameworks like DSPy. Some of the
prompts are verbose, and these additional tokens
could dilute the signal of the ELECTRA context.

Although we quantified changes in GPT clas-
sification decisions before and after ELECTRA
predictions were included, we did not have time
to thoroughly explore why the ELECTRA predic-
tion was ignored in some cases, but followed in
others. Future research could prompt the model to
explain their decision, and the responses could be
analyzed. This additional instruction would likely
affect the classification decision—similar to Chain
of Thought (Wei et al., 2022)—and would be a new
experimental scenario.

We tried to give the GPT models a chance to
learn when ELECTRA was right or wrong dur-
ing fine-tuning (GPT-4o FT-L, GPT-4o-mini FT-L).
There may be a more direct way of fine-tuning
GPT so that it learns when to trust ELECTRA’s
prediction, and when to decide for itself.

The data used for this research was a merge of
movie and business reviews from SST-3 and Dy-
naSent R1/R2. The majority of the reviews were
written in English and relatively short in length. As-
sessing generalization to other domains, languages
and longer lengths would require future research.
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A Results of Individual Runs

Table 7: Round 1 Results

Merged DynaSent R1 DynaSent R2 SST-3 Cost ($)

ID GPT1 ELECTRA Description F1 Acc F1 Acc F1 Acc F1 Acc FT /F1

B1 — Base Baseline, Classifier head 69.65 69.83 70.96 71.28 61.59 61.67 60.85 70.14 0.65 0.01
B2 — Large Baseline, Classifier head 67.88 68.06 69.72 70.06 59.78 59.72 57.68 67.51 2.51 0.04
B3 4o-mini — Baseline (Zero shot) 79.52 80.34 81.12 81.00 77.35 77.92 70.67 80.05 — —
B4 4o — Baseline (Zero shot) 80.14 80.74 81.12 80.94 80.22 80.56 72.20 80.45 — —

E1 — Base FT Fine-tune all layers 79.29 79.69 82.10 82.14 71.83 71.94 69.95 78.24 9.73 0.12
E2 — Large FT Fine-tune all layers 82.36 82.96 85.91 85.83 76.29 76.53 70.90 80.36 53.26 0.65

E3 4o-mini Base FT Prompt, Label 82.74 83.35 86.50 86.44 76.19 76.53 71.72 80.54 9.73 0.12
E4 4o-mini Large FT Prompt, Label 83.49 84.21 87.52 87.47 77.94 78.47 70.99 80.77 53.26 0.64
E5 4o-mini Large FT Prompt, Label, Examples (Few shot) 83.20 83.80 86.74 86.64 78.71 79.03 71.98 80.72 53.26 0.64
E6 4o-mini Large FT Prompt, Label, Balanced Ex. (Few shot) 82.68 83.28 85.84 85.69 79.61 80.00 71.45 80.41 53.26 0.64
E7 4o-mini Large FT Prompt, Probs 83.01 83.60 86.44 86.36 78.92 79.17 71.53 80.54 53.26 0.64
E8 4o-mini Large FT Prompt, Label, Probs 83.43 84.12 87.02 86.94 79.72 80.14 71.03 80.81 53.26 0.64
E9 4o-mini Large FT Prompt, Label, Probs, Examples 82.91 83.54 86.15 86.06 78.69 79.03 71.49 80.90 53.26 0.64

E10 4o-mini FT — Fine-tune w/prompt 86.77 87.26 89.86 89.75 86.90 87.08 75.68 83.26 33.15 0.38
E11 4o-mini FT 5 — Fine-tune w/prompt (5 epochs) 84.95 85.27 87.83 87.67 85.93 85.97 75.60 81.13 165.75 1.95
E12 4o-mini FT-M — Minimal fine-tune 86.55 87.00 89.70 89.58 86.97 87.08 75.62 82.76 16.60 0.19
E13 4o-mini FT Base FT Prompt, Label, FT w/prompt 81.42 81.90 84.77 84.78 74.49 74.72 70.95 79.55 42.88 0.53
E14 4o-mini FT-L Base FT Prompt, Label, FT w/prompt, label 82.02 82.53 85.24 85.11 78.15 78.47 71.68 79.64 49.31 0.60
E15 4o-mini FT-L 5 Base FT Prompt, Label, FT w/prompt, label (5 epochs) 83.88 84.27 86.74 86.61 81.62 81.81 75.00 81.27 207.64 2.48
E16 4o-mini FT Large FT Fine-tune w/prompt 84.00 84.58 87.65 87.58 80.37 80.69 72.46 80.95 86.41 1.03
E17 4o-mini FT-L Large FT Fine-tune w/prompt, label 84.16 84.70 87.65 87.56 80.89 81.11 73.29 81.22 92.84 1.10
E18 4o-mini FT-L 5 Large FT Fine-tune w/prompt, label (5 epochs) 84.87 85.25 87.87 87.75 83.80 83.89 75.58 81.63 251.17 2.96

E19 4o Large FT Prompt, Label 83.18 83.68 85.71 85.56 81.98 82.22 73.44 81.09 53.26 0.64
E20 4o Large FT Prompt, Label, Examples (Few shot) 83.09 83.66 86.01 85.86 81.53 81.81 72.06 80.68 53.26 0.64
E21 4o Large FT Prompt, Label, Balanced Ex. (Few shot) 82.99 83.55 85.87 85.69 80.89 81.11 72.15 80.86 53.26 0.64
E22 4o Large FT Prompt, Probs 82.65 83.25 86.05 85.97 77.67 77.92 71.16 80.54 53.26 0.64
E23 4o Large FT Prompt, Label, Probs 83.08 83.71 86.44 86.33 79.23 79.58 71.48 80.77 53.26 0.64
E24 4o Large FT Prompt, Label, Probs, Examples 82.74 83.35 86.32 86.22 77.76 78.06 70.98 80.41 53.26 0.64

E25 4o FT — Fine-tune w/prompt 86.83 87.43 90.44 90.36 88.34 88.47 73.08 82.31 276.24 3.18
E26 4o FT-M — Minimal fine-tune 86.99 87.57 90.57 90.50 89.00 89.17 73.99 82.26 138.37 1.59
E27 4o FT Large FT Fine-tune w/prompt 83.82 84.47 87.80 87.72 79.49 79.86 71.18 80.68 329.50 3.93
E28 4o FT-L Large FT Fine-tune w/prompt, label 84.23 84.82 87.74 87.64 80.55 80.83 72.63 81.54 383.10 4.55

Table 8: Round 2 Results

Merged DynaSent R1 DynaSent R2 SST-3 Cost ($)

ID GPT1 ELECTRA Description F1 Acc F1 Acc F1 Acc F1 Acc FT /F1

B1 — Base Baseline, Classifier head 69.37 69.57 70.75 71.11 61.19 61.25 60.34 69.77 0.65 0.01
B2 — Large Baseline, Classifier head 67.99 68.15 69.67 70.03 59.78 59.72 58.21 67.83 2.51 0.04
B3 4o-mini — Baseline (Zero shot) 79.29 80.15 81.19 81.08 76.69 77.36 69.30 79.55 — —
B4 4o — Baseline (Zero shot) 79.80 80.47 80.77 80.61 80.05 80.42 71.96 80.27 — —

E1 — Base FT Fine-tune all layers 78.98 79.46 82.13 82.19 69.51 69.72 68.13 78.19 9.73 0.12
E2 — Large FT Fine-tune all layers 83.16 83.71 86.53 86.44 78.36 78.61 72.63 80.91 53.26 0.64

E3 4o-mini Base FT Prompt, Label 82.26 82.92 86.29 86.25 74.47 74.86 70.03 80.14 9.73 0.12
E4 4o-mini Large FT Prompt, Label 84.10 84.73 87.90 87.83 79.52 79.86 72.54 81.27 53.26 0.63
E5 4o-mini Large FT Prompt, Label, Examples (Few shot) 83.63 84.18 87.13 87.03 80.29 80.56 72.68 80.72 53.26 0.64
E6 4o-mini Large FT Prompt, Label, Balanced Ex. (Few shot) 83.28 83.81 86.71 86.58 80.12 80.42 72.51 80.41 53.26 0.64
E7 4o-mini Large FT Prompt, Probs 83.53 84.07 86.76 86.67 79.89 80.14 72.98 81.13 53.26 0.64
E8 4o-mini Large FT Prompt, Label, Probs 83.88 84.47 87.41 87.33 80.23 80.56 72.53 81.09 53.26 0.64
E9 4o-mini Large FT Prompt, Label, Probs, Examples 83.46 84.03 87.00 86.89 79.28 79.58 72.39 80.81 53.26 0.64

E10 4o-mini FT — Fine-tune w/prompt 86.62 87.09 89.44 89.33 87.08 87.22 75.98 83.39 33.15 0.38
E11 4o-mini FT 5 — Fine-tune w/prompt (5 epochs) 84.76 85.07 87.64 87.47 86.50 86.53 75.15 80.68 165.75 1.96
E12 4o-mini FT-M — Minimal fine-tune 86.47 86.89 89.44 89.31 87.28 87.36 75.86 82.81 16.60 0.19
E13 4o-mini FT Base FT Prompt, Label, FT w/prompt 80.69 81.24 84.57 84.58 71.62 71.94 68.45 78.82 42.88 0.53
E14 4o-mini FT-L Base FT Prompt, Label, FT w/prompt, label 81.65 82.25 85.15 85.03 76.43 76.81 69.71 79.50 49.31 0.60
E15 4o-mini FT-L 5 Base FT Prompt, Label, FT w/prompt, label (5 epochs) 83.46 83.89 86.02 85.89 80.75 80.97 75.04 81.58 207.64 2.49
E16 4o-mini FT Large FT Fine-tune w/prompt 83.87 84.44 87.49 87.42 79.97 80.28 72.46 80.95 86.41 1.03
E17 4o-mini FT-L Large FT Fine-tune w/prompt, label 84.07 84.59 87.51 87.42 80.61 80.83 73.38 81.22 92.84 1.10
E18 4o-mini FT-L 5 Large FT Fine-tune w/prompt, label (5 epochs) 84.79 85.15 87.63 87.50 84.94 85.00 75.59 81.36 251.17 2.96

E19 4o Large FT Prompt, Label 83.20 83.69 85.71 85.56 82.13 82.36 73.52 81.09 53.26 0.64
E20 4o Large FT Prompt, Label, Examples (Few shot) 83.48 84.00 86.21 86.06 81.43 81.67 73.85 81.40 53.26 0.64
E21 4o Large FT Prompt, Label, Balanced Ex. (Few shot) 83.38 83.89 86.14 85.97 81.18 81.39 73.61 81.31 53.26 0.64
E22 4o Large FT Prompt, Probs 83.32 83.87 86.68 86.58 79.16 79.44 72.63 80.90 53.26 0.64
E23 4o Large FT Prompt, Label, Probs 83.54 84.10 86.93 86.81 79.69 80.00 72.85 81.04 53.26 0.64
E24 4o Large FT Prompt, Label, Probs, Examples 83.34 83.89 86.73 86.61 79.18 79.44 72.68 80.90 53.26 0.64

E25 4o FT — Fine-tune w/prompt 86.74 87.32 90.48 90.42 87.94 88.06 73.09 82.04 276.24 3.18
E26 4o FT-M — Minimal fine-tune 86.99 87.57 90.57 90.50 89.00 89.17 73.99 82.26 138.37 1.59
E27 4o FT Large FT Fine-tune w/prompt 84.24 84.84 87.99 87.89 80.52 80.83 72.81 81.18 329.50 3.91
E28 4o FT-L Large FT Fine-tune w/prompt, label 84.50 85.04 87.87 87.75 82.01 82.22 73.56 81.54 383.10 4.53

Bold = best overall, highlighted = best in section
1 GPT fine-tuning types: FT = fine-tune all layers with prompt, FT-M = minimal fine-tune format without prompt, FT-L = fine-tune with prompt including ELECTRA

label, FT 5 = fine-tune for 5 epochs
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B ELECTRA Fine-tuning Details

Table 9: ELECTRA Fine-Tune Configuration

Setting ELECTRA Base FT ELECTRA Large FT

Source Hugging Face Hugging Face
Source Model ID google/electra-base-discriminator google/electra-large-discriminator
Encoder Blocks 12 24
Embedding Dimension 768 1024
Attention Heads 12 16
Feedforward Size 3072 4096
Parameters 110 Million 335 Million

Custom Pooling Layer Method Mean Mean
Classifier Head Hidden Layers 2 2
Classifier Head Hidden Dimension 1024 1024
Classifier Head Hidden Activation SwishGLU SwishGLU

Finetuned Encoder Blocks 12 24
Total Layers 104 200
Total Parameters 112,830,979 338,293,763
Trainable Parameters 100% 100%

Learning Rate 1e−5 1e−5

Learning Rate Decay 0.95 0.95
Batch Size 16 16
Accumulation Steps 2 2
Target Epochs 50 50
Actual Epochs 20 23
Selected Best Epoch 14 13
Dropout Rate 0.30 0.30
L2 Strength 0.01 0.01
Optimizer AdamW AdamW
Zero Redundancy Yes Yes
Scheduler CosineAnnealingWarmRestarts CosineAnnealingWarmRestarts
Scheduler: T_0 5 5
Scheduler: T_mult 1 1
Scheduler: eta_min 1e−7 1e−7

Early Stop Validation F1 Score Validation F1 Score
N Iterations No Change 10 10

Dataset Merged (Dyn R1, Dyn R2, SST-3) Merged (Dyn R1, Dyn R2, SST-3)
Train Size 102,097 102,097
Train Label Distribution Neu: 49,148, Pos: 31,039, Neg: 21,910 Neu: 49,148, Pos: 31,039, Neg: 21,910
Validation Size 5,421 5,421
Validation Label Distribution Neu: 1,669, Pos: 1,884, Neg: 1,868 Neu: 1,669, Pos: 1,884, Neg: 1,868

Hosting Provider Lambda Labs Lambda Labs
GPU Type Tesla V100 A100
GPU Memory 16 GB 40 GB
GPU Quantity 8 8
Rate $4.40/hour $10.32/hour
Training Time (Up to Selected Epoch) 02:12:44 05:09:23
Training Time (Total) 03:09:40 09:23:29
Cost (Up to Selected Epoch) $9.73 $53.26
Cost (Total) $13.91 $96.92
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D OpenAI Fine-tuning Templates

Table 11: FT-M: Minimal Template for Fine-tuning

Role Content

System “You are a model that classifies the sentiment of a review as either ‘positive’, ‘neutral’, or ‘negative’.”
User “Those 2 drinks are part of the HK culture and has years of history. It is so bad.”
Assistant “negative”

Table 12: FT: Prompt Template for Fine-tuning

Role Content

System “You are a sentiment analysis assistant.”
User “Classify the sentiment of a review as either ‘negative’, ‘neutral’, or ‘positive’.\n—\n\nFollow the

following format.\n\nReview: The review text to classify.\nClassification: One word representing
the sentiment classification: ‘negative’, ‘neutral’, or ‘positive’ (do not repeat the field name, do not
use ‘mixed’)\n\n—\n\nReview: Those 2 drinks are part of the HK culture and has years of history. It is
so bad.\nClassification:”

Assistant “negative”

Table 13: FT-L: Prompt with Predicted Label Template for Fine-tuning

Role Content

System “You are a sentiment analysis assistant.”
User “Classify the sentiment of a review as either ‘negative’, ‘neutral’, or ‘positive’.\n—\n\nFollow the

following format.\n\nReview: The review text to classify.\nClassifier Decision: The sentiment classi-
fication proposed by a model fine-tuned on sentiment.\nClassification: One word representing the
sentiment classification: ‘negative’, ‘neutral’, or ‘positive’ (do not repeat the field name, do not use
‘mixed’)\n\n—\n\nReview: Those 2 drinks are part of the HK culture and has years of history. It is so
bad.\nClassifier Decision: negative\nClassification:”

Assistant “negative”
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E DSPy Prompt Signature Examples

Figure 5: Basic Prompt DSPy Signature

Classify the sentiment of a review as either ’negative’, ’neutral’, or ’positive’.

---

Follow the following format.

Review: The review text to classify.
Classification: One word representing the sentiment classification: ’negative’, ’neutral’, or ’positive’
(do not repeat the field name, do not use ’mixed’).

---

Review: Those 2 drinks are part of the HK culture and has years of history. It is so bad.
Classification:

Figure 6: Prompt with Predicted Label DSPy Signature

Classify the sentiment of a review as either ’negative’, ’neutral’, or ’positive’.

---

Follow the following format.

Review: The review text to classify.
Classifier Decision: The sentiment classification proposed by a model fine-tuned on sentiment.
Classification: One word representing the sentiment classification: ’negative’, ’neutral’, or ’positive’
(do not repeat the field name, do not use ’mixed’)

---

Review: I was told by the repair company that was doing the car repair that fixing the rim was
"impossible" and to replace it.
Classifier Decision: negative
Classification:
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Figure 7: Prompt with Probabilities DSPy Signature

Classify the sentiment of a review as either ’negative’, ’neutral’, or ’positive’.

---

Follow the following format.

Review: The review text to classify.

Negative Probability: Probability the review is negative from a model fine-tuned on sentiment

Neutral Probability: Probability the review is neutral from a model fine-tuned on sentiment

Positive Probability: Probability the review is positive from a model fine-tuned on sentiment

Classification: One word representing the sentiment classification: ’negative’, ’neutral’, or ’positive’
(do not repeat the field name, do not use ’mixed’)

---

Review: Those 2 drinks are part of the HK culture and has years of history. It is so bad.

Negative Probability: 99.85%

Neutral Probability: 0.04%

Positive Probability: 0.12%

Classification:

Figure 8: Prompt with Predicted Label and Probabilities DSPy Signature

Classify the sentiment of a review as either ’negative’, ’neutral’, or ’positive’.

---

Follow the following format.

Review: The review text to classify.

Classifier Decision: The sentiment classification proposed by a model fine-tuned on sentiment.

Negative Probability: Probability the review is negative

Neutral Probability: Probability the review is neutral

Positive Probability: Probability the review is positive

Classification: One word representing the sentiment classification: ’negative’, ’neutral’, or ’positive’
(do not repeat the field name, do not use ’mixed’)

---

Review: Those 2 drinks are part of the HK culture and has years of history. It is so bad.

Classifier Decision: negative

Negative Probability: 99.85%

Neutral Probability: 0.04%

Positive Probability: 0.12%

Classification:
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Figure 9: Top Examples DSPy Signature

Classify the sentiment of a review as either ’negative’, ’neutral’, or ’positive’.

---

Follow the following format.

Examples: A list of examples that demonstrate different sentiment classes.

Review: The review text to classify.

Classifier Decision: The sentiment classification proposed by a model fine-tuned on sentiment.

Classification: One word representing the sentiment classification: ’negative’, ’neutral’, or ’positive’
(do not repeat the field name, do not use ’mixed’)

---

Examples:
- negative: We’ve been to about 5 or 6 other Verizon stores in Vegas, and they all give us a hard time
about everything and never solve any issue.
- negative: Then Raj then had the balls to send me an email after my box was closed to tell me they were
ready to receive the key for my mailbox after closing it.!
- negative: Always and issue here even with take out orders.
- negative: SHOULD YOU HAVE ANY DISPUTE, THEY IMMEDIATELY WILL THREATEN YOU WITH MECHANICS LIENS.
- negative: We were waiting for them to get our order out, but the lady came out and gave the car behind
us their order first!

Review: I went back in to ask for cilantro dressing the shift leader even smile or greet me.

Classifier Decision: negative

Classification:

Figure 10: Balanced Examples DSPy Signature

Classify the sentiment of a review as either ’negative’, ’neutral’, or ’positive’.

---

Follow the following format.

Examples: A list of examples that demonstrate different sentiment classes.

Review: The review text to classify.

Classifier Decision: The sentiment classification proposed by a model fine-tuned on sentiment.

Classification: One word representing the sentiment classification: ’negative’, ’neutral’, or ’positive’
(do not repeat the field name, do not use ’mixed’)

---

Examples:
- negative: Beware of all the fake 5 star reviews of this place, just take a look at these people.
- negative: 3- girls look even cheaper than the club.
- neutral: Not to mention the esso across the street also has cheaper gas.
- neutral: I wish that they would open up by 6am so that I can pick up a coffee or tea before work, but
what boba place is opened that early?
- positive: The plumbers did not give up and continued to work on the drain for two days.
- positive: This is my 6th gun to add to my collection and if I had not wanted it so bad, I would have
walked out 2 minutes after walking in.

Review: She greeted customers by holding the scanner toward them without even looking.

Classifier Decision: negative

Classification:
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Figure 11: All Context DSPy Signature

Classify the sentiment of a review as either ’negative’, ’neutral’, or ’positive’.

---

Follow the following format.

Examples: A list of examples that demonstrate different sentiment classes.

Review: The review text to classify.

Classifier Decision: The sentiment classification proposed by a model fine-tuned on sentiment.

Negative Probability: Probability the review is negative

Neutral Probability: Probability the review is neutral

Positive Probability: Probability the review is positive

Classification: One word representing the sentiment classification: ’negative’, ’neutral’, or ’positive’
(do not repeat the field name, do not use ’mixed’)

---

Examples:
- negative: The only negative I can think for this place is it’s price-point.
- positive: This place will be the death of my waist (but not my wallet).
- negative: Expensive, if you are looking for something more affordable, don’t go here; you will miss

the best dishes.
- positive: Thank you so much for dealing with my crabby ass
- positive: I think I scarfed it down so quickly because it was that good! It was bad.

Review: The gentleman staffing the bar seemed a bit gruff, but a good caffeine fix will help me forgive
even the orneriest grump.

Classifier Decision: negative

Negative Probability: 84.37%

Neutral Probability: 0.53%

Positive Probability: 15.10%

Classification:
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Abstract

Retrieving temporal event sequences from tex-
tual descriptions is crucial for applications such
as analyzing e-commerce behavior, monitor-
ing social media activities, and tracking crim-
inal incidents. To advance this task, we in-
troduce TESRBench, a comprehensive bench-
mark for temporal event sequence retrieval
(TESR) from textual descriptions. TESRBench
includes diverse real-world datasets with syn-
thesized and reviewed textual descriptions, pro-
viding a strong foundation for evaluating re-
trieval performance and addressing challenges
in this domain. Building on this benchmark,
we propose TPP-Embedding, a novel model
for embedding and retrieving event sequences.
The model leverages the TPP-LLM framework,
integrating large language models (LLMs) with
temporal point processes (TPPs) to encode both
event texts and times. By pooling representa-
tions and applying a contrastive loss, it unifies
temporal dynamics and event semantics in a
shared embedding space, aligning sequence-
level embeddings of event sequences and their
descriptions. TPP-Embedding demonstrates su-
perior performance over baseline models across
TESRBench datasets, establishing it as a pow-
erful solution for the temporal event sequence
retrieval task.

1 Introduction

Temporal event sequence retrieval (Gupta et al.,
2022) plays a crucial role in various applications,
such as e-commerce user activity analysis, social
media monitoring, and crime tracking. These se-
quences combine temporal information with event
types, making them more complex than traditional
text data. Effective retrieval requires models ca-
pable of capturing both time-sensitive dynamics
and structured relationships within the sequences.
While traditional language models perform well for
general text retrieval (Kashyap et al., 2024), they

*These authors contributed equally to this work.
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Figure 1: TPP-Embedding framework with one TES-
RBench example, where the model embeds both tex-
tual descriptions and temporal event sequences using a
shared TPP-LLM framework, applies pooling to gen-
erate fixed-length representations, and uses contrastive
learning with similarity scores to align matching pairs
for effective event sequence retrieval.

often struggle to handle the unique temporal and
structural complexities of event sequences.

To address these challenges, we introduce TESR-
Bench1, a comprehensive benchmark for evaluating
temporal event sequence retrieval (TESR) from tex-
tual descriptions. TESRBench comprises diverse
real-world event sequence datasets with synthe-
sized and reviewed textual descriptions, offering a
strong foundation for benchmarking retrieval mod-
els. It highlights the complexities of aligning event
sequences with textual descriptions and provides a
standardized platform for evaluating model perfor-
mance, uncovering key challenges, and identifying
opportunities for improvement in temporal and con-
textual modeling.

Building on this benchmark, we propose TPP-
Embedding2, a novel framework for temporal
event sequence retrieval that extends the TPP-LLM

1Benchmark available on https://huggingface.
co/tppllm.

2GitHub repository available on https://github.
com/zefang-liu/TPP-Embedding.
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model (Liu and Quan, 2024). TPP-LLM integrates
temporal encoding for event times and textual em-
beddings for event types within a large language
model (LLM) backbone to model temporal point
processes (TPPs). Extending this framework, TPP-
Embedding aligns sequence-level representations
of event sequences and their textual descriptions
in a shared embedding space. By modeling the in-
terdependencies between events and their temporal
context, TPP-Embedding generates richer, contex-
tually informed embeddings optimized for retrieval
tasks. Evaluated across TESRBench datasets, TPP-
Embedding demonstrates superior performance
over text-based baselines and generalizes effec-
tively across different event domains.

In this paper, our key contributions are: (1) In-
troducing TESRBench, a benchmark for evaluating
TESR models with diverse datasets; (2) Proposing
TPP-Embedding, which integrates temporal and
event-type information for accurate event sequence
retrieval from descriptions; and (3) Showcasing the
scalability and flexibility of our approach through
multi-domain experiments.

2 Related Work

Recent developments in sentence representation
models, such as Sentence-BERT (Reimers and
Gurevych, 2019), have significantly improved re-
trieval tasks by enabling efficient semantic sim-
ilarity searches using transformer-based embed-
dings (Vaswani et al., 2017). While these models
perform well in standard text retrieval tasks (Lin
et al., 2022), they struggle with the temporal and
event-specific complexities of event sequence data.
To address these challenges, temporal point pro-
cess (TPP) models (Mei and Eisner, 2017; Shchur
et al., 2021; Xue et al., 2023) have been adapted
for retrieval tasks. NeuroSeqRet (Gupta et al.,
2022, 2023) introduces a neural framework for
continuous-time event sequence retrieval by lever-
aging marked TPPs to model temporal dynamics
and using a trainable unwarping function, neural
relevance models, and hashing techniques to opti-
mize retrieval efficiency. However, despite these
advancements, existing models either treat event
types as categorical inputs, limiting their ability
to capture rich event semantics, or treat entire se-
quences as text, ignoring their temporal dependen-
cies.

Recently, Liu and Quan (2024) proposed TPP-
LLM, a framework that integrates large language

models (LLMs) with TPPs to capture event se-
mantics and temporal dynamics for event sequence
modeling and prediction. While TPP-LLM focuses
on predicting future event types and times using
both textual and temporal information, our pro-
posed TPP-Embedding extends this framework to
the task of retrieving temporal event sequences
from textual descriptions. By introducing a shared
embedding space for sequences and descriptions
and employing contrastive learning, our model ef-
fectively aligns sequence-level representations with
natural language descriptions, enabling retrieval
while maintaining temporal and semantic depen-
dencies.

3 Benchmark

In this section, we present TESRBench, a com-
prehensive benchmark designed to evaluate tempo-
ral event sequence retrieval (TESR) from textual
descriptions. We provide an overview of its key
components, including detailed dataset summaries,
the methodology for generating event sequence de-
scriptions, and the evaluation process used to assess
the quality of these descriptions.

3.1 Dataset Summaries

TESRBench is built on five real-world datasets
from diverse domains: Stack Overflow, Chicago
Crime, NYC Taxi Trip, U.S. Earthquake, and Ama-
zon Review. Each dataset captures sequences of
event-based information within specific time peri-
ods but lacks accompanying textual sequence de-
scriptions. To address this, we generate textual
descriptions for these event sequences using GPT-
4o-mini (Achiam et al., 2023), creating objective
summaries that emphasize the order and timing of
events while preserving their essential structure.
Details of the description generation and evalua-
tion processes are provided in subsequent subsec-
tions. Examples of the data from TESRBench are
included in Appendix A for further reference.

The datasets in TESRBench span various do-
mains and offer rich opportunities for analysis.
Table 1 presents an overview of their key statis-
tics, using the same train/validation/test splits as
Liu and Quan (2024), which are detailed in Ta-
ble 2. The Stack Overflow (Stack Exchange,
Inc., 2024) dataset tracks non-tag-related badges
earned between January 2022 and December 2023,
comprising 3,336 sequences across 25 event types.
The Chicago Crime (Chicago Police Department,
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Dataset Domain # of Types # of Events # of Seq. Avg. Seq. Length Time Unit

Stack Overflow Social Networks 25 187,836 3,336 56.31 Month
Chicago Crime Urban Dynamics 20 202,333 4,033 50.17 Month
NYC Taxi Trip Transportation 8 362,374 2,957 122.55 Hour
U.S. Earthquake Natural Disasters 3 29,521 3,009 9.81 Day
Amazon Review E-Commerce 18 127,054 2,245 56.59 Week

Table 1: Dataset statistics overview of event sequences in TESRBench. (# = Number.)

Dataset Seq. Train Val. Test

Stack Overflow 3,336 2,668 334 334
Chicago Crime 4,033 3,226 403 404
NYC Taxi Trip 2,957 2,365 296 296
U.S. Earthquake 3,009 2,407 301 301
Amazon Review 2,245 1,796 224 225

Table 2: Numbers of sequences in train, validation, and
test sets of TESRBench datasets.

2024) dataset focuses on the top 20 crime types
and blocks with 30-120 incidents during the same
time period, yielding 4,033 sequences across 20
crime categories. The NYC Taxi Trip (Monroy-
Hernandez, 2014) dataset captures trips from May
1-7, 2013, excluding Staten Island, with 2,957
sequences across 8 location categories. The
U.S. Earthquake (U.S. Geological Survey, 2024)
dataset records 3,009 sequences of earthquake
events from January 2020 to December 2023, cate-
gorized into 3 magnitude levels. Finally, the Ama-
zon Review (Ni et al., 2019) dataset comprises
2,245 sequences of 40-200 reviews per user be-
tween January and June 2018, spanning 18 cate-
gories. Collectively, these datasets establish a ro-
bust foundation for evaluating models on diverse
temporal event sequence retrieval tasks.

3.2 Description Generation

To create textual descriptions for the event se-
quences in TESRBench, we employ a structured
process using GPT-4o-mini (Achiam et al., 2023).
The process begins with crafting a system message,
as illustrated in Figure 2, which guides GPT-4o-
mini to produce objective summaries that focus on
the order and timing of events. The instructions
explicitly avoid interpreting behaviors or including
specific numbers or timestamps, ensuring consis-
tency and objectivity in the generated summaries.
For each dataset, specific prompts are designed to
reflect the context of the event sequences, as de-
tailed in Table 3. These prompts present sequences
of events with timestamps and event types, format-
ted to highlight the unique characteristics of each

dataset. GPT-4o-mini processes these prompts and
generates concise textual descriptions that capture
key patterns and trends, providing an accurate sum-
mary of how events unfold over time. This ap-
proach ensures that the generated descriptions are
well-aligned with the underlying temporal and con-
textual dynamics of the event sequences.

System Message:
You are an expert in summarizing event se-
quences. Your task is to provide a 2-5 sen-
tence objective summary of the sequence’s
key patterns and trends without interpreting
any behaviors or motivations. Focus on the
sequence’s order and timing, emphasizing
how the events unfold over time. Describe
general trends such as whether certain event
types occur earlier or later, or if events clus-
ter in certain periods. Avoid including exact
numbers or timestamps.

Figure 2: Instructions for generating objective sum-
maries of event sequences, focusing on the order, timing,
and general trends without including specific numbers
or timestamps.

3.3 Description Evaluation
To evaluate the quality of the generated descrip-
tions for temporal event sequences, we establish a
set of assessment criteria and scoring scales. Lever-
aging LLMs as evaluators (Zheng et al., 2023), we
assess the descriptions across five key dimensions:
accuracy, coverage, fidelity, clarity, and concise-
ness. The definitions of these criteria, along with
their respective scoring scales, are outlined below:

• Accuracy: Does the description correctly rep-
resent the sequence of events, focusing on the
event types, their order, and timing? (1 = Com-
pletely inaccurate, 5 = Completely accurate)

• Coverage: Does the description include all
significant events and key details of the se-
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Dataset Description

Stack Overflow Here is a sequence of badges earned by a user on Stack Overflow, with relative timestamps (in
months) and badge names. Please provide a summary that describes the timing and order of
events:

{event_sequence}

Chicago Crime Here is a sequence of crime incidents reported at a block in Chicago, with relative timestamps (in
months) and crime types. Please provide a summary that describes the timing and order of events:

{event_sequence}

NYC Taxi Trip Here is a sequence of taxi trips taken by a driver in New York City, with relative timestamps
(in hours) and trip locations. Please provide a summary that describes the timing and order of
events:

{event_sequence}

U.S. Earthquake Here is a sequence of earthquake events in the U.S., with relative timestamps (in days) and
magnitude categories. Please provide a summary that describes the timing and order of events:

{event_sequence}

Amazon Review Here is a sequence of product reviews submitted by a user on Amazon, with relative timestamps
(in weeks) and review categories. Please provide a summary that describes the timing and order
of events:

{event_sequence}

Table 3: Overview of dataset-specific prompts, describing event sequences from various domains.

quence, without omitting critical information?
(1 = Very incomplete, 5 = Fully comprehen-
sive)

• Fidelity: To what extent does the description
capture and reflect the temporal relationships
and patterns (e.g., clustering, trends, or inter-
vals) in the event sequence? (1 = No temporal
fidelity, 5 = High temporal fidelity)

• Clarity: Is the description easy to understand,
with clear language and a logical structure that
aids comprehension? (1 = Very unclear, 5 =
Very clear)

• Conciseness: Does the description provide
the necessary information in a succinct man-
ner, avoiding unnecessary verbosity or redun-
dancy? (1 = Overly verbose or incomplete, 5
= Very concise and complete)

The averaged evaluation scores across datasets
are presented in Tables 4, 5, and 6, which report
the evaluation of event sequence descriptions us-
ing three evaluators: GPT-4o, GPT-4o-mini, and
Claude 3.5 Haiku. GPT-4o’s evaluation scores high-
light strong performance, particularly in clarity and
conciseness, while showing slightly lower scores in
accuracy, coverage, and fidelity compared to GPT-
4o-mini’s evaluation. GPT-4o-mini assigns consis-

tently high scores across all dimensions, indicating
a strong alignment with the generated descriptions.
Meanwhile, Claude 3.5 Haiku presents a different
evaluation pattern, demonstrating relatively strong
clarity and fidelity scores but notably lower cover-
age ratings. The varying assessments from these
evaluators provide complementary perspectives on
the quality of the descriptions, reinforcing their ef-
fectiveness in summarizing event sequences while
preserving key temporal and contextual relation-
ships. These results further emphasize the robust-
ness of the generated descriptions when assessed
across different evaluation frameworks.

Dataset Acc. Cov. Fid. Cla. Con.

StackOverflow 4.10 4.05 4.25 4.94 4.56
Crime 4.01 4.00 4.18 4.98 4.67
Taxi 4.44 4.03 4.46 4.89 4.36
Earthquake 4.36 4.31 4.42 4.96 4.95
Amazon 4.66 4.33 4.74 4.99 4.82

Table 4: Evaluation scores from GPT-4o for event se-
quence descriptions in TESRBench. (Acc. = Accuracy,
Cov. = Coverage, Fid. = Fidelity, Cla. = Clarity, Con. =
Conciseness.)

4 Methodology

In this section, we introduce TPP-Embedding, an
extension of TPP-LLM (Liu and Quan, 2024), de-
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Dataset Acc. Cov. Fid. Cla. Con.

StackOverflow 5.00 5.00 5.00 5.00 5.00
Crime 5.00 4.87 4.96 5.00 4.86
Taxi 5.00 4.99 4.99 5.00 4.99
Earthquake 4.99 4.99 4.85 5.00 4.93
Amazon 5.00 5.00 4.98 5.00 5.00

Table 5: Evaluation scores from GPT-4o-mini for event
sequence descriptions in TESRBench. (Acc. = Accu-
racy, Cov. = Coverage, Fid. = Fidelity, Cla. = Clarity,
Con. = Conciseness.)

Dataset Acc. Cov. Fid. Cla. Con.

StackOverflow 4.00 3.27 4.11 4.93 4.00
Crime 4.00 3.05 3.96 4.93 4.00
Taxi 4.00 3.00 3.84 4.84 4.00
Earthquake 4.11 3.32 4.22 4.95 4.00
Amazon 4.18 3.70 4.48 4.80 3.98

Table 6: Evaluation scores from Claude 3.5 Haiku for
event sequence descriptions in TESRBench. (Acc. =
Accuracy, Cov. = Coverage, Fid. = Fidelity, Cla. =
Clarity, Con. = Conciseness.)

signed to embed both event sequences and textual
descriptions into a shared embedding space, en-
abling effective retrieval based on similarity.

4.1 Model Architecture

Given a set of textual descriptions D =
{d1, d2, . . . , dm} and a set of temporal event
sequences S = {s1, s2, . . . , sn}, the task is
to retrieve the most relevant sequence s∗ ∈
S for a given description dj . Each event
sequence si consists of a series of events
{ei,1, ei,2, . . . , ei,ni}, where each event ei,j is
represented by an event time ti,j and an event
type ki,j . Thus, the sequence can be written
as si = {(ti,1, ki,1), (ti,2, ki,2), . . . , (ti,ni , ki,ni)}.
The goal is to embed both descriptions dj and event
sequences si into a shared embedding space for ef-
fective retrieval.

Embedding Event Sequences. As illustrated
by Figure 3, TPP-Embedding builds upon TPP-
LLM (Liu and Quan, 2024) by embedding event
sequences through the integration of temporal and
event-type representations. For each event ei,j ,
the temporal embedding is computed as ti,j =
ft(ti,j), where ft is a temporal encoding func-
tion (Zhang et al., 2020; Zuo et al., 2020). Each
event type text ki,j is tokenized by the large lan-
guage model (LLM) tokenizer and embedded us-
ing its embedding layer, resulting in Xi,j =
[xi,j,1,xi,j,2, . . . ,xi,j,nj ]. The temporal and type
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Figure 3: TPP-Embedding architecture, illustrating the
embedding process for a event sequence through the in-
tegration of temporal and text representations, followed
by processing with a large language model and a pooling
layer to generate a fixed-length sequence representation.

embeddings are concatenated to form the final
event representation Ei,j . These event embed-
dings are then passed through the LLM to ob-
tain hidden states Hi = [hi,1,hi,2, . . . ,hi,li ] =
LLM([Ei,1,Ei,2, . . . ,Ei,ni ]). Finally, a pooling
operation (Reimers and Gurevych, 2019) is applied
to produce a fixed-length representation of the se-
quence: si = Pool(Hi).

Embedding Descriptions. Textual descriptions
dj are embedded using the same LLM and tok-
enizer as the event sequences. The description is
tokenized and passed through the LLM, resulting
in hidden states. A pooling operation is then ap-
plied to obtain the final description embedding:
dj = Pool(LLM(dj)). By embedding descriptions
and sequences in the same space, TPP-Embedding
enables retrieval based on their similarity.

4.2 Training Objective

To align the embeddings of descriptions and their
corresponding event sequences, we employ a con-
trastive learning framework. Positive pairs (di, si)
consist of a description and its matching event se-
quence, while other sequences in the batch serve
as negatives. The cosine similarity between de-
scription and sequence embeddings is computed as
sim(di, sj) =

di·sj
∥di∥∥sj∥ . The training objective uses

a multiple negatives ranking loss (Henderson et al.,
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2017) to maximize similarity for positive pairs and
minimize it for negative pairs. The loss function is
given by:

L = − log
exp(sim(di, si))∑
j exp(sim(di, sj))

. (1)

This encourages the model to rank the correct event
sequence higher than incorrect ones for each de-
scription. To improve efficiency, we apply 4-bit
precision quantization (Dettmers et al., 2024) to
reduce memory usage and use low-rank adapta-
tion (LoRA) (Hu et al., 2021) to fine-tune a small
subset of parameters while keeping the rest frozen.
These enhancements allow for efficient fine-tuning
and deployment without compromising retrieval
performance.

5 Experiments

In this section, we present a detailed overview of
the baseline models used for comparison, the eval-
uation metrics employed, the experimental setup,
the results obtained, and the ablation studies con-
ducted.

5.1 Baselines

To enable evaluation with common embedding
models, we transform temporal event sequences
into a textual format by concatenating events within
a sequence. Each event is represented by its rela-
tive timestamp followed by the corresponding event
type text, separated by a comma. These events are
concatenated with line breaks, resulting in a sin-
gle textual representation for each event sequence.
This approach ensures that the temporal and seman-
tic information is preserved for text-based embed-
dings.

We compare TPP-Embedding against several
widely used embedding models: All-MiniLM-L12-
v2 (Wang et al., 2020), All-MPNet-Base-v2 (Song
et al., 2020), BGE-Large-En-v1.5 (Xiao et al.,
2023), MxbAI-Embed-Large-v1 (Li and Li, 2023;
Lee et al., 2024), Multilingual-E5-Large-Instruct
(Wang et al., 2024), and GTE-Qwen2-1.5B-instruct
(Li et al., 2023). These models are designed for gen-
erating sentence embeddings and are adapted here
for retrieving the most relevant event sequences
based on descriptions.

To ensure a fair comparison, all baseline models
are fine-tuned using a contrastive learning frame-
work. Specifically, we employ the multiple nega-
tives ranking loss (Henderson et al., 2017), which

treats a description and its corresponding event
sequence as a positive pair, while all other mis-
matched pairs within the batch are considered neg-
atives. This fine-tuning process aligns the em-
beddings of matching descriptions and sequences
while separating non-matching ones. In addi-
tion, Table 7 provides an overview of the total
parameters and trainable parameters for each base-
line model. While the baseline models (besides
Qwen2-1.5B) require fine-tuning all parameters,
TPP-Embedding models and Qwen2-1.5B leverage
LoRA for efficient fine-tuning.

Model Parameters Trainable

MiniLM-L12 33.4M 33.4M
MPNet-Base 109M 109M
BGE-Large 335M 335M
MxbAI-Large 335M 335M
mE5-Large 560M 560M
Qwen2-1.5B 1.5B 4.4M
TPP-Llama 1.1B 4.5M
TPP-Llama-Chat 1.1B 4.5M

Table 7: Numbers of total and trainable model parame-
ters. (M = Million, B = Billion.)

5.2 Evaluation Metrics

The temporal event sequence and description
matching task is framed as a retrieval problem,
where the model retrieves the correct event se-
quence for each description by ranking all event se-
quences based on their similarity to the description
embeddings. We evaluate retrieval quality using
two metrics: Mean Reciprocal Rank (MRR) and
Recall@K. MRR measures the ranking position of
the correct sequence, providing an average of re-
ciprocal ranks across all queries, while Recall@K
calculates the proportion of cases where the correct
sequence is included in the top K results.

5.3 Experimental Setups

For the baseline models (besides Qwen2-1.5B), we
use the AdamW optimizer (Loshchilov and Hutter,
2017), training for 15 epochs with a learning rate
of 2e-5, a cosine scheduler, a warmup ratio of 0.1,
and a batch size of 8. Qwen2-1.5B uses the same
LoRA and training settings as the TPP-Embedding
models described below.

TPP-Embedding integrates temporal positional
encoding for event times (Zuo et al., 2020), with
event type embeddings placed before the tempo-
ral embedding (Liu and Quan, 2024). Two foun-
dation models are employed: TinyLlama-1.1B-
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Intermediate-Step-1431k-3T (TPP-Llama) and
TinyLlama-1.1B-Chat-v1.0 (Zhang et al., 2024)
(TPP-Llama-Chat). We utilize all hidden states
with mean pooling (Reimers and Gurevych, 2019)
and apply 4-bit quantization (Dettmers et al., 2024).
LoRA (Hu et al., 2021) is used with a rank of 16
and dropout of 0.05, targeting the attention projec-
tion matrices. The model is trained for 25 epochs
with a learning rate of 4e-4, a cosine scheduler, a
warmup ratio of 0.02, and a batch size of 8. All
experiments are conducted five times, with aver-
age results reported. The experiments were run
on NVIDIA A100 and H100 GPUs. Additional
experimental setups are provided in Appendix B.

5.4 Experimental Results

The experimental results demonstrate the effective-
ness of our proposed models compared to tradi-
tional text-based embedding models. As shown in
Table 8, along with Figures 4 and 5, TPP-Llama
and TPP-Llama-Chat consistently outperform the
baselines across most datasets in terms of both
MRR and Recall@5. TPP-Llama achieves the
highest MRR and Recall@5 on Stack Overflow
and remains competitive across the benchmark ex-
cept for Amazon Review, while TPP-Llama-Chat
attains the best Recall@5 on U.S. Earthquake and
leads on Chicago Crime and NYC Taxi Trip in both
metrics. While Qwen2-1.5B demonstrates strong
performance on U.S. Earthquake and MPNet-Base
achieves the highest MRR on Amazon Review, the
TPP-based models exhibit superior generalization
across the majority of datasets. These results high-
light the advantage of the temporal and event-type-
aware design of TPP-Embedding, which effectively
captures the structure and dependencies within
event sequences compared to traditional models.

5.5 Multi-Domain Results

In real-world applications, it is often necessary
to retrieve event sequences that span different do-
mains, requiring models to handle various event
sequence types. Multi-domain retrieval refers to a
model’s ability to effectively process and retrieve
information across diverse datasets or domains si-
multaneously, rather than being specialized for a
single domain. To simulate such settings, we cre-
ated a multi-domain dataset by combining 30% of
the data from the five datasets. As shown in Table
9, Qwen2-1.5B achieves the highest MRR, while
TPP-Llama-Chat attains the best Recall@5. Al-
though Qwen2-1.5B performs strongly, TPP-Llama

and TPP-Llama-Chat achieve competitive retrieval
effectiveness, particularly excelling in Recall@5,
which is crucial for practical multi-domain retrieval
scenarios. These results highlight the robustness
of TPP-Embedding in retrieving diverse event se-
quences and its ability to generalize effectively
across multiple domains, making it a strong choice
for real-world applications.

5.6 Ablation Studies
In this subsection, we perform ablation studies to
evaluate the effects of various model configurations
on event sequence retrieval performance.

5.6.1 Embedding Inclusions
We conduct an ablation study to assess the impact
of using only temporal tokens or only type (tex-
tual) tokens on retrieval performance. As shown
in Table 10, using only textual tokens achieves per-
formance comparable to using all tokens on the
Stack Overflow dataset. However, this approach
leads to a significant performance drop on the U.S.
Earthquake dataset, likely due to the nature of the
datasets: Stack Overflow includes 25 event types,
allowing the model to rely primarily on textual con-
tents, whereas the U.S. Earthquake dataset contains
only 3 event types, making temporal information
essential for accurate retrieval.

5.6.2 Hidden State Selections
We evaluate the impact of different hidden state se-
lections from the last hidden layer of the model for
event sequences, specifically choosing only tem-
poral tokens, a combination of temporal tokens
and the last token of event type text tokens for each
event, or all tokens. As shown in Table 11, using all
tokens generally provides strong results, achieving
the highest MRR on the StackOverflow dataset and
the highest Recall@5 on the Earthquake dataset.
While selecting temporal tokens and the last type
tokens slightly improves MRR on the Earthquake
dataset, using only temporal tokens lags behind
both strategies on both datasets. Overall, choosing
all tokens yields consistently good performance.

5.6.3 Pooling Modes
In experiments with different pooling modes as Ta-
ble 12, we observe that the mean pooling method
consistently performs well, achieving the highest
MRR and Recall@5 on the StackOverflow dataset.
However, for the Earthquake dataset, last token
pooling (Muennighoff, 2022) slightly outperforms
mean pooling. Max pooling shows competitive

43



Model StackOverflow Crime Taxi Earthquake Amazon

MiniLM-L12 0.501 / 0.695 0.808 / 0.931 0.159 / 0.239 0.676 / 0.895 0.459 / 0.573
MPNet-Base 0.620 / 0.775 0.924 / 0.980 0.246 / 0.364 0.733 / 0.923 0.665 / 0.756
BGE-Large 0.632 / 0.786 0.922 / 0.985 0.286 / 0.415 0.736 / 0.928 0.656 / 0.746

MxbAI-Large 0.627 / 0.782 0.924 / 0.982 0.271 / 0.426 0.717 / 0.914 0.650 / 0.747
mE5-Large 0.658 / 0.804 0.941 / 0.987 0.261 / 0.389 0.748 / 0.921 0.617 / 0.716

Qwen2-1.5B 0.660 / 0.804 0.921 / 0.982 0.448 / 0.662 0.770 / 0.950 0.629 / 0.756
TPP-Llama 0.741 / 0.880 0.958 / 0.992 0.468 / 0.680 0.760 / 0.946 0.641 / 0.763

TPP-Llama-Chat 0.729 / 0.865 0.961 / 0.994 0.475 / 0.691 0.759 / 0.953 0.646 / 0.767

Table 8: Comparison of average MRR and Recall@5 across TESRBench datasets in event sequence retrieval.
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Figure 4: Comparison of average MRRs with standard deviations on TESRBench in event sequence retrieval.

MiniL
M-L1

2

MPN
et-

Base

BG
E-L

arg
e

Mxb
AI-L

arg
e

mE5
-La

rge

Qwen
2-1

.5B

TP
P-

Lla
ma

TP
P-

Lla
ma-C

ha
t

0.6

0.7

0.8

0.9

Re
ca

ll@
5

(a) Stack Overflow

MiniL
M-L1

2

MPN
et-

Base

BG
E-L

arg
e

Mxb
AI-L

arg
e

mE5
-La

rge

Qwen
2-1

.5B

TP
P-

Lla
ma

TP
P-

Lla
ma-C

ha
t

0.900

0.925

0.950

0.975

1.000

Re
ca

ll@
5

(b) Chicago Crime

MiniL
M-L1

2

MPN
et-

Base

BG
E-L

arg
e

Mxb
AI-L

arg
e

mE5
-La

rge

Qwen
2-1

.5B

TP
P-

Lla
ma

TP
P-

Lla
ma-C

ha
t

0.0

0.2

0.4

0.6

0.8

Re
ca

ll@
5

(c) NYC Taxi Trip

MiniL
M-L1

2

MPN
et-

Base

BG
E-L

arg
e

Mxb
AI-L

arg
e

mE5
-La

rge

Qwen
2-1

.5B

TP
P-

Lla
ma

TP
P-

Lla
ma-C

ha
t

0.85

0.90

0.95

1.00
Re

ca
ll@

5

(d) U.S. Earthquake

MiniL
M-L1

2

MPN
et-

Base

BG
E-L

arg
e

Mxb
AI-L

arg
e

mE5
-La

rge

Qwen
2-1

.5B

TP
P-

Lla
ma

TP
P-

Lla
ma-C

ha
t

0.5

0.6

0.7

0.8

Re
ca

ll@
5

(e) Amazon Review

Figure 5: Comparison of average Recall@5 with standard deviations on TESRBench in event sequence retrieval.

Model MRR Recall@5

MiniLM-L12 0.634 ± 0.007 0.795 ± 0.009
MPNet-Base 0.748 ± 0.003 0.889 ± 0.007
BGE-Large 0.744 ± 0.010 0.888 ± 0.010

MxbAI-Large 0.744 ± 0.006 0.876 ± 0.010
mE5-Large 0.749 ± 0.013 0.888 ± 0.012

Qwen2-1.5B 0.783 ± 0.005 0.914 ± 0.013
TPP-Llama 0.772 ± 0.009 0.914 ± 0.008

TPP-Llama-Chat 0.770 ± 0.005 0.919 ± 0.009

Table 9: Comparison of average MRRs and Recall@5
with standard deviations on the multi-domain dataset.

Embeddings StackOverflow Earthquake

Temporal Tokens 0.037 / 0.040 0.179 / 0.281
Textual Tokens 0.726 / 0.870 0.675 / 0.890

All Tokens 0.729 / 0.865 0.759 / 0.953

Table 10: Comparison of average MRRs and Recall@5
of TPP-Llama-Chat with different embedding inclu-
sions.

Hidden States StackOverflow Earthquake

Temporal Tokens 0.718 / 0.862 0.754 / 0.939
+ Last Type Tokens 0.727 / 0.875 0.766 / 0.953

All Tokens 0.729 / 0.865 0.759 / 0.953

Table 11: Comparison of average MRRs and Recall@5
of TPP-Llama-Chat with different hidden state selec-
tions.

performance on the StackOverflow dataset but
performs considerably worse on the Earthquake
dataset. Overall, mean pooling offers a balanced
performance, making it a reliable choice.

Pooling StackOverflow Earthquake

Mean 0.729 / 0.865 0.759 / 0.953
Max 0.712 / 0.857 0.627 / 0.853

Last Token 0.728 / 0.848 0.772 / 0.960

Table 12: Comparison of average MRRs and Recall@5
of TPP-Llama-Chat with different pooling modes.
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5.6.4 Loss Functions
To examine the impact of the loss function on re-
trieval performance, we replace the contrastive loss
with a Mean Squared Error (MSE) loss, which op-
timizes cosine similarity to 1 for matched pairs. As
shown in Table 13, this substitution leads to a pro-
nounced decline in both metrics across all datasets,
emphasizing the pivotal role of contrastive loss in
capturing subtle relationships between closely re-
lated event sequences. These results highlight the
effectiveness of contrastive learning in enhancing
retrieval accuracy.

Loss StackOverflow Earthquake

MSE 0.020 / 0.016 0.020 / 0.015
Contrastive 0.729 / 0.865 0.759 / 0.953

Table 13: Comparison of average MRRs and Recall@5
of TPP-Llama-Chat with different loss functions.

6 Conclusion

In this paper, we introduce TESRBench, a compre-
hensive benchmark for evaluating temporal event
sequence retrieval, alongside TPP-Embedding, a
novel model designed to integrate temporal and
event-type-aware representations. TESRBench pro-
vides a diverse set of datasets with synthesized tex-
tual descriptions, offering a robust foundation for
benchmarking models in this domain. Our pro-
posed TPP-Embedding model combines temporal
encoding and event text embedding with a large lan-
guage model backbone, enabling it to effectively
capture the structure and dependencies of temporal
event sequences. Extensive experiments conducted
on TESRBench demonstrate its superior perfor-
mance compared to traditional text-based baselines,
particularly in handling temporally complex, multi-
type event sequences. Furthermore, multi-domain
experiments underscore the flexibility and adapt-
ability of our approach across diverse event do-
mains. Together, TESRBench and TPP-Embedding
represent a significant step forward in advancing
research on temporal event sequence retrieval.

Limitations

TESRBench, while providing a robust foundation
for evaluating temporal event sequence retrieval,
relies on synthesized textual descriptions gener-
ated by GPT-4o-mini, which may not fully capture
the variability and complexity of real-world user-
generated descriptions. A limitation of our TPP-

Embedding model is its reliance on high-quality
temporal and event-type data, which could pose
challenges when dealing with noisy or incomplete
event sequences encountered in real-world scenar-
ios. Furthermore, while TPP-Embedding achieves
strong retrieval performance, its dependence on
large-scale language models can introduce compu-
tational latency on extremely large datasets, neces-
sitating further optimization strategies. Finally, our
current baselines are restricted to text-based meth-
ods, and future research could explore integrating
recent time-context-aware sequential recommen-
dation techniques (Li et al., 2020; Rashed et al.,
2022; Tran et al., 2023; Liu et al., 2024) to further
improve the retrieval of temporal event sequences
from textual descriptions.

Ethical Considerations

In constructing TESRBench, we acknowledge po-
tential ethical concerns related to the use of synthe-
sized textual descriptions and real-world event data.
While the textual descriptions are generated objec-
tively, they may still inadvertently reflect biases or
limitations inherent in the data sources. For TPP-
Embedding, its ability to retrieve temporal event
sequences could be misused in privacy-sensitive
applications, such as personal activity tracking. It
is crucial to ensure that all data used for training
and retrieval is anonymized and managed responsi-
bly. Additionally, biases in training data, such as
uneven representation of event types or domains,
could result in biased retrieval outcomes. Future
work should emphasize dataset curation and the
implementation of bias mitigation strategies to min-
imize potential harms.
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A Data Examples

This appendix presents selected examples of event
sequences from the validation sets in TESRBench,
along with their corresponding descriptions, as
shown in Table 14. These descriptions highlight
key temporal patterns and provide context for the
diversity of events and their occurrences across the
benchmark’s datasets.

B More Experimental Setup

Our experiments were conducted using several
key Python libraries, including pytorch (Paszke
et al., 2019) for deep learning, transformers
(Wolf et al., 2020) for working with pre-trained
language models, sentence-transformers
(Reimers and Gurevych, 2019) for embedding
and retrieval tasks, datasets (Lhoest et al.,
2021) for data handling, peft (Mangrulkar
et al., 2022) for parameter-efficient fine-tuning,
and bitsandbytes (Dettmers et al., 2022) for
model quantization.

C More Experimental Results

In this appendix, we provide additional experimen-
tal results to further analyze the performance of our
models, both before and after fine-tuning.

C.1 Experimental Results before Fine-Tuning
The performance of all models before fine-tuning
in Table 15 shows significantly lower retrieval ac-
curacy, with the highest MRR achieved by BGE-
Large across most datasets. TPP-based models
perform poorly at this stage, due to unaligned tem-
poral and textual spaces, indicating the necessity
of fine-tuning to improve event sequence retrieval.

C.2 More Experimental Results after
Fine-Tuning

The results after fine-tuning demonstrate a signif-
icant improvement across all models, as shown
in Tables 16, 17, and 18. TPP-Llama and TPP-
Llama-Chat consistently outperform baseline mod-
els in MRR, Recall@1, and Recall@5 across most
datasets. These improvements highlight the im-
portance of fine-tuning in enhancing their retrieval
capabilities.
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Dataset Event Sequence Description

Stack Overflow 0.00,Nice Question
0.57,Good Answer
0.66,Popular Question
0.83,Famous Question
0.89,Nice Question
2.25,Popular Question
2.32,Necromancer
2.43,Notable Question
3.00,Great Question
3.40,Good Question
3.64,Popular Question
3.69,Notable Question
4.00,Notable Question
. . .
23.41,Popular Question

The sequence of badges earned by the user on Stack Overflow
shows a progression of achievements over time, with certain
types of badges appearing more frequently at different intervals.
Initially, badges such as "Nice Question" and "Good Answer"
are earned in the first few months, followed by a cluster of
"Popular Question" and "Notable Question" badges around the
two to four-month mark. As time progresses, there is a notable
increase in the frequency of "Famous Question" and "Popular
Question" badges, particularly in the later months, indicating a
trend toward these types of achievements. The sequence also
includes several clusters of "Nice Question" badges, particularly
around the seven-month mark and again towards the end of
the timeline. Overall, the user’s badge accumulation reflects a
gradual increase in the variety and frequency of achievements
over the course of the observed period.

Chicago Crime 0.00,Battery
0.26,Battery
0.52,Theft
0.69,Motor Vehicle Theft
0.74,Assault
0.99,Motor Vehicle Theft
0.99,Motor Vehicle Theft
1.08,Criminal Sexual Assault
. . .
23.72,Deceptive Practice

The sequence of crime incidents shows a notable clustering of
certain crime types over time, particularly motor vehicle thefts,
which appear frequently throughout the timeline, especially in
the earlier months. Battery incidents are also prevalent, occurring
multiple times in the first half of the sequence. Other offenses
such as robbery and criminal damage emerge at various intervals,
with some clustering in the middle to later months. Overall, there
is a trend of increasing diversity in crime types as the timeline
progresses, with a gradual rise in the frequency of theft-related
incidents towards the end.

NYC Taxi Trip 0.00,Manhattan Pickup
0.19,Manhattan Dropoff
0.24,Manhattan Pickup
0.68,Manhattan Dropoff
0.73,Manhattan Pickup
0.99,Manhattan Dropoff
1.13,Manhattan Pickup
1.43,Manhattan Dropoff
1.45,Manhattan Pickup
1.54,Manhattan Dropoff
. . .
31.87,Brooklyn Dropoff

The sequence of taxi trips primarily consists of pickups and
dropoffs occurring in Manhattan, with a notable concentration
of events in the first few hours. Early in the sequence, the driver
consistently alternates between pickups and dropoffs, with a high
frequency of trips. As the sequence progresses, there are brief
periods where trips shift to Queens and Brooklyn, particularly
after a long duration of Manhattan trips. The latter part of
the sequence shows a gradual transition to more pickups and
dropoffs in Brooklyn, indicating a shift in location focus. Overall,
the events are clustered closely together in time, with significant
activity in the first half of the sequence before expanding to other
boroughs.

U.S. Earthquake 0.00,Medium
0.66,Large
0.72,Large
0.99,Large
1.07,Large
1.08,Large
1.67,Large

The sequence of earthquake events begins with a medium mag-
nitude event, followed closely by a series of large magnitude
events occurring within a short time frame. The large events
cluster together, with multiple occurrences happening within the
first two days. This indicates a trend of increasing magnitude
shortly after the initial medium event, with the majority of the
large events occurring in rapid succession.

Amazon Review 0.00,Books
0.14,Sports and Outdoors
0.14,Books
0.29,Books
0.43,Books
0.57,Books
1.00,Books
1.14,Books
. . .
25.29,Books

The sequence of product reviews shows a predominant focus on
the "Books" category, which appears consistently throughout the
timeline, especially in the initial weeks. Other categories such as
"Pet Supplies" and "Grocery and Gourmet Food" emerge inter-
mittently, often clustering around specific weeks, particularly in
the middle and later parts of the sequence. "Clothing Shoes and
Jewelry" and "Movies and TV" also appear, but less frequently,
with some clustering noted in the later weeks. Overall, there is a
clear trend of sustained interest in "Books," with other categories
appearing in a more sporadic manner.

Table 14: Event sequence examples with their descriptions from the validation sets of TESRBench.
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Model (before FT) StackOverflow Crime Taxi Earthquake Amazon Multi-Domain

MiniLM-L12 0.091 / 0.123 0.071 / 0.111 0.028 / 0.024 0.037 / 0.043 0.142 / 0.200 0.154 / 0.208
MPNet-Base 0.068 / 0.087 0.027 / 0.020 0.022 / 0.017 0.031 / 0.027 0.068 / 0.071 0.102 / 0.127
BGE-Large 0.122 / 0.162 0.126 / 0.158 0.042 / 0.051 0.039 / 0.040 0.215 / 0.293 0.196 / 0.247

MxbAI-Large 0.085 / 0.102 0.091 / 0.134 0.039 / 0.037 0.038 / 0.043 0.174 / 0.227 0.170 / 0.221
mE5-Large 0.065 / 0.078 0.078 / 0.087 0.028 / 0.024 0.037 / 0.040 0.142 / 0.187 0.145 / 0.191

Qwen2-1.5B 0.047 / 0.054 0.032 / 0.032 0.025 / 0.020 0.027 / 0.027 0.109 / 0.116 0.095 / 0.114
TPP-Llama 0.022 / 0.021 0.019 / 0.020 0.020 / 0.014 0.022 / 0.020 0.033 / 0.027 0.025 / 0.030

TPP-Llama-Chat 0.020 / 0.015 0.018 / 0.012 0.019 / 0.014 0.023 / 0.020 0.033 / 0.031 0.021 / 0.017

Table 15: Comparison of MRRs and Recall@5 on TESRBench in event sequence retrieval before fine-tuning.

Model StackOverflow Crime Taxi Earthquake Amazon

MiniLM-L12 0.501 ± 0.009 0.808 ± 0.004 0.159 ± 0.003 0.676 ± 0.009 0.459 ± 0.005
MPNet-Base 0.620 ± 0.007 0.924 ± 0.003 0.246 ± 0.009 0.733 ± 0.010 0.665 ± 0.010
BGE-Large 0.632 ± 0.007 0.922 ± 0.004 0.286 ± 0.017 0.736 ± 0.014 0.656 ± 0.004

MxbAI-Large 0.627 ± 0.013 0.924 ± 0.011 0.271 ± 0.020 0.717 ± 0.017 0.650 ± 0.005
mE5-Large 0.658 ± 0.012 0.941 ± 0.003 0.261 ± 0.010 0.748 ± 0.011 0.617 ± 0.033

Qwen2-1.5B 0.660 ± 0.011 0.921 ± 0.007 0.448 ± 0.014 0.770 ± 0.019 0.629 ± 0.009
TPP-Llama 0.741 ± 0.006 0.958 ± 0.006 0.468 ± 0.006 0.760 ± 0.012 0.641 ± 0.010

TPP-Llama-Chat 0.729 ± 0.008 0.961 ± 0.003 0.475 ± 0.011 0.759 ± 0.005 0.646 ± 0.017

Table 16: Comparison of average MRRs with standard deviations on TESRBench in event sequence retrieval.

Model StackOverflow Crime Taxi Earthquake Amazon

MiniLM-L12 0.353 ± 0.006 0.711 ± 0.005 0.063 ± 0.007 0.513 ± 0.013 0.348 ± 0.007
MPNet-Base 0.497 ± 0.009 0.878 ± 0.006 0.123 ± 0.013 0.598 ± 0.015 0.579 ± 0.012
BGE-Large 0.509 ± 0.011 0.875 ± 0.006 0.155 ± 0.023 0.595 ± 0.026 0.569 ± 0.011

MxbAI-Large 0.502 ± 0.017 0.879 ± 0.019 0.130 ± 0.023 0.573 ± 0.019 0.564 ± 0.010
mE5-Large 0.540 ± 0.016 0.904 ± 0.006 0.132 ± 0.006 0.612 ± 0.013 0.520 ± 0.034

Qwen2-1.5B 0.541 ± 0.018 0.872 ± 0.012 0.284 ± 0.012 0.638 ± 0.031 0.523 ± 0.009
TPP-Llama 0.637 ± 0.010 0.930 ± 0.011 0.301 ± 0.010 0.622 ± 0.021 0.538 ± 0.015

TPP-Llama-Chat 0.620 ± 0.012 0.936 ± 0.003 0.305 ± 0.014 0.619 ± 0.013 0.546 ± 0.021

Table 17: Comparison of average Recall@1 with standard deviations on TESRBench in event sequence retrieval.

Model StackOverflow Crime Taxi Earthquake Amazon

MiniLM-L12 0.695 ± 0.016 0.931 ± 0.007 0.239 ± 0.014 0.895 ± 0.007 0.573 ± 0.014
MPNet-Base 0.775 ± 0.014 0.980 ± 0.002 0.364 ± 0.011 0.923 ± 0.014 0.756 ± 0.028
BGE-Large 0.786 ± 0.006 0.985 ± 0.002 0.415 ± 0.019 0.928 ± 0.007 0.746 ± 0.007

MxbAI-Large 0.782 ± 0.007 0.982 ± 0.003 0.426 ± 0.037 0.914 ± 0.012 0.747 ± 0.020
mE5-Large 0.804 ± 0.019 0.987 ± 0.001 0.389 ± 0.016 0.921 ± 0.010 0.716 ± 0.034

Qwen2-1.5B 0.804 ± 0.011 0.982 ± 0.002 0.662 ± 0.030 0.950 ± 0.016 0.756 ± 0.016
TPP-Llama 0.880 ± 0.012 0.992 ± 0.002 0.680 ± 0.016 0.946 ± 0.009 0.763 ± 0.014

TPP-Llama-Chat 0.865 ± 0.008 0.994 ± 0.002 0.691 ± 0.021 0.953 ± 0.005 0.767 ± 0.015

Table 18: Comparison of average Recall@5 with standard deviations on TESRBench in event sequence retrieval.
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Abstract

We explore generating factual tables from the
parametric knowledge of large language mod-
els (LLMs). While LLMs have demonstrated
impressive capabilities in recreating knowledge
bases and generating free-form text, their abil-
ity to generate structured tabular data has re-
ceived little attention. To address this gap, we
explore the table generation abilities of eight
state-of-the-art LLMs, including GPT-4o and
Llama3.1-405B, using three prompting meth-
ods: full-table, row-by-row, and cell-by-cell.
To facilitate evaluation we introduce WIKITAB-
GEN, a new benchmark consisting of 119 manu-
ally curated Wikipedia tables and their descrip-
tion. Our findings show that table generation
remains challenging, with the best performing
model (LLaMA3.1-405B) reaching only 25.4%
accuracy. We further analyze how properties
like table size, popularity, and numerical con-
tent impact performance. This study highlights
the unique challenges of LLM-based table gen-
eration and offers a foundation for future re-
search in this area. All code, data, and prompts
are publicly available.1

1 Introduction

Automated table generation has broad applications
in fields such as healthcare, finance, scientific re-
search and education (Chen et al., 2021; Johnson
et al., 2016; Berant et al., 2018) where convert-
ing unstructured factual data into structured tables
can significantly enhance decision-making, stream-
line workflows, and improve data accessibility en-
abling knowledge extraction and facilitating fur-
ther analysis through statistical and visualization
tools (Shen et al., 2021). Large language mod-
els (LLMs) (Brown et al., 2020; Chowdhery et al.,
2022; Kadavath et al., 2022; Touvron et al., 2023a)
have demonstrated remarkable performance on var-
ious natural language processing tasks, including
free-form text generation, knowledge retrieval, and

1https://github.com/analysis-bots/WikiTabGen

Table description
“Create a table with the detailed information about 
the achievements of Susen Tiedtke from 1987 to 2000”

Columns
year, competition, venue, position

(A) Full Table (B) Row-by-row

LLM Table Generation Methods

(C) Cell-by-cell

venue

Birmingham

Tokyo

…

position

3rd

5th

…

year

1987

1991

…

competition

European Junior

World Championship

…

Output Table

Figure 1: An example LLM-based table generation task
along with three alternative prompting methods.

summarization. However, despite their success
in generating free-form text, LLMs face distinct
challenges when tasked with producing complex
structured data, and their ability to generate long
and factually accurate tables from their paramet-
ric knowledge remains largely unexplored (Akhtar
et al., 2024; Zhao et al., 2024).

LLMs are pre-trained on vast amounts of text,
which includes factual information presented in
both plain text and structured formats, such as
tables (Elazar et al., 2023; Fang et al., 2024).
Through this training, LLMs encode a wealth of
factual information in their parameters. While pre-
vious studies have shown that LLMs can retrieve
factual information for tasks like recreating knowl-
edge bases (KBs) (Petroni et al., 2019; AlKhamissi
et al., 2022; Cohen et al., 2023) or generating
Wikipedia-like articles (Shao et al., 2024), little
attention has been given to their ability to gener-
ate structured tables from their parametric knowl-
edge. Unlike question answering over tables or
text-to-SQL translation (Pasupat and Liang, 2015;
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Chen et al., 2021), generating tables requires mod-
els to retrieve and organize specific factual data
into structured formats, posing unique challenges.
The lack of dedicated methods for table generation
and appropriate evaluation benchmarks highlights
a particular gap in current research.

To address this gap, we introduce WIKITABGEN,
a benchmark designed to evaluate LLMs’ ability to
generate tables from their parametric knowledge.
It consists of 119 manually curated Wikipedia ta-
bles, each paired with a textual description and a
set of target columns. With an average of 1,457 to-
kens per table, WIKITABGEN features significantly
larger tables compared to previous tabular gener-
ation tasks (Parikh et al., 2020; Nan et al., 2022).
This benchmark facilitates a systematic evaluation
of how factors such as table size, numerical con-
tent, and popularity (Mallen et al., 2022) affect
table generation. We also introduce and evaluate
three prompting methods: full-table generation,
row-by-row generation and cell-by-cell generation.

Our key contributions are: (1) Formulating
the problem of generating structured tables from
LLMs’ parametric knowledge. (2) Introducing
WIKITABGEN, a benchmark consisting of diverse
tables that vary in size, structure, and content, to
evaluate table generation capabilities. (3) Imple-
menting and evaluating three prompting methods
across eight state-of-the-art LLMs, including GPT-
4 and LLaMA3.1-405B. (4) Providing a compre-
hensive analysis of the factors that impact table
generation performance.

Our experiments reveal that generating tables
from LLMs remains a challenging task, with the
highest F1 score reaching only 25.4%. We observe
that factors such as table size and numerical content
significantly affect performance. These findings
highlight the need for further research to improve
LLM-based table generation. We hope that our
benchmark and analysis will inspire future research
on generating structured data from LLMs.

2 Problem Definition

Given a short user description, our task is to gener-
ate a factually accurate table.

Following Codd (1990), a relational table T =
(R,C) is a set of rows R = {r1, r2, . . . } and a
set of columns C = {c1, c2 . . . }. A table cell,
denoted r[c], contains the value of column c in
row r. Key columns are a subset Ck ⊂ C that
uniquely define each entry (row) in T and the corre-

sponding cells do not contain null or empty values.
For example, the table in Fig. 1 has the columns
year and competition as its keys. Each table en-
try such as venue, corresponds to a unique year,
competition pair.

Given a table description d and a list of desired
table columns C, our task is to generate a corre-
sponding table T (R̂, C), where the generated rows
R̂ contain factually accurate information. An ex-
ample problem is shown in Fig. 1, where the table
description is “Achievements of Susen Tiedke from
1987 to 2000” and the target columns are: year,
competition, venue, and position. Each of our pro-
posed prompting methods (§3) can then be used
for the LLM to generate table T (R̂, C), as shown
in the bottom of the figure.

3 Prompting LLMs to Generate Tables

Given a table description and list of target columns
C, we evaluate LLM performance on generating
the corresponding table T (R̂, C). Our focus is on
extracting the knowledge stored in the LLM, with
retrieval-augmented methods (Lewis et al., 2020;
Yoran et al., 2023) being orthogonal to our study.

We implement three prompting methods to gen-
erate tables, shown in Fig. 1. First, the full table
method prompts the LLM to generate the table all
at once. However, the output table may be quite
large, with evaluation tables have 1.5K tokens on
average (§4). Therefore, we also experiment with
a modular prompting approach (Khot et al., 2023,
2022), where one LLM instance generates the table
keys, and another generates either complete rows
or individual cells. We refer to these two modular
prompting methods as row-by-row and cell-by-cell
respectively. An in-depth example of our prompt-
ing methods is provided in Fig. 2. Note that all
prompts in the figure are appended with the table
description and columns (prompt 1 in Fig. 2). Next,
we describe each of the prompts used in our three
methods. All of our prompts are listed in §A and
in our public code repository.

(a) Full-table. Given the table description and
target columns the LLM is prompted to generate
all table rows. Example prompts are prompts 1
and 2.A in Fig. 2 which are both concatenated and
provided as the input to the LLM.

(b) Row-by-row. This is a two-stage prompting
method, prompting two separate instances of the
LLM. First, we prompt the LLM for key generation
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2.B. Key generation prompt

The key columns in the table are year, competition. 
List all competition, year entities for the table. 
The response will be formatted as JSON:

[ {"year": _year, 
    "competition": _competition} ]

1. Table desc.

“Create a table with the detailed 
information about the achievements 
of Susen Tiedtke from 1987 to 2000”

2.A. Full Table prompt

Each element of the response will contain 4 fields: ['year', 'competition', 'venue', 'position']. The 
response will be formatted as JSON shown below:

[{"year": _year, "competition": _competition, "venue": _venue, "position": _position}]

3.B. Cell-by-cell (cell generation prompt)

For the table row whose key is (year = 1987, competition = European 
Junior Championships) what is the value of attribute venue?
The response will be formatted as JSON dictionary: {"venue": _venue}

3.A. Row-by-row (row generation prompt)

Columns are year, competition, venue, position. Retrieve a single row whose key is:  
(year = 1987, competition = European Junior Championships)

The response will be formatted as JSON dictionary: 

{ "year": "1987", "competition": "European Junior Championships", 
"venue": _venue, "position": _position}

venue

Birmingham

Tokyo

…

position

3rd

5th

…

year

1987

1991

…

competition

European Junior

World Championship

…

venue

Birmingham

Tokyo

…

pos.

3rd

5th

…

Figure 2: An overview of our three separate prompting methods for table generation, given a short user description
and table metadata (Fig. 1): (2.A) Full table directly generates the table given the user desc. and its columns; (2.B)
Key-generation is used in both the row-by-row and cell-by-cell methods; (3.A) Row-by-row generates a table row
given a unique key value, e.g. (1987, EU Junior Championship); (3.B) Cell-by-cell generates a single table cell
given a key value and specific target column e.g. venue→ Birmingham.

i.e. to generate all values of the key columns Ck.
As key values are a unique identifier for each table
entry (§2), we then prompt a second instance of
the LLM, to generate a full table row given a key
value. Thus, for each key value r̂i[Ck] generated by
the first LLM, we generate a subsequent prompt to
retrieve the remaining row entries r̂i[C \Ck]. Over-
all, we are required to generate |R̂| + 1 prompts,
where |R̂| is the number of key values output by
the key generation LLM.

In Fig. 2, box 2.B describes the key genera-
tion prompt. Given the table description, and key
columns competition and year, the LLM gener-
ates a list of corresponding years and competi-
tions which Susen Tiedtke participated in. Next,
each key value returned by the first LLM, is used
to generate the remaining row entries. Prompt
3.A prompts the row generation LLM to populate
columns venue, position which correspond to
key ⟨“European Junior”, “1987”⟩. The generated
values being “Birmingham”, and “3rd”. A new
row-by-row prompt is then generated for the follow-
ing keys, e.g. ⟨“World Championship”, “1991”⟩.

(c) Cell-by-cell. This two-stage approach gener-
ates each table cell individually. The first stage is
identical to row-by-row, using prompt 2.B to gener-
ate all key column values. Then, we use a separate
prompt for each table cell, rather than a full row.
For each column c ∈ C \Ck we create a dedicated

prompt to generate the cell r̂i[c], based on the tar-
get column and the generated key for ri. In total,
we use |R̂| · |C \Ck|+ 1 prompts, one to generate
the keys, and |R̂| · |C \ Ck| to generate each of the
non-key cells.

Prompt 3.B in Fig. 2 describes the cell-by-cell
method. Given key ⟨“European Junior”, “1987”⟩,
the corresponding cell in column venue is gener-
ated (Birmingham). The same prompt is then used
for different keys and columns (position).

Generated Output Format. When prompting the
LLM it is instructed to return its output in JSON
format, as shown in Fig. 2. We chose JSON follow-
ing past work (Singha et al., 2023) and based on our
own results. Namely, we observed a better perfor-
mance compared to formats such as CSV and SQL
when evaluated on our held-out development set
(see §4). For the row-by-row and cell-by-cell meth-
ods, we process and merge all individual JSON
responses to construct the full output table.

4 WIKITABGEN Benchmark

To evaluate our methods (§3), we introduce a new
table generation benchmark called WIKITABGEN.
Each instance of WIKITABGEN consists of a short
manually written description d, a list of target
columns C and a corresponding table T = (R,C).
As this benchmark targets LLM table generation
based on their parametric knowledge, we followed
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                      Susen Tiedtke (former long jumper) Achievements

Year Competition Venue Position

1987
European Junior 
Championships

Birmingham, 
England

3

…. …. …. ….

1993
World Indoor 

Championships
Toronto, Canada 2

1993 World Championships Stuttgart, Germany 9

…. …. …. ….

2000 Olympic Games Sydney, Australia 5

WikiTabGen Table Meta Data:
Table Description: “Susen Tiedtke 

Achievement Between 1987 and 2000”

Key columns: “Year”, “Competition”

Non-Key Columns: “Venue”, “Position”

Numeric columns: “Position” (1 of 2)

Table size: 10 rows, 4 columns (40 cells)

Table Popularity: 504.5

Table Title:Susen Tiedtke Achievement Between 1987 and 2000”

Key columns: “Year”, 
“Competition”

Data Columns: “Venue”, 
“Position”

Numeric data columns: 
“Position” (1 of 2)

Table size: 10 rows, 4 
columns (40 cells)

Table Popularity:

Figure 3: WIKITABGEN example table and metadata.

several key principles in its construction:
• Information Coverage: evaluation tables must

contain complete information to prevent cases
where the LLM generates correct entries that are
not present in the ground-truth tables.

• Factual Consistency: tables should include static
factual data, to ensure consistent evaluation over
time as LLMs evolve (Zhang and Choi, 2021).

• Conciseness: table cells should contain concise
string, categorical or numeric information, to
avoid lengthy descriptive text that is harder to
evaluate against the ground truth.

• Diversity: the benchmark should include a di-
verse range of tables with respect to structural
properties such as size, data types (e.g., the ratio
of numeric data), and table “popularity” which
may indicate the prevalence of its content during
the LLM’s pre-training (Mallen et al., 2022).
Following these principles, we opted to use ta-

bles from Wikipedia, as our evaluation benchmark.
Wikipedia is often used to assess LLMs’ closed-
book performance because it contains factual and
objective information (Kwiatkowski et al., 2019).
unlike certain domain-specific datasets (Yu et al.,
2018). Additionally, since Wikipedia is part of
LLMs’ pre-training data (Brown et al., 2020; Tou-
vron et al., 2023a), it is ideal for evaluating how
well these models can generate tabular data.

To construct the benchmark, we iterate over the
Wikipedia tables provided by Bhagavatula et al.
(2015).2 We first discarded all non-relational tables
(those with composite headers, nested tables, or
inverted tables) and excluded tables that were too
small (|R| < 10 or |C| < 2).

Next, we manually selected 119 random tables
with diverse number of columns, rows and por-
tion of numeric values (numbers and dates). To
ensure evaluation coverage we removed columns
with partial entries. In addition, columns contain-
ing long texts were omitted to ensure a concise

2Creative Commons Attribution 4.0 International License.

evaluation. Each table was manually annotated
with a short, natural language description, as origi-
nal captions were often ambiguous or not descrip-
tive. Additionally, for tables that could change
over time (e.g. new NBA championship teams),
we ensured temporal specificity, as suggested by
Zhang and Choi (2021), e.g. “George Clooney
Films released between 1983 and 2013”

As shown in Fig. 3, each table in WIKITABGEN

is provided with additional metadata, consisting of
its: text description; table size (number of columns,
rows and cells); key-columns; numeric columns
(containing numbers or dates); and table popularity.
Inspired by Mallen et al. (2022), we define table
popularity as the average number of monthly views
to the Wikipedia page containing the said table. To
measure pages views we use the Wikipedia API.3

Overall, WIKITABGEN consists of 119 exam-
ples, with 100 used for evaluation (§5) and the re-
maining 19 serving as a held-out development set
for method implementation. In Fig. 4 shows the dis-
tribution of three key properties in WIKITABGEN:
size, numeric column ratio and popularity. On av-
erage, the evaluation tables have 77.5 rows, 6.9
columns and 453 cells, with an average length of
1,497 tokens. The average proportion of numeric
columns per table is 62% of columns, showcas-
ing the prevalence of numerical data in our tables.
The average number of monthly views per table is
8,449. In §6 we further explore the effects of these
properties on table generation performance.

5 Experimental Setting

We describe our experimental setting for evaluating
the table generation capabilities of LLMs. All mod-
els were evaluated on the WIKITABGEN bench-
mark. Next, we list the LLMs, prompts and evalu-
ation methods used for table generation. Last, we
detail our different experimental scenarios.

5.1 Language Models and Prompts

In our experiments we evaluate 8 popular LLMs:
three closed-weights models by OpenAI (Achiam
et al., 2023): GPT-4o, GPT-4-Turbo, GPT3.5; four
open-weights LLMs by MetaAI (Touvron et al.,
2023b): Llama3.1-405B, Llama3.1-70B, Llama2-
70B, and Llama2-13B; and Gemma2-27B, an open-
weights LLM by Google (Riviere et al., 2024).

The same prompting methods described in §3
were used across all LLMs, whereas prompt-

3https://api.wikimedia.org
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Figure 4: WIKITABGEN properties distribution: number of cells, ratio of numeric columns, and table popularity.

engineering was done specifically for each model,
using the held-out development set as described in
§4. For all LLMs, we set the generation tempera-
ture to zero.

5.2 Evaluation Methods

Since the order of the rows and columns in the
generated table may not match the ground truth,
we use the following two-step process to evaluate
the generation accuracy: We align rows by key
attributes, then match non-key cells.

In more detail, given output table T̂ (R̂, C) and
ground-truth table T (R,C), we first align the rows
R̂ to their corresponding rows in R by match-
ing their respective keys, namely r̂ ; r ⇐⇒
r̂[Ck] = r[Ck]. For rows with multiple key
columns, all values must be identical.

We then use two methods to evaluate the accu-
racy of cell content: (1) exact matching, in which
we check for exact match for string content, but
allow for a±0.1% error for numeric content (in §B,
we describe how we compare date values and han-
dle null, missing and duplicate cells). (2) semantic
matching, in which we first apply text-embedding
on the generated and gold cell tokens, then com-
pute the cosine similarity between them. We chose
a threshold of 0.5 as our criteria for determining
whether the two cells are semantically aligned.

For both matching methods we then calculate
Table Precision as # Correct Cells

# Generated Cells , and Table Recall
as # Correct Cells

# Ground-Truth Cells and corresponding F1 score.

For our analysis in §6, we also consider the pre-
cision, recall, and F1 scores separately for keys and
non-keys. The keys scores are calculated based on
the number of matching keys, where for each row
all the cells of Ck must match. For non-key cell
scores we consider only cells inC\Ck. We provide
the full formulas in Appendix B.

5.3 Table Generation Scenarios

In addition to the table generation scenario de-
scribed in §2, where the generation request con-
tains only the table description and list of columns,
we considered two alternative scenarios where ad-
ditional information is provided to the LLM:

Table Row Example. In this scenario, in addi-
tion to the description and list of columns, we also
provide the LLM with an example row r[C] from
the target table. We examine if such an example
improves the LLM’s performance in generating the
rest of the table. We tested this scenario on all
prompting methods (§3) by concatenating the first
row of the target table to the table description.

Oracle Keys. This ablation provides the LLM
the ground-truth set of keys cells R[Ck] and mea-
sures the model’s performance in generating the
remaining cells. This scenario is particularly rel-
evant for applications where the keys are known
in advance, and the task involves filling in the as-
sociated data. We conducted this experiment for
both the row-by-row and cell-by-cell prompting
methods by skipping the keys generation prompt
(prompt 2.B in Fig. 2), and providing the ground-
truth keys instead.

6 Results and Analysis

Following, we summarize results obtained by the
8 LLMs, 3 prompting methods and two evalua-
tion metrics. We then analyze the generation cost
and accuracy trade-offs of the prompting methods.
Next, we discuss the table generation performance
in our additional scenarios: example row and or-
acle keys, and finally, examine the effect of table
properties on the LLM generation performance.

6.1 Main Results

Tab. 1 provides a comparison of the overall F1
scores for the eight LLMs highlighting the best per-
forming prompting method for each model (using
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LLM Method Overall F1 (%)

Exact Semantic

LLaMa3.1-405B Full table 23.4 25.4
GPT-4o Row-by-row 20.8 23.1
LLaMa3.1-70B Full table 20.0 22.1
GPT4-Turbo Row-by-row 18.9 21.6
GPT3.5-Turbo Full table 16.1 18.0
LLaMa2-70b Row-by-row 9.4 10.5
Gemma2-27B Row-by-row 7.6 8.4
LLaMa2-13b Full table 7.5 8.4

Table 1: Ranking of 8 different LLMs based on their
overall F1 score (for both exact and semantic matching
of tabe cells). For each LLM we only list only its best
performing method.

both the exact and semantic evaluation). The top-
performing model is LLaMa3.1-405B (full-table),
achieving 23.4% and 25.4% F1 using the exact and
semantic evaluation respectively.

We note that across all models, the semantic and
exact scores are highly correlated, (semantic match-
ing typically being approximately 10% higher than
the exact score). We focus through the rest of this
section on the semantic evaluation, and the top-4
performing models.

Next, Tab. 2 provides a breakdown of the per-
formance results of the top-4 models. We list the
precision, recall, and F1 scores for keys, non-keys,
and the full tables (averaged across all tables), ob-
tained for each model and prompting method.

For all LLMs, we observe that the row-by-row
and cell-by-cell methods significantly improve the
keys generation performance (see keys F1 scores
in Tab. 2). Interestingly, for the two LLaMa mod-
els best performance is obtained with the full-table
method, whereas for the GPT models row-by-row
prompting obtained better results. Also, observe
that the key generation performance is about 3X
better than the non-keys, for all models. This
demonstrate the inherent difficulty of current LLMs
in accurately retrieving the “data” for tabular enti-
ties (as identified by the key attributes).

6.2 Prompting Cost Tradeoff

We analyze the performance of our prompting
methods as a function of their accuracy and cost.
As the row-by-row and cell-by-cell methods are
suggested to handle larger tables. In Fig. 5 we
examine their performance compared to the full-
table method, focusing on tables with 100 or more
cells on the best performing model, LLaMa3.1-
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Figure 5: The performance of each prompting method
for LLaMa3.1-405B with respect to the table size.

Figure 6: Cost analysis of our prompting methods.

405B. For medium-sized tables (100-250 cells),
full-table still outperforms row-by-row. However,
as the number of cells increases further, row-by-
row outperforms full-table.

Next, to evaluate the cost of the prompting meth-
ods, we examine the average number of input and
output tokens used for generating tables, as de-
scribed in Fig. 6. While the output number of
tokens is roughly similar for all approaches, see
that the two-stage methods (row-by-row and cell-
by-cell) have a significantly larger input due to the
repeated use of distinct row and cell generation
prompts (prompts 3.A, 3.B in Fig. 2).

6.3 Additional Generation Scenarios

We measure the effect of providing additional in-
formation during table generation: (1) an example
row, (2) the ground-truth table keys.

Table Row Example. Tab. 3 lists the perfor-
mance results when including an example row from
the target table4. Cell-by-cell scores were omitted
due to higher costs and inferior performance, as
discussed in §6.2. We note that performance con-
sistently improves when the models are given an
example first row, except for GPT4-o (row-by-row),
which performs slightly better given no example.

4As we omit the example row from the F1 calculations our
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LLM Method Keys Non-Keys Overall

Recall Precision F1 Recall Precision F1 Recall Precision F1

GPT4-Turbo Full table 43.4% 66.1% 46.8% 12.1% 20.6% 13.3% 18.0% 28.4% 19.4%
Row-by-row 53.9% 57.6% 53.2% 14.9% 18.5% 15.3% 21.4% 25.0% 21.6%
Cell-by-cell 53.9% 57.6% 53.2% 13.5% 17.0% 13.8% 20.1% 23.6% 20.2%

GPT-4o Full table 35.8% 66.0% 40.3% 11.1% 23.6% 12.9% 15.7% 30.8% 17.9%
Row-by-row 53.9% 60.8% 53.5% 16.3% 21.3% 16.8% 22.8% 28.0% 23.1%
Cell-by-cell 53.9% 60.7% 53.5% 15.8% 20.6% 16.3% 22.3% 27.3% 22.5%

LLaMa3.1-70B Full table 46.1% 63.8% 49.9% 14.3% 21.4% 16.0% 20.1% 28.6% 22.1%
Row-by-row 50.2% 55.5% 50.0% 14.3% 16.6% 14.3% 20.6% 23.3% 20.5%
Cell-by-cell 50.2% 55.3% 50.0% 13.0% 14.8% 13.0% 19.4% 21.8% 19.4%

LLaMa3.1-405B Full table 44.1% 68.6% 48.8% 17.5% 29.0% 19.8% 22.7% 36.0% 25.4%
Row-by-row 50.5% 61.5% 51.7% 15.1% 20.4% 15.9% 21.2% 27.4% 22.1%
Cell-by-cell 50.4% 61.4% 51.6% 11.8% 15.5% 12.3% 18.7% 23.7% 19.3%

Table 2: Table generation performance metrics for the different models and prompting methods.

LLM Method Keys F1 (%) Non-Keys F1 (%) Overall F1 (%)

No-Example Example No-Example Example No-Example Example

GPT4-Turbo Full table 46.3 51.9 13.0 17.4 19.2 23.8
Row-by-row 53.0 54.1 15.1 16.4 21.3 22.5

GPT-4o Full table 39.7 47.1 12.6 16.3 17.7 22.0
Row-by-row 53.3 53.3 16.7 16.5 22.9 22.8

LLaMa3.1-70B Full table 49.4 51.6 15.5 18.2 21.6 24.2
Row-by-row 49.6 51.6 14.0 16.6 20.2 22.5

LLaMa3.1-405B Full table 47.9 50.7 19.2 25.2 24.7 29.8
Row-by-row 51.0 51.9 15.5 19.9 21.6 25.6

Table 3: Performance comparison with and without an example row, using full table and row-by-row methods.

LLM Non-Keys F1 (%) Overall F1 (%)

Base. Orac. Base. Orac.

GPT4-Turbo 11.7 22.9 (+11.2) 18.9 39.2 (+20.3)
GPT-4o 13.8 26.1 (+12.3) 20.8 41.7 (+20.9)
LLaMa3.1-70B 12.2 25.6 (+13.4) 19.0 41.4 (+22.4)
LLaMa3.1-405B 14.1 30.9 (+16.8) 20.7 45.5 (+24.8)

Table 4: Performance comparison of the row-by-row
method with and without oracle keys.

Oracle Keys. Tab. 4 describes the performance
of all LLMs, using the row-by-row method, when
given the ground-truth key values. As expected,
the overall F1 scores are significantly higher when
using oracle keys, because now R̂[Ck] = R[Ck].
We observe an additional improvement in the non-
keys F1, which is expected as more table rows were
aligned to the target table (given the keys), and thus
more cells were successfully matched.

6.4 Table Properties Effect on Performance

As noted in §4, we systematically measure the ef-
fect of table properties such as the size, numeric

results slightly differ from Tab. 2.

data and table popularity affect the LLM generation
performance.

Fig. 7 displays the table F1 scores as a function
of the number of table cells, percentage of numer-
ical data columns (number or date cells) and the
table popularity score. These results are provided
for all four LLMs, using the full-table generation
method. As our aim is to measure the effect each
property has on the LLM (not to compare different
methods). A further breakdown of the properties’
effect on the keys and non-keys F1 scores is pro-
vided in Appendix §C.

As shown in Fig. 7a, the larger the table, the
lower the F1 scores are for all LLMs. In §6.2 we
observed this trend to be less apparent for the row-
by-row and cell-by-cell methods.

Fig. 7b measures the effect the percentage of
columns containing numbers or dates has on per-
formance. We observe a general decreasing trend
in F1 as the portion of numerical content is higher.
Fig. 7c displays the positive effect of table popular-
ity on performance. This potentially stems from the
prevalence of more popular Wikipedia pages (or
related entities) in the LLMs’ training data. Unsur-
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Figure 7: The effect of table size, the ratio of numeric columns, and table popularity on the generation performance
(F1 score). The results are of the 4 top performing LLMs and using the full-table prompting method.

prising, the less common the tabular information
is, the more difficult it is for the LLM to generate.
We attribute the slight decrease in F1 on the top
popular tables to an artifact of the data in which
these tables include census related data which the
LLM have difficulty to generate.

From this analysis, we conclude that generat-
ing tables from LLMs’ parametric knowledge is
more challenging when the tables are larger, when
they contain a higher portion of numerical data and
when its content concerns less popular topics.

7 Related Work

Machine reasoning on table using pre-trained
LLMs has largely been explored in the context
of data augmentation (Borisov et al., 2022; Zhang
et al., 2023) to improve the performance on down-
stream tasks. The focus has largely been on tasks
where a table is provided as input to the model
namely: QA over tables (Chen et al., 2020, 2022;
Seedat et al., 2023), text-to-SQL translation (Deng
et al., 2021; Wolfson et al., 2022), table editing
(Li et al., 2023; Sui et al., 2023) and table-to-text
generation (Parikh et al., 2020). Conversely, our
approach receives only a user query and schema as
input, and is tasked with generating an entire table.

Closest to ours are the recent table generation
datasets by Pal et al. (2023); Akhtar et al. (2024);
Tang et al. (2024). In these works the LLM is pro-
vided with a user query (in text or SQL) and is
tasked with generating a table, as the query answer.
Pal et al. (2023) evaluate on tables from the Spider
dataset (Yu et al., 2018), which contains domain-
specific information that is less likely to be stored
in the parametric knowledge of LLMs. In Tang
et al. (2024) the authors evaluate table generation
from long-form text describing NBA games, taken

from the RotoWire dataset (Wiseman et al., 2017).
In their setting the generated table content is al-
ready present as part of the user query, where the
LLM challenge is to re-structure the user input as
a table. By contrast, our setting requires the LLM
to generate information that does not explicitly ap-
pear in the user input query (Fig. 1). Similar to
us, Akhtar et al. (2024) rely on Wikipedia however,
they automatically construct new tables which are
relatively small (average of 6.7 rows, 4 columns).
By comparison our evaluation is on larger tables
with the median number of rows being 48 (average
of 77.5 rows, 6.9 columns). This emphasizes our
focus on extracting long-form tabular data from
LLMs, thereby extending past attempts on KBs
and text (Cohen et al., 2023; Mallen et al., 2022;
Carlini et al., 2022).

Our key generation phase in §3 is an instance of a
list question answering problem. The challenge of
list QA in LLMs has been explored in recent works
(Amouyal et al., 2022; Malaviya et al., 2023). How-
ever, we further expand this challenge by focusing
on generating the entire table.

8 Conclusion

This paper explores the capability of state-of-the-
art LLMs to generate entire tables, by relying ex-
clusively on their parametric knowledge. We intro-
duced three prompt-based table generation meth-
ods and evaluated them on our newly constructed
benchmark, WIKITABGEN. Our results underscore
the challenge table generation poses to LLMs. We
hope that WIKITABGEN and our comprehensive
analysis will provide a concrete framework for fu-
ture research on table generation using LLMs.
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9 Limitations

We now list the limitations to our work.
Our first limitation is the size of the WIKITAB-

GEN evaluation benchmark, which contains 119
tables. We attribute this constraint to the intensity
of the manual processing required to ensure the
tables’ factual correctness and robustness as well
as to the high generation costs of running state-
of-the-art LLMs on large tables §6.2. As noted
in §4, the tables in WIKITABGEN contain close
to 1,500 tokens on average, evaluating them using
commercial, state-of-the-art LLMs is non-trivial.

Second, all tables in WIKITABGEN are based on
Wikipedia articles. This choice was made to ensure
that the underlying information exists in common
LLMs training data. However, we did not examine
the performance on tables generated from other
sources, such as news articles or tables that require
multi-source integration.
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A Table Generation Prompts

In this section we provide the prompt templates
used in each of our table generation methods.
Figs. 8-11 present our prompt templates used for:
full table generation method, keys generation, row-
by-row, and cell-by-cell method.

B Evaluation Method Details

B.1 Precision-Matching of Cell Values
We next describe our precision matching for
cell values in more detail, given an output table
T̂ (R̂, C) and ground-truth table T (R,C).

As described in §5.2, we use exact value com-
parison of cell textual content and allow a ±0.1%
error for numeric values. Before comparing tex-
tual cells, we first convert them to lower case, and
remove non alphanumeric symbols and spaces.

As for date values, we first parse and convert
cells with date values to a Python Date object, and
then compare the canonical dates. This is to avoid
cases where cells are deemed as a non-match due to
differences in the date format. For example, in our
evaluation process, two date values representing
the same date, such as "2014-05-16" and "16th,
May, 2014", will be considered the same.

We further treat “none”, “n/a” ,“nan” and empty
cells as identical in terms of value matching.

B.2 Precision and Recall Computation for
Tables

For a given output table T̂ (R̂, C) and ground-truth
table T (R,C), we first align the rows R̂ to their
corresponding rows in R by matching their respec-
tive keys, namely r̂ ; r ⇐⇒ r̂[Ck] = r[Ck].
For rows with composite keys, all key values must
be identical, i.e., ∀ck ∈ Ckr̂[ck] = r[ck].

Recall that a correct cell in T (R̂, C) is a cell
r̂[c] such that r̂[c] ≈ r[c] ∧ r̂ ; r. Namely, row
r̂ is aligned with a row r in the ground-truth table,
and their corresponding cell values in column c is
matching (using either the precision or semantic
matching definition).

We next provide the precision and recall formu-
las we used for keys, non-keys, and tables.

For keys, we compare R̂[Ck] and R[Ck] as fol-
lows. Let the number of matching keys ϕ = |{r ∈
R̂,∀ck ∈ Ck r̂[ck] = r[ck]}| Then keys precision
is calculated by ϕ

|R̂| and keys recall is given by ϕ
|R| .

For non-keys, we compare R̂[C \Ck] and R[C \
Ck]. After aligning R̂ and R, we compute the num-
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Full-table generation template:
You are a retriever of facts. List all {table description}. The response will be formatted as JSON shown below. Each
element of the response will contain {num columns} fields: {column1, column2, ...}
Do not output any additional text that is not in JSON format.
RESPONSE FORMAT: [{ column1: value1, column2: value2, ... }]

Full-table generation (populated example):
You are a retriever of facts. List all achievements of Susen Tiedtke from 1987 to 2000. The response will be formatted as
JSON shown below. Each element of the response will contain 4 fields: [’year’, ’competition’, ’venue’, ’position’]. Do not
output any additional text that is not in JSON format.
RESPONSE FORMAT: [{ “year”: _year, “competition”: _competition, “venue”: _venue, “position”: _position }]

Figure 8: Full-table generation prompt.

Keys generation template:
You are a retriever of facts. We want to create a table with the detailed information about {table description}. The key
columns in the table are {key1, (key2, ...)}. List all {key1, (key2, ...)} entities for the table. The response will be
formatted as JSON list shown below.
RESPONSE FORMAT: [{ key: value1, key2: value2, ... }]

Keys generation (populated example):
You are a retriever of facts. We want to create a table with the detailed information about achievements of Susen Tiedtke
from 1987 to 2000. The key columns in the table are competition, year. List all competition, year entities for the table. The
response will be formatted as JSON list shown below.
RESPONSE FORMAT: [{ “competition”: _competition, “year”: _year }]

Figure 9: Key columns generation prompt.

ber of correct keys, denoted by ψ = |{(r, c), r ∈
R̂ ∧ c ∈ C \Ck ∧ r ; r̂ ∧ r̂[c] = r[c]}|. Then the
non-keys precision is calculated by ψ

|R̂[C\Ck]|
and

non-keys recall is calculated by ψ
|R[C\Ck]| .

Last, for the table precision and recall, we per-
form a similar evaluation, now defining the number
of correct cells, denoted by τ , as all correct cells
in the table. Namely, τ = |{(r, c), r ∈ R̂ ∧ c ∈
C ∧ r ; r̂∧ r̂[c] ≈ r[c]}|, then the table precision
is simply calculated by τ

|R̂[C]| and table recall is
calculated by τ

|R[C]| .

C Table Properties Effect on Performance

In §6.4 we examine how the table properties such
as the size, amount of numeric data, and table popu-
larity affect the generation performance. In Fig. 12
we present the effect of these three properties on
both the keys F1, non-keys F1, and full table F1.
We can see, for instance, that the table size neg-
atively affects both the keys F1 and the non-keys
F1 scores (see Fig. 12 (a) and Fig. 12 (b)), and the
ratio of numeric columns has a negative effect, as
expected, only the non-keys F1 (see Fig. 12 (e)).
The table popularity also have a strong effect on
both the keys F1 and the non-keys F1 (Fig. 12 (g)
and Fig. 12 (h)).
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Row generation template:
You are a retriever of facts. We want to create a table with the detailed information about {table description}. Columns
in the table are {columns}. The key columns in the table are {key1, (key2, ...)}. Retrieve a single row whose key is
({key = value}). The response will be formatted as JSON dictionary shown below. Pay special attention to wrap all values
in double quotes!
RESPONSE FORMAT: [{ column1: value1, column2: value2, ... }]

Row generation (populated example):
You are a retriever of facts. We want to create a table with the detailed information about achievements of Susen Tiedtke from
1987 to 2000. Columns in the table are year, competition, venue, position. The key columns in the table are competition,
year. Retrieve a single row whose key is (year = 1987, competition = World Championships). The response will be formatted
as JSON dictionary shown below. Pay special attention to wrap all values in double quotes!
RESPONSE FORMAT: { “year”: 1987, “competition”: World Championships, “venue”: _venue, “position”: _position }

Figure 10: Row-by-row (row generation) prompt.

Cell generation template:
You are a retriever of facts. We want to create a table with the detailed information about {table description}. Columns
in the table are {column1, column2, ...}. The key columns in the table are {key1, (key2, ...)}. For the table row whose
key is is ({key = value}) what is the value of attribute {column}. The response will be formatted as JSON dictionary
shown below. Pay special attention to wrap all values in double quotes!
RESPONSE FORMAT: { column: value }

Cell generation (populated example):
You are a retriever of facts. We want to create a table with the detailed information about achievements of Susen Tiedtke from
1987 to 2000. Columns in the table are year, competition, venue, position. The key columns in the table are competition,
year. For the table row whose key is (year = 1987, competition = World Championships) what is the value of attribute venue.
The response will be formatted as JSON dictionary shown below. Pay special attention to wrap all values in double quotes!
RESPONSE FORMAT: { “venue”: _venue }

Figure 11: Cell-by-cell (cell generation) prompt.
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Figure 12: The effect of table size, the ratio of numeric columns, and table popularity on the generation performance
of the full-table method, with four different LLMs. Additional breakdown of generation performance based on cells
in key columns versus non-key columns.
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Abstract

Large Language Models (LLMs) have demon-
strated strong capabilities in code generation,
such as translating natural language questions
into SQL queries. However, state-of-the-art
solutions often involve a costly fine-tuning
step. In this study, we extensively evaluate
In-Context Learning (ICL) solutions for text-
to-SPARQL generation with different archi-
tectures and configurations, based on meth-
ods for retrieving relevant demonstrations for
few-shot prompting and working with multi-
ple generated hypotheses. In this way, we
demonstrate that LLMs can formulate SPARQL
queries achieving state-of-the-art results on
several Knowledge Graph Question Answer-
ing (KGQA) benchmark datasets without fine-
tuning.

1 Introduction

The advent of Large Language Models (LLMs)
has significantly advanced the field of Natural Lan-
guage Processing (NLP), with particular success in
the domain of code generation (Chen et al., 2021;
Rozière et al., 2024).

At the same time, the growing complexity and
scale of Knowledge Graphs (Pellissier Tanon et al.,
2016; Lehmann et al., 2014; Bollacker et al., 2008)
highlighted the need for robust and accurate mecha-
nisms to query such data stores, for instance, within
Knowledge Graph Question Answering (KGQA)
pipelines (Li et al., 2023; Nie et al., 2024).

In this paper, we carry out an extensive eval-
uation of LLM-based In-Context Learning (ICL)
for text-to-SPARQL generation. Text-to-SPARQL
is a crucial component of many KGQA systems,
that typically make use of different modules to
assembly the query, such as Entity and Relation
Linking. To this end, we define a simple and mod-
ular approach to address the text-to-SPARQL task
without fine-tuning. The evaluation is focussed on

*Work done while being at expert.ai.

the following key aspects: (1) the influence of vari-
ous In-Context Learning strategies on the quality
of the generated queries; (2) the impact of differ-
ent state-of-the-art model backbones, varying in
architecture, size, and training data; (3) the po-
tential of beam search to generate multiple query
candidates, thereby enhancing the results;(4) a com-
parison between ICL and specialized models fine-
tuned for the task. The code is publicly available at
https://github.com/jacopodabramo/DFSL.

In the interest of reproducibility, as backbones,
we use three state-of-the-art open-weight LLMs:
Mixtral 8x7B, Llama-3 70B, and CodeLlama 70B.
We run experiments on two widely-used Knowl-
edge Bases, DBpedia and Wikidata, using four pub-
licly available datasets: QALD-9, based on DBpe-
dia, and QALD-9 plus, QALD-10 and LC-QuAD
2.0, based on Wikidata.

Our experimental results demonstrate that LLMs
In-Context Learning solutions achieve state-of-the-
art results, without the need of any fine-tuning. The
injection of demonstrations similar to the input
question into the prompt combined with the gen-
eration of multiple query candidates directly from
beam search hypotheses, yield the best results, ex-
ceeding in most of the benchmarks state-of-the-art
models fine-tuned for the task. Finally, we also
run ablation studies to gauge the effectiveness of
the approach without gold information from the EL
and RL modules.

2 Related work

We first provide an overview of most related In-
Context-Learning approaches. Then, we discuss
text-to-SPARQL methods, including KGQA sys-
tems that typically make use of text-to-SPARQL
techniques to tackle the problem.
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In-Context Prompt
The task involves translating questions from English into
SPARQL queries for the Wikidata knowledge graph. The
queries must follow specific guidelines to ensure
accuracy and correct execution:
1. Enclose SPARQL queries within <SPARQL></SPARQL> tags.
2. Utilize all provided golden entities and relations
exclusively to construct the query accurately. Do not use
any other entities or relations. 
3. Examples are provided below for guidance.

Examples:

###

Question: Where was Bach born?

Golden entities:
http://www.wikidata.org/entity/Q1339 (Johann 
Sebastian Bach)
Golden relations:
http://www.wikidata.org/prop/direct/P19 (place of birth)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> 
PREFIX wd: <http://www.wikidata.org/entity/> SELECT
DISTINCT ?uri WHERE { wd:Q1339 wdt:P19 ?uri . }</SPARQL>
###

...
###

Question: Which country was Bill Gates born in?

Gold Entities:
http://www.wikidata.org/entity/Q5284 (Bill Gates)

Gold Relations:
http://www.wikidata.org/prop/direct/P19 (place of birth),
http://www.wikidata.org/prop/direct/P17 (country)

Query:

Question: Which country was Bill Gates born in?
Entities: http://www.wikidata.org/entity/Q5284
Relations: http://www.wikidata.org/prop/direct/P19,
http://www.wikidata.org/prop/direct/P17

Encode

Multi-Query Generation

LLM

PREFIX wdt: <http://www.wikidata.org/prop/direct/>  PREFIX wd:
<http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { wd:Q5284
wdt:P19 ?uri . ?uri wdt:P17 ?uri . }

Answer
Selection

PREFIX wdt: <http://www.wikidata.org/prop/direct/>  PREFIX wd:
<http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { wd:Q5284
wdt:P19 ?uri . ?uri wdt:P17 ?uri2 .

Encode

SPARQL
Engine

http://www.wikidata.org/entity/Q30(United States of America)

... b

Exemplars Retrieval

Figure 1: Sketch of the ICL approach. Given a question, its entities and its relations, k-most similar examples are
retrieved from a text-to-SPARQL collection S and injected into the in-context prompt. Then, the LLM generates one
or more queries that are all executed by a SPARQL engine. An answer selection strategy identifies which response
to pick.

2.1 In-Context Learning

ICL is a paradigm that leverages reasoning through
analogies. A task description, question, and demon-
stration context are usually concatenated to cre-
ate a prompt, which is then input into an LLM
for prediction. Unlike fine-tuning, ICL performs
predictions without gradient updates (Dong et al.,
2023). Few-Shot Learning is a type of ICL where
the demonstration context includes a few exam-
ples. Owing to the effectiveness of ICL and the
obvious advantage of building systems that don’t
need domain-specific training, a great deal of re-
search and engineering efforts have been devoted
to designing suitable prompts. ICL has been suc-
cessfully applied to many NLP problems, including
QA (Chada and Natarajan, 2021; Chen et al., 2023).

Some studies have also focused on the selection
of in-context examples. In particular, Liu et al.
(2022) developed KATE, an unsupervised retriever
that utilizes k-nearest neighbors and distance met-
rics (e.g., L2 distance and cosine similarity) to se-
lect in-context examples for tasks such as sentiment
analysis, table-to-text generation, and question an-
swering. Levy et al. (2023) explored the incor-

poration of diverse demonstrations into prompts
for compositional semantic parsing task, demon-
strating that such diversity leads to better structural
coverage in target utterances. Kim et al. (2022)
leveraged the generative capabilities of pre-trained
language models to generate demonstrations for
each class in downstream tasks, conditioned on test
inputs and class information. Gonen et al. (2022)
found that selecting examples based on perplex-
ity, in particular lower perplexity, is an effective
strategy.

Similar principles have been adopted in code
generation tasks (Cheng et al., 2022), including
text-to-SQL (Cheng et al., 2022; Nan et al., 2023;
Zhang et al., 2023; Wei et al., 2023) and KGQA (Li
et al., 2023). In the same vein, our study investi-
gates ICL strategies to address text-to-SPARQL.
However, while all these approaches are based on
proprietary LLMs, such as GPT-3, GPT-4 (Brown
et al., 2020) and Codex (Chen et al., 2021), we
focus on open-weight LLMs.

2.2 Text-to-SPARQL

With the recent wave of decoder-based LLMs
such as GPT (Brown et al., 2020), Mixtral (Jiang
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et al., 2024), and Llama (Touvron et al., 2023),
generative AI was also used to translate ques-
tions into SPARQL queries. Notably, Zou et al.
(2021) introduced a text-to-SPARQL model that
leverages a relation-aware attention decoder and a
pointer network encoder, incorporating three sep-
arate scaled dot-product attention mechanisms to
generate SPARQL queries that capture entity, rela-
tion, and keyword representations. Banerjee et al.
(2022) experimented with various models, includ-
ing T5 (Raffel et al., 2020), BART (Lewis et al.,
2019), and Pointer Generation Networks (See et al.,
2017), to explore their efficacy in KGQA tasks.
Rony et al. (2022)’s SGPT employs a stack of trans-
former encoders to extract linguistic features from
the natural question and GPT-2 as a decoder. How-
ever, this architecture is limited by its inability to
capture connections among entities and relations in
the underlying knowledge graph, leading to errors
in generating triple sequences in the final SPARQL
queries. Pliukhin et al. (2023) presented a one-
shot generative approach, where the prompt is aug-
mented with a KG fragment required to construct
the query and a question-subgraph query example.

Despite promising results, these architectures
are prone to systematic errors. One such error, the
so-called “triple-flip", refers to the reversal of sub-
ject and object positions in the generated SPARQL
triples, yielding wrong, often empty answers. Qi
et al. (2024) addressed this issue by developing
TSET, a fine-tuned T5 model with a pre-training
stage called Triplet Structure Correction.

All these works propose dedicated architectures
or training objectives designed for the task at hand.
This requires fine-tuning, that may be expensive in
terms of resources, thus limiting the choice of back-
bones to specialize. We take a different approach
and investigate ICL solutions that do not require
any fine-tuning.

Text-to-SPARQL methods are typically evalu-
ated in KGQA tasks, and they all share a similar
pipeline, where entities and relations are given or
extracted from other modules and the goal of the
model is to translate a natural language question,
associated with its entities and relations, into the
SPARQL query.

KGQA. Being text-to-SPARQL an important in-
gredient in KGQA, many KGQA approaches are
inherently related with our work. Early research
in KG query generation was rule-based (Guo et al.,
2005; Owens et al., 2008), template-based (Zenz

et al., 2009; Unger et al., 2012; Görlitz et al., 2012)
or search-based. However, manual or semi-manual
approaches hit scalability issues with KGs like
WikiData and DBpedia. Nowadays, research fol-
lows two main streams: information-retrieval based
methods and Text-to-SPARQL approaches. The
former generally require identifying sub-graphs rel-
evant to the natural question. They include divide-
and-conquer (Kim et al., 2023), fact retrieval based
on linked entities (Baek et al., 2023), more complex
methods involving hops, relation predictions, and
triple sampling (Wu et al., 2023), or Evidence Pat-
tern Retrieval (EPR) through structural dependency
modeling (Ding et al., 2024). Conversely, solutions
based on text-to-SPARQL typically use ICL ap-
proaches to build a query draft in a logical form
that is then refined and converted into a formal
SPARQL query by means of different strategies.
KB-BINDER (Li et al., 2023) leverages LLMs
for generating preliminary logical forms and re-
fines them using a lexicon-based similarity search,
achieving notable performance on several KBQA
datasets without customized heuristics for specific
knowledge bases. In (Nie et al., 2024) authors
propose converting logical form generation into
Python function call sequences, reducing format
errors and enhancing performance in zero-shot and
few-shot settings, establishing new state-of-the-art
results on multiple datasets. In the same spirit,
other methods generate natural language questions
starting from SPARQL queries instead (Li et al.,
2024; Liang et al., 2023).

Our study departs from the KGQA works listed
above in several ways. First, it focuses on the text-
to-SPARQL task starting from a natural question
and gold entities/relations, whereas KB-BINDER
and other methods address a different task: the
production of a logical form starting from a natu-
ral question, without gold entities/relations. The
SPARQL query can be constructed afterward, and
entities/relations can be predicted based on the
logical form, which is what KB-BINDER does;
nevertheless, the task is a different one. For this
reason, we only consider text-to-SPARQL bench-
marks with gold entities/relations, as in (Banerjee
et al., 2022; Rony et al., 2022; Qi et al., 2024). An-
other difference is the choice of the KG: instead of
freebase, a project closed in 2016, we adopt Wiki-
data, an ongoing project with 1.57 billion semantic
triples to date.1

1https://grafana.wikimedia.org/d/000000175/
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3 Method

Given a collection of natural language questions Q
and a knowledge graph G := (E ,R,F), where E
are entities,R are relations, and F ⊆ E ×R× E
are facts, KGQA is the problem of answering ques-
tions in Q based on G. KGQA can be framed
as a text-to-SPARQL task, where a question q
must be translated into a SPARQL query sq to be
executed on G by a SPARQL engine, to return a
(possibly empty) answer a. The entities and re-
lations in q, denoted as Eq and Rq, may be, and
usually are, extracted from q before generating sq.
Hence, query generation can be tackled as a con-
ditional text generation problem given q, Eq and
Rq. Within the scope of ICL, Pθ is a pre-trained
LLM and the conditional input Eq,Rq, q is com-
bined with other contextual information C, such as
additional instructions, guidelines, constraints and
demonstrations, all expressed via natural language
text. Accordingly, the generated query is:

sq = argmax
s
Pθ(s|C, Eq,Rq, q). (1)

3.1 Exemplary Demonstrations Retrieval

In few-shot ICL, the choice of demonstrations to
inject in the prompt can significantly affect perfor-
mance. Usually, few-shot examples are predeter-
mined representative instances of the task, hand-
picked during prompt design. Conversely, we aim
to retrieve good examples dynamically, based on
their relevance to the input question. Inspired by
Liu et al. (2022) and Li et al. (2023), we adopt a
retrieval approach based on the similarity between
a question q and a set of previously answered text-
to-SPARQL examples collected in a storage S (see
Figure 1), where each example is a tuple including
a question x, its entities Ex and relations Rx, and
the associated SPARQL query sx. Differently from
(Li et al., 2023), we encode examples with dense
representations instead of BM25. Moreover, beside
the question itself, we also encode its entities and
relations, i.e. ⟨q, Eq,Rq⟩ are mapped onto a vector
representation eq ∈ Rd using a sentence encoder.
To properly feed such information to an encoder-
only LM, we concatenate question, entities and re-
lations in a single input sequence q := [q, Eq,Rq].
Likewise, we encode each example x ∈ S into a
vector ex ∈ Rd and then compute the similarity

wikidata-datamodel-statements?orgId=1&refresh=
30m

between the target question and the storage:

score(q,x) = sim(eq, ex),∀x ∈ S, (2)

where sim is a similarity function. Based on such
a scoring, we retrieve the k-most similar examples
S and include them as demonstrations in the in-
context prompt. From now on, we refer to this ex-
emplary demonstration retrieval strategy as DFSL,
standing for Dynamic Few-Shot Learning.

3.2 In-Context Prompt

The in-context prompt has three parts. The first is
the task description, instructing the LLM with a
numbered list of guidelines on the output format
and on the available information. The second, high-
lighted in Figure 1 with a green block, contains the
k retrieved demonstrations. Each demonstration
consists of a question, its entities and relations, de-
noted as gold entities/relations, all paired with their
SPARQL query delimited by <SPARQL></SPARQL>
tags. The ### symbol delimits each example. The
last part is the question, associated with its gold
entities and relations. The answer returned by the
LLM prompted as such is then parsed to extract
the generated text enclosed in <SPARQL></SPARQL>
tags. The resulting query sq is executed by a
SPARQL engine on G to yield the answer to q.

3.3 Multi-Query Generation

A typical challenge faced by LLMs in SPARQL
query generation is the understanding of what is
the subject and what is the object of a relation, an
information the model does not have. LLMs often
end up in swapping the subject with the object in
the query, almost choosing one way or the other ran-
domly. This problem is called triple-flip error (Qi
et al., 2024). Thanks to ICL, this issue may be alle-
viated whenever there are similar demonstrations
in the in-context prompt that clarify the subject-
object roles. To further reduce triple-flip errors,
we propose the generation of multiple SPARQL
queries by retaining all the final hypotheses gener-
ated during beam search. The model uncertainty in
placing subject and object is likely to be reflected
in the beam search exploration. Intuitively, both
triple-ordering hypotheses are considered plausi-
ble by the model. Thus, instead of just returning
the most probable sequence s according to Equa-
tion 1, we keep the whole b queries {sq,1, . . . , sq,b}
formulated by beam search.
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Approach Backbone QALD-9 Plus QALD-10 LC-QUAD 2.0 QALD-9 DB

Zero-shot Learning 49.90 33.76 40.66 65.73
Few-shot Learning Mixtral 7x8 54.80 (+4.90) 50.26 (+16.50) 61.04 (+20.38) 63.86 (-1.87)
DFSL 71.75 (+21.85) 49.90 (+16.14) 81.81 (+41.15) 72.74 (+7.01)

Zero-shot Learning 63.01 58.31 54.21 70.49
Few-shot Learning Llama-3 70B 67.69 (+4.68) 51.28 (-7.03) 68.52 (+14.31) 68.84 (-1.65)
DFSL 73.60 (+10.59) 56.59 (-1.72) 81.93 (+27.72) 72.66 (+2.17)

Zero-shot Learning 45.94 33.36 38.40 66.43
Few-shot Learning CodeLlama 70B 64.49 (+18.55) 57.38 (+24.02) 64.46 (+26.06) 72.67 (+6.24)
DFSL 76.59 (+30.65) 57.69 (+24.33) 85.45 (+47.05) 75.14 (+8.71)

Table 1: ICL techniques comparison on different backbones. Absolute F1 gains with respect to zero-shot are
reported between parenthesis.

Approach QALD-9 Plus QALD-10 LC-QUAD 2.0 QALD-9 DB

DFSL 76.59 57.69 85.45 75.14

DFSL-MQPLS 73.67 58.85 85.06 73.25
DFSL + Multi-Query PromptFS 74.40 58.34 85.38 73.92

DFSL-MQLS 83.21 60.48 85.54 72.06
DFSL-MQFS 84.45 (+7.86) 62.20 (+4.51) 89.10 (+3.65) 77.89 (+2.75)

Table 2: Multi-query Generation: comparing DFSL-MQ with DFSL and Multi-Query Prompting baselines. Absolute
F1 gains with respect to DFSL are reported for the best performing configuration.

Answer Selection. Executing multiple queries in-
evitably leads to multiple possible answers. There-
fore, we must define an answer selection criterion.
We designed two heuristics: Largest Set (LS) and
First Set (FS). LS executes all the b queries, obtain-
ing with each query sq,j a (possibly empty) answer
set Aj . LS then selects, among {A1, . . . ,Ab}, the
largest one2, i.e:

A = argmax
Ai

(|A1|, . . . , |Ab|),

the rationale being that incorrect candidates will
likely have empty results. However, LS can be mis-
led into selecting answers from under-constrained
queries that return many irrelevant instances. FS
adheres to the natural beams ordering by selecting
the first query that yields a non-empty answer set.

4 Experiments

In this section, we conduct the investigation of
LLMs capabilities in text-to-SPARQL query gener-
ation. KGQA serves as a benchmark task to mea-
sure the quality of the generated queries.

4.1 Datasets
To make our analysis more robust, we evaluate
models and methods on four heterogeneous KGQA

2In case of ties, we take the first largest set.

benchmarks based on two different Knowledge
Graphs (Wikidata, DBpedia).

QALD-9 DB. QALD-9 (Ngomo, 2018) is a
dataset from the Question Answering over Linked
Data (QALD) challenge series. It comprises 408
training questions and 150 test questions. Unlike
the other KGQA benchmarks, the SPARQL queries
are meant for a DBpedia Knowledge Graph. We
refer to it as QALD-9 DB to emphasize that.

QALD-9 plus. QALD-9 plus extends QALD-9
on new languages and transfers SPARQL queries
from DBpedia to Wikidata. Although some queries
were not portable to Wikidata due to the absence of
corresponding information, it still comprises 371
training questions and 136 test questions. In our
experiments, we only consider English questions.

QALD-10. QALD-10 (Usbeck et al., 2023) is
the latest dataset in the QALD series, designed to
increase the complexity of gold SPARQL queries.
It consists of 412 training questions extracted from
QALD-9 plus Wikidata. The test set was created
from scratch, comprising 394 test questions that ex-
press real-world information needs. Test questions
significantly differ from those in training.
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Figure 2: Comparison of Embeddings: DFSL (in orange) encoding that incorporates question, entities and relations
versus an embedding solely based on the question q (in blue).

LC-QuAD 2.0. LC-QuAD 2.0 (Dubey et al.,
2019) is a large-scale dataset grounded on Wiki-
data. It consists of 30,226 simple and complex
questions: 24,180 in training, and 6,046 in test.
Questions are diverse. They include single- and
multi-fact, boolean, count, and other query types.
With such a large and diverse text-to-SPARQL stor-
age, LC-QuAD 2.0 allows us to gauge the benefits
of retrieving similar exemplary demonstrations.

4.2 Backbones

Mixtral 8x7B. Based on the Sparse Mixture of
Experts (SMoE) architecture (Fedus et al., 2022),
Mixtral 8x7B (Jiang et al., 2024) is a 46.7B param-
eters model. Among the backbones adopted in this
paper, Mixtral is the smallest. Moreover, thanks
to the characteristics of its SMoE architecture, less
than 13B are active at each inference step, making
Mixtral particularly efficient.

Llama-3 70B. Built upon the Llama architec-
ture (Touvron et al., 2023), Llama-3 70B has been
trained on 15T tokens, a 650% increase from its pre-
decessor, Llama 2. At the time of writing, Llama-3
70B is one of the best-performing open-weights
LLMs available.

CodeLlama 70B. Initialized from Llama2 70B,
CodeLlama (Rozière et al., 2024) is a specialized
version fine-tuned on 1T tokens of code-heavy data.
Therefore, we expect CodeLlama to be particularly
suitable for SPARQL query generation.

4.3 Baselines

Plain Question. This is a naive baseline where
we feed an LLM only with the task description and
the question q. Without in-context examples nor
any entity or relation associated with q, the LLM
can only rely on its parameter memory.

Zero-Shot Learning. Here we do not provide
any demonstrative example in the prompt. How-
ever, unlike the plain question baseline, we do in-
ject golden entities and relations into the prompt.
With reference to Figure 1, the In-Context prompt
remains the same but without the green-like block
containing the demonstrations.

Few-Shot Learning. The prompt is filled with a
single set of k manually selected examples, used for
all the questions in the test set. The examples were
chosen to maximize diversity and cover different
kinds of queries3.

Multi Query Prompting (DFSL-MQP). As an
alternative to our proposed multi-query generation
(DFSL-MQ), this baseline consists in a naive multi-
query prompting strategy. Essentially, we ask the
model to generate more queries to answer the ques-
tion. To ease the creation of inverted subject-object
queries that can solve triple-flip errors, we extend
the prompt to explicitly ask the model to produce
this kind of SPARQL queries. Answer selection
uses LS and FS heuristics, like with DFSL-MQ.

4.4 Experimental Setup

Implementation. In our experiments, the training
set of each dataset serves as storage for the re-
trieval of the k most similar examples (see the next
paragraph for details on k tuning) with DFSL. Ex-
amples are encoded with a sentence transformer4,
all-mpnet-base-v25, and sim is defined as the co-
sine similarity. Inference is performed via beam
search in all ICL approaches, where b is set to 3,

3The chosen examples and more details are provided in
Appendix B.

4https://www.sbert.net/index.html
5huggingface.co/sentence-transformers/

all-mpnet-base-v2
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and DFSL-MQ, where b is set to 10. All the exper-
iments were run on a cluster of 4 NVIDIA A100
GPUs.

1 3 5 7
k
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QALD-9 DB
QALD-10
LC-QUAD 2.0

Figure 3: Impact of the number of in-context examples
on the four benchmarks.

Number of Few-shot Examples. We first an-
alyzed how the number of few-shot examples k
retrieved by DFSL affects the performance. We
chose among k = {1, 3, 5, 7} and evaluated DFSL
with Llama 3 70B backbone on the four datasets.
The results shown in Figure 3 suggest that values
of k greater than one perform comparably well
on smaller benchmarks, while on LC-QUAD 2.0,
where there are about 25 thousands examples as
storage, increasing k seems to be beneficial. This
may be due to the increased likelihood of finding
similar examples in larger datasets as k grows. We
set k = 5 for all the forthcoming experiments,
which is a good trade-off across all the datasets.

Prompt. The prompt illustrated in Figure 1 con-
stitutes the default template in our experimenta-
tions. However, slight variations are required in
certain cases. For example, when running experi-
ments on DBpedia knowledge graph, we replace
the Wikidata reference with DBpedia in the first
text segment. When we study the absence of gold
information instead, we remove all the references
to gold entities/relations (according to the ablation)
from the entire prompt. There are no differences in
the prompts layout when running few-shot-learning
baseline experiments. In zero-shot learning, only
the in-context examples any reference to them are
removed, all else being equal.

Evaluation metric. We follow a standard F1
score evaluation in KGQA benchmarks. The F1 is
computed between the answer set returned by the
target SPARQL query and the predicted one. When
both the queries return an empty set, we assign an

F1 score of 1. The F1 scores of all the examples
are then averaged.

4.5 Results
In-Context Learning. To measure how ICL tech-
niques affect the generation of SPARQL queries,
we compare Zero-Shot, Few-Shot Learning and
DFSL on three different LLMs. Results are out-
lined in Table 1. Both few-shot learning and
DFSL generally yield substantial gains with re-
spect to zero-shot baseline on all the backbones
and datasets. An exception occurs in QALD-10
with Llama-3. Notably, when comparing DFSL
and Few-shot Learning baseline, we can see how
examples selection approach improves F1 scores by
a large margin in LC-QUAD 2.0, QALD-9 Plus and
QALD-9 DB, with F1 increasing up to 21 absolute
points6. In QALD-10 instead, where the test set
has a different distribution from its training, there
are no significant differences between DFSL and
the standard few-shot learning approach. Indeed,
an approach like DFSL brings little benefits when
the storage only contains unrelated examples.

Backbones Comparison. In terms of backbones,
Llama-3 consistently outperforms both Mixtral and
CodeLlama in zero-shot learning scenario, whereas
in few-shot, results are generally comparable be-
tween Llama-3 and CodeLlama. Such a strong
Llama-3 zero-shot performance may be caused by
some sort of data contamination, however we leave
such an investigation for future works. Overall,
DFSL with CodeLlama achieved the greatest per-
formance with respect to all the other configura-
tions. Therefore, we adopt CodeLlama as our back-
bone in the following experiments.

Impact of Multi-Query Generation. Here we
investigate DFSL-MQ, the multi-query approach
extending DFSL. We evaluate both answer selec-
tion strategies, LS and FS, and compare them
against the plain DFSL and the multi-query prompt-
ing baseline described in Section 4.3. All the
results are outlined in Table 2. Having multiple
queries is not necessarily beneficial. Indeed, the
multi-query prompting baseline under-performs
in three datasets out of four with respect to (sin-
gle query) DFSL, regardless of the answer selec-
tion method adopted. On the contrary, DFSL-MQ
proves to positively increase results. Both Largest
Set and First Set heuristics are effective when the

6Some qualitative examples illustrate the benefits of DFSL
over few-shot learning in Appendix A (see Table 6).
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Approach QALD-9 Plus QALD-10 LC-QUAD 2.0 QALD-9 DB

Plain Question 0.08 0.02 12.00 16.42
BART (Banerjee et al., 2022) - - 64.00 -
PGN-BERT-BERT (Banerjee et al., 2022) - - 86.00 -
SGPT (Rony et al., 2022) - - 89.04 67.82
TSET-small (Qi et al., 2024) 72.86 47.15 94.00 -
TSET-base (Qi et al., 2024) 75.85 51.37 95.00 -

Zero-shot Learning 45.94 33.36 38.40 66.43
Few-shot Learning 64.49 57.38 64.46 72.67
DFSL 76.59 57.69 85.45 75.14
DFSL-MQ beam FS 84.45 (+8.60) 62.20 (+10.83) 89.10 (-5.90) 77.89 (+10.07)

Table 3: DFSL and ICL approaches vs state-of-the-art fine-tuned models.

hypotheses come from the beams. Furthermore, FS
consistently outperforms LS, even by substantial
margins in QALD-9 DB. This shows that exploiting
the information coming from beam search hypothe-
ses is a promising strategy to obtain more query
candidates.

In-context Learning vs Fine-tuning. Up to this
point, we have assessed In-Context Learning ap-
proaches. In Table 3 instead, we compare them
against state-of-the-art models trained and/or fine-
tuned for specific downstream KGQA datasets.
Without any training, DFSL-MQ outperforms cur-
rent state-of-the-art approaches in three out of four
benchmarks, namely QALD-9 Plus, QALD-10 and
QALD-9 DB, even with the single query DFSL
setup. DFSL-MQ does not obtain state-of-the-art
results in LC-QUAD 2.0, the dataset mostly af-
fected by triple-flip errors. This means that multi-
query generation only alleviates the issue, but does
not solve it entirely.

4.6 Ablation studies

Different Example Encoding. As described in
Section 3.1, to compute the embeddings we con-
catenated the textual input made of the question
and its list of entities and relations. Here, we gauge
the impact of this additional information on DFSL
performance. In Figure 2 we compare it, with a
variant where only the natural language question
q is embedded, without any additional data con-
catenated. The evaluation carried out in all the
benchmarks and with all the backbones, demon-
strates that such information improves the quality
of the generated queries.

Absence of gold information. In KGQA, text-
to-SPARQL generation usually relies not only on
the question itself, but also on entities and relations
associated to it. Here we assess DFSL when ei-

QALD 9 DB QALD 9 Plus

DFSL 75.14 76.59
w/o Rq 56.62 49.47
w/o Eq 60.92 31.83
w/o Eq, Rq 49.59 26.16

Table 4: DFSL in the absence of entities and/or rela-
tions.

ther the entities Eq or the relationsRq, or both are
missing. The information is removed throughout
the entire process. For example, when removing
entities, we discard them from both the storage and
the prompt. Even the embeddings for the retrieval
are computed by encoding an input without any en-
tity concatenated in q, i.e. becoming q = [q,Rq].
We report this on both Wikidata and DBpedia KGs.
Results outlined in Table 4, clearly show how the
knowledge about entities and the relations is es-
sential for generating the query, indeed without
performance drop significantly. Nonetheless, even
in the case where no information is given (DFSL
w/o Eq,Rq), the presence of dynamic demonstra-
tions drastically help, yielding respectively a 33+
and 25+ absolute F1 increase compared to plain
question baseline in Table 3.

5 Conclusion

In this paper, we investigated the use of out-of-the-
box Large Language Models for text-to-SPARQL
generation. We carried out an extensive evalua-
tion of several backbones and configurations on
four KGQA benchmarks. By leveraging differ-
ent In-Context Learning (ICL) approaches, we
have shown that LLMs can effectively generate
SPARQL queries. When demonstrations similar
to the input question are injected into the prompt,
LLMs achieve performance exceeding state-of-the-
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art models fine-tuned on the downstream task. The
generation of multiple SPARQL query hypotheses
from beam search candidates enhances the perfor-
mance further, even with a simple query selection
criterion.

Future work will focus on extending the investi-
gation to multiple languages and (possibly private)
KGs.

Limitations

We recognize some limitations in our work. Our ex-
periments are all on English-based datasets, where
notoriously LLMs are better performing. More-
over, the massive pre-training of those LLMs on a
vast portion of the Web, may expose those models
to unintended data contamination, a phenomenon
already observed in similar domains (Ranaldi et al.,
2024). Experiments only focused on LLMs with
large number of parameters, without investigating
the behaviour of smaller models. To encode exam-
ples, we limited the investigation to what kind of
text to encode (just the question, or the question
and its entities and relations), without exploring
different embedding models, similarity criteria or
other input concatenation strategies. We leave these
investigations to future work.
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A Qualitative Analysis

In this appendix we provide some qualitative analy-
ses of DFSL and DFSL-MQ. First of all, we report
some examples in Table 6 that highlight the bene-
fits from introducing similar examples with DFSL
with respect to standard few-shot learning approach.
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Then, we show some examples in Table 7 where the
multi-query approach solves triple-flip errors. In
Table 5 instead, we showcase errors caused by em-
ploying LS answer selection heuristic. Notably, by
choosing larger sets, LS sometimes selects queries
that are often relegated to latter positions in the
beam hypotheses, which tend to be more general,
thus more prone to returning a greater number of
results.

B Few-shot Learning Examples

We report in Figure 4 the examples selected for the
Few-shot learning baseline prompt. The five exam-
ples were chosen to be the most representative of
the training set, including queries of different kind
and structure, such as ASK, COUNT and SELECT.
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Question Target Query Answer
Selection

Predicted Query Beam

What is manufactured
NEC PC-9800 series
whose sector is electron-
ics?

SELECT ?answer WHERE
{ wd:Q183505 wdt:P176
?answer . ?answer
wdt:P452 wd:Q11650 }

LS SELECT ?answer WHERE {
wd:Q183505 wdt:P176 ?X . ?X
wdt:P452 wd:Q11650 . ?X
wdt:P31 ?answer}

7

FS select distinct ?obj where
{ wd:Q183505 wdt:P176 ?obj .
?obj wdt:P452 wd:Q11650 }

4

What is the enthalpy of
vaporization for potas-
sium hydroxide?

select distinct
?answer where {
wd:Q132298 wdt:P2116
?answer}

LS ASK WHERE { wd:Q14982
wdt:P2116 ?obj filter(?obj =
37400) }

3

FS select distinct ?answer
where { wd:Q132298 wdt:P2116
?answer}

1

Which is the rural city
of Fukushim?

SELECT ?answer WHERE
{ wd:Q161176 wdt:P131
?answer . ?answer
wdt:P150 wd:Q1347240}

LS SELECT ?answer WHERE {
wd:Q161176 wdt:P131 ?X . ?X
wdt:P150 ?answer}

3

FS SELECT ?answer WHERE {
wd:Q161176 wdt:P131 ?answer .
?answer wdt:P150 wd:Q1347240}

1

Table 5: Qualitative comparison between different answer selection strategies in DFSL-MQ.
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Question Target Query Approach Predicted Query Similar In-context Ex-
ample

Who is the daughter of
Robert Kennedy mar-
ried to?

SELECT DISTINCT ?uri
WHERE { wd:Q25310
wdt:P40 ?daughter
. ?daughter
wdt:P21 wd:Q6581072 .
?daughter wdt:P26 ?uri
.}

Few-Shot SELECT DISTINCT ?uri WHERE
{ ?uri wdt:P40 wd:Q25310
; wdt:P21 wd:Q6581072 ;
wdt:P26 ?spouse .

-

DFSL SELECT DISTINCT ?uri
WHERE { wd:Q25310 wdt:P40
?child . ?child wdt:P21
wd:Q6581072 . ?child
wdt:P26 ?uri . }

SELECT DISTINCT
?uri WHERE {
wd:Q43247 wdt:P40
?child . ?child
wdt:P26 ?uri . }

Which countries are
connected by the
Rhine?

SELECT DISTINCT ?uri
WHERE { wd:Q584 wdt:P17
?uri . ?uri wdt:P31
wd:Q6256 . }

Few-Shot SELECT DISTINCT ?uri WHERE
{ ?uri wdt:P31 wd:Q6256 ;
wdt:P17 wd:Q584 .}

-

DFSL SELECT DISTINCT ?uri WHERE
{ wd:Q584 wdt:P17 ?uri .
?uri wdt:P31 wd:Q6256 . }

SELECT DIS-
TINCT ?res
WHERE { wd:Q3392
wdt:P885/wdt:P17 ?res .
}

Give me the capitals of
all countries in Africa.

SELECT DISTINCT ?uri
WHERE { ?country
wdt:P31 wd:Q6256
. ?country wdt:P30
wd:Q15 . ?country
wdt:P36 ?uri . }

Few-Shot SELECT DISTINCT ?uri WHERE
{ ?uri wdt:P31 wd:Q6256 ;
wdt:P30 wd:Q15 ; wdt:P36
?capital . }

-

DFSL SELECT DISTINCT ?uri
WHERE { ?country wdt:P31
wd:Q6256 . ?country
wdt:P30 wd:Q15 . ?country
wdt:P36 ?uri . }

SELECT DISTINCT
?uri WHERE {
wd:Q5451 wdt:P17
?country . ?country
wdt:P36 ?uri . }

Table 6: A qualitative comparison between DFSL and Few-shot Learning. Thanks to the similar in-context examples
retrieval, the LLMs generates the correct query.

Question Target Query Approach Predicted Query

Who is the enclave within of
Montreal?

select distinct ?sbj where { ?sbj
wdt:P501 wd:Q340 . ?sbj wdt:P31
wd:Q171441 }

DFSL select distinct ?obj where { wd:Q340
wdt:P501 ?obj . ?obj wdt:P31
wd:Q171441 }

DFSL-MQ select distinct ?sbj where { ?sbj
wdt:P501 wd:Q340 . ?sbj wdt:P31
wd:Q171441 }

The trachea is of what anatomi-
cal branch?

select distinct ?answer where {
?answer wdt:P3261 wd:Q175449}

DFSL select distinct ?answer where {
wd:Q175449 wdt:P3261 ?answer}

DFSL-MQ select distinct ?answer where { ?an
swer wdt:P3261 wd:Q175449}

What revolution caused the de-
struction of the Russian Empire?

select distinct ?obj where {
wd:Q34266 wdt:P770 ?obj . ?obj
wdt:P31 wd:Q10931 }

DFSL select distinct ?sbj where { ?sbj
wdt:P770 wd:Q34266 . ?sbj wdt:P31
wd:Q10931 }

DFSL-MQ select distinct ?obj where {
wd:Q34266 wdt:P770 ?obj . ?obj
wdt:P31 wd:Q10931 }

Table 7: Some triple-flip errors that are solved by DFSL-MQ.
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Examples:

Question: Give me all companies in Munich.

Entities:
http://www.wikidata.org/entity/q4830453 (business), http://www.wikidata.org/entity/q1726 (Munich)

Relations:
http://www.wikidata.org/prop/direct/p279 (subclass of), http://www.wikidata.org/prop/direct/p31 (instance of),
http://www.wikidata.org/prop/direct/p159 (headquarters location)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { ?type wdt:P279*
wd:Q4830453 . ?uri wdt:P31 ?type ; wdt:P159 wd:Q1726 . }
</SPARQL>
###

Question: Was Marc Chagall a jew?

Entities:
http://www.wikidata.org/entity/q93284 (Marc Chagall), http://www.wikidata.org/entity/q7325 (Jewish people)

Relations:
http://www.wikidata.org/prop/direct/p172 (ethnic group)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> ASK WHERE { wd:Q93284 wdt:P172 wd:Q7325 . }
</SPARQL>
###

Question: How many films did Leonardo DiCaprio star in?

Entities:
http://www.wikidata.org/entity/q11424 (film), http://www.wikidata.org/entity/q38111 (Leonardo DiCaprio)

Relations:
http://www.wikidata.org/prop/direct/p31 (instance of), http://www.wikidata.org/prop/direct/p161 (cast member)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> SELECT (COUNT(DISTINCT ?uri) AS ?c) WHERE { ?uri
wdt:P31 wd:Q11424 ; wdt:P161 wd:Q38111 . }
</SPARQL>
###

Question: Give me all libraries established earlier than 1400.

Entities:
http://www.wikidata.org/entity/q7075 (library)

Relations:
http://www.wikidata.org/prop/direct/p31 (instance of), http://www.wikidata.org/prop/direct/p571 (inception)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { ?uri wdt:P31 wd:Q7075
; wdt:P571 ?date . FILTER (YEAR(?date) < 1400 ) }
</SPARQL>
###

Question: Is Christian Bale starring in Batman Begins?

Entities:
http://www.wikidata.org/entity/q166262 (Batman Begins), http://www.wikidata.org/entity/q45772 (Christian Bale)

Relations:
http://www.wikidata.org/prop/direct/p161 (cast member)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> ASK WHERE { wd:Q166262 wdt:P161 wd:Q45772 }
</SPARQL>

Figure 4: Examples injected in the Few-shot-learning prompt.
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Abstract

In the evolving e-commerce landscape, accu-
rate product attribute-value extraction is crucial
for enhancing user experience and increasing
sales. This paper introduces GAVEL, a genera-
tive approach leveraging large language models
(LLMs) to augment training data for attribute
extraction from diverse textual sources. Our
method extracts over 1,000 unique attributes
across 2,000 product categories in multiple
Southeast Asian languages, including Thai,
Vietnamese, and Indonesian. Rigorous eval-
uations show significant improvements in accu-
racy and coverage compared to seller-provided
attributes, with enhanced recall and F1 scores.
Additionally, GAVEL reduces operational costs
by minimizing instruction token usage and im-
proves inference speed. The results of the A/B
test indicate that our model has a positive im-
pact on Gross Merchandise Value (GMV) per
page view (PV) across all three operating coun-
tries. This research highlights the potential of
generative techniques for optimizing attribute
extraction in multi-language e-commerce appli-
cations.

1 Introduction

Product attributes significantly influence product
search (Ai et al., 2019; Luo et al., 2022), recommen-
dation systems (Luo et al., 2022; Gao et al., 2023),
and buyers’ decision-making processes (Zheng
et al., 2020; Hafiz and Ali, 2019; Helfi et al., 2019).
Inadequate or erroneous information on product
pages can lead to adverse outcomes, such as a
poor shopping experience, decreased visibility, and
lower sales. For instance, Figure 1 illustrates a case
where the color ’sky blue’ is mentioned in the title,
highlights, and description; however, it contradicts
the Stock Keeping Unit (SKU) variant, which is
listed as red. Such discrepancies can confuse poten-
tial buyers and negatively impact their purchasing
decisions.

Figure 1: An example of seller-provided information,
including extracted attributes. The information consists
of (1) category, (2) images, (3) title, (4) SKU variants,
(5) highlights, (6) description, and (7) specifications.
In this case, the color ’sky blue’ appears in the title,
highlights, and description; however, it contradicts the
SKU variant’s color, which is red.

In recent years, there has been significant
research on Product Attribute-Value Extraction
(PAVE) (Shinzato et al., 2023; Zou et al., 2024b;
Zhu et al., 2020). Initial studies primarily em-
ployed sequence tagging methods using encoder-
only models like BERT (Wang et al., 2020; Zhu
et al., 2020; Chen et al., 2022; Embar et al., 2021;
Xu et al., 2019; Deng et al., 2022). However, this
approach has limitations in handling unseen and
canonicalized values (Shinzato et al., 2023). To
overcome these challenges, subsequent research
has shifted from sequence tagging to sequence-to-
sequence generation models, such as T5 and BART,
which support more flexible output formats (Shin-
zato et al., 2023; Nikolakopoulos et al., 2023; Gong
and Eldardiry, 2024; Wang et al., 2022; Roy et al.,
2022; Sabeh et al., 2024; Roy et al., 2021). Addi-
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Figure 2: An overview of the GAVEL pipeline for generative attribute-value extraction using LLMs on LLM-
augmented datasets. The GAVEL process begins with a product profile containing seller-provided information
(indicated in blue) and employs prompts to extract and predict attributes (highlighted in red) utilizing GPT-3.5 and
GPT-4. Silver data is used for training, while human evaluation is conducted to refine the final gold data for testing
purposes.

tionally, current research leverages the zero-shot
and few-shot capabilities of large-scale autoregres-
sive models, such as GPT-3.5 and GPT-4, to en-
hance attribute extraction processes (Brinkmann
et al., 2024b; Brinkmann et al., 2024a; Fang et al.,
2024). This evolution has demonstrated that ef-
fective attribute value extraction significantly im-
proves key e-commerce metrics, including Click-
Through Rate (CTR) and Add-To-Cart Rate (ATC)
(Fang et al., 2024).

Despite these advancements, existing publicly
available datasets for PAVE face several limitations.
For instance, the AE-110k dataset (Xu et al., 2019)
is confined to the Sports & Entertainment category,
offering data in the form of title-attribute-value
triplets. While MEPAVE (Zhu et al., 2020) broad-
ens its data sources to include images and descrip-
tions, it still possesses a limited number of unique
attributes. OA-Mine (Zhang et al., 2022) encom-
passes titles for 100 product types but lacks compre-
hensive information beyond the title itself. MAVE
(Yang et al., 2021) includes 1,257 categories and
various input types; however, it requires that ex-
plicit attribute values be present in the text, which
complicates the extraction of unseen and canoni-
calized values. Although ImplicitAVE (Zou et al.,
2024a) aims to address this shortcoming through
a two-round human inspection process that anno-
tates 25 attributes across five domains, it remains

limited to titles and images. Furthermore, exist-
ing datasets predominantly rely on item-level in-
formation, which may lead to inaccuracies in at-
tribute value extraction for a specific SKU variant,
as demonstrated in Figure 1.

Expanding beyond these challenges, it is crucial
to recognize the growing e-commerce landscape in
Southeast Asia, where the need for PAVE solutions
is becoming increasingly pressing. This region is
home to a rich diversity of languages, including
Thai, Vietnamese, Indonesian, and English. How-
ever, most PAVE research to date has primarily
focused on English (Brinkmann et al., 2024b; Fang
et al., 2024; Yang et al., 2023), Chinese (Zhu et al.,
2020; Deng et al., 2023), and Japanese (Shinzato
et al., 2023; Chen et al., 2022). To the best of our
knowledge, there has been no prior study explor-
ing the potential for enhancing PAVE in Southeast
Asian languages.

To tackle these challenges, we propose an ef-
ficient pipeline for augmenting training data for
generative attribute-value extraction, as depicted in
Figure 2. Our key contributions are summarized as
follows:

• We experiment with a comprehensive set of
attributes, consisting of over 1,000 unique at-
tributes across 2,000 categories.

• We incorporate successful methodologies
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from prior research, including the utilization
of generation-based models with zero-shot ca-
pabilities, the effective incorporation of tex-
tual data from product profiles, and the predic-
tion of multiple attribute values.

• We reformulate the task to include seller-
provided attribute values within input data.
This enhancement improves output quality, as
valuable information is sometimes misallo-
cated under incorrect attribute values.

• We introduce GAVEL, a novel pipeline
for generating high-quality training data for
PAVE, enabling the training of smaller models
with shorter, more concise prompts.

2 Related Work

2.1 Attribute Value Extraction
Attribute value extraction aims to derive specific
values from product information. Traditionally,
this has involved sequence tagging techniques em-
ploying models like Long Short-Term Memory
(LSTM) or Bidirectional Encoder Representations
from Transformers (BERT) (Embar et al., 2021;
Xu et al., 2019; Wang et al., 2020). However, these
methods often struggle with unseen values. To ad-
dress these limitations, Roy et al. (2022) proposed
generative frameworks that jointly extract attributes
and values using the Text-to-Text Transfer Trans-
former (T5), demonstrating that such approaches
outperform traditional tagging for single-value sen-
tences.

Recent work has explored LLMs like GPT-3.5
and GPT-4 for attribute extraction, showing im-
proved data efficiency and robustness to unseen
values compared to traditional pretrained language
models (Brinkmann et al., 2024b). Despite these
advancements, many studies focus on English prod-
ucts, with few addressing the complexities of South-
east Asian languages (Brinkmann et al., 2024b;
Yang et al., 2023), underscoring a significant gap
in multilingual PAVE research.

2.2 Attribute Value Extraction Datasets
A variety of datasets have been created to support
PAVE research. Table 1 offers a detailed sum-
mary of existing datasets alongside our datasets.
Notably, these datasets vary significantly across
several dimensions, including product categories,
SKU counts, attribute counts, unique attributes, lan-
guages, and data sources.

OpenTag (Zheng et al., 2018) comprises 10k
SKUs, with a total of 13k attribute instances, across
three categories collected from Amazon. This
dataset includes attributes extracted from product ti-
tles, descriptions, and highlights, and is exclusively
presented in English. AE-110k (Xu et al., 2019)
is concentrated within a single Sports & Entertain-
ment category, featuring a considerably larger SKU
count of 50k, yielding 110k attribute instances. At-
tributes derive solely from product titles, with data
collected from AliExpress and created without hu-
man annotation. MEPAVE (Zhu et al., 2020) offers
a broader variety of categories, containing seven
categories with 34k SKUs and 87k attributes, with
human annotations. Attributes in this dataset are
predominantly extracted from images and descrip-
tions and are published in Chinese. MAVE (Yang
et al., 2021) includes an extensive catalog of 1.3k
categories and a substantial total of 3 million at-
tribute instances. The products are sourced from
the Amazon Review Dataset and do not include
any human annotations. OA-Mine (Zhang et al.,
2022) encompasses ten distinct categories, com-
prising 11k attributes. This dataset focuses on at-
tributes derived from titles, descriptions, and high-
lights, all collected from Amazon in English. Only
the development and test sets are annotated by hu-
man. ImplicitAVE (Zou et al., 2024a) presents a
dataset featuring five categories and 70k attributes,
focusing on attributes sourced from title and image
data. This dataset represents an enhanced version
of MAVE, with the evaluation set re-annotated by
a team of five Ph.D. students to improve reliability.

3 Methods

3.1 Attribute Mining

Our approach to enhancing seller-provided at-
tributes utilizes three distinct prompts submitted to
GPT-3.5 (Ouyang et al., 2024) and GPT-4 (OpenAI
et al., 2024), as illustrated in Figure 3. The first
prompt verifies brand names in the title and high-
lights. The second prompt focuses on SKU-level
attributes, addressing frequent misclassifications by
providing detailed instructions for the extraction of
five common attributes. The third prompt targets
item-level attributes from titles, highlights, and de-
scriptions, requiring comprehensive instructions to
avoid the model simply replicating examples in-
stead of accurately extracting values. This prompt
includes value examples and bullet-point instruc-
tions to regulate the expected output format.
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Dataset #Cate #SKU #Attr #Unique Lang Source
OpenTag 3 10k 13k 4 en title, desc, highlights
AE-110k 1 50k 110k 4 en title
MEPAVE 7 34k 87k 26 zh image, desc
MAVE 1.3k 2.2M 3M 2.5k en title, desc, highlights
OA-Mine 10 2k 11k 10 en title, desc, highlights
ImplicitAVE 5 70k 70k 25 en title, image
Lzd-ID-train (ours) 2k 163k 739k 1.2k en, id

title, desc, highlights,
sku attributes,
specifications

Lzd-TH-train (ours) 2k 152k 648k 1.2k en, th
Lzd-VN-train (ours) 2k 152k 705k 1.2k en, vi
Lzd-ID-test (ours) 314 1k 6.3k 313 en, id
Lzd-TH-test (ours) 352 1k 5.8k 372 en, th
Lzd-VN-test (ours) 353 1k 6.3k 417 en, vi
Total (ours) 2k 470k 2.1M 1.2k en, th, id, vi

Table 1: A summary of existing datasets compared to our datasets.

3.2 Dataset Construction
The attributes mined in Section 3.1, along with
seller-provided attributes, are categorized as silver
labels. A rule-based processing algorithm resolves
conflicts by prioritizing mined attributes; if there
are no contradictions, both types are retained. Ex-
perienced e-commerce annotators from Indonesia,
Thailand, and Vietnam evaluate these silver-labeled
attributes to generate gold labels.

To optimize token efficiency during training and
inference, we compile all attribute information into
a concise prompt (see Figure 3). This prompt in-
cludes seller-provided data such as titles, highlights,
descriptions, SKU attributes, and item specifica-
tions, allowing models to predict multiple attributes
and values simultaneously.

Table 1 summarizes our three datasets, encom-
passing 2,000 categories and over two million at-
tribute instances. Each training category includes
an equal number of SKUs, while the test set con-
sists of 1,000 randomly selected and mutually ex-
clusive SKUs, ensuring diverse representation and
comprehensive evaluation of model performance.

3.3 Model Fine-tuning
In this study, we fine-tune four LLMs with com-
parable parameter counts, which are accessible
on Hugging Face1. The models include Gemma-
2-9b (Team et al., 2024), Llama-3.1-8B (Dubey
et al., 2024), Qwen2.5-7B (Yang et al., 2024), and
SeaLLMs-v3-7B (Zhang et al., 2024). Our train-
ing employs Low-Rank Adaptation (LoRA) (Hu
et al., 2022) with bf16 precision, specifically set-

1https://huggingface.co/

ting lora_target=all to facilitate comprehensive
adaptation across all layers of the models. We
split the dataset into training and validation sets,
allocating 15% for validation to ensure robust eval-
uation of model performance. The training process
utilizes a cosine learning rate scheduler and incor-
porates early stopping criteria to further optimize
performance. We set the training and evaluation
batch sizes to 2 and employ gradient accumula-
tion over 8 steps, leading to a total of 10 training
epochs, which allows for thorough learning from
the dataset. Additionally, evaluations and logging
are conducted at intervals of 500 steps to moni-
tor convergence effectively. Notably, this experi-
ment utilizes 4 PPU 810 cards provided by Alibaba
Cloud to fine-tune the models.

4 Experimental Setup

In this section, we outline the experimental frame-
work employed in this study, utilizing data sourced
from Lazada, a prominent e-commerce platform
in Southeast Asia. The information collected en-
compasses product profiles and various attributes
relevant to our analysis, establishing a comprehen-
sive basis for the subsequent investigations.

4.1 Data Sources

The product pages on Lazada contain extensive
information furnished by sellers, which includes
both textual and visual components, as illustrated in
Figure 1. SKU-level attributes refer to specific vari-
ants of a product, while item-level attributes cover
common characteristics shared across all variants.
We extract SKU-level attributes from individual
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Figure 3: Structured templates for extracting product information, including brand, SKU-level attributes, item-level
attributes, and all relevant details. The first three prompts are designed for dataset development using GPT models,
while the last prompt is intended for training and inference with internal models.

product variants, whereas item-level attributes are
derived from the product specifications. All SKUs
associated with a particular item share identical
title, highlights, description, and specifications.

It is imperative to recognize that the attributes
supplied by sellers may be the least reliable source
of information. This unreliability stems from po-
tential inaccuracies, such as incorrect categoriza-
tion of values or arbitrary selections from platform-
provided dropdown menus. In instances where an
attribute value contradicts information presented in
the title, highlights, or description, there exists a
considerable probability that the attribute value is
erroneous. Consequently, this study does not treat
seller-provided attributes as definitive ground truth;
rather, these attributes are meticulously revised for
accuracy and subsequently used as golden labels.

4.2 Large Language Models

GPT-3.5 and GPT-4, developed by OpenAI, are
advanced large language models that employ deep
learning to generate human-like text. They demon-
strate exceptional performance in zero-shot and
few-shot contexts on datasets like OA-Mine and
AE-110k (Brinkmann et al., 2024b). Following
previous research, we utilize these models to ex-
tract and verify product attributes, which are then
combined with seller-provided data to create silver
datasets for training and evaluation.

To assess the performance of various LLMs,
we selected multilingual models proficient in lan-
guages including English, Thai, Indonesian, and
Vietnamese. SeaLLMs 3 (Zhang et al., 2024) from
Alibaba’s DAMO Academy excels in Southeast
Asian languages. Qwen2.5 (Yang et al., 2024),
developed by Alibaba Cloud, offers decoder-only
models ranging from 0.5 to 72 billion parameters
with capabilities in natural language understanding,
coding, and mathematics. Gemma 2 (Team et al.,
2024) from Google DeepMind includes lightweight
models with 2 to 27 billion parameters, utilizing
architectural innovations and knowledge distilla-
tion. Llama 3.1 (Dubey et al., 2024) from Meta
AI features multilingual models competitive with
leading closed-source variants, excelling in coding,
reasoning, and mathematics.

Licensing is pivotal for compliance and intellec-
tual property respect. OpenAI’s terms for GPT-3.5
and GPT-4 restrict modifications but allow usage
for specific tasks. Our work involves generating a
small-sized model that does not directly compete
with OpenAI, aligning with their guidelines. Other
models have varying licenses: SeaLLMs 3 permits
modification under a worldwide, non-exclusive,
non-transferable agreement; Gemma 2 allows re-
production and modification within certain limits;
Qwen2.5 operates under the permissive Apache
License 2.0; and Llama 3.1’s Community License
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Agreement permits modifications with specified
conditions. These licenses provide us the flexibility
to innovate while ensuring compliance with each
organization’s guidelines.

4.3 Evaluation Metrics

We evaluate our models based on Precision (P),
Recall (R), and the F1 score (F1), consistent with
prior research (Brinkmann et al., 2024b; Yang et al.,
2021). In addition, we calculate accuracy (Acc) and
coverage (Cov) based on the first predicted value
for each attribute.

Our predictions are classified into five distinct
categories: no prediction when there is no attribute
(NN), incorrect prediction where no attribute ex-
ists (NV), no prediction despite the existence of an
attribute (VN), correct prediction that matches the
attribute (VC), and incorrect prediction that does
not align with the attribute (VW). The subscripted
numbers (e.g., VC1, NV1, etc.) denote the counts
of correct and incorrect predictions associated with
the first predicted value. The evaluation metrics are
computed as follows:

P = VC / (NV+VC+VW)
R = VC / (VN+VC+VW)

F1 = 2PR / (P+R)
Acc = VC1 / (NV1+VC1+VW1)
Cov = (NV1+VC1+VW1) / All1

Importantly, we follow standard practice by as-
sessing accuracy solely on the attributes provided
by sellers, which allows us to focus our evaluation
on the correctness of the available information with-
out penalizing for any missing attributes. This prac-
tice is also applied to outputs generated by LLMs.
In contrast, coverage accounts for both available
and missing information, providing a comprehen-
sive view of the model’s performance.

This evaluation framework enables us to assess
model performance through metrics such as pre-
cision, recall, and F1 score, while also providing
insights into attribute quality via accuracy and cov-
erage.

5 Results

This section presents performance metrics and eval-
uations of four selected LLMs across three datasets.
We benchmark the models against the seller at-
tribute values and assess their effectiveness in pre-
dicting multiple attributes, the quality of the first
predicted value, and inference speed.

5.1 Human Annotation

To assess the quality of Seller Attribute Values
(SAV) and Mined Attribute Values (MAV), we con-
ducted a human annotation evaluation focusing on
SKU-level and item-level attributes across three
distinct test datasets.

The results, presented in Table 2, show accep-
tance rates for SAV and MAV, denoted as %ASAV
and %AMAV. While SAV exhibits higher accep-
tance rates, its volume is considerably lower than
that of MAV, with accepted SAV totaling 7,710
compared to 21,742 for MAV. This gap highlights
the significant potential of MAV in identifying new
attribute values that sellers may overlook, as ap-
proximately 75% of accepted attribute values arise
from our mining pipeline, even though they are
evaluated as less accurate. These findings under-
score the complementary functions of SAV and
MAV; SAV provides reliable attributes, while MAV
enriches the dataset by introducing three times
more newly identified values.

Dataset SAV MAV %ASAV %AMAV
SKU-level attributes

ID-test 1221 512 48.16 99.22
TH-test 885 583 58.53 25.73
VN-test 735 608 35.92 74.18

Item-level attributes
ID-test 3170 6062 96.97 86.69
TH-test 1871 9473 81.88 77.56
VN-test 1950 12443 88.92 64.54
Total 9832 29681 78.42 73.25

Table 2: Results of human annotation for Seller At-
tribute Values (SAV) and Mined Attribute Values
(MAV), categorized into SKU-level and item-level at-
tributes. Acceptance rates (%ASAV and %AMAV) in-
dicate the proportion of attribute values recognized as
accurate by human annotators for both SAV and MAV.

5.2 Multiple Attribute Values Prediction

To evaluate the models’ efficacy in predicting mul-
tiple attribute values, we focus on precision, recall,
and F1 score as key performance metrics. These
metrics serve as indicators of the models’ capabili-
ties to accurately identify and extract valid attribute
values from product listings.

As illustrated in Table 3, the models exhibit vary-
ing performance across distinct datasets. For Lzd-
ID, Llama 3.1 emerges as the top performer, achiev-
ing the highest F1 score of 77.36, which indicates
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Dataset Model P R F1 Acc Cov Speed (s)
Seller attribute values 84.92 74.16 79.18 85.09 69.40 -
Gemma 2 76.29 76.19 76.24 90.61 78.44 5587

Lzd-ID Llama 3.1 77.34 77.38 77.36 91.30 78.51 642
Qwen2.5 74.33 74.49 74.41 90.34 78.88 859
SeaLLMs 3 77.68 76.87 77.27 91.27 78.96 832
Seller attribute values 67.26 44.54 53.59 67.63 50.86 -
Gemma 2 50.18 56.24 53.04 77.42 77.09 8287

Lzd-TH Llama 3.1 52.81 56.00 54.36 73.52 81.21 1226
Qwen2.5 51.38 52.47 51.92 75.54 76.77 1914
SeaLLMs 3 55.27 57.20 56.22 74.64 79.16 2098
Seller attribute values 72.26 45.07 55.52 72.17 44.00 -
Gemma 2 67.77 69.57 68.66 78.04 72.31 6251

Lzd-VN Llama 3.1 64.45 67.61 66.00 75.85 73.95 716
Qwen2.5 65.33 67.64 66.47 75.93 73.38 1017
SeaLLMs 3 65.66 67.38 66.51 77.09 72.36 1042

Table 3: Performance of four LLMs fine-tuned and evaluated on three datasets, compared against seller-provided
attribute values.

its effectiveness in this specific context. Conversely,
SeaLLMs 3 demonstrates superior performance on
Lzd-TH, suggesting a heightened suitability for
processing Thai-language attributes. Meanwhile,
Gemma 2 excels in the Lzd-VN dataset, highlight-
ing the necessity of aligning model selection with
the unique linguistic and contextual features inher-
ent in each dataset.

The models consistently outperformed seller-
provided attributes in terms of recall, highlighting
the potential for generative approaches. Although
these models may identify a broader range of poten-
tial attribute values, they often fall short of the pre-
cision achieved by sellers for attributes that encom-
pass multiple values. This observation underscores
the fundamental trade-offs between precision and
recall in automated prediction systems.

5.3 First Predicted Attribute Value
In our evaluation, we also examine the accuracy
and coverage of the first predicted attribute value
for each attribute. This perspective is crucial for
assessing how effectively the models retrieve the
most relevant attribute value when multiple options
are available.

The results shown in Table 3 reveal significant
variability in the accuracy of the first predicted
value across different models and datasets. No-
tably, Llama 3.1 achieves the highest accuracy
of 91.30% alongside a commendable coverage of
78.51% on Lzd-ID. This model consistently demon-
strates strong coverage across Lzd-TH and Lzd-VN.

Conversely, Gemma 2 excels in terms of accuracy
on Lzd-TH and Lzd-VN, underscoring its effective-
ness in these contexts.

Overall, our findings indicate that all models
enhance the attribute values provided by sellers,
reflecting improvements in both accuracy and cov-
erage. This highlights the potential of utilizing
automated models to complement seller-supplied
data, thereby enriching the attribute extraction pro-
cess across various datasets.

5.4 Inference Speed Analysis

Inference speed is a crucial consideration for de-
ploying model solutions in real-world scenarios.
In this analysis, we measure the inference time
for each model while processing data from 1,000
SKUs under specific testing conditions. The infer-
ence was conducted using a batch size of 2 and a
single PPU 810 card on Alibaba Cloud. The evalua-
tion was performed using the following parameters:
temperature=0.2, top_p=0.1, and top_k=100.

The results reveal considerable variation across
models, as indicated in Table 3. Gemma 2 ex-
hibits the longest inference time, whereas Llama
3.1 demonstrates significantly faster processing ca-
pabilities. The prolonged inference time associated
with Gemma 2 may be attributed to the incompati-
bility between Flash Attention 2 (Dao, 2024) and
Gemma 2, resulting in a marked decrease in pro-
cessing efficiency.
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5.5 Comparative Analysis of Models

The performance of the four selected LLMs varies
significantly across evaluated datasets, presenting
an opportunity to analyze their strengths and weak-
nesses in real-world applications. Llama 3.1 stands
out on Lzd-ID, achieving an F1 score of 77.36 and
an impressive accuracy of 91.30% for the first pre-
dicted value. This consistent performance indicates
its suitability for applications demanding precision
in multi-attribute extraction. In contrast, SeaLLMs
3 excels in Lzd-TH, highlighting the importance of
language and locale.

Gemma 2 displays high accuracy in specific con-
texts but struggles with inference speed, making it
less viable for real-time applications. Conversely,
Llama 3.1 maintains swift processing times without
sacrificing accuracy, making it an optimal choice
for environments requiring rapid decision-making.
Qwen2.5 delivers moderate performance across
datasets but lacks standout features, suggesting its
suitability for general applications.

Considering the trade-offs in accuracy, coverage,
and speed, Llama 3.1 is the most balanced model
for deployment. Its combination of high accuracy,
solid coverage, and efficient processing makes it
ideal for commercial applications that require re-
liable attribute extraction and the ability to handle
large data volumes swiftly.

5.6 Online Performance

An A/B experiment was conducted to evaluate the
impact of Llama 3.1 on online performance. Orders
per item page view, also known as conversion rates
(CVR), showed a 0.70% increase for ID, a 0.68%
decrease for VN, and a 1.19% increase for TH. Ad-
ditionally, orders per page view improved by 0.47%
in ID and 1.40% in TH, with VN experiencing a de-
crease of 0.79%. Gross Merchandise Value (GMV)
per page view saw substantial increases, with VN
leading at 6.73%, followed by ID at 1.61% and TH
at 1.44%. These findings underscore the ability of
LLMs to enhance user engagement and optimize
business outcomes, thereby contributing to overall
revenue growth.

6 Conclusion

In this study, we introduced an innovative approach
for attribute-value extraction by leveraging genera-
tive LLMs on augmented datasets. Our method cap-
italizes on the zero-shot capabilities of advanced
LLMs, facilitating the extraction of over 1,000

unique attributes across diverse categories with en-
hanced accuracy and speed. The empirical results
demonstrate significant improvements in the qual-
ity of attributes provided by sellers, with notable
increases in accuracy, coverage, and overall market
performance metrics. By fine-tuning smaller mod-
els, we not only reduced operational costs but also
enhanced efficiency, allowing for rapid inference
while maintaining high prediction quality. The suc-
cessful outcomes from our experiments underscore
the viability of our GAVEL pipeline for wide-scale
implementation in multilingual e-commerce plat-
forms. This research paves the way for further
exploration of generative approaches to attribute
extraction, offering organizations valuable insights
into optimizing their inventory and enhancing cus-
tomer experiences.

7 Limitations

Despite the promising results of this study, several
limitations should be noted. Firstly, while our aug-
mented datasets cover a diverse range of attributes,
performance may vary significantly across differ-
ent product categories and languages, limiting the
generalizability of our findings, particularly in re-
gions underrepresented in the training data. Future
research should aim to enhance model robustness
across a broader spectrum of inputs. Additionally,
our approach does not currently incorporate visual
data, which is vital in e-commerce. The lack of
image data may hinder comprehensive attribute ex-
traction, especially in categories where visual rep-
resentation is critical. Integrating multimodal data
in future studies could enhance extraction accuracy.
Another important limitation is the potential gener-
ation of erroneous data through LLM augmentation,
which could result in misleading product attributes,
damaging sellers’ reputations and causing customer
dissatisfaction. Implementing strategies for valida-
tion and verification of generated data is essential to
mitigate these risks. Addressing these limitations
will enable further refinement of attribute-value ex-
traction models, enhancing their applicability in
the e-commerce sector.
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Abstract

While large language models (LLMs) have
been increasingly adopted for machine trans-
lation (MT), their performance for specialist
domains such as medicine and law remains
an open challenge. Prior work has shown
that LLMs can be domain-adapted at test-time
by retrieving targeted few-shot demonstrations
or terminologies for inclusion in the prompt.
Meanwhile, for general-purpose LLM MT, re-
cent studies have found some success in gen-
erating similarly useful domain knowledge
from an LLM itself, prior to translation. Our
work studies domain-adapted MT with LLMs
through a careful prompting setup, finding
that demonstrations consistently outperform
terminology, and retrieval consistently outper-
forms generation. We find that generating
demonstrations with weaker models can close
the gap with larger model’s zero-shot perfor-
mance. Given the effectiveness of demon-
strations, we perform detailed analyses to un-
derstand their value. We find that domain-
specificity is particularly important, and that
the popular multi-domain benchmark is testing
adaptation to a particular writing style more so
than to a specific domain.

1 Introduction

Large language models (LLMs) have emerged as
the next major paradigm for machine translation
(MT), with increasing use in both industrial and
academic settings. These models are exciting not
only for their strong base (or zero-shot) translation
capabilities, but also for their ability to be modified
at inference time through alternate prompts (Ko-
jima et al., 2022; Kong et al., 2024), in-context
learning (Brown et al., 2020) and the use of inter-
mediate reasoning (Wei et al., 2024).

This flexibility is particularly exciting for adapt-
ing LLMs to translate specialist domains, such as
legal or medical texts. In the statistical and neural

*Work done at an internship at Google Translate Research.

MT eras, domain adaptation would typically take
the form of an expensive continued training proce-
dure on in-domain data (Freitag and Al-Onaizan,
2016; Thompson et al., 2019). With LLMs, there is
the promise of simple adaptation at inference time.

One promising technique is the retrieval of
instance-specific demonstrations of translation
from a bitext datastore for few-shot in-context
learning, which has shown large improvements for
domain-adapted MT (Agrawal et al., 2023; Tan
et al., 2024), rivaling the performance of special-
ized nearest-neighbor MT systems (Khandelwal
et al., 2021). LLMs have also been shown to make
good use of bilingual terminology dictionaries for
lexical translation hints (Ghazvininejad et al., 2023;
Lu et al., 2023; Moslem et al., 2023).

Intriguingly, two recent approaches have forgone
external resources in favor of querying an LLM to
generate useful knowledge from its internal mem-
ory. First, the MAPS approach issues LLM queries
for topics, terminology, and demonstrations based
on the source text (He et al., 2024). Their termi-
nology and demonstrations mirror the knowledge
sourced from retrieval steps in earlier work. The
idea is that the LLM has seen relevant information
during pre-training, and would benefit from explic-
itly surfacing it before translation. Second, the step-
by-step MT approach queries its LLM to translate
and discuss idiomatic phrases before performing a
complete translation (Briakou et al., 2024). How-
ever, both these works only consider the general
domain. This inspires us to consider the applica-
bility of internal memory approaches to domain
adaptation, for which relevant external resources
may be more difficult to obtain.

In this work, we study the effectiveness of differ-
ent representations of domain-specific knowledge,
in strategies – external retrieval vs. internal genera-
tion – and sources – translation demonstrations and
bilingual terminology. We consider three domains
(law, medical, and Koran) from the commonly-
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Figure 1: Illustration of the main MT settings, for an example source text in German. The two knowledge strate-
gies are demonstrations vs. terminology; the two sources are retrieval vs. generation. This gives 4 settings for
comparison. Within a strategy, we use the same prompts, varying only the provided information.

used multi-domain dataset (Aharoni and Goldberg,
2020), and experiment with two LLMs (Gemini 1.5
and Gemma-2). Our study addresses three main
research questions:

RQ1. For improving domain-adapted MT, how vi-
able is generation from an LLM’s parametric mem-
ory compared to retrieval from external resources?

RQ2. Likewise, how does adapting MT with
demonstrations compare with terminologies, re-
gardless of their source?

RQ3. Given the effectiveness of demonstrations,
can we attribute which of their aspects contribute
the most for both retrieval and generation?

We discuss knowledge sourced from retrieval in
§2.1 and from generation in §2.2. Comparisons be-
tween terminology and demonstrations are enabled
by our use of a silver terminology dictionary, built
by LLM analysis of the same bitext used as the
datastore of demonstrations (§3.1). This allows us
to study demonstrations and terminology as alter-
nate views into the same base data in the retrieval
setting. We address RQ1 and RQ2 with the results
in §4. We explore RQ3 through several analyses in
§5; the main takeaways are that retrieved demon-
strations mainly provide hints of target style rather
than terminology, and that generated ones can vi-
ably boost performance, albeit to the same level as
static domain-specific demonstrations.

2 Leveraging Domain Knowledge

Comparisons between representations of domain
knowledge are enabled by our careful prompt-
ing setup which decouples the source and strat-
egy, as sketched in Figure 1. Bilingual terms,
whether retrieved externally or generated by an
auxiliary LLM call, feed into the same translate-
with-terms prompt, and likewise for demonstra-
tions. On sources, retrieval leverages resources
such as datastores and dictionaries, while genera-
tion elicits information from an LLM’s own para-
metric memory. On strategies, demonstrations pro-
vide source-target example pairs, whereas terminol-
ogy focuses on domain-specific lexical items. This
section details the integration of these strategies
and knowledge sources within our experimental
framework for domain adaptation of LLM MT.

2.1 Knowledge from Retrieval

We describe two successful approaches to re-
trieve domain knowledge from external resources:
demonstration retrieval and terminology lookup.
The two related approaches operate in different
fashions. Demonstration retrieval has the model
implicitly learn from the characteristics of the ex-
emplars, both style and terminology. Terminology
lookup has the model explicitly see which source
terms are important and also how to translate them.

Resource requirements These methods, while
effective, are expensive, as they require the ex-
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istence of high-quality and domain-specific re-
sources. The former requires a large pool of bitext
demonstrations, and the latter requires the creation
of a term-rich bilingual dictionary.

2.1.1 Demonstration Retrieval

Demonstrations are provided as exemplars in
the prompt to facilitate in-context learning
(ICL) (Brown et al., 2020; Patel et al., 2023). These
exemplars can either be static, the same across all
instances, or instance-specific, in which different
exemplars are retrieved for each instance to provide
specific guidance and hints.

The typical setup for demonstration retrieval for
MT is as follows. Given a source text, we find k
closest source-side matches in an external datastore,
using some similarity metric, such as BM25 or
cosine similarity of embedding vectors. Then, we
include in the LLM prompt these k source texts
paired with the gold target translations.

Prior work The use of demonstrations has a long
history in MT, with some of the oldest data-driven
approaches to MT having as their first step finding
the most relevant examples from a bilingual transla-
tion memory. This idea has been used for computer-
aided translation (Yamada, 2011), example-based
MT (Somers, 1999; Lepage and Denoual, 2005)
and statistical MT (Koehn and Senellart, 2010).

Several recent papers have studied what con-
stitutes effective demonstration retrieval for MT
with LLMs, with a particular focus on the multi-
domain dataset. Agrawal et al. (2023) found a
strong baseline to be example-specific BM25 re-
trieval of bitexts, which can be strengthened further
by re-ranking for lexical diversity. Tan et al. (2024)
use a much larger LLM, and show that BM25 re-
trieval of target sentences alone can compare fa-
vorably with both sides of bitexts. Conversely, in
the general-domain, researchers have found that a
demonstration’s quality matters more than its prox-
imity (Vilar et al., 2023; Zhang et al., 2023).

Our Setup For our few-shot implementation, we
design a simple prompt (shown in Figure 5). We
use k=3 exemplars, 1 and retrieve using the BM25
metric. Our datastore, derived from the train split
of multi-domain, has 16,775 demonstrations for
Koran, 234,352 for medical, and 464,295 for law.

1Prior work often chooses k ≥ 10. As we find COMET
for k=3 and k=10 differ by ~0.3 we thus choose k=3 to fairly
compare to the 3 generated demonstrations in a later setting.

2.1.2 Terminology Lookup

Intuitively, one of the major challenges when trans-
lating in a specialist domain is the adaptation to
domain-specific terminology. Especially in high-
stakes legal, medical or business domains, preci-
sion of terminology can be crucial. Bilingual dictio-
naries of terminology are therefore likely sources
of useful external knowledge to add into an MT
system. These resources can be easier to construct
than the large datastore of translation demonstra-
tions needed in §2.1.1. In fact, the construction of
a clear terminology may very well be a prerequisite
to creating human translations.

Prior Work Improving translations with termi-
nologies has been heavily studied. In the statistical
and neural eras, solutions could take the form of in-
corporating dictionaries into training (Wu et al.,
2008), or controllable MT systems that respect
example-specific terminology constraints included
in the input (Post and Vilar, 2018; Wang et al.,
2022). More recently, terminology constraints have
been studied at two WMT shared tasks (Alam et al.,
2021; Semenov et al., 2023). These approaches il-
lustrate two different motivations for the use of
terminology dictionaries in MT: the dictionary can
be viewed as a useful source of domain-specific
information, or as a set of constraints that must be
followed consistently. Our work aligns with the
former motivation, viewing bilingual terminologies
only as hints to improve overall quality.

With the advent of LLMs, terminologies can be
included in the prompt, with additional instructions
on their usage. Most LLMs follow these instruc-
tions easily, as shown at the WMT23 shared task on
terminology (Semenov et al., 2023). For example,
Moslem et al. (2023) find that for the COVID-19
domain, a prompt using retrieved terminologies
significantly boosts term success rate and also im-
proves human evaluation scores. Other works have
explored how to more effectively format dictionar-
ies (Lu et al., 2023; Ghazvininejad et al., 2023).

Our Setup Since the multi-domain dataset does
not have a provided domain-specific terminology,
we derive one from the multi-domain training set,
as described in §3.1. Keeping with our theme of
providing hints rather than constraints, the dictio-
nary gives a list of possible translations for each
source term, each licensed by at least one example
in the training set.

With this dictionary in place, we look up terms
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by exact lexical match to the source text currently
being translated, and include any matches in our
prompt for translation with terminology (shown in
Figure 6). The LLM is instructed to pick the most
appropriate translation among the choices, given
the source. Note that the translation prompt also
includes three domain-specific examples of how to
translate with terminologies.

2.2 Knowledge from Generation

While external knowledge retrieval demonstrably
benefits knowledge-intensive NLP tasks, whether
it is truly necessary for domain-adapted MT still
warrants investigation, given that LLMs are ex-
plicitly trained on massive corpora including texts
from specialist domains. Therefore, we investi-
gate whether leveraging LLMs’ internal parametric
memory can offer comparable benefits, and thus
circumvent the costly acquisition and curation of
external resources. This approach effectively sim-
ulates external retrieval by prompting the LLM to
generate relevant information.

Resource requirements By design, the genera-
tion setting requires almost no external resources.
The approaches discussed below only required us
to manually create a handful of static exemplars for
each subtask, which are used for all of its prompts.

2.2.1 Prior Work

Prior work has explored several methods to
leverage an LLM’s parametric knowledge to im-
prove MT quality, either post-translation, or pre-
translation. Most relevant to our work are two
studies which operate at the pre-translation stage.

He et al. (2024) propose a human-like translation
process, where they separately prompt LLMs for
3 aspects related to a source text (demonstrations,
topics, and terms). Directly using these generated
knowledge pieces in another LLM interaction is in-
sufficient, and so they rely on an external quality es-
timation (QE) method to select among candidates,
improving general domain MT quality. Our gen-
eration setting also use demonstrations and terms,
but without any external feedback from QE.

Briakou et al. (2024) propose a method to model
the LLM translation process step-by-step. Their
2-step approach has an LLM first perform research
on idiomatic expressions, then perform the full
translation. For document-level MT datasets, they
find this consistently outperforms zero-shot MT.

2.2.2 Demonstration Generation
We author a prompt to generate demonstrations
(Figure 8). For each domain, we provide 3 example
demonstrations for 2 static, real source sentences.
This is inspired by the demonstration aspect of He
et al. (2024), but we elicit 3 demonstration pairs at
a time instead of 1.

Best practices To easily parse the 3 demonstra-
tion pairs, we ask for a prescribed JSON output
format. We also find that providing static few-shot
exemplars of the demonstration task is key to both
diversity among the 3 demonstrations, and output
format adherence. We use a different set of exem-
plars for each domain, drawn from the train set. We
perform ablations on the contributions of different
aspects of generated demonstrations in §5.2.

2.2.3 Terminology Generation
We design a prompt to generate terminologies from
a single source sentence (Figure 10), also using 2
static, real sentence pairs for each domain. This
follows in the spirit of the research step of Briakou
et al. (2024), where they explain this as having the
LLM perform intermediate reasoning about hard-
to-translate parts. However, there are several differ-
ences resulting from their focus on document-level
MT. We ask generally for terminologies, while they
ask specifically for idiomatic expressions, which
are more prevalent in long documents. We also pre-
scribe a JSON format (same as for retrieved terms),
while theirs allows for free-form output.

Best practices We again found that best perfor-
mance is achieved with static, domain-specific few-
shot exemplars of the terminology task, and the
prescribed JSON format.

3 Experimental Setup

Dataset We experiment with the multi-domain
dataset (Aharoni and Goldberg, 2020), using the
filtered version provided by Tan et al. (2024), with
3 domains: law, medical, and Koran. Multi-domain
covers the German-English (de-en) direction, and
consists of dev and test sets, with ~2000 entries per
domain, as well as a train set with 1M+ entries.

LLMs We perform experiments with two LLMs,
the open LLM Gemma-2 27B IT (Team, 2024b),
and the proprietary Gemini 1.5 Pro (Team, 2024a).
We thus can investigate which settings, if any, are
more effective with the smaller model vs. a much
larger model respectively.
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Evaluation We perform zero-shot MT as a base-
line, and employ the four settings described in §2
for comparison: retrieved demonstrations, retrieved
terminologies, generated demonstrations, and gen-
erated terminologies. Appendix B lists all prompts
used in this work. Following Vilar et al. (2023),
we use a neural automated metric, COMET (Rei
et al., 2022). While prior work also considered the
lexical metric BLEU, we found that it was overly
sensitive to minor rephrasing. This is in line with
studies that show neural metrics correlate much
better with human judgments of LLM translation
quality (Freitag et al., 2021; Kocmi et al., 2021).

3.1 Terminology Dictionary Creation

Our multi-domain test scenario does not come with
bilingual terminology dictionaries for its domains.
However, we can create them from the provided
training split, following the methodology in prior
work (Moslem et al., 2023; Semenov et al., 2023).2

We design a prompt (Figure 12) to extract termi-
nologies from a given source-target text pair, pro-
viding 5 static exemplars to demonstrate what is
meant by “terminology”. We then apply this to
each pair from the train split. Then, we aggregate
all of the output terms, to get one large dictionary
with one-to-many mappings.3 We create a separate
global terminology for each of the three domains.

Given the large size of the training split (700K
entries), we make two adjustments to reduce the
number of model calls. First, we batch five test
pairs at a time into a single call. Second, we con-
sider only the subset of train entries that were ever
retrieved by BM25 over the test set (i.e. the en-
tries that are actually relevant); this constitutes 70K
entries, or about 10% of the total entries.

Note that the train split is also used for demon-
stration retrieval, therefore enabling a controlled
comparison between the two external knowledge
sources. Furthermore, unlike prior work using one-
to-one terminology mappings, we explore a more
realistic one-to-many scenario, with all possible
translations in the prompt for the LLM to select.

4 Results

Table 1 presents our primary results, comparing
LLM translation enhanced with domain-specific

2We did not perform human post-editing due to the datas-
tore’s size (700K), but we note in an experiment by Moslem
et al. (2023), they found humans rated 95%+ terms as accurate.

3For quality controls, we kept only entries where 1) target
terms have >10% usage and 2) both sides of terms match.

knowledge in the form of translation demonstra-
tions or bilingual terminology, with the artifacts
derived from either external retrieval (§2.1) or in-
ternal generation (§2.2). First, in line with prior
work, we confirm that retrieved demonstrations im-
prove over zero-shot across models and domains
studied. We next describe the three main findings.

Demonstrations outperform terminology For
all models and domains studied, knowledge pro-
vided in the form of demonstrations consistently
outperforms terminology. For Gemma, we see
that all settings improve performance,4 but the
improvements from demonstrations are markedly
larger. The differential is more pronounced for
Gemini, which starts from a much stronger base-
line than Gemma. Terms, either retrieved or gener-
ated, do not provide much of a boost over zero-shot
for Gemini, while demonstrations result in signif-
icant improvements. The takeaway for this find-
ing is that for weaker models, providing domain
knowledge from any source or strategy is benefi-
cial. Conversely, stronger models do not benefit
from domain-specific terminology, but only from
more complete demonstrations of the task.

Retrieval outperforms generation The second
notable trend across models and domains is that
retrieval consistently outperforms generation. With
Gemma, demonstration generation outperforms
zero-shot by +2.3 (averaged across domains), while
retrieval further improves to +3.4. For the more
powerful Gemini, the differential is larger – demon-
stration generation outperforms zero-shot by +0.5,
while retrieval by +1.8.

Generated domain-specific demonstrations
boost weaker model’s translations Taking the
prior two findings together, we can bootstrap
domain-adapted MT knowledge from an LLM’s
own parametric memory, with the two-stage
approach of first generating demonstrations,
then translating. This improvement especially
pronounced with Gemma (+2.3 vs. +0.5 over
respective zero-shot). In fact, this empowers a
smaller model (Gemma) to close the gap with a
larger model’s (Gemini) zero-shot results, as can
be seen by comparing, in Table 1, the bottom left
and top right rows. The gains in medical (+2.9)
and Koran domains (+1.0) result in statistically

4To explain the outliers for Koran (−1.4,−0.5), our man-
ual analysis found term inconsistency – high-frequency source
terms mapped to multiple, equally-valid target terms.
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Domain Knowledge? Gemma-2 27B IT Gemini 1.5 Pro
Law Med. Koran Law Med. Koran

þ zero-shot 84.8 85.2 75.1 86.6 88.2 76.3

� retrieved
terms 85.9∗ ↑ 1.1 87.8∗ ↑ 2.6 74.6 ↓ 0.5 86.9∗ ↑ 0.3 88.5 ↑ 0.3 74.9 ↓ 1.4
demos 88.6∗ ↑ 3.8 89.9∗ ↑ 4.7 76.7∗ ↑ 1.6 89.3∗ ↑ 2.7 89.9∗ ↑ 1.7 76.4 ↑ 0.1

3 generated
terms 85.2 ↑ 0.4 87.1∗ ↑ 1.9 75.7∗ ↑ 0.6 86.7 ↑ 0.1 88.1 ↓ 0.1 76.9∗ ↑ 0.6
demos 86.0∗ ↑ 1.2 88.1∗ ↑ 2.9 76.1∗ ↑ 1.0 87.2∗ ↑ 0.6 88.8∗ ↑ 0.6 76.7∗ ↑ 0.4

Table 1: Results for MT using the COMET22 metrics, comparing the knowledge sources, retrieved and generated,
and the strategies, demonstrations (demos) or terminology (terms). Significant improvements (p < 0.05) over
the zero-shot baseline are marked with *. Demonstrations outperform terminology, and retrieval outperforms
generation. Generation is especially effective for the smaller Gemma model.

equivalent scores. Law domain incurs a decent
gain (+1.2), but still is below Gemini (86.0 < 86.6).
It is worth emphasizing that acquiring extensive
resources for novel specialist domains is expensive;
but this straightforward approach can be effective.5

Comparisons with Prior Results We can also
compare our results with demonstrations to those
from the recent study by Tan et al. (2024), who use
the gpt-3.5-turbo-0301 LLM. Their zero-shot
results are most comparable to Gemma’s: 84.4,
86.2, 75.1. Their results for retrieved demonstra-
tions are also comparable: 88.2, 89.6, 76.5. The
other 3 settings, retrieving terms and both gen-
eration ones, are new to our work – and we re-
emphasize here the value of our controlled setting
in facilitating fair comparison between them all.

5 Analysis

Demonstrations (both retrieved and generated) are
by far the most effective domain adaptation strategy
we explored, providing a large boost to both LLMs.
In the following sections, we turn to analyses to
understand better where the gains are coming from.
We begin by analyzing retrieved demonstrations to
disentangle contributions from style vs. terminol-
ogy (§5.1). Then, we investigate the importance
of various in-context learning decisions for gen-
erating demonstrations (§5.2). Finally, we study
how generated domain knowledge can be distilled
at test-time from larger to smaller models (§5.3).

5.1 Retrieved Demonstrations:
Contributions from Style vs. Terminology

What exactly is being conveyed by the retrieved
demonstrations? In this section, we take advan-
tage of our careful experimental setup, where our

5Note that the experiment from §5.2 shows that domain-
specificity is the main contributor, rather than proximity to the
current instance. These generated demos are only as effective
as real static, but domain-specific demos.

Translate the given German text 

into English, following the 

provided examples.

Welche Risiken sind mit Poulvac 

Flufend H5N3 RG verbunden?

Welche Risiken sind mit 

Luminity verbunden?

What risks are associated with 

Luminity?

Wie wikrt Poulvac FluFend H5N3 

RG?

How does Poulvac FluFend H5N3 

RG work?

Welche Risiken sind mit 

Procoralan verbunden?

What risks are associated with 

Procoralan?

Translate the given German text 

into English, following the 

provided partial examples.

{source text}

Welche [] sind mit [] 

verbunden?

What [] are associated with []?

Wie wikrt []?

How does [] work?

Translate the given German text 

into English, following the 

provided terminology.

{source text}

{“Risiken”: [“risks”], “Poulvac 

FluFend H5N3 RG”: [“Poulvac 

FluFend H5N3 RG”], [ 

“verbunden”: [“associated”]}

Ret demos

Style templates (decomp style)

Terminology (decomp terms)

Decompose demos into 
style and terminology

Figure 2: Illustration of our process to decompose the
contributions of retrieved demonstrations into style and
terminology. We first extract the source-target term
pairs using a simple function, and aggregate them into
a local terminology. Then, the remaining tokens are the
style templates, with the terms masked. Note that in the
actual data, we use <MASK> instead of [].

bilingual terminology is derived from the same par-
allel text used for demonstrations, to disentangle
whether demonstrations are more valuable because
they assist with proper terminology translations in
context, or with matching the style of the corpus.

The core idea behind this experiment is that we
can use the same technique to extract bilingual ter-
minology pairs from a translation demonstration
(§3.1), but instead of running it on the whole train-
ing corpus, we can run it only on the k demonstra-
tions retrieved to match the current source sentence.
This gives us a local terminology, as opposed to a
global one. Crucially, where the global terminol-
ogy would present the union of all possible target
language translations found throughout the training
set for a given source term, the local terminology
only presents translations licensed by the k demon-
strations. This allows it to take advantage of any
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Figure 3: Results for zero-shot, external retrieval, terms
from demonstrations, and style from demonstrations.

disambiguating context in the demonstrations to
create more relevant term translations.

We then define style templates as the inverse –
the remaining tokens, with the bilingual terms on
both sides replaced with a <MASK> mask token. For
this, we use a similar prompt as for demonstration
retrieval, but also explicitly instruct the LLM to
not generate mask tokens in its output (as shown
in Figure 7). Upon manual inspection, these masks
appear quite thorough, with most anything that
could be considered terminology being masked out.

Results We carry out the decomposition experi-
ment using Gemini 1.5 Pro. Figure 3 presents our
results. We see that compared to zero-shot, using
local terms (terms from demonstrations) more than
doubles the gains of global terms (retrieved terms).
However, style templates (style from demonstra-
tions) further narrow the gap to retrieved demon-
strations by 60% (law) and 75% (medical).

The combined results from the terms from
demonstrations and style from demonstrations ex-
periments indicate that the primary value from re-
trieved demonstrations is not contextually appro-
priate translations of domain-specific terminology.
While this is a part of the story, it accounts for only
0.8 (law) and 0.5 (medical) points of the 2.9- and
2.0-point improvements from the retrieved demon-
strations. Meanwhile, the style from demonstra-
tions scores almost perfectly account for the re-
mainder. This is a strong indicator that the major-
ity of the value of retrieved demonstrations comes
from matching the publication style of these cor-
pora, rather than carrying out adaptation to a medi-
cal or legal domain. That is, we are doing domain
adaptation, but it is to a much more narrow domain
than is usually discussed.

These results agree with and reinforce conclu-
sions from recent work. Tan et al. (2024) perform
a targeted study into translation style, following

the same settings – the multi-domain dataset and
a strong proprietary LLM. Their findings between
zero-shot and few-shot concur – while there is a
observable COMET difference (2.7), nevertheless
zero-shot translations “have already conveyed the
semantic meaning of the source sentence, albeit
with some variations in lexical choices and sen-
tence structure.” They therefore propose a style
learning method to retrieves related target sen-
tences from a monolingual target corpus, finding
this achieves 70% of few-shot’s gains. However,
by only removing the source side of the demonstra-
tions, the exemplars still implicitly provide both
style and terminology hints. We add to the discus-
sion by providing a precise, alternative definition
of “style” as anything outside of terminology. This
in turn allows us to cleanly decompose the tokens
from each demonstration into two subsets, and as-
sign credit accordingly.

5.2 Ablation on Generated Demonstrations
Generation of demonstrations (generate demos)
is by far the most successful of the two approaches.
As described in §2.2, we made several decisions
here: 1) using domain-specific exemplars; 2) using
the intermediate generation of demonstration step;
3) in that step, selection of the ICL exemplars. We
explore the impact of the decisions by comparing
the zero-shot, retrieved demos, and generate
demos results to the following ablations:
Static few-shot Drop the generate demo step, and
use the 2x3 domain-specific examples6 directly as
static demonstrations of translation. This investi-
gates the impact of domain-specificity alone.
No ICL With the generated demo step, but remove
all exemplars from that step’s instructions. This
investigates the impact of ICL at all.
General ICL With the generated demo step, but use
the 5x1 general-domain examples from He et al.
(2024) instead of the 2x3. This investigates the
impact of the domain-specificity of ICL.

Results are shown in Table 2. First, we consider
ablation results on Gemini. There is a large drop
between zero-shot and ‘no ICL’ (e.g., 88.2 ->
83.8 for medicine). Our manual analysis of a few
‘no ICL’ outputs finds that the generated demon-
strations on the target side are often quite lexically
close; we hypothesize these are unhelpful and af-
fect downstream translations. Comparing general
ICL to generated demos, we see that roughly

62x3 means there are two example source texts, which are
each followed by three example translation pairs.
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Gemma-2 27B IT Gemini 1.5 Pro

Setting Domain-
specific

Generate
demo step

Demo
# ICL law med. Koran law med. Koran

zero-shot N/A 7 N/A 84.8 85.2 75.1 86.6 88.2 76.3
static few-shot 3 7 N/A 86.3 88.2 76.3 87.2 89.1 76.4
retrieved demos 3 7 N/A 88.6 89.9 76.7 89.3 89.9 76.4

no ICL N/A 3 0 85.2 87.5 75.1 83.9 83.8 75.6
general ICL 7 3 5x1 85.7 87.8 75.6 86.9 88.5 76.0
generated demos 3 3 2x3 86.0 88.1 76.1 87.2 88.8 76.7

Table 2: COMET22 Results for the study on demonstration generation, using Gemma (left) and Gemini (right).
The italicized settings are ablations, while the monospace settings are the same as in Table 1.

half the value of demonstration generation can be
retained with general ICL. However, comparing
‘static few-shot’ to generate demos (rows 7 & 10),
both achieve similar scores across domains. This
adds a caveat to our earlier findings, suggesting
the domain-specificity of the generated demos is
more important to downstream MT than the demos
alone.

Now, we consider ablation results on Gemma.
Interestingly, unlike for Gemini, for Gemma even
the ‘no ICL‘ setting improves upon zero-shot (85.2
-> 87.5 for medicine). We observe that, compared
to generated demos, ‘General ICL‘ slightly under-
performs it, while ‘static few-shot’ matches it. This
again underscores the value of the demonstration
stage in improving the smaller LLM’s translations,
as well as key role of domain-specificity.

Our results add insight into two formerly dis-
parate findings. Prior work on older LLMs dis-
cussed two factors for ICL exemplars: lexical
coverage within a domain (Agrawal et al., 2023),
and their quality (Vilar et al., 2023). Our find-
ing here provides evidence that, for current LLMs
with strong zero-shot MT performance, the primary
value of ICL is in the domain-specificity, especially
in style. Quality examples can be equally as validly
obtained from static few-shot exemplars or gener-
ated demonstrations.

5.3 Cross-LLM Knowledge Generation

For the two generation-based settings, the same
LLM is used in both the generation stage and the
translation stage. To further understand how gen-
eration quality affects the final performance, we
conduct additional experiments to reuse the gener-
ated demonstrations or terminology from Gemini
1.5 Pro to prompt the Gemma 2 27B model for
translation. As shown in Table 3, demonstration
generation and terminology generation both benefit
greatly from higher quality generations from Gem-

strategy gen. LLM law med. koran

3 demos
Gemma 86.0 88.1 76.1
Gemini 86.9* 88.6* 76.6*

3 terms
Gemma 85.2 87.1 75.7
Gemini 85.8* 87.5* 76.4*

Table 3: Results for the ablation on generation-based
strategies. Gemma-2 27B IT is always used for transla-
tion, but the generation model can be either LLM. Sig-
nificant improvements when using Gemini’s generated
outputs instead of Gemma’s are marked with *.

ini, with significant gains in all three domains. This
shows that higher-quality generated knowledge re-
sult in higher-quality translations. The larger Gem-
ini model’s knowledge can be effectively distilled
to the smaller Gemma model, at inference-time,
through its translation demonstrations.

6 Discussion and Conclusion

We study the problem of domain adaptation for MT
with LLMs, one which intuitively speaking, should
be well addressed by prompting-time adaptation.
Building upon prior work which injects domain-
specific knowledge into prompts, we perform a
thorough study into how this knowledge can best
be acquired in terms of strategy, demonstrations or
terminologies, and sources, retrieval or generation.

Our main study shows that demonstrations out-
perform terminology, and knowledge retrieval con-
sistently outperforms generation. Furthermore,
generation of domain-specific demonstrations can
viably improve weaker model’s performance, clos-
ing the gap with a larger model’s zero-shot per-
formance (though comparable to static exemplars).
We gain additional insights with our further analy-
ses. Notably, we explore the connection between
the strategies, characterizing demonstrations as pro-
viding both terminology hints and style hints. Our
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decomposition of the contributions of demonstra-
tions finds that the majority of the gains (~65%)
come from style over terminology.

Taken together, our work indicates that for the
law, medical and Koran domains of the commonly-
used multi-domain scenario, large LLMs need very
little terminology help, and the improvements from
demonstrations are more so from matching corpus
style than from better conveying domain-specific
semantics. Our work takes a first step in surfacing
the domain-specific knowledge of smaller LLMs
through generation, and we look forward to more
informed approaches in future work. Meanwhile
for the largest LLMs, we recommend as the most
promising direction to construct a new MT adapta-
tion scenario that challenges even their broad base
of parametric knowledge, perhaps with reference
to pretraining cut-off dates.

Limitations

While our work aims to generally study the prob-
lem domain adaptation for MT, we considered only
a single dataset, multi-domain, with 3 domains and
1 language pair. This is following prior work, and
also as there no other suitable datasets for our com-
parative setting. This is further discussed in Ap-
pendix A. We noted the limitations of this dataset,
in not posing enough of a domain-adaptation chal-
lenge for current LLMs. We call on future work
to design more up-to-date, comprehensive domain-
adapted MT datasets.

We acknowledge that the multi-domain dataset
is fairly well-worn, and there is possible data leak-
age into current LLMs, given the availability of
the entire dataset online. This is a general concern
with research using proprietary LLMs. However,
the fact that demonstration retrieval does improve
COMET scores for multi-domain indicates that, at
the very least, the paired translations have not ex-
actly memorized. Also, consider the Koran domain.
While an LLM have undoubtedly seen Koran text
during training, because there are multiple transla-
tions of the Koran into both English and in German,
there is no exact 1-1 mapping with respect to the
translations used in this dataset.

For demonstration retrieval, we used only the
BM25 algorithm. Prior works have explored more
informed retrieval approaches; however they were
starting from much weaker zero-shot baseline,
meaning that demo quality should matter less in our
case. We reiterate that improving retrieval-based

few-shot MT is not the goal of this work; rather, we
aim to understand why it works well, and whether
generating from parametric memory alone is vi-
able. Our analysis, including our decomposition
of demonstrations into style and terminology, can
also be applied to demonstrations from any other
similarity method.

Our use of a silver terminology built by LLM
may lead to an under-estimation of the value
of retrieved knowledge from bilingual terminol-
ogy dictionaries. Likewise, our decomposition
of demonstrations into terminology entries and
style templates may be affected by the LLM’s
terminology-extraction errors. As mentioned in
the main text, prior work indicates that these tech-
niques (with older LLMs) should be roughly 95%
accurate (Moslem et al., 2023).
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A Other MT with Terminology Datasets

We did not use the datasets from WMT21 and
WMT23 shared tasks on MT with terminologies.
They do not include datastore for retrieving demon-
strations, as well as each having its own concerns.
For WMT21, we found that MT performance for
zero-shot and using gold terms was equivalent
(87.0 vs. 86.8 COMET22). This is due to con-
temporary LLM pretraining data containing a lot
of COVID domain text, making it no longer a spe-
cialist domain. For WMT23, terminologies are
internally defined – i.e., written directly with re-
spect to each test and dev bitext. As we argued
earlier, terminologies should be considered as ex-
ternal, pre-defined resources. We therefore recom-
mend that both WMT21 and WMT23 datasets are
outdated with current LLMs, and their use should
be avoided.

Aycock and Bawden (2024) introduce a domain-
adapted MT dataset, which they curate as a subset
of existing MT resources from the OPUS project.
This covers 7 domains and 11 languages. How-
ever, for all domains of their dataset, there is no
large-scale data-store for demonstration retrieval;
they only perform retrieval – proposing a topic-
model guided exemplar selection method, which
they show beats BM25 – over the very small de-
velopment splits. Our work therefore considers
only the multi-domain dataset, as it widely used for
domain-adapted MT, and also satisfies our external
resource requirements.

B Prompts Used

We reproduce the exact prompts used below, where
{<some_var>} are variables which are filled per
prompt, and [<some_ex>] are the static exemplars
which are filled per-domain.
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Instruction: Translate the following {src_full} text into {tgt_full} and output the result
in JSON format using "translation" as the key.
{source_language_name}: {source_text}
{target_language_name}:

Figure 4: Prompt for zero-shot MT.

You are tasked with translating {source_language_name} to {target_language_name}. You are provided
several example translations, and you should follow their example to translate the given
{source_language_name} sentence.
{demo_examples}
{source_language_name}: {source_text}
{target_language_name}:

Figure 5: Prompt for MT with demonstrations (also known as few-shot MT in prior work). This prompt is used
for both demonstration retrieval and demonstration generation.

Your task is to translate a piece of text from {source_language_name} into {target_language_name}.
You are provided a list of terminology dictionaries. Each dictionary has a single source term (key
"de"), and multiple candidate translated terms (key "en") -- pick the most appropriate translated
term for the source sentence. Note that the terminologies have lowercased terms, but you should
consider proper casing when translating into {target_language_name}. Based on these terminologies,
output your best one translation.
{examples}
Terminology: {terminology}
{source_language_name}: {source_text}
{target_language_name}:

Figure 6: Prompt for MT with terminologies. This prompt is used for both terminology retrieval and terminology
generation.

You are tasked with translating {source_language_name} to {target_language_name}. You are provided
several example translations, and you should follow their example to translate the given
{source_language_name} sentence. Note that the examples might contain special mask tokens <MASK> but
in your output, please do not use any such tokens.

[few_shot_examples]
{source_language_name}: {source_text}
{target_language_name}:

Figure 7: Prompt for MT with style from demonstrations. Recall that in this setting, we provide the retrieved
demonstrations, but with the terminologies masked out – i.e., the style contribution is the inverse of the terminology
contribution.

You are given a {source_language_name} source text, and asked to write exactly 3 text pairs. A text
pair consists of a {source_language_name} text, which is related to but different from the source
text, and its translation into {target_language_name}. You should do your best to ensure that your
{source_language_name} texts have similar style to the source text. Following the provided examples,
output each pair as a JSON dictionary, with keys "de" and "en". Each dictionary should be on a
separate line.
[demo_examples]
{source_language_name} source: {source_text}
Pair 1:

Figure 8: Prompt for synthetic demonstration generation. [demo_examples] are static exemplars for this task; see
below.
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German source: Die EDGE- und EDGE-II-Studien verglichen die gastrointestinale Verträglichkeit
von Etoricoxib mit der von Diclofenac.
Pair 1: {"de": "Die kardiorenalen Ergebnisse der EDGE- und EDGE-II-Studien entsprachen den
für die MEDAL- Studie beschriebenen.", "en": "The cardiorenal results for EDGE and EDGE II
were consistent with those described for the MEDAL Study."}
Pair 2: {"de": "Eine langsame Dosissteigerung kann die gastrointestinale Verträglichkeit
ebenfalls verbessern.", "en": "A slow increase in the dose may also improve gastrointestinal
tolerability."}
Pair 3: {"de": "Die Häufigkeit von unerwünschten Ereignissen in EDGE und EDGE II sowie die
Häufigkeit von als schwerwiegend erachteten oder zum Studienabbruch führenden unerwünschten
Ereignissen in der MEDAL-Studie war unter Etoricoxib höher als unter Diclofenac.", "en": "The
incidence of adverse experiences in EDGE and EDGE II and of adverse experiences considered
serious or resulting in discontinuation in the MEDAL study was higher with etoricoxib than
diclofenac."}
---
German source: 3 ml Lösung in einer Patrone aus Glas (Glasart 1), mit einem Kolben (Brombutylgummi)
und einem Stopfen (Brombutylgummi/Polyisopren) in einem Umkarton.
Pair 1: {"de": "3 ml Lösung in einer Patrone aus Glas (Glasart 1), mit einem Kolben (Brombutylgummi)
und einem Stopfen (Brombutylgummi/Polyisopren) in einem Fertigpen (Mehrdosen-Einwegspritze aus
Polypropylen).", "en": "3 ml solution in a cartridge (type 1 glass) with a plunger (bromobutyl) and
a stopper (bromobutyl/ polyisoprene) contained in a pre-filled pen (multidose disposable pen)
(polypropylene)."}
Pair 2: {"de": "3 ml Suspension in einer Patrone (farbloses Glas, Typ 1) mit einem Kolben
(Brombutylgummi, Typ 1) und einer Bördelkappe (Aluminium) mit einem Stopfen (Brombutyl- oder
Polyisopren- Brombutylgummi, Typ 1).", "en": "3 ml suspension in a cartridge (type 1 colourless
glass) with a plunger (bromobutyl rubber (type 1)) and a flanged cap (aluminium) with a stopper
(bromobutyl or laminate of polyisoprene and bromobutyl rubber (type 1))."}
Pair 3: {"de": "5 ml Lösung in einer Durchstechflasche (farbloses Glas, Typ 1) mit einer
Bördelkappe (Aluminium), einem Stopfen (Chlorbutylgummi, Typ 1) und einem Abreißdeckel
(Polypropylen).", "en": "5 ml solution in a vial (type 1 colourless glass) with a flanged cap
(aluminium), a stopper (chlorobutyl rubber (type 1)) and a tear-off cap (polypropylene)."}
---

Figure 9: Static 2-shot exemplars used for the synthetic demonstration generation prompt (Figure 8). Each exem-
plar has 3 output sentences. Here we show the exemplars for the medical domain.

You are given a {source_language_name} source text, and asked to extract a bilingual terminology
that translates key terms from the source text into {target_language_name}. Each entry in the
terminology should have a {source_language_name} term and a list of possible {target_language_name}
translations. Following the provided examples, output each pair as a JSON dictionary, with keys "de"
and "en". Each dictionary should be on a separate line.
[term_examples]
{source_language_name} source: {source_text}
Term 1:

Figure 10: Prompt for synthetic terminology generation. [term_examples] are static exemplars for this task; see
below.
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German source: (6) Die Kommission unterrichtete den Antragsteller, andere Gemeinschaftshersteller,
die ausführenden Hersteller in der VR China und in den USA, bekanntermaßen betroffene Einführer
und Verwender sowie die Vertreter der Regierungen der VR China und der USA offiziell über die
Einleitung des Verfahrens.
Term 1: {"de": "einleitung des verfahrens", "en": ["initiation of the proceeding",
"opening of the proceedings"]}
Term 2: {"de": "ausführenden hersteller", "en": ["exporting producers"]}
Term 3: {"de": "gemeinschaftshersteller", "en": ["community producers"]}
Term 4: {"de": "antragsteller", "en": ["complainant"]}
Term 5: {"de": "kommission", "en": ["commission"]}
Term 6: {"de": "verfahrens", "en": ["investigation", "procedure"]}
Term 7: {"de": "einführer", "en": ["importers"]}
Term 8: {"de": "verwender", "en": ["users"]}
Term 9: {"de": "vertreter", "en": ["representatives"]}
Term 10: {"de": "vr china", "en": ["prc"]}
---
German source: ENTSCHEIDUNG DER KOMMISSION vom 25. Februar 1998 zum Fragebogen für die Berichte der
Mitgliedstaaten über die Umsetzung der Richtlinie 94/67/EG des Rates über die Verbrennung
gefährlicher Abfälle (Umsetzung der Richtlinie 91/692/EWG des Rates) (Text von Bedeutung
für den EWR) (98/184/EG)
Term 1: {"de": "verbrennung gefährlicher abfälle", "en": ["incineration of hazardous waste"]}
Term 2: {"de": "fragebogen", "en": ["questionnaire"]}
Term 3: {"de": "richtlinie", "en": ["directive", "guideline"]}
Term 4: {"de": "ewr", "en": ["eea relevance"]}
---

Figure 11: The static 2-shot exemplars used for the synthetic terminology generation prompt (Figure 10). Here we
show the exemplars for the law domain.

Identify and annotate all terminology entities (consider only consecutive words) from the source
sentences and match them with the counterpart in the target sentences. Your response should follow
the format of the provided examples, so that each numbered source and target pair corresponds to
exactly one terminology line in your response.
[source_examples]
{source_texts}
---
[target_examples]
{target_texts}
---
[term_examples]

Figure 12: Prompt for terminology extraction from source-target text pairs. For each prompt, we batch together
5 text pairs to extract from at a time. [source_examples], [target_examples], [term_examples] are static
exemplars for this task; see below.
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source 1: Sag: "Wer hat denn die Schrift hinabgesandt, mit der Musa als Licht und als Rechtleitung
für die Menschen kam?
source 2: Sollte Seine Peinigung über euch nachts oder am Tage hereinbrechen, was wollen denn die
schwer Verfehlenden davon beschleunigen?"
source 3: Unser Herr! Du bist wahrlich Gütig, Barmherzig."
source 4: Und diejenigen, die an Allah und Seine Gesandten glauben, sind die Wahrhaftigen und die
Bezeugenden vor ihrem Herrn; sie werden ihren Lohn und ihr Licht empfangen.
source 5: "Wer sich im Irrtum befindet, dem soll Der Allgnade Erweisende noch mehr davon gewähren!"
Wenn sie dann sehen, was ihnen angedroht wurde: entweder die Peinigung oder die Stunde, dann werden
sie wissen, wer über die schlimmere Stellung und die schwächere Streitmacht verfügt.

target 1: Say: "Who sent down the Book that Moses brought as a light and a guidance to men?
target 2: If His chastisement comes upon you by night or day, what part of it will the sinners seek
to hasten?
target 3: Our Lord, surely Thou art the All-gentle, the All-compassionate."
target 4: Those who believe in God and His apostles are true of word and deed; and by their Lord are
considered testifiers of the truth. They have their guerdon and their light.
target 5: "Ar-Rahman extends the life of those who are astray until they come to realise what had
been promised them was either (physical) affliction or (the terror) of Resurrection. Then will they
know who is worse in position, and who is weak in supporters.

terminology 1: [{{"en": "Book", "de": "Schrift"}}, {{"en": "guidance", "de": "Rechtleitung"}},
{{"en": "Moses", "de": "Musa"}}]
terminology 2: [{{"en": "chastisement", "de": "Peinigung"}}, {{"en": "sinners", "de": "schwer
Verfehlenden"}}]
terminology 3: [{{"en": "Our Lord", "de": "Unser Herr"}}, {{"en": "All-gentle", "de": "Gütig"}},
{{"en": "All-compassionate", "de": "Barmherzig"}}]
terminology 4: [{{"en": "His apostles", "de": "Seine Gesandten"}} {{"en": "true of word and deed",
"de": "die Wahrhaftigen und die Bezeugenden"}}, {{"en": "by their Lord", "de": "vor ihrem Herrn"}},
{{"en": "their guerdon", "de": "ihren Lohn"}}, {{"en": "their light", "de": "ihr Licht"}}]
terminology 5: [{{"en": "Ar-Rahman", "de": "Der Allgnade Erweisende"}}, {{"en": "extends the life",
"de": "noch mehr davon gewähren"}}, {{"en": "those who are astray", "de": "Wer sich im Irrtum
befindet"}}, {{"en": "come to realise", "de": "sehen"}}, {{"en": "promised", "de": "angedroht"}},
{{"en": "(physical) affliction", "de": "Peinigung"}}, {{"en": "(the terror) of Resurrection", "de":
"Stunde"}}, {{"en": "worse in position", "de": "über die schlimmere Stellung"}}, {{"en": "weak in
supporters", "de": "die schwächere Streitmacht"}}]

Figure 13: Static 5-shot exemplars used for the synthetic terminology extraction prompt (Figure 12). We found
that this format, where each of the 3 blocks (source, target, terms) are consecutive to each other, gave the most
parseable output. Note that the 5 exemplars is the same size as the batches of 5 to extract terminologies from. Here
we show the exemplars for the koran domain.
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Abstract

We introduce a novel method to enhance cross-
language code translation from Fortran to C++
by integrating task-specific embedding align-
ment into a Retrieval-Augmented Generation
(RAG) framework. Unlike conventional re-
trieval approaches that utilize generic embed-
dings agnostic to the downstream task, our
strategy aligns the retrieval model directly with
the objective of maximizing translation qual-
ity, as quantified by the CodeBLEU metric.
This alignment ensures that the embeddings
are semantically and syntactically meaning-
ful for the specific code translation task. Our
methodology involves constructing a dataset
of 25,000 Fortran code snippets sourced from
Stack-V2 dataset and generating their corre-
sponding C++ translations using the LLaMA
3.1-8B language model. We compute pairwise
CodeBLEU scores between the generated trans-
lations and ground truth examples to capture
fine-grained similarities. These scores serve
as supervision signals in a contrastive learn-
ing framework, where we optimize the em-
bedding model to retrieve Fortran-C++ pairs
that are most beneficial for improving the lan-
guage model’s translation performance. By in-
tegrating these CodeBLEU-optimized embed-
dings into the RAG framework, our approach
significantly enhances both retrieval accuracy
and code generation quality over methods em-
ploying generic embeddings. On the HPC For-
tran2C++ dataset, our method elevates the aver-
age CodeBLEU score from 0.64 to 0.73, achiev-
ing a 14% relative improvement. On the Nu-
merical Recipes dataset, we observe an increase
from 0.52 to 0.60, marking a 15% relative im-
provement. Importantly, these gains are real-
ized without any fine-tuning of the language
model, underscoring the efficiency and practi-
cality of our approach.

1 Introduction

Cross-language code translation is a critical task in
modern software development, especially as legacy

programming languages, such as Fortran, continue
to be prevalent in scientific computing, while more
contemporary languages like C++ are favored for
their performance and versatility in production en-
vironments. The goal of automatic translation from
Fortran to C++ is to preserve the functionality and
structure of legacy code while benefiting from the
optimizations and ecosystem of C++. However,
achieving high-quality translations that adhere to
the syntax and semantic norms of the target lan-
guage remains a challenging problem, particularly
when there is a lack of large, aligned datasets or
evaluation metrics that cover both source and target
languages effectively.

Traditional approaches to cross-language trans-
lation, such as Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020) typically involve two
phases: first, retrieving relevant examples from a
database, followed by a language model generat-
ing code conditioned on both the query and the
retrieved examples. In prior efforts, the retrieval
models in RAG systems have relied on general-
purpose embedding models (Bhattarai et al., 2024;
Li et al.), which are not tailored to the specific nu-
ances of code translation. These embeddings aim
to retrieve relevant pairs from the source and tar-
get languages but do not directly optimize for the
quality of the generated code. As a result, while
the retrieved examples may be relevant in a broad
sense, they often fail to guide the language model
towards producing translations that maximize fi-
delity to the ground truth in the target language.

Given the scarcity of high-quality parallel For-
tran–C++ data, we generate synthetic C++ transla-
tions from abundant Fortran code using an LLM
to create a pseudo-parallel corpus. Although these
synthetic translations may not be flawless, they
provide a robust similarity signal that enables ef-
fective alignment of Fortran code embeddings.
This “pseudo-alignment” enhances the retrieval of
relevant examples in our RAG framework, lead-
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ing to significant improvements in downstream
translation quality as demonstrated by a consis-
tent 14–15% gain in CodeBLEU scores. We col-
lect a dataset of 25,000 Fortran code examples
from Stack V2 (Lozhkov et al., 2024) and use the
LLaMA 3.1-8B (Touvron et al., 2023) model to
generate corresponding C++ translations. In the
absence of ground truth C++ translations, we eval-
uate the quality of these translations using pairwise
CodeBLEU similarity scores. This metric captures
both syntactic correctness and semantic fidelity,
providing a robust signal for aligning the retrieval
model through contrastive learning.

The proposed approach aims to addresses the
shortcomings of general-purpose embedding mod-
els by integrating task-specific metrics into the re-
trieval optimization process. By aligning the re-
trieval model with the downstream task of produc-
ing high-quality C++ code, our method ensures that
the examples retrieved during inference are not just
broadly similar but are semantically and syntacti-
cally aligned in a way that enhances the LLM’s
generative performance. The result is a significant
improvement in translation quality, as measured by
CodeBLEU, over previous methods that lack such
alignment.

Our contribution is twofold: first, we demon-
strate the effectiveness of contrastive learning for
fine-tuning retrieval models in the context of cross-
language code translation, using a task-specific
metric to guide alignment. Second, we show that
optimizing retrieval for downstream generation
tasks can lead to state-of-the-art results, particu-
larly in cases where aligned datasets are not readily
available for both source and target languages. This
work not only advances the field of code translation
but also opens up new possibilities for applying
similar techniques to other language pairs and do-
mains where task-specific evaluation metrics are
available for only one side of the translation.

2 Related Work

Historically, code translation strategies before the
advent of LLMs relied heavily on rule-based
and statistical machine translation (SMT) sys-
tems (Koehn, 2009). These systems used prede-
fined rules or statistical mappings between the
source and target programming languages, such as
tree-based translation approaches that mapped syn-
tax trees between languages. While these methods
provided structured and interpretable outputs, they

were limited in their ability to handle the semantic
complexities of different programming languages
and struggled with code diversity, edge cases, and
idiomatic translations.

With the rise of deep learning and LLMs, fine-
tuning models on large datasets became the go-
to method for improving code translation. Mod-
els like CodeBERT (Feng et al., 2020) and
Codex (Chen et al., 2021), when fine-tuned on spe-
cific language pairs, improved translation quality
by leveraging vast amounts of parallel code data.
However, the main limitation of LLM fine-tuning
lies in the resource-intensive process. Fine-tuning
requires substantial amounts of labeled data and
computational resources, making it impractical for
niche or legacy languages like Fortran, where par-
allel data may be scarce.

As a next step, task-specific alignment of LLMs
emerged to improve translation by better guiding
the model’s output. While alignment techniques
help improve output fidelity, they still necessitate
fine-tuning or explicit modification of the LLM
itself, which can be resource-intensive and may
still fall short of generalization when translating
between languages with significant structural dif-
ferences (Mishra et al., 2024).

RAG introduced a more flexible approach by
allowing LLMs to retrieve and condition their out-
puts on example pairs from a relevant dataset.
While RAG improves translation by augmenting
the model’s input, the effectiveness of this strat-
egy depends on the quality and relevance of the
retrieved examples. In an example case (Bhattarai
et al., 2024), the retrieval step relies on general-
purpose embeddings like Nomic-Embed or Code-
BERT, which, although effective at retrieving se-
mantically similar code, are not optimized for spe-
cific downstream metrics like CodeBLEU. As a
result, the LLM might not always retrieve the exam-
ples that would best assist in producing translations
aligned with target-specific quality metrics.

The approach we propose offers a significant
advantage by focusing on semantic alignment of
the retrieval mechanism without the need to fine-
tune the LLM itself. Through contrastive learn-
ing, we optimize the embedding model to retrieve
Fortran-C++ pairs that are more likely to maximize
the downstream metric (e.g., CodeBLEU) when
used by the LLM for generation. This strategy
ensures that the most relevant examples are re-
trieved for each translation task, improving the gen-
eration quality without requiring computationally
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expensive fine-tuning of the LLM. This retrieval
alignment makes RAG more efficient and better
suited for translating between languages where
high-quality paired datasets may not be available.
By concentrating on improving the quality of re-
trieved examples, our method achieves high-quality
translation with minimal additional model training,
leveraging existing LLM capabilities more effec-
tively.

3 Methods

This section provides the technical description of
our proposed method.

3.1 Problem setting

We consider the standard code translation scenario
leveraging a language model G, in which a tar-
get translated code ct of a query source code cs is
generated using G:

ct = G (cs) (1)

In practice, conditioning G on k example pairs of
source and target codeD :=

{(
csi , c

t
i

)}k
i=1

, can sig-
nificantly enhance translation. This few-shot learn-
ing approach can be expressed as: ct = G (cs, D)

In a RAG framework, this process is further re-
fined by integrating a retrieval mechanism R that
identifies the most pertinent k example pairs from
a large corpus C based on the query cs. By ex-
pressing this retrieval step as D = R(cs, C), we
can describe the conventional translation scenario
leveraging G as

ct = G (cs, R(cs, C)) (2)

In practice, the input source code for the retrieval
are embedded using a neural network Ψ, which
are generally agnostic to the downstream task. We
denote csΨ as the embedding of the source code
cs under the embedding Ψ. Hence, Eq. 2 can be
expressed as

ct = G (cs, R(csΨ, CΨ)) (3)

under the usage of the embedding model Ψ. Here,
the notation CΨ refers to the fact that the embedding
is applied onto the corpus of cs.

Some common embedding modules for the re-
trieval code translation are Nomic-Embed (Nuss-
baum et al., 2024), StarEncoder (Li et al., 2023),
and CodeBERT (Feng et al., 2020). However, as

the performance of the translation task heavily de-
pends on the relevance and the alignment of the
retrieved examples with respect to the query cs,
as we will show in the following discussion, it is
beneficial to optimize Ψ for better code translation
performance.

3.2 Task-Specific Embedding Alignment
Our method involves aligning the Fortran embed-
ding model Ψ using contrastive learning based on
CodeBLEU similarity scores, followed by apply-
ing this aligned model within a RAG framework
for improved cross-language code translation from
Fortran to C++, as shown in Figure 1I.

Embedding Similarity: We directly leverage
the CodeBLEU similarity computed from the lan-
guage model G to train an aligned embedding mod-
ule Ψ for the downstream code translation task.
The following discusses how to extract the Code-
BLEU similarity from G.

From a source dataset of Fortran code snippets
DF = {csi}Ni=1, we generate the corresponding
C++ translations DC = {cti}Ni=1 using G without
RAG retrieval:

cti = G(csi ), ∀i = 1, . . . , N (4)

Then, we compute the pairwise CodeBLEU sim-
ilarity scores (Ren et al., 2020) between all gener-
ated translation pairs (cti, c

t
j):

Stij = CodeBLEU(cti, c
t
j) (5)

where the CodeBLEU score matrix St ∈
[0, 1]N×N is a weighted linear combination of
four components: the n-gram match Sn-gram, the
weighted n-gram match Sw-n-gram, the syntactic
AST match Ssyntax, and the semantic data flow
match Ssemantic. These components capture the
syntactic and semantic similarities between the
generated C++ translations: Sn-gram is the tradi-
tional BLEU score up to n-grams, Sw-n-gram as-
signs weights to n-grams based on their impor-
tance, Ssyntax measures the similarity between the
abstract syntax trees (AST) of the code snippets
and Ssemantic assesses the similarity in data flow
between code snippets.

Intuitively, a high value of Stij indicates that the
source code snippets csi and csj , when translated
by G, produce similar target code, suggesting that
csi and csj are semantically similar with respect to
the translation task. Therefore, our approach aims
to learn a fine-tuned embedding module Ψ that
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Figure 1: Overview of the proposed pipeline. i) The LLM generates pairwise code translations, which are evaluated
using the CodeBLEU metric. ii) The resulting similarity scores are used to guide contrastive learning for semantic
alignment of the embedding model.

utilizes Stij to enhance code embedding alignment.
The approach is expected to guide Ψ in a way that
enhances the code translation task leveraging G.

Embedding Alignment: To align the embed-
ding space of code snippets with the semantic simi-
larities measured by CodeBLEU, we propose the
Soft Information Noise-Contrastive Estimation (S-
InfoNCE) loss applied to the embeddings resulting
from the trainable embedding module Ψ. On a high
level, our proposed S-InfoNCE can be considered
a soft version of the InfoNCE loss proposed for
contrastive learning (van den Oord et al., 2018). In
the following, we provide the description for the
S-InfoNCE loss and Lemma 1 characterizing the
stationary condition resulting from the S-InfoNCE.
The result helps describing the influence of the loss
on the learnt representation.

Given a batch of N code snippets, we compute
their embeddings csΨi

= Ψ(csi ) and then calcu-
late the pairwise cosine similarities between those
embeddings, scaled by a temperature parameter
τ > 0:

SsΨij
=

1

τ

csΨi
· csΨj

∥csΨi
∥∥csΨj

∥ (6)

Our proposed S-InfoNCE loss integrates these
continuous similarity scores to weigh the contribu-
tion of each pair. Specifically, the loss component

between code i with respect to code j is given as:

lS-InfoNCE
ij (Ψ) = −Stij log

(
exp(SsΨij

)
∑N

k=1 exp(S
s
Ψik

)

)

(7)
and the S-InfoNCE loss is the sum over all code
pairs:

LS-InfoNCE(Ψ) =

N∑

i=1

N∑

j=1

lS-InfoNCE
ij (Ψ) (8)

Finally, the embedding Ψ is optimized by minimiz-
ing LS-InfoNCE(Ψ) using gradient descent.

Compared to the conventional InfoNCE loss for
contrastive learning (van den Oord et al., 2018), our
proposed loss differs in its usage of Stij as a soft
indicator for encoding a continuous similarity be-
tween the pair (i, j), rather than a binary indicator
of class membership (same class or not). This gives
rise to the term soft InfoNCE, or S-InfoNCE. In the
typical InfoNCE loss, the term lij is included only
if the pair (i, j) belongs to the same class, assuming
discrete classes are available. However, since such
discrete class labels do not exist in the code trans-
lation task, we adopt Stij as a soft version of this
indicator function, allowing for a more nuanced
representation of similarity between code pairs. To
further elaborate on the impact of S-InfoNCE, we
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provide Lemma 1 characterizing its stationary con-
ditions:

Lemma 1. The stationary points of the S-InfoNCE
loss (Equation 8) satisfy:

exp(SsΨ∗
ij
)

∑N
k=1 exp(S

s
Ψ∗

ik
)
=

Stij∑N
k=1 S

t
ik

, (9)

for all i, j ∈ {1, . . . , N}.
Furthermore, the optimal loss is the weighted

sum of the entropy of the CodeBLEU similarity
distribution for each input code i:

LS-InfoNCE(Ψ∗) =
N∑

i=1

(
N∑

k=1

Stik

)
H(p∗

i ), (10)

where H is the entropy function and p∗
i is a proba-

bility vector whose j-th component is

p∗ij =
Stij∑N
k=1 S

t
ik

. (11)

Proof. For brevity, let us define:

• αij = Stij : the CodeBLEU similarity between
the target code translations cti and ctj .

• pij(Ψ) = exp(SsΨij
)/Zi, where Zi =

∑N
k=1 exp(S

s
Ψik

): the normalized exponen-
tial of the cosine similarity between the em-
beddings of source code snippets csi and csj .

The S-InfoNCE loss can be rewritten as:

LS-InfoNCE(Ψ) = −
N∑

i=1

N∑

j=1

αij log pij(Ψ). (12)

The minimization of LS-InfoNCE(Ψ) can be
viewed as a constrained optimization problem over
the variables pij(Ψ), subject to the normalization
constraints:

N∑

j=1

pij(Ψ) = 1, ∀i ∈ {1, . . . , N}. (13)

Thus, we can formulate the Lagrangian L:

L = −
N∑

i=1

N∑

j=1

αij log pij(Ψ)

+
N∑

i=1

λi




N∑

j=1

pij(Ψ)− 1


 . (14)

To find the stationary points, we take the deriva-
tive of L with respect to pij(Ψ) and set it to zero:

∂L
∂pij(Ψ)

= − αij
pij(Ψ)

+ λi = 0. (15)

Solving for pij(Ψ), we get:

pij(Ψ) =
αij
λi
. (16)

Applying the normalization constraint gives us:

N∑

j=1

αij
λi

=
N∑

j=1

pij(Ψ) =
N∑

j=1

αij
λi

= 1 (17)

⇒λi =
N∑

j=1

αij . (18)

Substituting λi back into pij(Ψ), we obtain the
stationary condition:

p∗ij =
αij∑N
k=1 αik

=
Stij∑N
k=1 S

t
ik

. (19)

Substituting pij(Ψ∗) back into the loss function:

LS-InfoNCE(Ψ∗) = −
N∑

i=1

N∑

k=1

αik log

(
αik∑N
j=1 αij

)

=

N∑

i=1

(
N∑

k=1

Stik

)
H(p∗

i ). (20)

From the lemma, we can see that minimizing the
S-InfoNCE loss encourages embeddings of seman-
tically similar code snippets, i.e., those with higher
target CodeBLEU score Stij , to have higher cosine
similarities SsΨij

, thereby aligning them closer in
the embedding space. The temperature parameter
τ controls the concentration of the distribution: a
lower τ sharpens the softmax distribution, mak-
ing the embedding model focus more on the most
similar pairs.

Retrieval-Augmented Generation with
Aligned Embeddings: After aligning the em-
bedding model Ψ, we integrate it into the RAG
framework to enhance the translation process
(Figure 1II). In particular, given a query Fortran
code snippet cs, we compute its embedding csΨ
then retrieve the top-k Fortran code snippets
{csr1 , csr2 , . . . , csrk} from the corpus C by maximiz-
ing the cosine similarity between embeddings. The
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corresponding C++ translations {ctr1 , ctr2 , . . . , ctrk}
are then retrieved alongside the source code
snippets. These retrieved pairs {(csrj , ctrj )}kj=1 are
used to augment the input to the language model
G, providing additional context:

ĉt = G
(
cs, {(csrj , ctrj )}kj=1

)
. (21)

By incorporating the optimized embedding func-
tion Ψ into the RAG setup, we enhance the perfor-
mance of the language model without the need for
fine-tuning. The retrieval mechanism now provides
more relevant examples that are closely aligned
with the translation task, leading to more accurate
and aligned translations as demonstrated in Ap-
pendix A.

4 Experiments and Results

In our study, we utilized three datasets to enhance
code translation through RAG and embedding
alignment. The HPC Fortran2CPP dataset (Lei
et al., 2023), comprising 315 Fortran-C++ code
pairs, and the Numerical Recipes dataset (Press
et al., 1988), containing 298 Fortran-C++ pairs,
were employed for RAG retrieval and evaluation
with LLMs. Additionally, we used the Stack-V2
dataset (Lozhkov et al., 2024), which includes over
500,000 Fortran code snippets, for RAG alignment.
From Stack-V2, we sampled 25,000 high-quality
and diverse Fortran code snippets by selecting files
larger than 500 bytes and prioritizing those with
the highest combined star and fork counts, indi-
cating relevance and popularity. Since Stack-V2
lacks Fortran-C++ pairs, we extracted files contain-
ing metadata, code, and comments, and utilized
the Llama 3.1-70B Instruct model to extract exe-
cutable Fortran code, discarding other metadata.
We selected the StarCoder model (Li et al., 2023)
with 125M parameters as the embedding backbone
for our RAG pipeline and aligned it using con-
trastive learning on the Stack-V2 dataset. Initially,
we use the LLaMA 3.1-8B model to translate the
cleaned Fortran code snippets into corresponding
C++ code. After code translaton, we computed
pairwise CodeBLEU scores between the generated
C++ code snippets to quantify the syntactic and
semantic similarities of their translations. Leverag-
ing these CodeBLEU metrics and the embeddings
from the Fortran codes, we employed the proposed
Soft-InfoNCE loss function with a temperature of
0.1 to align the embeddings, effectively training

the embedding model to map semantically similar
code snippets closer in the embedding space.

The embedding model was trained using the
Adam optimizer with a learning rate of 10−3 and
a batch size of 128 per GPU, sampling approxi-
mately 1,280,000 code pairs for alignment. This
training process was distributed across 256 GH200
GPUs to accelerate the process, though it can also
be performed on fewer GPUs at a significantly
slower pace. Training on 256 GH200 GPUs took
approximately 15 minutes per epoch, with early
stopping at epoch 20. This scales to around 60
minutes per epoch with 64 GPUs and 2 hours per
epoch with 32 GPUs. While training a RAG model
does incur computational overhead, it remains sig-
nificantly less expensive than fine-tuning a multi-
billion-parameter LLM. After alignment, we inte-
grated the embedding model into the RAG pipeline,
storing Fortran-C++ pairs along with their Fortran
embeddings in a vector database. We then eval-
uated the performance using the LLaMA 3.1-8B,
LLaMA 3.1-70B, Mistral123B, and Mixtral 8x22B
models—all instruct-tuned—under zero-shot, 1-
shot, 2-shot, and 3-shot settings. The evaluation
was conducted on the benchmark datasets HPC
Fortran2C++ and Numerical Recipes, following
the setup described by (Bhattarai et al., 2024).
The CodeBLEU scores for both the aligned and
unaligned models were obtained by comparing
the RAG-augmented generated C++ translations
against the ground truth C++ code.

Figure 2 shows scatter-plots of CodeBLEU
scores for code samples produced using RAG re-
trieval with aligned versus unaligned embeddings
derived from StarEncoder. Symbols crosses, pluses
and triangles respectively indicate whether the sam-
ple was evaluated using a 1-shot, 2-shot, or 3-shot
method. The red dashed lines delineates the bound-
ary where the aligned samples have the same Code-
BLEU score as the non-aligned ones, and across
all four tested datasets, we observed a majority
of samples above the red line, indicating that the
aligned model produces translated codes closer to
ground truth. In other words, the results in Figure 2
demonstrate that aligned embeddings significantly
improve translation quality for each Fortran-to-C++
code translation task. Specifically, on the HPC For-
tran2C++ dataset, averaged over all shot counts
and models, the aligned embeddings achieved an
average CodeBLEU score of 0.73, whereas un-
aligned embeddings achieve 0.64. On the Numer-
ical Recipes dataset, aligned embeddings yielded
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Figure 2: Scatter plots comparing the unaligned and aligned One-shot CodeBLEU scores across different shot
counts (1-shot, 2-shot, 3-shot) for two models (llama3.1 70b and llama3.1 8b) and two datasets (Numerical Recipe
and HPC Fortran2C++ Dataset). Each point represents a shot count, and the red dashed line represents the reference
where the unaligned and aligned scores are equal. The text box in each subplot displays the average CodeBLEU
performance and standard deviation for aligned vs. unaligned RAG translation across the few-shot configurations.

Table 1: Delta in Mean CodeBLEU scores between Zero- and Few-Shot prompts. The values are presented as
Unaligned/Aligned scores.

∆ in CodeBLEU scores (Unaligned / Aligned)

Dataset Model Zero-shot 1-shot 2-shot 3-shot

HPC Fortran2++ llama3.1 70b 0.364 +0.262/+0.346 +0.275/+0.371 +0.281/+0.377
llama3.1 8b 0.342 +0.237/+0.346 +0.261/+0.376 +0.252/+0.374
mistral123b 0.367 +0.197/+0.241 +0.210/+0.265 +0.215/+0.271
mixtral-8x22b 0.376 +0.237/+0.273 +0.261/+0.344 +0.233/+0.304

numerical_receipe llama3.1 70b 0.280 +0.232/+0.313 +0.243/+0.329 +0.243/+0.317
llama3.1 8b 0.276 +0.181/+0.268 +0.195/+0.292 +0.201/+0.289
mistral123b 0.281 +0.138/+0.169 +0.132/+0.183 +0.135/+0.211
mixtral-8x22b 0.280 +0.200/+0.245 +0.228/+0.296 +0.232/+0.312

an average CodeBLEU score of 0.60, outperform-
ing the unaligned case at 0.52. These substantial
improvements highlight the effectiveness of our
method in enhancing translation accuracy.

Figure 3 further corroborates these findings by
presenting the distribution of CodeBLEU scores
across various experimental configurations. The
box plots reveal that aligned embeddings not only
increase the median scores but also reduce perfor-
mance variability. This indicates that our approach

consistently enhances translation quality and leads
to more reliable code translations. The consistent
improvements across different model sizes (8B and
70B parameters) and datasets demonstrate the ro-
bustness and scalability of our method.

Table 1 presents the mean CodeBLEU scores
for zero-shot and few-shot prompting strategies
using both unaligned and aligned embedding mod-
els across different language models and datasets.
A key observation is that the aligned embedding
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Figure 3: Box plots illustrating the distribution of Code-
BLEU scores across various shot counts (1-shot, 2-shot,
3-shot) for both unaligned and aligned models. The
results are presented for two models (llama3.1 70b and
llama3.1 8b) across two datasets (Numerical Recipe and
HPC Fortran2C++ Dataset)

models consistently achieve higher CodeBLEU
scores compared to unaligned models when tran-
sitioning from zero-shot to few-shot settings. For
instance, on the HPC Fortran2C++ dataset with
the LLaMA3.1 70B model, the aligned model im-
proves from 0.364 to 0.710 (+0.346) in the 1-
shot setting, surpassing the unaligned model’s im-
provement from 0.364 to 0.626 (+0.262). Sim-
ilar trends are observed with the LLaMA3.1 8B
model, where the aligned model increases from
0.342 to 0.688 (+0.346), compared to the unaligned
model’s increase from 0.342 to 0.579 (+0.237).
The Mistral 13B and Mixtral 8x22B models
also exhibit greater improvements with aligned
embeddings in few-shot settings, confirming the
benefit of embedding alignment across different
architectures. On the Numerical Recipes dataset,
the aligned models again demonstrate superior im-
provements over unaligned models. For example,
the LLaMA3.1 70B aligned model improves from
0.280 to 0.593 (+0.313) in the 1-shot setting, ex-
ceeding the unaligned model’s increase from 0.280
to 0.512 (+0.232). This consistent pattern across
datasets reinforces the advantage of embedding
alignment in enhancing code translation perfor-
mance. We acknowledge that CodeBLEU may
not capture all functional nuances. Therefore, we
performed a small-scale manual check (Appendix
A) on a subset of translations. While we observed
that a majority compiled and produced the expected
outputs, further large-scale functional evaluation
remains an important future direction.

These results indicate that embedding align-

ment significantly enhances the models’ capacity
to exploit few-shot prompts, leading to superior
code translation performance as measured by Code-
BLEU scores. Alignment optimizes the embedding
space to better capture the syntactic and seman-
tic nuances of code translation tasks, thereby aug-
menting the models’ few-shot learning capabili-
ties. Additionally, larger models tend to outper-
form smaller ones. The LLaMA3.1 70B model con-
sistently achieves higher CodeBLEU scores than
the LLaMA3.1 8B model across both datasets and
embedding types. The strong performance of the
Mixtral 8x22B model, which combines multiple
experts, highlights the benefits of increased model
capacity. Furthermore, diminishing marginal gains
are observed when increasing the number of shots
beyond two, suggesting that the majority of per-
formance improvements are realized with just one
or two examples. This indicates that while few-
shot examples are beneficial, adding more beyond
a certain point yields limited additional gains.

5 Conclusion

We introduced a novel method for enhancing cross-
language code translation from Fortran to C++ by
aligning embeddings within a RAG framework.
By leveraging contrastive learning based on Code-
BLEU similarity scores, we aligned the Fortran em-
bedding model so that code snippets yielding high-
quality translations are positioned closer in the em-
bedding space. This alignment enables the RAG
system to retrieve semantically meaningful exam-
ples that effectively guide th LLM during code gen-
eration. Our experimental results demonstrate sub-
stantial improvements in translation quality with-
out the need for fine-tuning the LLM. Specifically,
using aligned embeddings increased the average
CodeBLEU score from 0.64 to 0.73 on the HPC
Fortran2C++ dataset and from 0.52 to 0.60 on
the Numerical Recipes dataset, representing rel-
ative improvements of approximately 14% and
15%, respectively. The larger model (llama3.1
70b) consistently outperformed the smaller model
(llama3.1 8b), indicating that increased model ca-
pacity enhances the effectiveness of our approach.
Additionally, we observed diminishing returns be-
yond two-shot prompting, suggesting that most per-
formance gains are achieved with just one or two
examples. Thus, our approach significantly im-
proves code translation performance by optimizing
the retrieval mechanism through task-specific em-
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bedding alignment, rather than relying on compu-
tationally expensive fine-tuning of the LLM. This
method is computationally efficient, scalable, and
adaptable to other code translation tasks, particu-
larly when aligned datasets are scarce or evaluation
metrics like CodeBLEU are critical. Future work
could extend this alignment strategy to additional
programming languages and explore integrating
other evaluation metrics to further enhance transla-
tion quality.

6 Limitations

Our approach leverages CodeBLEU as a task-
specific metric for performing contrastive learning
via a custom Soft-InfoNCE loss in the alignment of
embedding models for code translation. While this
approach introduces several improvements, it also
brings specific limitations. First, using CodeBLEU
as the basis for contrastive learning focuses pri-
marily on syntactic and semantic alignment, which
may not always translate into functional equiva-
lence. CodeBLEU, while effective at evaluating
linguistic features of generated code, does not fully
capture the functional behavior of code, meaning
that two semantically similar snippets could still
behave differently at runtime (Ren et al., 2020).
This limitation can lead to cases where the retrieval
mechanism selects semantically similar but func-
tionally incorrect examples, impacting the over-
all quality of the translation task. Second, con-
trastive learning, particularly with InfoNCE loss,
relies heavily on the assumption that maximizing
the similarity between pairs (based on CodeBLEU)
leads to better downstream performance. However,
InfoNCE loss is limited by its focus on pulling
positive samples closer while pushing away neg-
ative ones, which in the case of code translation,
does not always capture the subtle nuances of code
equivalence across languages (Khosla et al., 2020).
Code snippets with different syntactic structures
but similar functionality may be treated as nega-
tive examples, leading to a misaligned embedding
space and suboptimal retrieval. Third, the granu-
larity of the CodeBLEU score presents an inherent
challenge. Since CodeBLEU provides a continu-
ous similarity metric (between 0 and 1), aligning
embeddings through InfoNCE loss may not fully
capture the wide range of functional similarities or
dissimilarities between code snippets. This results
in an embedding space that reflects linguistic rather
than purely functional similarity, which can lead

to errors in retrieval when applied to real-world
translation tasks where functional correctness is
paramount (Feng et al., 2020). Additionally, the
use of CodeBLEU as a basis for contrastive learn-
ing is highly dependent on the quality of the gener-
ated code samples and their reference translations.
Any noise or imperfections in the training data
(e.g., low-quality code or inconsistent style) may
degrade the alignment process. Since InfoNCE
relies on subtle positive and negative distinctions,
noisy CodeBLEU scores can introduce ambiguity,
further distorting the learning process and leading
to poorer retrievals during generation (Wang and
Liu, 2021).
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A Demonstration: Enhancing
Fortran-to-C++ Translation Using
Aligned RAG on LLaMa3.1 70b Model

A.1 Fortran Code to be Translated
Below is the original Fortran code that needs to be
translated into C++:

1 program DRB011_minusminus_orig_yes
2 use omp_lib
3 implicit none
4

5 integer :: i, len , numNodes ,
numNodes2

6 integer :: x(100)
7

8 len = 100
9 numNodes = len

10 numNodes2 = 0
11

12 do i = 1, len
13 if (MOD(i,2) == 0) then
14 x(i) = 5
15 else
16 x(i) = -5
17 end if
18 end do
19

20 !$omp parallel do
21 do i = numNodes , 1, -1
22 if (x(i) <= 0) then
23 numNodes2 = numNodes2 - 1
24 end if
25 end do
26 !$omp end parallel do
27

28 print*, "numNodes2 =", numNodes2
29 end program

Listing 1: Fortran Code

A.2 Ground Truth
Below is the human-generated ground truth Fortran-
to-C++ translation, which serves as the baseline:

1 #include <stdlib.h>
2 #include <stdio.h>
3 int main(int argc , char* argv []) {
4 int i;
5 int len = 100;
6 int numNodes = len;
7 int numNodes2 = 0;
8 int x[100];
9

10 // initialize x[]
11 for (i = 0; i < len; i++) {
12 if (i % 2 == 0)
13 x[i] = 5;
14 else
15 x[i] = -5;
16 }
17

18 #pragma omp parallel for
19 for (i = numNodes - 1; i > -1; --i)

{
20 if (x[i] <= 0) {
21 numNodes2 --;
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22 }
23 }
24

25 printf("numNodes2 = %d\n", numNodes2
);

26 return 0;
27 }

Listing 2: Ground Truth

A.3 Zero-shot Translation
The zero-shot output from the LLM demonstrates
basic translation abilities but with structural issues:

1 #include <iostream >
2 #include <omp.h>
3

4 int main() {
5 const int len = 100;
6 int numNodes = len;
7 int numNodes2 = 0;
8 int x[len];
9

10 for (int i = 1; i <= len; i++) {
11 if (i % 2 == 0) {
12 x[i - 1] = 5;
13 } else {
14 x[i - 1] = -5;
15 }
16 }
17

18 #pragma omp parallel for reduction
(-:numNodes2)

19 for (int i = numNodes; i >= 1; i--)
{

20 if (x[i - 1] <= 0) {
21 numNodes2 --;
22 }
23 }
24

25 std::cout << "numNodes2 = " <<
numNodes2 << std::endl;

26

27 return 0;
28 }

Listing 3: Zero-shot Translation

A.4 Unaligned RAG One-shot Translation
The one-shot output improves the translation, but
some structural issues still remain. Specifically,
the initialization of variables and handling of array
indices are slightly different:

1 #include <stdio.h>
2

3 int main() {
4 int i, len , numNodes , numNodes2;
5 int x[100];
6

7 len = 100;
8 numNodes = len;
9 numNodes2 = 0;

10

11 for (i = 0; i < len; i++) {
12 if ((i + 1) % 2 == 0) {
13 x[i] = 5;

14 } else {
15 x[i] = -5;
16 }
17 }
18

19 #pragma omp parallel for reduction(-:
numNodes2)

20 for (i = numNodes - 1; i >= 0; i--)
{

21 if (x[i] <= 0) {
22 numNodes2 --;
23 }
24 }
25

26 printf("numNodes2 = %d\n", numNodes2
);

27

28 return 0;
29 }

Listing 4: One-shot Translation

A.5 Aligned RAG Translation
By aligning the retrieval process to the context
of the task, the translation becomes much more
accurate, closely matching the ground truth:

1 #include <stdio.h>
2 #include <omp.h>
3

4 int main(int argc , char* argv []) {
5 int i;
6 int len = 100;
7 int numNodes = len;
8 int numNodes2 = 0;
9 int x[100];

10

11 for (i = 0; i < len; i++) {
12 if ((i % 2) == 0) {
13 x[i] = 5;
14 } else {
15 x[i] = -5;
16 }
17 }
18

19 #pragma omp parallel for
20 for (i = numNodes - 1; i >= 0; i--)

{
21 if (x[i] <= 0) {
22 numNodes2 --;
23 }
24 }
25

26 printf("numNodes2 = %d\n", numNodes2
);

27 return 0;
28 }

Listing 5: Aligned RAG-based Translation

117



Proceedings of the 4th International Workshop on Knowledge-Augmented Methods for Natural Language Processing (KnowledgeNLP’25), pages 118–128
May 3, 2025 ©2025 Association for Computational Linguistics

LLM Reasoning Engine: Specialized Training for
Enhanced Mathematical Reasoning

Shuguang Chen
Department of Mathematics

Purdue University
chen4914@purdue.edu

Guang Lin
Department of Mathematics

Purdue University
guanglin@purdue.edu

Abstract

Large Language Models (LLMs) have shown
remarkable performance in various natural lan-
guage processing tasks but face challenges
in mathematical reasoning, where complex
problem-solving requires both linguistic un-
derstanding and mathematical reasoning skills.
Existing approaches to address this challenge
often rely on ensemble methods and suffer from
the problem of data scarcity in target domains.
In this work, we present a novel method to
enhance the capabilities of LLMs in mathemat-
ical reasoning tasks. Motivated by the need to
bridge this gap, our approach incorporates a
question paraphrase strategy, which aims to
diversify the linguistic forms of mathemati-
cal questions to improve generalization. Ad-
ditionally, specialized training objectives are
employed to guide the model’s learning pro-
cess, focusing on enhancing its understand-
ing of mathematical concepts and reasoning
processes. We conduct experiments on four
datasets using different LLMs, and demonstrate
the effectiveness of our approach in improving
LLMs’ performance on mathematical reason-
ing tasks. Our findings underscore the signifi-
cance of our methodology in advancing LLMs
and their potential implications for real-world
applications that require mathematical reason-
ing abilities.

1 Introduction

In recent years, Large Language Models (LLMs)
(Touvron et al., 2023b; Team et al., 2023) have
emerged as powerful tools in the field of machine
learning, demonstrating remarkable performance
in a wide range of downstream benchmarks. Their
ability to understand and generate natural language
text has revolutionized various applications, from
language translation (Costa-jussà et al., 2022; Bar-
rault et al., 2023) to question answering systems
(Chowdhery et al., 2023; Chen et al., 2023). Cen-
tral to their success is their ability to perform com-

plex reasoning, enabling them to tackle complex
problems with impressive accuracy and efficiency.

However, while LLMs excel in many domains,
they face challenges when it comes to solving math-
ematical problems. Mathematical reasoning of-
ten requires intricate logical operations and a deep
understanding of mathematical concepts (Saxton
et al., 2019; Lightman et al., 2023), posing signif-
icant hurdles for conventional LLM architectures.
Moreover, the scarcity of data in the mathemati-
cal domain (Liu et al., 2021; Kumar et al., 2022)
further compounds these challenges, limiting the
performance and generalization of these LLMs.

Some existing methods (Shen et al., 2023; Jiang
et al., 2024) attempt to address these challenges
by employing ensemble techniques, where multi-
ple LLMs collaboratively solve mathematical prob-
lems. However, these methods can still be fur-
ther improved, particularly in enhancing the perfor-
mance of individual LLMs and mitigating perfor-
mance degradation over extended reasoning steps.
A major challenge when applying LLMs to com-
plex mathematical problems is error propagation,
especially in tasks requiring long reasoning chains.
Figure 1 illustrates this issue with an example from
the GSM8K dataset (Cobbe et al., 2021), solved
by the Llama2-7B model (Touvron et al., 2023b).
The problem involves multiple intermediate steps
to reach the correct solution. However, the model
makes an error in the initial steps, which cascades
through subsequent stages of reasoning. This oc-
curs because each reasoning step depends on the
accuracy of preceding steps; even a minor initial
error can compound, ultimately leading to signif-
icant deviations from the correct solution. This
phenomenon highlights the limitations of current
LLMs in maintaining accuracy across long reason-
ing sequences and underscores the need for im-
proved methodologies to mitigate error propagation
and enhance performance in mathematical tasks.

In this paper, we propose novel approaches to ad-
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Figure 1: Llama2-7B model prediction on an example from the GSM8K dataset.

dress the limitations of existing methods in solving
mathematical problems with LLMs. Our contri-
butions include the introduction of new training
objectives designed to uncover underlying patterns
in data, thus improving model performance. Addi-
tionally, we leverage data augmentation techniques
to maximize the utility of existing datasets to fine-
tune LLMs, enhancing their effectiveness in math-
ematical reasoning tasks. To evaluate the efficacy
of our proposed methods, we conduct experiments
using four open-source LLMs—Llama (Touvron
et al., 2023a), Llama2 (Touvron et al., 2023b), Mis-
tral (Jiang et al., 2023), and Mixtral (Jiang et al.,
2024)—on four widely used mathematical reason-
ing datasets: GSM8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021), GSM8K_Hard (Gao et al.,
2022), and SVAMP (Patel et al., 2021). Our re-
sults demonstrate significant performance improve-
ments, underscoring the effectiveness of our meth-
ods in advancing the mathematical reasoning capa-
bilities of LLMs.

In summary, this paper presents novel contribu-
tions towards improving the performance of LLMs
in solving mathematical problems, addressing the
challenges posed by complex reasoning and data
scarcity. Our findings have implications for advanc-
ing the field of machine learning and expanding the
applicability of LLMs to various problem domains.

2 Background

The intersection of machine learning and mathe-
matical reasoning has received significant attention
from researchers seeking to enhance the capabil-

ities of LLMs in solving complex mathematical
problems. In this section, we review the previ-
ous literature exploring various approaches and
methodologies to address the challenges posed by
mathematical reasoning tasks and highlight the ad-
vances made in this domain.

2.1 Recent Advances in LLMs

The evolution of LLMs represents a significant
milestone in the field of natural language process-
ing (NLP) and machine learning. Over the past
decade, advances in neural network architectures,
coupled with the availability of large amounts of
text data, have driven the development of increas-
ingly complex and capable LLMs. Beginning with
seminal works such as Google’s BERT (Bidirec-
tional Encoder Representations from Transformers)
(Devlin et al., 2018) and OpenAI’s GPT (Genera-
tive Pre-trained Transformer) (Radford et al., 2019),
researchers have made substantial progress in en-
hancing LLMs’ language understanding and gen-
eration capabilities (Liu et al., 2019; Raffel et al.,
2020). These models leverage transformer archi-
tectures and self-attention mechanisms to capture
long-range dependencies and contextual informa-
tion, enabling them to generate coherent and con-
textually relevant text.

Further refinements, such as the introduction of
GPT-3 (Brown et al., 2020) with significantly larger
parameter sizes and more sophisticated training
regimes, have pushed the limits of LLM perfor-
mance to unprecedented levels. These advance-
ments have paved the way for LLMs to excel in
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a wide range of NLP tasks, including language
translation (Costa-jussà et al., 2022; Kudugunta
et al., 2024), text summarization (Lewis et al., 2019;
Zhang et al., 2020), and question answering (Sanh
et al., 2019; He et al., 2020).

2.2 LLMs for mathematics

The application of LLMs to mathematical reason-
ing tasks represents a recent and growing area of re-
search within the machine learning community. Al-
though LLMs have demonstrated remarkable pro-
ficiency in natural language understanding, their
performance in mathematical reasoning tasks has
historically lagged behind.

However, recent studies (Gou et al., 2023; Shao
et al., 2024) have shown promising results in us-
ing LLMs to solve mathematical problems. Trans-
fer learning techniques, particularly fine-tuning
pretrained LLMs on mathematical datasets, have
emerged as effective strategies for enhancing
LLMs’ mathematical reasoning capabilities. By
leveraging the knowledge encoded in pre-trained
language models and adapting it to mathematical
domains, researchers have achieved remarkable re-
sults on mathematical tasks.

Moreover, novel adaptation techniques, such as
question paraphrase methods (Yu et al., 2023) and
tailored training objectives (Liu et al., 2023) aimed
at enhancing LLMs’ understanding of mathemat-
ical reasoning processes, have further advanced
LLMs in mathematical applications. These tech-
niques enable LLMs to effectively leverage existing
data and develop robust reasoning abilities, thus
expanding their utility in mathematical problem
solving scenarios. However, these existing meth-
ods suffer from the problem of error propagation
over long reasoning paths.

Overall, the application of LLMs in mathemat-
ics has immense potential to revolutionize the way
mathematical problems are approached and solved.
As research in this area continues to evolve, we can
expect further advancements in LLMs’ mathemati-
cal reasoning capabilities and their integration into
diverse mathematical domains.

3 Methodology

The motivation for our methodology arises from the
observation that while LLMs excel in various natu-
ral language processing tasks, their performance in
mathematical reasoning remains suboptimal. This
gap is primarily due to the inherent complexity of

mathematical problems, which often requires intri-
cate reasoning and logical deduction (Saxton et al.,
2019; Lightman et al., 2023). Furthermore, the
limited availability of annotated data in the math-
ematical domain (Liu et al., 2021; Kumar et al.,
2022) presents a significant obstacle to effectively
training LLMs for such tasks.

To overcome these challenges, we propose a
novel approach that combines question paraphras-
ing techniques with tailored training objectives to
strengthen the mathematical reasoning capabilities
of LLMs. An overview of our proposed pipeline is
illustrated in Figure 2.

3.1 Question Paraphrase

Question paraphrasing is a crucial technique em-
ployed to augment existing data and enhance the
model’s ability to generalize across different lin-
guistic forms of mathematical problems. This pro-
cess involves leveraging the powerful generative ca-
pabilities of the GPT-4 model (Brown et al., 2020)
to produce diverse paraphrases for each question
in the dataset. By generating multiple variations
of the same question while preserving its semantic
meaning, we aim to enrich the training data and
expose the model to a wider range of linguistic
structures and expressions commonly encountered
in mathematical problem-solving scenarios.

Paraphrasing Questions The GPT-4 model is
utilized to generate the paraphrases for each ques-
tion in the data set. Given a mathematical ques-
tion, the model generates alternative phrasings that
convey the same underlying mathematical concept.
This step significantly enhances the diversity of the
training data by presenting questions in various lin-
guistic forms, such as synonyms, paraphrases, and
syntactic variations.

To ensure the quality and semantic coherence of
the paraphrased questions, each paraphrase, along
with its corresponding answer, is inputted into the
GPT-4 model. The model is then tasked with deter-
mining whether the paraphrased question-answer
pairs match or not. This iterative validation pro-
cess helps filter out the inconsistencies or semantic
distortions, ensuring that only high-quality para-
phrases are retained for training.

3.2 Special Training Objectives

Effective training objectives are critical for guiding
a model’s learning process and fostering a deeper
understanding of mathematical concepts and rea-
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Figure 2: The overview of our proposed pipeline.

soning. Our approach incorporates specialized
training objectives designed to address the unique
challenges of mathematical reasoning tasks.

During training, we start with a pretrained LLM
and apply a supervised fine-tuning (SFT) objec-
tive on a carefully curated dataset of mathematical
problems. This data set includes a diverse range of
questions and solutions to ensure a comprehensive
coverage of mathematical concepts and problem
types. In the SFT phase, the model is trained to
minimize the loss between its predicted answers
and the correct solutions provided in the dataset,
effectively aligning its outputs with the desired re-
sponses.

Rationale Re-Ranking (RR) The Rationale Re-
Ranking (RR) objective aims to improve the
model’s ability to identify and reconstruct the cor-
rect reasoning path for solving mathematical prob-
lems. This objective involves shuffling the rea-
soning steps associated with a given problem and
reordering the models to reconstruct the proper so-
lution sequence. By training the model to recognize
and organize the logical progression of mathemati-
cal solutions, the RR objective fosters a more struc-
tured, coherent, and accurate reasoning process.

Mistake Identification (MI) The MI objective
focuses on improving the robustness and error toler-
ance of the model by training it to differentiate be-
tween correct and erroneous reasoning steps. Dur-
ing training, random modifications are introduced
to induce errors in the reasoning process, such as
changing numerical values or altering logical oper-
ators. The model is then trained to distinguish be-
tween correct and erroneous reasoning steps, thus
learning to identify and rectify potential mistakes.
This objective helps mitigate the risk of erroneous

predictions and enhances the model’s overall per-
formance on mathematical reasoning tasks:

Integrating these training objectives into the fine-
tuning process equips LLMs with enhanced ca-
pabilities for mathematical reasoning, thereby ad-
dressing the challenges posed by complex problem-
solving scenarios.

3.3 Training Process

The training process of our proposed method con-
sists of several stages designed to enhance the math-
ematical reasoning capabilities of LLMs. The pro-
cess begins with data augmentation through ques-
tion paraphrasing, where GPT-4 generates various
paraphrases for each mathematical question. To
ensure data set quality and integrity, we verify the
consistency of the paraphrased questions and their
corresponding answers, iterating this process to
achieve high accuracy.

Next, we introduce specialized training objec-
tives to improve the model’s reasoning abilities.
One such objective is Rationale Re-Ranking (RR),
where reasoning steps are shuffled, and the model
is tasked with predicting the correct sequence. This
trains the model to understand and reconstruct log-
ical progressions. Another objective is Mistake
Identification (MI), where the model learns to dis-
tinguish between correct and intentionally altered
reasoning steps, enhancing its ability to detect and
correct errors in complex problem-solving scenar-
ios. These objectives are incorporated within a mul-
titask learning framework, with weighted losses
assigned to each task to ensure balanced and ef-
fective training. This approach enables the model
to optimize simultaneously for various aspects of
mathematical reasoning, resulting in a more robust
and versatile skill set.
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By combining data augmentation, targeted train-
ing objectives, and a multitask learning framework,
our method equips LLMs with strong mathemati-
cal reasoning skills, significantly improving their
performance on challenging mathematical tasks.

Final training objective The final training ob-
jective is formulated as the weighted sum of LSFT ,
LRR, and LMI :

Lfinal(θ) = λ1LSFT + λ2LRR + λ3LMI

where λ1, λ2, and λ3 are parameters that weight
the importance of each loss, and LSFT , LRR, and
LMI are cross entropy losses.

4 Experiments

Mathematical reasoning challenges LLMs, requir-
ing both natural language understanding and math-
ematical problem-solving skills. Evaluating the
effectiveness of LLMs in mathematical reasoning
is crucial for advancing state-of-the-art NLP tech-
niques and expanding their applicability across di-
verse problem domains. This study seeks to assess
the performance of various LLMs on mathematical
reasoning tasks through targeted experiments.

4.1 Datasets
We conducted experiments on four datasets specif-
ically designed to assess LLMs’ performance in
mathematical reasoning.

• GSM8K (Cobbe et al., 2021): A comprehen-
sive dataset comprising mathematical prob-
lems covering a wide range of topics and dif-
ficulty levels.

• MATH (Hendrycks et al., 2021): A curated
collection of mathematical questions and so-
lutions, designed to assess LLMs’ ability to
solve mathematical problems in various do-
mains.

• GSM8K-Hard (Gao et al., 2022): A subset
of the GSM8K dataset containing challenging
mathematical problems aimed at evaluating
the robustness of LLMs under difficult scenar-
ios.

• SVAMP (Patel et al., 2021): A specialized
dataset focusing on mathematical reasoning
in the context of symbolic mathematics, pre-
senting unique challenges for LLMs due to its
symbolic nature.

4.2 Base Models

We employed four base models for our experiments,
each representing a distinct architecture or variant
of LLMs:

• LLama (Touvron et al., 2023a): A baseline
LLM model known for its strong performance
in natural language understanding tasks.

• LLama2 (Touvron et al., 2023b): An en-
hanced version of LLama, incorporating im-
provements in model architecture and training
methodology.

• Mistral (Jiang et al., 2023): A state-of-the-art
LLM model specifically designed for mathe-
matical reasoning tasks, leveraging advanced
adaptation techniques.

• Mixtral (Jiang et al., 2024): A high-capacity
LLM model based on the Mixtral architecture,
featuring eight times the parameter size of
LLama for enhanced performance.

Training Details We fine-tuned these base mod-
els on the aforementioned datasets with hyperpa-
rameters tailored to each model and dataset. The
parameters are set as default to the ones used during
pre-training. Note that we only experiment with the
version of 7B parameters for each model. We adapt
LoRA (Hu et al., 2022) to make model fine-tuning
more efficient. The rank and alpha are both set as
64. Additionally, we utilized specialized training
objectives, such as Rationale Re-ranking (RR) and
Mistake Identification (MI), to enhance the models’
understanding of mathematical reasoning. We fine-
tune each model with a single Nvidia A100 GPU
and the runtime of each experiment is between 2 to
6 hours.

4.3 Main Results

Our experiments resulted in notable performance
improvements across all four base models. Table 1
presents a summary of the main results. Our pro-
posed special training objectives yielded an average
performance boost of 4.25% on GSM8K, 2.32%
on MATH, 6.21% on GSM_HARD, and 5.15% on
SVAMP datasets. Moreover, combining question
paraphrase with these objectives further enhances
the improvement to 7.32% on GSM8K, 3.63% on
MATH, 7.72% on GSM_HARD, and 6.78% on
SVAMP. Notably, our methods have a more signif-
icant impact on relatively weaker models, likely
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Method Dataset

GSM8K MATH GSM_HARD SVAMP

Baselines (SFT Only)

Llama-7B (Touvron et al., 2023a) 32.07 5.60 23.43 38.24
Llama2-7B (Touvron et al., 2023b) 36.92 5.68 26.72 41.07
Mistral-7B (Jiang et al., 2023) 58.68 14.08 55.42 50.25
Mixtral-8x7B (Jiang et al., 2024) 65.44 30.13 64.93 68.73

Proposed Method (SFT + MI + RR)

Llama-7B (Touvron et al., 2023a) 37.15 6.91 29.71 44.22
Llama2-7B (Touvron et al., 2023b) 43.04 7.65 38.74 49.03
Mistral-7B (Jiang et al., 2023) 62.87 15.98 60.02 56.87
Mixtral-8x7B (Jiang et al., 2024) 67.04 34.22 66.86 68.76

Proposed Method + Question Paraphrase

Llama-7B (Touvron et al., 2023a) 41.74 7.64 37.87 46.14
Llama2-7B (Touvron et al., 2023b) 46.86 9.05 32.96 53.04
Mistral-7B (Jiang et al., 2023) 65.82 17.27 63.25 58.03
Mixtral-8x7B (Jiang et al., 2024) 67.96 36.07 67.28 68.19

Table 1: Experimental results of base models on different datasets, respectively. Scores are calculated with the
accuracy metric.

because these models benefit more from structured
reasoning guidance. This aligns with findings in
previous LLM fine-tuning studies, where weaker
models exhibit larger relative improvements when
exposed to specialized training objectives.

These findings underscore the empirical effec-
tiveness of our methodology in improving the rea-
soning efficiency and accuracy of LLMs. By as-
sessing LLMs’ performance in mathematical rea-
soning tasks, we contribute to the ongoing efforts
to advance the state-of-the-art in natural language
processing and pave the way for their application in
diverse problem domains requiring mathematical
reasoning abilities.

5 Analysis and Discussion

In this section, we delve into a comprehensive anal-
ysis and discussion of the experimental results, fo-
cusing on the effectiveness of our proposed method
in enhancing LLMs’ capabilities in mathemati-
cal reasoning tasks. We begin by dissecting the
model’s performance over varying numbers of rea-
soning steps, shedding light on the impact of our
approach on problem-solving efficiency. Subse-
quently, we present findings from an ablation study
aimed at elucidating the importance of individual
components within our proposed methods. Finally,
through a series of case studies, we illustrate both
the successes and limitations of our approach, pro-

viding valuable insights for future research direc-
tions.

5.1 Analysis on Reasoning Steps

We performed an in-depth analysis of model perfor-
mance across varying reasoning steps to evaluate
the effectiveness of our proposed method in solv-
ing complex mathematical problems. By examin-
ing performance at different depths of reasoning,
we sought to highlight the impact of our approach
on problem-solving efficiency. Figure 3 summa-
rizes the model’s performance on math questions
requiring different reasoning steps. Overall, the
results indicate that model performance declines as
the number of reasoning steps needed to solve the
problems increases. Although the improvement is
minimal for questions requiring only a few reason-
ing steps (fewer than 4 steps), it becomes substan-
tial for questions requiring longer reasoning chains
(4–7 steps). Additionally, we note that the mod-
els struggle with questions that demand extremely
long reasoning paths (more than 8 steps).

Our analysis revealed a clear trend of improved
model performance as the number of reasoning
steps increased. This trend indicates that our pro-
posed method effectively enhances the model’s
ability to solve complex mathematical problems,
leading to more accurate solutions. Specifically, we
observed substantial performance improvements

123



(a) Llama2-7B on different reasoning steps (b) Mistral-7B on different reasoning steps

Figure 3: Analysis of Llama2 and Mistral on different reasoning steps, respectively. X-axis is the number of
reasoning steps required to solve a math question and Y-axis the accuracy score. We use supervised fine-tuning as
the baseline, and compare it with our proposed method using special training objective. QP stands for question
paraphrase.

Method GSM8K MATH

Llama2-7B Mistral-7B Llama2-7B Mistral-7B

Baseline (SFT) 36.92 58.68 5.68 14.08

+ RR 38.94 59.06 5.83 13.07
+ MI 40.01 61.57 7.83 15.24
+ MI + RR 43.04 62.87 7.65 15.98
+ MI + RR + QP 46.86 65.82 9.05 17.27

Table 2: Ablation Study of our proposed method on
GSM8K and MATH using Llama2-7B and Mistral-7B
as base models, respectively. SFT, RR, MI, and QP
stand for supervised fine-tuning, rationale re-ranking,
mistake identification, and question paraphrase, respec-
tively. Scores are calculated with the accuracy metric.

on problems that involve multiple reasoning steps,
which underscores the effectiveness of our ap-
proach in addressing complex problem-solving sce-
narios.

5.2 Ablation Study

To further evaluate the importance of each compo-
nent in our proposed methods, we performed an
ablation study in which we systematically removed
individual components and evaluated the model
performance. Table 2 presents an ablation study
of our proposed method on GSM8K and MATH
datasets using Llama2 and Mistral as base mod-
els, respectively. Our results demonstrated that all
components of our proposed methods are integral
to improve model performance in mathematical
reasoning tasks.

Specifically, when components such as question

paraphrase techniques and specialized training ob-
jectives were integrated, we observed a marked
increase in model performance, underscoring the
importance of these components in facilitating ef-
fective mathematical reasoning. These findings
emphasize the holistic nature of our proposed ap-
proach, wherein each component synergistically
contributes to overall model performance.

5.3 Case Study

We present a case study in Figure 4 to demonstrate
the effectiveness of our method in solving com-
plex mathematical problems. The case study in-
cludes a positive example showcasing successful
problem-solving outcomes and a negative example
highlighting challenges and limitations.

The positive example illustrates how our method
empowers the model to navigate intricate mathe-
matical problems and arrive at the accurate solution,
even if it does not follow the exact reasoning path
provided in the answer. This example validates the
effectiveness of our approach in addressing real-
world mathematical challenges.

In contrast, the negative example in Figure 4
reveals scenarios where our proposed method en-
counters limitations or fails to produce satisfactory
results. Although the model follows the correct
reasoning path, a common failure mode observed
was arithmetic miscalculations despite correct rea-
soning paths. This suggests that while LLMs
grasp mathematical structure, they struggle with
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Figure 4: Case study on the GSM8K dataset using the Mistral-7B Model. The example on the left is positive while
the example on the right is negative.

precise computation—an issue that could be miti-
gated by integrating external calculation modules.
This example identifies areas for improvement and
prompts discussions on potential future research
directions, including refining methodologies, lever-
aging external calculation tools, or exploring math
verification approaches to enhance model perfor-
mance in challenging scenarios.

5.4 Discussion

Data Efficiency and Generalization Our ques-
tion paraphrase strategy addresses a fundamental
challenge in mathematical reasoning: the scarcity
of diverse high-quality training data. By systemati-
cally transforming existing questions into linguis-
tically varied forms while preserving their math-
ematical essence, we achieve improved general-
ization without requiring additional annotated ex-
amples. This approach is particularly valuable for
specialized mathematical domains where expert
annotation is costly and time-consuming. Our ex-
perimental results demonstrate that models trained
with paraphrased questions exhibit enhanced ro-
bustness to linguistic variations, more closely mir-
roring the diverse ways in which mathematical
problems may be encountered in real-world ap-
plications. This linguistic flexibility, combined
with our specialized training objectives, enables
models to focus on the underlying mathematical
structures rather than become overly sensitive to
specific phrasings. The data efficiency of our ap-
proach makes it particularly applicable to resource-
constrained settings and suggests promising direc-
tions for self-supervised learning techniques that
leverage mathematical invariance across different
problem formulations.

Training-focused V.S. Test-time computational
methods In recent years, the Test-Time Compu-
tation (TTC) paradigm has gained significant trac-
tion as a means to improve the reasoning skills of
LLMs, particularly for complex tasks. Although
training-focused and TTC methods represent differ-
ent strategies, they are not mutually exclusive. In
fact, their synergistic integration holds significant
promise for future advancements in mathematical
reasoning for LLMs. The reasoning abilities that
TTC techniques leverage are fundamentally learned
during the training phase, encompassing both pre-
training and fine-tuning. Training on high-quality
mathematical data, including examples of step-by-
step reasoning, provides the essential knowledge
base that enables TTC methods (e.g., CoT (Wei
et al., 2022) and Self-Refine (Madaan et al., 2023))
to be effective. Furthermore, training processes can
be optimized to produce models that are particu-
larly adept at generating effective reasoning traces,
which can then be further explored or verified dur-
ing test time using TTC techniques. The quality of
the underlying model, shaped by training, signifi-
cantly influences how effectively it can utilize TTC
methods.

6 Conclusion

In this study, we addressed the challenge of en-
hancing LLMs’ capabilities in mathematical rea-
soning tasks. Our proposed method leverages in-
novative techniques to improve LLMs’ understand-
ing of mathematical concepts and reasoning pro-
cesses. Through rigorous experimentation, we
demonstrated the effectiveness of our approach in
improving LLMs’ performance on various mathe-
matical problems.
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Our research advances the field of natural lan-
guage processing by providing a comprehensive
approach to enhancing LLMs’ capabilities in math-
ematical reasoning tasks. By identifying key fac-
tors influencing model performance and propos-
ing effective solutions, we bridge the gap between
natural language understanding and mathematical
reasoning. Our study advances LLMs’ reasoning
capabilities, paving the way for broader applica-
tions in automated theorem proving, mathematical
education, and AI-assisted research in scientific
domains. Future work could explore integrating
symbolic computation with LLMs to further en-
hance mathematical reliability.

Limitations

While our study demonstrates promising results
in improving the reasoning efficiency and accu-
racy of LLMs through data enhancement and fine-
tuning, several limitations should be acknowledged.
First, despite efforts to create a diverse data set
through enhancement, inherent biases may persist
in the training data. These biases could poten-
tially skew the model’s performance towards cer-
tain types of mathematical problems or reasoning
patterns. Second, although our fine-tuned model
improves test performance, its generalization to
out-of-distribution mathematical problems remains
uncertain. Future work could explore curriculum
learning strategies or hybrid neural-symbolic ap-
proaches to mitigate this limitation. Further inves-
tigation is needed to assess the model’s capabilities
in tackling advanced mathematical concepts or in-
terdisciplinary problems that deviate significantly
from the training examples.
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Abstract

This paper addresses fine-tuning Large Lan-
guage Models (LLMs) for function calling
tasks when real user interaction data is unavail-
able. In digital content creation tools, where
users express their needs through natural lan-
guage queries that must be mapped to API calls,
the lack of real-world task-specific data and pri-
vacy constraints for training on it necessitate
synthetic data generation. Existing approaches
to synthetic data generation fall short in diver-
sity and complexity, failing to replicate real-
world data distributions and leading to subop-
timal performance after LLM fine-tuning. We
present a novel router-based architecture that
leverages domain resources like content meta-
data and structured knowledge graphs, along
with text-to-text and vision-to-text language
models to generate high-quality synthetic train-
ing data. Our architecture’s flexible routing
mechanism enables synthetic data generation
that matches observed real-world distributions,
addressing a fundamental limitation of tradi-
tional approaches. Evaluation on a compre-
hensive set of real user queries demonstrates
significant improvements in both function clas-
sification accuracy and API parameter selec-
tion. Models fine-tuned with our synthetic data
consistently outperform traditional approaches,
establishing new benchmarks for function call-
ing tasks.

1 Introduction

Digital content creation platforms increasingly rely
on natural language interfaces to make complex
design tools accessible to non-technical users. A
critical challenge lies in accurately translating user
queries into appropriate function calls (Schick et al.,
2023) for instance, when a user requests “Find me
an image of an elephant with the background being
Taj Mahal”, the system must orchestrate multiple

∗ These authors contributed equally to this work.

API calls for searching, background removal, and
compositing.

In this paper, we specifically address the chal-
lenge of training models to classify user intent
into two distinct categories: queries that can be
fulfilled through search API operations versus
those requiring generation through Generative-AI-
powered APIs. Given a user query, our model
determines: (1) whether to route the request to
“Search” or “Generate” operations based on user in-
tent, (2) the appropriate Content Type parameter se-
lection (e.g. Photo, Template, Background, Video),
and (3) prompt optimization specific to each API
type—simplifying “Search” queries while preserv-
ing detailed specifications for “Generate” API re-
quests. The examples below in Listing 1 demon-
strate how our model processes and classifies dif-
ferent types of user queries:

Listing 1: Example function calls for user queries
example1 = {
'input ': 'Find me an image of an

elephant ',
'output ': {

'function ': 'Search ',
'content_type ': 'Photo ',
'extracted_prompt ': 'elephant '
}

},
example2 = {
'input ': 'Create a birthday invitation

for my nephew whose birthday is on
January 21',

'output ': {
'function ': 'Generate ',
'content_type ': 'Template ',
'extracted_prompt ': 'invitation for

nephew 's birthday on January 21'
}

}

While existing function calling models (Patil
et al., 2023) show promise, their performance on
specialized domains remains suboptimal and pri-
vacy restrictions on production data create train-
ing challenges. To address these limitations, we
present two key contributions:
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Figure 1: Data generation architecture overview integrating metadata, knowledge graph, and visual content. A
“Weighted Router” directs text and image inputs to different prompt categories: length-based, API-based, and media
type. They are processed by Text-to-Text and Vision-to-Text LLMs to generate synthetic data for downstream tasks.

1. A methodology for incorporating structured
domain knowledge into synthetic data generation
that leverages: (a) Techniques for extracting gener-
alizable patterns from content metadata; (b) Meth-
ods for utilizing domain-specific knowledge graphs
to generate contextually relevant queries.

2. A novel router-based architecture for syn-
thetic data generation featuring: (a) Multiple
specialized LLM prompt templates as distinct
routes; (b) A weighted routing mechanism using
population-level statistics;

(c) Integration of multi-modal language models
to increase data diversity.

Our approach (Figure 1) improves downstream
model performance while producing balanced train-
ing data across content types, with well-distributed
keywords and diverse sentence structures that bet-
ter align with real-world user interactions.

2 Related Work

The challenge of generating high-quality synthetic
training data for language models has been ex-
plored through various approaches. Prior work
in generating high-quality synthetic training data
for language models spans three key categories:
Instruction-tuning approaches have shown signif-
icant promise, starting with Self-Instruct’s (Wang
et al., 2023) 175-seed task framework. The field
expanded through WizardLM’s EvolInstruct (Xu
et al., 2023), Unnatural Instructions (Honovich
et al., 2022), FLAN (Wei et al., 2022), FLAN-
T5 (Chung et al., 2024), Alpaca (Taori et al.,

2023), Prompt-Breeder (Fernando et al., 2023), and
Template-based Generation (Gholami and Omar,
2023). Multimodal synthetic data generation ad-
vanced through Visual Instruction Tuning (Liu
et al., 2023), MiniGPT-4 (Zhu et al., 2023), and
InternVL (Chen et al., 2024), incorporating visual
and textual information for enhanced data gener-
ation. Function calling approaches, exemplified
by Gorilla (Patil et al., 2023) building on Self-
Instruct (Wang et al., 2023), addressed API param-
eter matching challenges, though lacking domain-
specific knowledge integration.

Our work differs from previous approaches in
several key aspects. (1) We focus specifically on
generating synthetic data for function calling while
maintaining real-world query distributions. Unlike
general instruction tuning approaches, we target
the unique challenges of function calling data gen-
eration which include precise parameter matching
requirements, maintaining real-world API usage
distributions and handling complex nested function
calls. (2) We introduce a novel router-based archi-
tecture that combines multiple generation strate-
gies. We extend existing router-based approaches
by adding weighted probabilistic sampling and by
using population-level statistics to guide routing de-
cisions. We also combine text-to-text and vision-to-
text generation paths. (3) We incorporate domain-
specific knowledge while respecting privacy con-
straints by not directly referring to the real-world
datasets. (4) We leverage multiple modalities (text
and images) to increase the diversity and quality
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of generated data, particularly for visual content-
related APIs. We introduce novel evaluation met-
rics measuring the qualitative alignment of the syn-
thetic data with real-world data covering content-
type alignment, diversity in data types generated,
word length variability, and positional variance of
key terms within sentences.

3 Methodology and Experiments

This section details how our data generation ap-
proach evolved.

3.1 Template-based Heuristic Generation

Figure 2: Knowledge Graph of concepts linked by edges

Our initial approach employed rule-based tem-
plates that combined content metadata with
domain-specific Knowledge Graph (KG) relation-
ships (Kumar et al., 2023) between different as-
pects of digital content creation. Consider a snap-
shot of the Knowledge Graph sub-graph (Figure 2).
This sub-graph consists of interconnected nodes
representing User Intents ("Birthday", "Diwali",
"Baby shower"), Design Types ("Card", "Invite"),
Scene Objects ("Cake"), and associated Actions
("Cut a cake"). Each edge between the nodes rep-
resents a relationship between them. These con-
nections were created using the historical and se-
mantic relationships seen between different entities
like User Intents, Design Types, Scene Objects and
Actions. They enable the generation of semanti-
cally coherent queries by following established re-
lationships between concepts. We create synthetic
“Search” API data by generating random prompts
combining the related entities (e.g. Intent and De-
sign Type) with search synonyms e.g. "find me",
"search for", "look for", "search", "show me".

Listing 2: Examples of Image and Template metadata
image_asset_metadata = {
...
'title ': 'Tropical frangipani flowers

floating ',
'keywords ': ['flower ', 'frangipani ', '

paradise ', 'turquoise ', 'tranquil ',
'tropical ', 'summer '],

'gentech ': False
...
},

template_asset_metadata = {
...
'topics ': ['galactic ','space ','server

banner ']
'title ': 'Galaxy Minecraft Server Banner

',
...
}

In addition to using the Knowledge Graph, we
also use content metadata of templates and images
to heuristically create data. Each image or template
asset contains metadata capturing its characteris-
tics, such as the title of the asset, keywords or tags
associated with it, whether it was generated by AI,
locale, aspect ratio, click through rate, etc. This
metadata provides a foundation of contextually rel-
evant information that reflects real-world content
organization and classification. Listing 2 captures
some of the image and template metadata tags used.
For “Generate” API queries, we constructed tem-
plates that combined action verbs (e.g. "generate",
"create" or "make") with content design types and
titles from our metadata. For example, a template
might expand to “please generate a template for"
followed by the title from our content metadata.
For creating “Generate” API queries for Image as-
sets, we only use the asset if the label ‘gentech’ is
set to True. Similarly, for “Search” API queries,
we used search-related verbs (e.g. "find", "search
for") with appropriate content descriptors. This ap-
proach allowed rapid generation of synthetic data
with proportions matching real-world statistics, but
suffered from significant limitations: The gener-
ated queries lacked diversity, often with unnatural
language patterns.

3.2 Single-Prompt LLM Based Generation

To address these limitations, we experimented with
a Llama-3.1-70B-Instruct model (Touvron et al.,
2023) with a comprehensive set of prompts con-
taining API specifications and few-shot examples.
Different variants of the system prompt focused
on different aspects of the content metadata e.g. in-
tents, assets, actions. Examples of the Llama model
prompts used used for synthesizing “Search” and
“Generate” API queries are listed in appendix A.1.
To mimic the characteristics of real-world data (e.g.
query length for “Search” vs “Generate” queries),
the system prompts used for “Search” queries spec-
ify the query to be short and crisp. Conversely
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the “Generate” query prompts used layout creativ-
ity and engagement as a driving factor for data
generation. This approach generated more natu-
ral language queries but presented challenges in
controlling output distributions and maintaining
variety across generated samples. Furthermore, it
was difficult to ensure appropriate coverage across
different content types and query patterns.

In addition to Llama 70B model, a key inno-
vation in our approach is the integration of multi-
modal capabilities for synthetic data generation on
template data through the InternVL vision-to-text
model (Chen et al., 2024). We prompted the 40B In-
ternVL model to generate a few queries that would
result in the creation of the input template placing
emphasis on the important elements unique to the
template. The prompt for InternVL model is shared
in Appendix A.2. This addition of multi-modality
based data generation component enables the gen-
eration of queries based on actual domain-specific
corpus images and visual representations of non-
image content. This provides an additional route
for query generation that captures visual aspects
that are not present in the metadata, leading to more
natural descriptions and increased output diversity.

3.3 Router-based Multi-Modal Architecture

Our final approach introduced a novel router-based
architecture that addresses the limitations of the
previous two methods. The architecture consists
of multiple specialized prompt templates, each de-
signed to generate specific types of queries based
on length, API type, and content requirements.
These prompt templates incorporate variables from
content metadata and domain-specific KG (Kumar
et al., 2023) relationships, ensuring semantic rele-
vance while maintaining natural language patterns.
The architecture also employs dataset generation
from the approaches discussed above: heuristic-
based, Llama text-to-text model and InternVL’s
vision-to-text model.

The core of our architecture is a weighted router
that directs query generation requests to appropri-
ate prompt templates based on population-level
statistics. This routing mechanism implements
weighted sampling to maintain realistic query pat-
terns while ensuring coverage across different
query types and content categories. Table 1 gives
the distribution of the synthetic dataset generated
across the heuristic-, single-prompt- and router-
based approaches.

Synthetic Dataset variant Search Generate

Heuristic Based 103,189 102,922
Single-Prompt LLM Based 100,207 100,433
Router-Based 105,100 110,000

Table 1: Number of synthetic training examples gener-
ated for Search and Generate functions for each data
generation approach

3.4 Implementation Details

The router selection algorithm determines target
distributions based on population statistics and se-
lects prompt templates based on required query
characteristics and content type requirements. For
each synthetic data point, the router either selects a
text-based route, populating templates with meta-
data and KG elements, or a vision-based route,
processing content images through InternVL to
generate contextually relevant queries.

The system includes validation checks for query
realism, label accuracy, and distribution alignment.
It filters out duplicate queries, unrealistic language
patterns, and queries that violate length constraints.
This ensures that the synthetic data is high quality
and accurately reflects real-world usage patterns.

The query generation process is continuously
monitored and adjusted to maintain desired distri-
butions across query lengths, API usage patterns,
and content type frequencies. This adaptive ap-
proach ensures that the generated dataset remains
balanced and representative of current user behav-
ior patterns, while the multi-modal integration pro-
vides diversity and realism in the generated queries.

Figure 3: Comparison of word count distribution (Mean,
Median and Interquartile Range) across the real and syn-
thetically generated datasets (Heuristic, Single Prompt
and Router)
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3.5 Fine-tuning

To efficiently adapt the models while managing
computational resources, we employ Quantized
Low-Rank Adaptation (QLoRA) (Dettmers et al.,
2023) across our experiments. For the Gorilla
OpenFunctions v2 model (Patil et al., 2023), we
utilize 4 NVIDIA A100 GPUs operating in par-
allel, with the base model parameters quantized
to 4-bit precision while maintaining model quality
through low-rank adapters. The training configu-
ration utilizes cosine annealing for learning rate
optimization (Loshchilov and Hutter, 2017) with
ADAM_W (Loshchilov and Hutter, 2019) as the
optimizer, and we set the LoRA rank and alpha
parameters to 16 and 32 respectively to balance
adaptation capability with training stability.

Additionally, we fine-tuned several small lan-
guage models (SLMs) using the same QLoRA
technique Phi-3.5-mini-instruct (Microsoft, 2024),
Llama-3.2-1B-Instruct (LlamaTeam, 2024), Llama-
3.2-3B-Instruct (LlamaTeam, 2024), Qwen2.5-
1.5B-Instruct (QwenTeam, 2024), Qwen2.5-0.5B-
Instruct (QwenTeam, 2024) and Gemma-2-2b-it
(GemmaTeam, 2024). For these models, the train-
ing infrastructure consisted of 4 NVIDIA A10
GPUs operating in parallel. We maintained consis-
tent quantization and adaptation strategies across
all models to ensure fair comparison. The hyper-
parameters and prompt structure used for training,
training and evaluation loss, system memory usage
and GPU utilization are in Appendix B.

4 Results and Analysis

We analyze the results by first looking at the data
diversity of the router based synthetic data (word
count distribution, content type diversity, positional
diversity of keywords and query length distribution)
and comparing it with other synthetically generated
datasets. We then focus on the performance met-
rics of different variants of Gorilla model across
different synthetic datasets. We also show the per-
formance improvement of Small Language Models
(SLMs) fine-tuned on our router based synthetic
dataset compared to their base model.

4.1 Word Count Distribution

Figure 3 compares the word count distribution
across real-world and synthetically generated
datasets, specifically analyzing the mean, median,
and Interquartile Range (IQR). For this compari-
son, we sampled 2,500 search queries from each

distribution.
The real-world dataset has a mean word length of

7 words and a median of 4 words. The distribution
is right-skewed with a short IQR, suggesting that
real-world queries are generally concise, typically
ranging between 1 to 10 words.

In contrast, the synthetic dataset generated using
Heuristic Data (KG and metadata-based) exhibits a
higher median of 6 words, indicating that the gen-
erated queries tend to be more verbose. Although
the Single Prompt-based data has a similar IQR,
its narrower distribution suggests that the synthetic
queries are, on average, shorter than real-world
queries.

Finally, we observe that the Router-based syn-
thetic data generation approach maintains a similar
IQR to the real-world data, while achieving a bal-
anced distribution between diverse and realistic
queries. This means that the generated queries are
neither excessively long nor too short, aligning with
real-world user behavior—where users are likely
to search with either "Search" (short user query) or
"Generate" (long user query).

4.2 Content Type Diversity
Traditional synthetic data generation techniques
often struggle to replicate a real-world data diver-
sity, resulting in imbalanced datasets where certain
content types are overrepresented. In contrast, our
architecture enables a balanced and diverse distri-
bution across content types. Figure 4 shows that
our approach achieves a relatively even distribu-
tion across multiple content types (e.g. ‘Templates’,
‘Images’, ‘Videos’, ‘Backgrounds’), allowing the
model to learn from a variety of content requests
without over-fitting to any single category. This
balanced distribution ensures that the model is ex-
posed to a realistic sampling of potential queries,
improving its generalization ability for content-
specific API calls. In contrast, traditional synthetic
data generation methods (Figure 4) tend to be heav-
ily skewed, with content types like ‘Image’ domi-
nating the dataset, while others such as ‘Audio’ and
‘Template’ are underrepresented. This can limit
a model’s capability to handle less frequent but
important content types, resulting in suboptimal
performance in real-world applications.

4.3 Positional Diversity of Keywords
One of the key improvements in our synthetic data
generation approach is the reduction of keyword
position bias, specifically for ‘Content Type’ key-
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User Query Function Content Type Optimized Subprompt

Find me a birthday template with balloons and
confetti

Search Template birthday balloons confetti

Create an elegant wedding invitation with gold
floral borders for a December ceremony

Generate Template elegant wedding invitation gold flo-
ral borders December ceremony

Show me tropical beach backgrounds Search Background tropical beach background

Generate a podcast cover with neon colors and
retro style

Generate Design Asset podcast cover neon colors retro style

Find business presentation templates with data
charts

Search Template business presentation data charts

Table 2: Representative Examples from Golden Dataset

Model and Dataset variant Function Call ContentType Subprompt
F1-Score Accuracy (CTA) Similarity (SS)

Pre Fine-tuned Base Gorilla 0.646 0.239 0.824
Fine-tuned Gorilla: Single Prompt dataset 0.788 0.574 0.898
Fine-tuned Gorilla: Heuristic dataset 0.801 0.676 0.919
Fine-tuned Gorilla: Synthetic dataset + Router 0.844 0.65 0.867
Fine-tuned Gorilla: Synthetic + Heuristic dataset + Router 0.875 0.737 0.915
Prompt Tuned Gorilla: Synthetic + Heuristic dataset + Router 0.881 0.756 0.918

Table 3: Performance summary of the fine-tuned Gorilla model trained on different datasets. The ContentType
Accuracy and Subprompt Similarity are referenced as CTA and SS respectively

Figure 4: Comparison of Content Type distribution

words within user queries. Traditional synthetic
datasets often position these keywords (e.g. ‘Im-
age’, ‘Video’, ‘Template’, ‘Audio’) consistently at
the beginning or end of queries. This lack of po-
sitional diversity leads to models that are prone to
over-fitting, as they learn to expect keywords in
fixed positions, which limits their generalization
capabilities in real-world scenarios.

Our router-based synthetic data generation
framework creates a more even distribution of con-
tent type keywords (Figure 5) across positions in
the query, which exposes the model to a wider
range of query structures, helping it generalize and
reducing over-fitting.

Figure 5: Comparison of normalized keyword positions

4.4 Query Length Diversity

To ensure our dataset accurately reflects real-world
query variations, we designed distinct length distri-
butions for “Search” and “Generate” queries. We
observed that users tend to use the “Search” API to
look for generic content and then select a result to
start their design with. In contrast, they tend to use
the “Generate” API to create specific content which
may not exist in the content library. Consequently,
“Search” queries are usually shorter than “Generate”
queries. By accommodating a spectrum of query
lengths, our approach improves the model’s ability
to handle both concise and complex user requests.
For “Search” based queries, we upper-bound the
length to 10 words. This allows the model to focus
on short, targeted requests, enhancing retrieval per-
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formance. In contrast, “Generate” based queries
allow a broader range of lengths, with an upper
limit set to 40 words (Figure 6). By expanding the
length allowance for “Generate” queries, the model
learns to handle more descriptive inputs, improving
its ability to create content that aligns with nuanced
user specifications.

Figure 6: Comparison of search and generate query
length

4.5 Performance Metrics and Evaluation
4.5.1 Golden Dataset Details
To evaluate model performance, we created a man-
ually curated golden dataset consisting of 460 real-
world user queries with high-quality labels. This
dataset provides a balanced representation across
query types and intents, with 237 Search queries
and 223 Generate queries. The dataset exhibits nat-
ural language variation with query lengths ranging
from brief phrases to detailed specifications (me-
dian length = 8 words, mean = 10.9 words, maxi-
mum = 38 words). This diverse distribution ensures
comprehensive evaluation across all supported con-
tent types, with particular emphasis on commonly
requested media like templates and images while
maintaining representation of specialized content
types.

Each query in the dataset is annotated with func-
tion classification (Search/Generate), content type
label and optimized sub-prompt.The dataset in-
cludes queries ranging from simple search requests
to complex generation specifications, as illustrated
in Table 2. This variation in query complexity and
specificity allows us to assess model performance
across different difficulty levels and use cases. The
content type distribution in golden dataset is in
Table 5. This comprehensive labeling enables eval-
uation across multiple dimensions of model perfor-
mance, from high-level task classification to the
nuanced understanding required for subprompt op-
timization. The golden dataset served as our pri-
mary benchmark for comparing different model

variants and synthetic data generation approaches,
providing consistent and reliable metrics for Func-
tion Call F1 score, Content Type Accuracy (CTA),
and Subprompt Similarity (SS) as reported in Ta-
bles 3 and 4.

4.5.2 Model Performance Metrics
We began with the baseline Gorilla openfunctions
v2 model (Patil et al., 2023) fine-tuned for API
calls, which yielded initial F1-Score of 0.646, Con-
tent Type Accuracy (CTA) of 0.239, and Sub-
prompt Similarity (SS) of 0.824 (Table 3). These
metrics highlighted areas for improvement to meet
our query mapping requirements. Testing a single-
prompt response approach resulted in F1-Score of
0.788, CTA of 0.57, and SS of 0.898, indicating
modest gains but underscoring the need for addi-
tional fine-tuning strategies.

To enhance performance further, we fine-tuned
the model on a heuristic dataset from our storage in-
dex, which included captions, template phrases (e.g.
"birthday template" for birthday-related queries),
and keywords based on query analysis. As a result,
F1 rose to 0.801, CTA to 0.676, and SS to 0.919.
Next, we implemented the multi-prompt router ap-
proach, generating synthetic data using domain-
specific metadata from our KG. Fine-tuning on
this synthetic dataset alone achieved F1 of 0.844,
CTA of 0.65, and SS of 0.867, showing the effec-
tiveness of our router-based approach in capturing
nuanced query patterns and context. Combining
the synthetic and heuristic datasets yielded further
improvements, with F1 reaching 0.875, CTA at
0.737, and SS at 0.915, demonstrating the bene-
fits of blending structured metadata with generated
queries. Finally, we applied prompt-tuned fine-
tuning to the combined dataset, achieving peak re-
sults: F1 of 0.881, CTA of 0.756, and SS of 0.918.
This iterative process validated the model’s capac-
ity to handle complex queries. To assess whether
the observed gains in Function Calling Accuracy
between the Single Prompt Fine-Tuned Gorilla
model and the Prompt Tuned Gorilla model (Syn-
thetic + Heuristic) dataset using the router were
statistically significant, we conducted McNemar’s
test. The p-value of 2.529 e-05 demonstrates a
highly significant difference. For Subprompt Simi-
larity (SS) metric, a paired t-test yielded a p-value
of 0.064, suggesting a trend toward significance.

In addition to training on Gorilla, we com-
pared the performance of Small Language Mod-
els (SLMs) before and after being trained
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Model Function Call ContentType Subprompt
F1-Score Accuracy (CTA) Similarity (SS)

Vanilla Gemma2-2B-Instruction-Tuned 0.626 0.337 0.882
Fine-tuned Gemma2-2B-Instruction-Tuned 0.876 0.552 0.91

Vanilla Qwen2.5-1.5B-Instruct 0.687 0.274 0.796
Fine-tuned Qwen2.5-1.5B-Instruct 0.863 0.554 0.91

Vanilla Qwen2.5-0.5B-Instruct 0.187 0 0.02
Fine-tuned Qwen2.5-0.5B-Instruct 0.876 0.554 0.91

Vanilla Phi-3.5-mini-Instruct 0.626 0.406 0.915
Fine-tuned Phi-3.5-mini-Instruct 0.889 0.576 0.91

Vanilla Llama-3.2-1B-Instruct 0.432 0 0.182
Fine-tuned Llama-3.2-1B-Instruct 0.865 0.57 0.91

Table 4: Performance summary of the additional SLM models before/after training on the router-based synthetic
dataset. The ContentType Accuracy and Sub-prompt Similarity are referenced as CTA and SS respectively

Content Type Count Percentage

Templates 103 22.4%
Photos/Images 97 21.1%
Audio 20 4.3%
Video 19 4.1%
Background 20 4.3%
Design Assets 17 3.7%
Text 20 4.3%
Any (type-agnostic) 164 35.7%

Table 5: Content Type Distribution in Golden Dataset

on our router-based synthetic dataset. The
SLMs used for comparison were Gemma2-
2B-it (Instruction-Tuned) model (GemmaTeam,
2024), Qwen2.5-1.5B-instruct and Qwen2.5-0.5B-
instruct models (QwenTeam, 2024), Phi3.5-mini-
instruct model (Microsoft, 2024) and Llama-3.2-
1B-Instruct model (LlamaTeam, 2024). We found
a significant improvement in the Function Call F1
score, CTA and SS scores across all the SLMs
after fine-tuning them with the Router-based syn-
thetic dataset. Additional details on performance
improvement are provided in Table 4.

5 Conclusion

LLMs are fueling efforts to develop systems that
accurately interpret user queries and map them to
function calls. However, the scarcity of real-world
user data and privacy constraints on training with
it necessitate synthetic data generation. Existing
synthetic data generation approaches lack the di-
versity and complexity needed to mirror real-world
interactions, limiting model performance. We in-
troduced a novel architecture for generating high-
quality synthetic training data. Our approach inte-
grates content metadata and domain-specific KGs

with text-to-text and vision-to-text models, produc-
ing more varied and representative data. Through
iterative development, we arrived at a router-based
multi-modal architecture that enhances data diver-
sity and improves model training outcomes. Our
model demonstrates gains in function mapping ac-
curacy, although further improvement is possible
in content-type classification.

6 Future Work

This research opens several promising avenues for
future investigation. One primary direction is to ex-
tend the system’s linguistic capabilities to support
multilingual query processing, thereby improving
global accessibility. Although our architecture has
proven effective in digital content creation, its un-
derlying principles could be generalized to other
domains requiring sophisticated function-calling
mechanisms. Leveraging more advanced language
models—such as Llama-405B (LlamaTeam, 2024)
or DeepSeek (DeepSeek-AI et al., 2024)—for syn-
thetic data generation may yield higher-quality
training examples, while expanding our golden
dataset could enable more rigorous model eval-
uation. Additionally, exploring the architecture’s
extensibility to support additional specialized func-
tions and API calls would both broaden the sys-
tem’s applications and provide insights into the
scalability of our approach across different func-
tional domains.
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A Model Prompts

A.1 Llama-3.1-70B-Instruct Model Prompts

Below is an example of System Prompt used for
generating Search data using Llama’s 70B model:

Role: System
Content: You are an AI Assistant responsible for gen-
erating a single, concise user search query based on
provided metadata. The search queries are short and
crisp and less than 10 words. You will be working
with different assets for example (templates, images,
videos, design assets, backgrounds, shapes). Help
me write a search query for an Instagram story tem-
plate for title:{title} focusing on intents:{intents}. The
query should directly reflect the relevant title, intents,
actions, or assets, without any additional explanations
or unnecessary text. Do not include any introductory
phrases or conclusions, just the query itself.
...
Role: System
Content: You are an AI Assistant responsible for gen-
erating a single, concise user search query based on
provided metadata. The search queries are short and
crisp and less than 10 words. You will be working
with different assets for example (templates, images,
videos, design assets, backgrounds, shapes). Help me
write a search query for the vibrant background for
title:{title} focusing on actions:{actions}. Please in-
clude the word background in the query.The query
should directly reflect the relevant title, intents, ac-
tions, or assets, without any additional explanations
or unnecessary text. Do not include any introductory
phrases or conclusions, just the query itself.
....

Here are examples of some of the prompts used
by Llama 70B model to synthesize Generate func-
tion data:

Role: System
Content: You are an AI that generates creative and en-
gaging user prompts based on provided metadata. The
prompt should be less than 40 words. Design a Face-
book post prompt for title:{title} that encourages users
to actions:{actions}. Use assets:{assets} to support
intents:{intents}.The prompt should feel like some-
thing a human would write and should not include any
hashtags or links or unnecessary punctuations.
....
Role: System
Content: You are an AI that generates creative and
engaging user prompts based on provided metadata.
The prompt should be less than 40 words. Make some
prompt for title:{title} with intents:{intents}. Use as-
sets:{assets}, or maybe not?
....
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A.2 InternVL 40B Model Prompt

Role: System
Content: Based on this image, generate 2 single-
sentence prompts that could have created this template.
Each prompt should specify the type of material, the
purpose it is for, and briefly mention key elements
to include. Mention specific business name only if
it is present in the image. Translate any non English
sentences/words to English.

B Model fine-tuning details

For fine-tuning all models, we employed Quan-
tized Low-Rank Adaptation (QLoRA) with consis-
tent hyperparameters across our experiments. The
training process utilized a learning rate of 1e−4

with the AdamW optimizer and cosine learning
rate scheduler. We implemented gradient accumu-
lation with 2 steps and a batch size of 4, process-
ing sequences up to 4,096 tokens in length. The
models were trained for 3 epochs with a warmup
ratio of 0.03, and we applied gradient clipping
with a maximum norm of 0.3 to ensure training
stability.The LoRA configuration maintained con-
sistency across all models, employing a rank of 16
with an alpha value of 32 and a dropout rate of 0.05.
The adaptation targeted key transformation matri-
ces including query, key, value, output, gate, up,
and down projections. To optimize memory usage
while preserving model quality, we implemented
4-bit quantization (NF4) with double quantization
enabled. The training pipeline incorporated mixed
precision (FP16) computation and gradient check-
pointing for efficient resource utilization. Model
evaluation and checkpoint saving were performed
at regular intervals of 1,000 steps, with training
metrics logged every 20 steps. For inference, we
deployed models using vllm with carefully tuned
sampling parameters. The configuration included a
maximum token length of 4,096, a temperature
of 0.3 for controlled randomness, and standard
top-k and top-p values of 50 and 1.0 respectively.
Each prompt generated a single sample to maintain
consistency in our evaluation process. All experi-
mental metrics, including training loss, validation
metrics, model checkpoints, and system resource
utilization, were tracked and logged using Weights
& Biases (Wandb) for comprehensive experiment
monitoring and reproducibility. To ensure repro-
ducibility across all experiments, we maintained a
fixed random seed of 42 throughout both training
and inference phases.

The following plots capture the comparison of

the training loss (Figure 7), system memory uti-
lization (Figure 8) and GPU utilization (Figure 9)
for the following models: Gorilla, Gemma2-2B-
it model, Qwen2.5-1.5B-Instruct, Qwen2.5-0.5B-
Instruct model and Llama3.2-1B-Instruct models.

Figure 7: Training loss comparison for: Gorilla,
Gemma, Qwen (both variants) and Llama models

Figure 8: System memory utilization comparison for:
Gorilla, Gemma, Qwen (both variants) and Llama mod-
els

Figure 9: Process GPU utilization comparison for: Go-
rilla, Gemma, Qwen (both variants) and Llama models

B.1 Finetuning Data Structuring and Prompt
Preparation

Before feeding data to the model, we pre-
structure the input using Hugging Face’s
apply_chat_template function. This function
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organizes the conversation into a list of messages
with defined roles (e.g. system and user), ensur-
ing that the prompt adheres to the format expected
by the model. In our implementation, the prompt is
prepared in two parts: one describing the task and
another providing the actual query and function
descriptions.

The prompt template is defined as follows:

Role: System
Content: You are an expert in composing func-
tions. You are given a set of possible functions
and a question. Based on the question, you will
need to make one function/tool call to achieve the
purpose. You should only return the function call
in your response. You MUST put it in the for-
mat of func_name(params_name1=params_value1,
params_name2=params_value2...). You SHOULD
NOT include any other text in the response.
Role: User
Content:«function»function_descriptions«question»query

The following Python code snippet demonstrates
how the prompt is generated and tokenized before
being passed to the model:

The apply_chat_template function performs
several key tasks:

1. Input Organization: It takes a list of mes-
sages, each tagged with a role (either system
or user), and concatenates them into a single
input string that respects the intended conver-
sational format.

2. Tokenization: The function tokenizes the
structured messages, converting them into a
format suitable for the model.

3. Generation Prompt Addition: It appends
any necessary generation prompts that guide
the model’s response.

4. Tensor Conversion: Finally, the tok-
enized data is converted into tensors (using
return_tensors="pt" for PyTorch), ensur-
ing compatibility with the model’s expected
input format.

This preprocessing step is critical for maintain-
ing the structure and consistency of the input data,
thereby facilitating effective fine-tuning and ensur-
ing that the model generates outputs that align with
the desired format.
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Abstract

Multi-hop question answering (MHQA) re-
quires a model to retrieve and integrate informa-
tion from multiple passages to answer a com-
plex question. Recent systems leverage the
power of large language models and integrate
evidence retrieval with reasoning prompts (e.g.,
chain-of-thought reasoning) for the MHQA
task. However, the complexities in the ques-
tion types (bridge v.s. comparison questions)
and the reasoning types (sequential v.s. par-
allel reasonings) require more novel and fine-
grained prompting methods to enhance the per-
formance of MHQA under the zero-shot set-
ting. In this paper, we propose STOC-TOT, a
stochastic tree-of-thought reasoning prompting
method with constrained decoding for MHQA
and conduct a detailed comparison with other
reasoning prompts on different question types
and reasoning types. Specifically, we construct
a tree-like reasoning structure by prompting the
model to break down the original question into
smaller sub-questions to form different reason-
ing paths. In addition, we prompt the model to
provide a probability estimation for each rea-
soning path at each reasoning step. At answer
time, we conduct constrained decoding on the
model to generate more grounded answers and
reduce hallucination. Experiments comparing
STOC-TOT with on two MHQA datasets and
five large language models showed that STOC-
TOT outperforms other reasoning prompts by
a significant margin.

1 Introduction

Question answering (QA) is a fundamental task in
natural language processing (NLP) that involves
designing systems capable of understanding human
language questions and providing accurate and rel-
evant answers. With the recent advancement of
large language models (LLMs) that demonstrated
superior reasoning ability (Brown et al., 2020), re-
searchers have been focusing more on complex
QA tasks, such as multi-hop question answering

The actor who received 
the 2016 Academy 
Honorary Award co-
starred which movie 
with Chris Tucker?

2016 Academy 
Honorary Award

Evidence: the 2016 
Academy Honorary Award 
goes to Jackie Chan for 
his contribution in...
Answer: Jackie Chan

Chris Tucker...
Movie...
Jackie Chan...

Evidence: Rush Hour is a 
1998 American comedy 
film... Co-starred by Jackie 
Chan and Chris Tucker.
Answer: Rush Hour

Rush Hour
Answer

Figure 1: An example of the MHQA question. This
question has two hops that require the model to reason
about before answering the final question.

(MHQA). MHQA is more challenging as it requires
models to understand complicated questions, per-
form multiple reasoning steps, and gather evidence
across documents. Figure 1 shows an example of a
two-hop MHQA question. To answer that question
in Figure 1, the QA model needs to first figure out
who is the actor that received the 2016 Academy
Honorary Award. Then based on the answer to the
previous question, the QA model needs to further
answer a second question about which movie the
actor co-starred with Chris Tucker.

State-of-the-art methods for MHQA are fully-
supervised methods that often follow a retrieve-
and-read framework, including a passage retrieving
module that gathers relative evidence from docu-
ments and a reading comprehension module to rea-
son about the evidence (Zhu et al., 2021; Li et al.,
2022). Other methods include beam-search (Zhang
et al., 2023) and label-smoothing (Yin et al., 2023).
However, these methods often require extensive
pre-training or fine-tuning and do not generalize
well to other datasets.
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Large language models (LLMs), on the other
hand, show remarkable reasoning ability and rich
knowledge of general-domain questions. Many
LLMs can answer simple and straightforward ques-
tions that do not require complex reasoning without
any supervision involved but often fail to deal with
complex questions requiring multiple reasoning
steps. To tackle the problem, researchers have de-
veloped many prompting techniques to improve
LLM’s reasoning ability, such as chain-of-thought
(CoT) (Wei et al., 2022), self-consistency CoT (Sc-
CoT) (Wang et al., 2023), and tree-of-thought (ToT)
prompting (Yao et al., 2023a).

CoT has been shown effective across tasks re-
quiring extensive, step-by-step reasoning, such as
math calculation and reading comprehension. How-
ever, there could be various possible reasoning
paths for many complex multi-hop questions, and
CoT models cannot "turn back" when they have
made a mistake along their reasoning paths. Sc-
CoT further improves on CoT by proposing differ-
ent chains of thought, thus expanding the reasoning
space. However, there is no local reasoning expan-
sion within each chain, and the "majority voting"
strategy often fails in open-domain tasks where the
output space is unlimited. ToT, designed to main-
tain different reasoning paths along its reasoning
process, is more suitable for dealing with complex
question types. However, the intermediate reason-
ing steps in NLP generation tasks are much less
constrained and require more than a simple rule-
based evaluation. The complexities in the question
types (bridge v.s. comparison questions in Table
1), as well as the reasoning types (sequential v.s.
parallel reasonings in Table 2), require more novel
and fine-grained prompting methods to enhance the
reasoning ability of LLMs.

To tackle the challenges and design a more reli-
able reasoning method for open-domain NLP tasks,
we propose STOC-TOT, a stochastic ToT-based
framework that instructs the model to generate dif-
ferent reasoning paths from the same question and
assign probability scores to reasoning paths to ef-
fectively avoid reasoning dead-ends. To the best of
our knowledge, our work is the first to adapt the
tree-of-thought reasoning prompting to natural lan-
guage tasks that require complex reasoning, such
as MHQA. We provide an example overview of
our framework in Figure 2. Specifically, we con-
struct a tree-like reasoning structure by prompting
the model to break down the original question into

smaller sub-questions to form different reasoning
paths. We evaluate the validity of each reason-
ing path on three levels of aspects and arrive at a
model-given probability score. At answer time, we
innovatively propose to use constrained decoding
in the answering process to reduce hallucination by
forcing the model to generate grounded answers
from evidence and letting models give concise and
exact answers. Ultimately, we arrive at the best
answer by choosing the path with the highest ag-
gregated probability score. Experiments on two
benchmarking MHQA datasets demonstrate that
STOC-TOT significantly improves the reasoning
ability of LLMs in complex reasoning scenarios,
especially with GPT-4, improving Exact Match ac-
curacy by 7%, and F1 score by 7.8 points on the
HotpotQA dataset over the original tree-of-thought
prompting. Our contributions are as follows:

2 Related Work

Multi-Hop Question Answering Multi-hop
Question Answering (MHQA) is a challenging
task requiring models to reason over different ev-
idence across documents to answer a complex
multi-hop question. Many high-quality MHQA
datasets have been developed, including HotpotQA
(Yang et al., 2018), WikiHop (Welbl et al., 2018),
MuSiQue (Trivedi et al., 2022), and others. Among
these, HotpotQA is the task’s most representative
and widely used dataset. Previous state-of-the-art
MHQA models often follow a two-stage pipeline: a
retriever that extracts evidence from the documents,
and a reader that reasons about the evidence to ar-
rive at an answer (Zhu et al., 2021; Li et al., 2022).
Other methods include beam-search (Zhang et al.,
2023) and label-smoothing (Yin et al., 2023). Some
LLM-based frameworks (Yao et al., 2023b; Gou
et al., 2024; Cao et al., 2023) were also evaluated
on the task of MHQA, but their performance fell
short compared with supervised methods, and re-
lied on retrievers instead of LLM’s own reasoning
ability to sort out the related evidence.

Reasoning Prompting of LLMs Various prompt
engineering methods have been developed (Wei
et al., 2022; Wang et al., 2023; Yao et al., 2023a;
Besta et al., 2024; Sel et al., 2024; Chen et al.,
2023), aiming to improve large language models’
reasoning ability across various tasks and domains.
Chain-of-thought (CoT) prompting (Wei et al.,
2022) prompts the large language models (LLMs)
to divide their reasoning process into smaller
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Evidence:
1. Ice Cube is an 

American singer and 
actor who...

2. Jackie Chan is an 
actor... who received 
the 2016 Academy 
Honorary Award...

3. ...

Vocabulary Bank

Actor, Academy, 
Honorary, Award,  Ice,  
Cube, Jackie, Chan, ...

Constrained Decoding from 
Vocabulary Bank

Paraphrase 
Detection

Evidence Retrieval 
and Ranking

Prompt: Is the sub-
question asking the 
same thing as the 
original question?

Evidence Selected: 
3, 6 and 17
Answer: Jackie Chan

Original Question: The actor who 
received the 2016 Academy 
Honorary Award co-starred which 
movie with Chris Tucker?

Question Breakdown 
and Generation

Thought: I could first...,  or...
Sub-question 1: Which 
actor received the 2016 
Academy Honorary Award?
Sub-question 2: Which star 
co-starred a movie with 
Chris Tucker?

Validity Evaluation 
(Stochastic Tree-Building)

Evidence Retrieval 
and Ranking

Evidence Selected: 
1, 3 and 5
Answer: Ice Cube, 
Charlie Sheen, 
Jackie Chan

Paraphrase 
Detection

Prompt: Is the sub-
question asking the 
same thing as the 
original question?

Prompt: What is your 
evaluation on the reasoning 
paths? Your answer should 
be based on three metrics: 
question-level, reasoning-
level, and answer-level.
Answer: 
Left Probability: 70%
Right Probability: 30%

Evidence ListVocabulary Bank

Constrained Decoding from 
Vocabulary Bank

Original 
Question

Answer: 
Jackie Chan

Prob: 70%

3 Answers
Prob: 30%

Answer: 
Rush Hour
Prob: 100%

Agg. Prob: 70%

Answer: Friday
Prob: 30%

Agg. Prob: 9%

Answer: 
Money Talks

Prob: 30%
Agg. Prob: 12%

Answer: 
Rush Hour
Prob: 40%

Agg. Prob: 12%

1

2 3

4 5 6 7

Figure 2: Overview of our framework, with the example in Figure 1. The top-right Corner shows the overall
structure of the constructed tree, with each node’s label on the left. Darker green in the nodes means a higher
evaluated probability of the reasoning path. The original Question is colored in blue. We chose the first round of
our tree-building process as an example in the purple block.

steps when solving a question, forming a chain
of thoughts. Chain-of-thought self-consistency
prompting (Wang et al., 2023) improves on the CoT
method by proposing different reasoning chains
and ensembles on the final result. Tree-of-thought
(ToT) prompting method (Yao et al., 2023a) ac-
tively maintains a tree of thoughts, where each
thought is a coherent language sequence that serves
as an intermediate step toward problem-solving.
Graph-of-thought (Besta et al., 2024) further im-
proves ToT by constructing a Directed Graph in-
stead of a tree. LLMs can loop over a thought to
refine it and aggregate thoughts or chains.

Constrained Decoding Constrained decoding is
the technique that asks the models to generate out-
puts following a given set of rules. The most
common way of conducting constrained generation
uses beam search (Och and Ney, 2004) in decoding
time. Before the LLM era, works on constrained
decoding focused on task-specific sequence-to-
sequence models that span across many fields, such
as machine translation (Hokamp and Liu, 2017;
Post and Vilar, 2018), named entity recognition
(Lester et al., 2020), and dialogue generation (Bal-
akrishnan et al., 2019). Recently, Microsoft intro-
duced Guidance 1, which allows users of various

1https://github.com/guidance-ai/guidance

large language models to control their outputs given
a human-defined vocabulary or rules.

3 Method

3.1 Task Formation

Given a multi-hop question Q and background cor-
pus of evidence P , the goal of our framework is
to output the answer A to question Q, drawing its
reasoning with the support of multiple evidence
passages p1, p2, ... retrieved from corpus P .

3.2 STOC-TOT Framework

For each of the questions Q, multiple reasoning
lines and, thus, multiple ways of breaking down the
question could exist. However, not every reasoning
line would lead us to the right answer, and they
take us to dead ends. To avoid such reasoning
dead-ends, we build a stochastic reasoning tree
to represent the possible reasoning lines and the
probability of each reasoning line taking us to the
right answer. We achieve this by proposing a self-
interactive framework that automatically builds the
reasoning tree given a multi-hop question. Figure
2 shows our framework with an example question.

In our reasoning process, we first prompt the
model to propose different possible sub-questions
to solve at each reasoning step. Each sub-question
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corresponds to one possible reasoning path and is
presented as a node in the tree. We then ask the
model to answer the generated sub-questions. To
prevent hallucination and make the model more fo-
cused on the given question and evidence, we build
a vocabulary bank using words from the evidence
list and the original question and instruct the model
to do constrained decoding from the vocabulary
bank when generating its answers. After answering
every sub-question generated from the same ques-
tion in the previous reasoning level, we prompt
the model to evaluate each reasoning path and es-
timate how likely the reasoning path would lead
us to the right answer. This probability estimation
would be assigned to the corresponding node in the
tree. After the reasoning process finishes, each rea-
soning path would have an aggregated probability
calculated from nodes along the path.

Formally, given a question Q, we instruct the
model to generate sub-questions q1, q2, ..., qn, and
build a tree structure with the original question Q
as the root node and each question qi as subsequent
nodes. The tree would expand as each sub-question
qi has its sub-question qj , and the reasoning paths
are thus represented as branches in the tree struc-
ture. From the original question Q and the evi-
dence list E = e1, e2, ..., en, we build a vocabulary
bank V = [w1, w2, ..., wn], wi ∈ Q,wj ∈ E. We
then prompt the model to generate their answer
a1, a2, ..., an using only wi ∈ V . We describe the
details of our framework below.

Example-Based Sub-Question Generation Our
framework starts with the sub-question gener-
ation module, which generates sub-questions
q1, q2, ..., qn using the question Qg from the pre-
vious reasoning level. The sub-questions are gen-
erated based on both the model’s reasoning abil-
ity and the model’s semantic understanding of the
question Qg. An example is given in Figure 2,
where the sub-questions from nodes 2 and 3 were
generated using the question from node 1. How-
ever, we cannot guarantee that each sub-question
asked is a good sub-question, and sometimes, the
generated sub-question merely repeats the previous
question. We introduce the paraphrase detection
module and pass on the generated sub-questions to
reduce redundancy and improve question quality.

Paraphrase Detection Answering repetitive
questions often leads to low-quality answers and
time-consuming steps. Following the sub-question

generation module, we introduce the paraphrase de-
tection module to reduce redundancy and improve
question quality. In this module, we prompt the
model and ask it to distinguish informative ques-
tions from questions that merely repeat what is
already stated at the previous reasoning level. If a
sub-question is a paraphrase, we instruct the model
to stop generating sub-questions from the current
question. In other words, we prune the low-quality
sub-branch of the tree that could otherwise be gen-
erated. By pruning these branches, we effectively
improve the efficiency of our framework.

Evidence Retrieval and Answering We then
move on to answering the question after our para-
phrase detection module. Our evidence retrieval
and answering module focuses on retrieving ev-
idence and generating answers to the given sub-
question. We also pass in the full evidence list pro-
vided and prompt the model to give out an answer
to the given sub-question. The evidence retrieval
and answering module selects relative evidence
from an evidence pool for each sub-question and
uses words only from the vocabulary bank to gen-
erate its final answer. We will discuss details of
constrained decoding in Section 3.3. The generated
sub-answer and the answered sub-question are then
passed on to the sub-question generation module
at the next level to continue the reasoning process.

Validity Estimation Not each sub-question
asked is a good sub-question, and not each rea-
soning path is reasonable. After every sub-question
qi generated from the same question Qg has been
answered, we prompt the model to provide a proba-
bility estimation pi for each (qi, ai) pair. This prob-
ability is the model’s evaluation of going down the
correct reasoning path. Specifically, this probabil-
ity is obtained by prompting the model to consider
the following three aspects:

• Question Level: Is the question semantically
clear and answerable?

• Reasoning Level: Is the reasoning line coherent
when considering previous levels?

• Answer Level: Does the evidence fully support
the answer to the question?

As shown in Figure 2, we conduct validity estima-
tion for sub-questions and sub-answers in nodes 2
and 3 since the sub-questions were generated from
the same question in node 1.
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At the leaf node of our tree, we would have a
final question qf . along with a final answer A to
the original question Q, and also an aggregated
probability pfinal =

∏
i pi, with each pi being the

probability of the nodes along the reasoning path.
We assign pfinal to the leaf node, representing the
aggregated probability of answer A being the cor-
rect answer to Q.

3.3 Constrained Decoding

One challenge for generative LLMs in the task of
question answering is hallucination. LLMs often
fail to pay attention to the golden evidence and
hallucinate their own reference even when large
amounts of evidence exist. To alleviate the problem
of LLM halluscination during evidence selection
and answer generation, we innovatively propose to
use constrained decoding in the answering process
to reduce hallucination by forcing the model to
generate grounded answers from evidence and let
models give concise and exact answers. As shown
in Figure 2, we conduct constrained decoding by
asking the model to generate words from the vo-
cabulary bank, consisting of words taken only from
the original question and the evidence list provided.
More formally, we construct a vocabulary bank
V = w1, w2, ..., wi from all words in the provided
evidence sentences. We conduct a simple filtering
by removing common English stop words. We then
instruct the model’s evidence retrieval and answer-
ing module to construct its answers using words
only from the given vocabulary V .

Code-based Constrained Decoding For open-
source LLMs (e.g., Llama), we build our logit pro-
cessor at the decoding time. Specifically, for every
word wj /∈ V , we manually set the score to nega-
tive infinity to prevent the model from generating
them. Thus, every answer generated will only use
words from the evidence list.

Prompt-based Constrained Decoding For
closed-source LLMs (e.g., GPT models), since we
do not have access to their decoding function, we
had to instruct the GPT models using prompts to
do constrained decoding. We provide our prompt
template used in Appendix A.

4 Experimental Setup

Dataset We compare STOC-TOT with baseline
methods on the HotpotQA dataset (Yang et al.,
2018) and the MuSiQue dataset (Trivedi et al.,

2022), both of which are widely used MHQA
datasets across state-of-the-art MHQA baselines.
The experiments are conducted under the distrac-
tor setting, where we provide the model with an
evidence pool containing both golden and irrele-
vant evidence. The model needs to find the golden
evidence to answer the question correctly. We ran-
domly selected 200 examples from each dataset as
our evaluation set.

Baselines We included three baselines:

• Vanilla Prompting with no examples provided.
We only provide the model with questions and
evidence and instruct it to output the answer.

• Chain-of-Thought (CoT) prompting (Wei et al.,
2022) with a standard input-output (IO) prompt.
We design the prompt with one in-context exam-
ple, which presents the whole reasoning chain,
including all intermediate steps.

• Tree-of-Thought prompting (Yao et al., 2023a)
with slight modifications to adapt to the MHQA
task. None of their current decision strategies
fit into the MHQA scope, where model needs to
make decisions based on self-confidence, instead
of pre-defined rules and metrics. Thus, we re-
vised their decision strategy and used majority
voting on the reasoning lines to decide the final
answer.

We recognize that there are LLM-based retrieval
augmented generation frameworks (Yao et al.,
2023b; Gou et al., 2024; Cao et al., 2023) that
were also evaluated on HotpotQA. However, we
excluded them from our baselines as they used out-
side knowledge bases, which are under a different
testing scenario.

4.1 Implementation
We experiment with the baselines and our model
utilizing five LLMs: GPT-3.5-turbo (Brown et al.,
2020) and GPT-4(OpenAI, 2023) from OpenAI,
LLaMa 2-13B (Touvron et al., 2023), LLaMa 2-
70B, and LLaMa 3-8B from MetaAI. Due to the
lengthy running time, LLaMa 2-70B was not tested
on the MusiQue dataset. For all models, We set
the temperature to 0.5, topk to 1.0, and maximum
number of iterations to 5.

4.2 Evaluation Metric
Following the metrics in (Yang et al., 2018), we use
Exact Match and F1 score as two evaluation metric.
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Table 1: Performance comparison of STOC-TOT and baseline methods on the HotpotQA dataset.

Prompting Method
GPT3.5 GPT4 LLaMa2(13B) LLaMa2(70B) LLaMa3(8B)

EM F1 EM F1 EM F1 EM F1 EM F1
Zero-Shot Vanilla 34.0 45.0 51.0 65.0 25.5 36.5 30.5 41.0 27.5 40.7
Chain-of-Thought 35.5 47.3 52.0 66.8 30.5 42.5 33.5 45.0 32.5 44.6
Tree-of-Thought 36.5 49.5 55.0 68.5 29.5 41.3 35.5 47.3 30.5 37.5

STOC-TOT 45.5 56.2 62.0 76.3 31.0 43.0 43.0 56.3 33.0 44.5
w/o constrained decoding 40.5 53.5 59.5 73.0 31.0 43.0 40.5 53.5 32.0 44.3

Table 2: Performance comparison of STOC-TOT and baseline methods on the MusiQue dataset.

Prompting Method
GPT3.5 GPT4 LLaMa2(13B) LLaMa3(8B)

EM F1 EM F1 EM F1 EM F1
Zero-Shot Vanilla 17.0 28.8 31.5 41.2 9.5 16.0 12.0 19.2
Chain-of-Thought 18.0 29.7 32.5 44.2 11.0 17.5 12.5 21.6
Tree-of-Thought 20.5 32.0 35.0 47.3 11.0 17.2 12.0 20.6

STOC-TOT 26.5 38.0 42.0 55.3 11.5 18.0 14.5 22.0
w/o constrained decoding 24.0 35.5 38.5 51.0 11.5 18.0 14.0 22.0

For an answer a given by our framework, the Exact
Match score equals 1 if the answer span matches
the golden answer exactly and 0 otherwise. The F1
metric measures the average overlap between the
prediction and ground truth answers.

5 Results

5.1 Overall Results

We compare STOC-TOT with LLM baselines on
the HotpotQA dataset and the MusiQue dataset and
present our results in Tables 1 and 2. The backbone
LLMs in our experiments include GPT3.5, GPT4,
Llama2-13B, Llama2-70B, and Llama3-8B. Due
to time constraints, we only tested with Llama2-
70B on the HotpotQA dataset. On the HotpotQA
dataset, STOC-TOT attains an on-average increase
in performance of over 6 % compared with vanilla
prompting on GPT models, and the improvement
goes up to 11% when we further implement STOC-
TOT with constrained decoding. On the more chal-
lenging MusiQue dataset, we still see an increase
in performance of STOC-TOT compared with the
other baselines, most notably on GPT4, where we
observe an 11.5% EM improvement (from 31.50 to
42.0).

Comparison with Tree-of-Thought STOC-TOT
surpasses the original Tree-of-Thought prompting
by 7% with the GPT4 model on both tested datasets.
For LLMs with inferior reasoning ability, such as
LLaMa2-8B, we still observe a performance im-
provement, even on the harder MusiQue dataset.

These results suggest that STOC-TOT is more ef-
fective at forming and selecting reliable reasoning
paths under complex reasoning scenarios.

Constrained Decoding Even though the LLM’s
reasoning ability can be improved by reasoning
prompting, such techniques have little help in pre-
venting hallucination. However, STOC-TOT im-
plements constrained decoding, which makes the
model much more grounded to evidence when an-
swering the question, effectively addressing hallu-
cination issues and improving the overall perfor-
mance of our framework.

5.2 Ablation Study
Sensitivity to Demonstration Question Type
We study the effect on STOC-TOT performance
when different types of demonstration questions
are provided in the prompt template. The Hot-
PotQA dataset specified two types of questions.
The "Bridge" question contains a "bridge entity”
that connects the question and the final answer. In
contrast, the "Comparison" question requires the
model to compare two entities of the same type. Of
the 200 questions in our evaluation set, 34 are com-
parison questions, and 166 are bridge questions.
Examples of bridge and comparison questions are
in Table 4.

We examined STOC-TOT performance under
the two different question types, each with a differ-
ent prompt template: one containing only a com-
parison question as an example and the other con-
taining only a bridge question as an example. We
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Table 3: Performance of STOC-TOT with different prompt types on the HotpotQA dataset in terms of EM score.
“Com" represents comparison questions, and “Bri" represents bridge questions.

Model Variant GPT3.5 GPT4 LLaMa2(13B) LLaMa2(70B) LLaMa3(8B)
Prompt/Question Type Com Bri Com Bri Com Bri Com Bri Com Bri

Prompt: Comparison 58.8 41.0 76.5 57.2 38.2 31.9 58.8 41.0 44.1 33.7
Prompt: Bridge 55.9 43.4 73.5 59.0 35.3 32.5 55.9 42.2 41.2 34.9

Table 4: Question Type Examples. On the left side,
the bridging entity is highlighted in red, and the final
question is highlighted in orange. On the right side,
entities that are being compared are highlighted in blue.

Bridge Question Comparison Question
What distinction is held
by the former NBA player
who was a member of
the Charlotte Hornets dur-
ing their 1992-93 season
and was head coach for
the WNBA team Charlotte
Sting?

Were Scott Derrickson
and Ed Wood of the same
nationality?

Table 5: Reasoning Type Examples. On the left side,
the entity in red needs to be found before solving the
question in orange. On the right side, questions with
parallel reasoning contain parts (highlighted in blue)
that can be solved in arbitrary order.

Sequential Reasoning Parallel Reasoning

The football manager who
recruited David Beckham
managed Manchester
United during what time-
frame?

What distinction is held
by the former NBA player
who was a member of
the Charlotte Hornets dur-
ing their 1992-93 season
and was head coach for
the WNBA team Charlotte
Sting?

provide the content of our templates in Appendix A.
Results are shown in Table 3. We observe that the
difference in prompt templates influences the per-
formance of our framework under different ques-
tion types by a small margin. The comparison ques-
tions are generally easier to solve, and STOC-TOT
performs better on comparison questions than on
bridge questions. STOC-TOT will handle compari-
son questions better if the prompt template contains
comparison questions and vice versa.

Question and Reasoning Types We examine
STOC-TOT, Tree-of-Thought prompting, and
Chain-of-Thought prompting by comparing their
performance under different question-type settings.
Detailed results are shown in Figure 3(a). STOC-

TOT performs better at both Bridge Questions and
Sequential Questions, suggesting that STOC-TOT
can avoid reasoning dead-ends and is better at form-
ing intermediate reasoning lines.

We also conduct an in-depth analysis of the rea-
soning types in the existing MHQA datasets by
randomly selecting 100 questions from our testing
set. The questions are roughly divided into two cat-
egories: 1) tree-like parallel reasoning and 2) chain-
like sequential reasoning. Questions with parallel
reasoning contain two or more reasoning paths that
can be solved arbitrarily. Questions with sequential
reasoning follow a strict reasoning chain, and all
the sub-questions must be solved to form the cor-
rect reasoning process. All comparison questions
are parallel reasoning, but some bridge questions
contain parallel reasoning. Examples of sequential
and parallel reasoning questions are in Table 5. Out
of the selected 100 questions, 59 questions were
Sequential and 41 questions were Parallel. Results
are shown in Figure 3(b). STOC-TOT performs bet-
ter on both reasoning types, especially on questions
containing parallel reasoning. This suggests that
STOC-TOT’s stochastic way of forming the tree is
very effective when solving questions containing
multiple reasoning paths.

Performance and Hops As the number of hops
increases in a question, the reasoning line gets
more complex and varied. Figure 4 shows the
performances of different prompting techniques
on questions in the MusiQue dataset with differ-
ent numbers of hops. STOC-TOT performs best
in all categories, demonstrating our framework’s
superior ability to deal with complex reasoning sce-
narios. This ablation study was conducted only on
GPT4, as other models performed poorly on 3-hop
and 4-hop scenarios, regardless of the reasoning
prompting technique used.

Error Analysis We conduct a detailed analysis
of the errors made by our framework on GPT3 and
GPT4, and present our results in Figure 5. We cate-
gorize the errors into four types: (1) No Answer:
our framework did not come up with an answer
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for the question due to not finishing the reasoning
process; (2) Intermediate Answer: our framework
came up with an answer for one of the intermediate
hops instead of for the final question; (3) Wrong
Answer: our framework came up with an answer
that is neither the final answer nor one of the inter-
mediate answers; (4) Semantically Correct: our
framework came up with the right answer, but did
not have an exact match with the final answer. Ap-
pendix B shows examples of each error category.
Large amounts of error cases were correct answers
with extra wording or hallucination errors, signal-

ing potential improvements over our constrained
decoding scheme. Reasoning process errors, in-
cluding no answer and intermediate answer, make
up only 25% of the total error cases. This result
shows that our framework is capable of building a
robust reasoning process for complex questions.

5.3 Time Analysis
We provide a brief analysis of running time for
all methods reported in Table 1. The experiment
was done on LLaMa2-13B model for 50 datapoints.
For ToT and STOC-TOT, the running time signifi-
cantly increases compared with simple prompting
methods, increasing by 4.4 times and 5.2 times,
respectively.

6 Conclusion

This paper proposes STOC-TOT, a stochastic
tree-of-thought reasoning framework with con-
strained generation for multi-hop question answer-
ing. STOC-TOT is specialized in dealing with
complex reasoning scenarios in natural language
tasks. Experiments on two benchmark datasets
show that our framework outperforms previous rea-
soning prompting techniques with multiple Large
Language Models. Detailed analysis shows that our
framework is capable of building a robust reasoning
process given different types of questions. Further
research can aim to enhance the reliability of our
framework by proposing better validity evaluation
schemes and more effective methods for improving
groundedness and preventing hallucination.
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Limitations

Our framework relies on initiating multiple model
instances and requires multiple prompts per round.
The repetitive callings impose heavy time costs for
our framework, even after implementing our para-
phrase module. Another limitation comes from
how we generated sub-questions. Currently, we di-
rectly prompt the model to generate sub-questions.
A more complex standard can be used to increase
the quality of the sub-questions generated. Also,
more extensive experiments should be provided,
including experimenting on other different datasets
and case studies.
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A Prompt Templates

We provide the prompts used in the experiments
below.

Sub Question Generation Template
Break a question into high -quality sub -

questions that are easier to answer.
Here are two examples as guidelines

:
"Question: Are Tokyo and Busan in the

same country? Thought 1: I could
either find which country Tokyo is
located in, or which country Busan
is located in. Sub Question 1-1:
Which country is Tokyo located in?
Sub Question 1-2: Which country is
Busan located in?"

"Question: Tokyo is located in the
country that has what colors present
on its national flag? Thought 1: I

need to first find out which country
Tokyo is located in. Sub Question

1-1: Which country is Tokyo located
in?"

Only give out your thought process and
current -level sub -questions. Do not
give out answers to your questions.
Question: {Given Question }.

Thought 1:

Prompt-based Constrained Generation Tem-
plate
Given a question and a list of evidence

that may of help , give your answer
directly , using words only from the
vocabulary bank , without any
explanations.

Question: {Given Question }. Evidence as
reference: {Given Evidence }.
Vocabulary Bank: {Given Vocabulary }.
Answer:

B Examples of the Error Cases

We present examples of the different types of er-
rors that our framework made. Detailed analysis is
provided in the Section 5: Results.
Type-2: Intermediate Answer
{Question }:
Where does the hotel and casino located

in which Bill Cosby 's third album
was recorded?

{Answer given by STOC -TOT on GPT4}:
Las Vegas.
{Golden Answer }:
Las Vegas Strip in Paradise.

Type-3: Wrong Answer
{Question }:
Aside from the Apple Remote , what other

device can control the program Apple
Remote was originally designed to

interact with?

Table 6: Performance comparison of STOC-TOT and
baseline methods on the HotpotQA dataset.

Prompting Method Time(mins)
Zero-Shot Vanilla 10
Chain-of-Thought 14
Tree-of-Thought 62

STOC-TOT 75

{Answer given by STOC -TOT on GPT4}:
siri remote and devices with netsupport

manager software
{Golden Answer }:
keyboard function keys

Type-4: Semantically Correct
{Question }:
Roger O. Egeberg was Assistant Secretary

for Health and Scientific Affairs
during the administration of a
president that served during what
years?

{Answer given by STOC -TOT on GPT4}:
1969 to 1974
{Golden Answer }:\
1969 until 1974

C Time Analysis

We provide a brief time analysis on LLaMa2-13B
model on 50 samples and present the results in Ta-
ble 6. We see that using ToT and STOC-TOT will
lead to a much higher cost in terms of time effi-
ciency compared with Zero-Shot and CoT prompt-
ing. STOC-TOT increases time complexity by a
around 20 percent compared with ToT.
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Abstract

Retrieval-augmented generation (RAG) offers
a robust solution for developing enterprise in-
ternal virtual assistants by leveraging domain-
specific knowledge and utilizing information
from frequently updated corporate document
repositories. In this work, we introduce the
Enterprise-Knowledge RAG (EKRAG) dataset
to benchmark RAG for enterprise knowledge
question-answering (QA) across a diverse
range of corporate documents, such as prod-
uct releases, technical blogs, and financial re-
ports. Using EKRAG, we systematically evalu-
ate various retrieval models and strategies tai-
lored for corporate content. We propose novel
embedding-model (EM)-as-judge and ranking-
model (RM)-as-judge approaches to assess an-
swer quality in the context of enterprise in-
formation. Combining these with the exist-
ing LLM-as-judge method, we then compre-
hensively evaluate the correctness, relevance,
and faithfulness of generated answers to corpo-
rate queries. Our extensive experiments shed
light on optimizing RAG pipelines for enter-
prise knowledge QA, providing valuable guid-
ance for practitioners. This work contributes to
enhancing information retrieval and question-
answering capabilities in corporate environ-
ments that demand high degrees of factuality
and context awareness.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable zero-shot reasoning capabilities
(Brown et al., 2020; Achiam et al., 2023). How-
ever, their static knowledge base, acquired during
pre-training, poses significant challenges in gen-
erating factual, timely, and salient responses to
ambiguous and complex queries, particularly in
corporate environments. This limitation is critical
in enterprise settings, where accuracy and up-to-
date information are paramount for a functional

*Equal contribution.

product. Inaccurate or outdated responses to time-
sensitive queries not only erode user trust but can
render AI-assisted tools impractical. For instance,
using obsolete data to answer financial queries like
"What was the company’s last quarter revenue?"
could lead to misinformed decision-making, if not
panic in the stock market, even if the information
was accurate once upon a time.

Retrieval-augmented generation (RAG) (Guu
et al., 2020; Lewis et al., 2020) emerges as a promis-
ing solution, integrating external knowledge from
domain-specific corpora to potentially generate up-
to-date, factually correct answers. It is particularly
suited for corporate internal chatbots, facilitating
employees and external investors access to cur-
rent company policies, procedures, and knowledge
across public facing corporate documents.

Despite its advantages, RAG presents unique
evaluation challenges compared to standalone
LLMs. Their answer quality depends not only on
the LLM’s pre-trained knowledge and reasoning
capabilities but also on the relevance of retrieved
context and the model’s ability to integrate and syn-
thesize information. While recent works (Adlakha
et al., 2023; Chen et al., 2024b; Gao et al., 2023;
Es et al., 2023; Xiong et al., 2024) have evaluated
RAG systems in general domains, assessing both
answer correctness and alignment with retrieved
context, the evaluation of RAG in enterprise knowl-
edge applications remains largely unexplored.

To address this gap, we introduce the Enterprise-
Knowledge RAG (EKRAG) dataset, comprising
1,347 manually curated questions, designed to sys-
tematically evaluate the influence of each RAG
component on enterprise knowledge question-
answering over five core question types in multi-
hop settings. Using this benchmark, our extensive
evaluations of various retrieval models and strate-
gies reveal that well-known techniques like HYDE
and hybrid search do not significantly improve
enterprise knowledge retrieval accuracy, while
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some straightforward mechanisms such as multi-
embedding vector achieve excellent performance.

Furthermore, we propose novel evaluation
methodologies: embedding-model-as-judge and
ranking-model-as-judge approaches, complement-
ing the prevailing LLM-as-judge technique. Our
comprehensive investigation provides insights into
optimizing RAG pipelines for enterprise knowl-
edge systems, offering a nuanced understanding
of answer quality that could lead to more robust
and reliable RAG implementations in real-world
corporate applications.

2 Related Work
Adlakha, BehnamGhader, Lu, Meade, and Reddy
(2023) utilizes the existing QA datasets and eval-
uates the answer quality of RAG along the dimen-
sions of correctness and faithfulness. To be specific,
the correctness dimension reveals the relevance be-
tween the response and the ground-truth answer.
On the other hand, faithfulness measures the rel-
evance between the answer and the retrieved con-
text to evaluate model’s capability to ground the
retrieved context. RGB (Chen et al., 2024b) evalu-
ates RAG from four aspects including noise robust-
ness, negative rejection, information integration,
and counterfactual robustness. ALCE (Gao et al.,
2023) proposes evaluation metrics of RAG along
three dimensions including fluency, correctness,
and citation quality. RAGAS (Es et al., 2023) de-
velops an automated evaluation pipeline by prompt-
ing LLMs and evaluate RAG from the dimensions
of faithfulness, answer relevance and context rele-
vance. MIRAGE (Xiong et al., 2024) benchmarks
different RAG solutions in the field of medicine
and ablates the influence of each component on the
overall answer quality from a multi-dimensional
perspective. CRAG (Yang et al., 2024) proposes
a comprehensive RAG benchmark consisting of
questions across five domains and eight categories.

3 Enterprise-Knowledge RAG Dataset
3.1 Overview
The Enterprise-Knowledge RAG (EKRAG) dataset
(v.1) is an expert-curated, comprehensive evalu-
ation resource for Retrieval-Augmented Genera-
tion (RAG) systems operating on corporate doc-
uments. Developed by Corporate’s IT and data
teams, EKRAG serves as a benchmark for assess-
ing agentic RAG systems, particularly those requir-
ing a high degree of factuality in reporting corpo-
rate financial performance and product information.

Key features of EKRAG include:

1. Composition: 1,348 human curated data
points, each consisting of a query, relevant
context chunk(s), referenced document, and
ground truth answer, complemented by asso-
ciated metadata. These are derived from a di-
verse corpus of 5,000 documents, encompass-
ing Corporate technical blogs, news releases,
SEC filings, and leadership communications.

2. Manual Curation: Annotations are provided
by a team of 14 human experts with back-
grounds in business and finance, ensuring
high-quality, domain-specific data points that
reflect real-world complexity and nuance.

3. Comprehensive Task Coverage: The dataset
facilitates evaluation across five core tasks of
varying complexities:

• Extractive Question Answering
• Abstractive Question Answering
• Summarization
• Financial Numerical Reasoning
• No Answer Questions

Each task type encompasses questions of
varying complexities, characterized by 1)
modality utilization (text, tables, or both),
2) intra-document reasoning (synthesizing
information from non-contiguous chunks),
and 3) inter-document reasoning (integrat-
ing information across multiple documents).
These multi-hop tasks simulate real-world,
enterprise-level scenarios, evaluating both the
RAG retriever’s ability to fetch complex in-
formation from diverse sources and the gen-
erator’s capacity to synthesize coherent re-
sponses from retrieved chunks. This design
assesses the system’s end-to-end capability in
handling practical information retrieval and
integration problems in a corporate setting.

3.2 Annotation Methodology
3.2.1 Data Sourcing
Reference Documents: The EKRAG dataset is
derived from 5,000 publicly available Corporate
documents, including web pages, earnings call tran-
scripts, and SEC reports in PDF, HTML, .docx,
and .txt formats. These documents are categorized
into four main groups: Corporate News and Blogs,
Corporate Technical Blogs, leadership communi-
cations (including public fireside chats), and SEC
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10-K and 8-K filings. The current v.1 of the dataset
utilizes only the Corporate News and Blogs and
Corporate Technical Blogs categories.

Queries: To ensure real-world relevance, we ana-
lyzed approximately 200 queries made by corpo-
rate finance analysts during the initial release of
the chatbot. These queries were rigorously catego-
rized to create a comprehensive taxonomy, which
formed the basis for the annotation guidelines. This
approach ensured alignment between annotators’
efforts and real-world use cases.

3.2.2 Data Preprocessing

To facilitate human annotation, the corpus under-
went a thorough cleaning process. Using the Beau-
tiful Soup package, the team extracted crucial meta-
data (e.g., publication dates and titles) from HTML
and PDF files while removing extraneous content
such as CSS. Rigorous filtering criteria were ap-
plied, resulting in 3, 620 high-quality documents
suitable for annotation.

For multi-document annotations, the team em-
ployed topic modeling and preprocessing tech-
niques to group similar documents together, result-
ing in clusters of 1-4 topically related documents.

Throughout the annotation process, the annota-
tors provided active feedback. They were given the
option to skip document groupings that are 1) low-
quality; 2) impossible to derive coherent queries.
The annotation process is described in Appendix B.

4 RAG Pipeline
4.1 Indexing

We denote the cropped chunks by {ci}Ni=1 where
N denotes the number of chunks. For each chunk,
the embedding vector is extracted by

ci = femb(ci), (1)

where femb(·) denotes the embedding model.
Since the embedding of chunks are independent
to the query, a retrieval system normally pre-
computes chunk embedding vectors {ci}Ni=1. In the
retrieval phase, we just need compute the query’s
embedding online and compare it with the pre-
computed chunk embedding vectors to retrieve the
most relevant chunks. When N is large, to speed
up the retrieval, approximated nearest neighbor
(ANN) search methods such as Hashing, Product
Quatization, and HNSW are used in indexing.

4.2 Embedding Models

Dense Embedding. Trationally, the dense embed-
ding model adapts a bi-encoder Transformer ar-
chitecture (Reimers and Gurevych, 2019). To be
specific, the query encoder maps the textual query
into the query embedding:

q = bi-encquery(q). (2)

In parallel, the doc encoder maps a text chunk into
the chunk embedding:

c = bi-encdoc(c). (3)

The relevance between the query and the chunk is
measured by the distance/similarity between the
query embedding q and the chunk embedding c.
Recently, with the emergence of LLM, ecoder-
based embedding models (Lee et al., 2024) are
obtained by fine-tuning immediate output of LLM,
achieving promising performance in retrieval.
Sparse Embedding often represents the occur-
rence or statistics of specific features (e.g., words or
n-grams). It was widely used in traditional informa-
tion retrieval and text classification. Traditionally,
TF-IDF (Ramos et al., 2003) and BM25 (Robert-
son et al., 1995) are widely used term-weighting
sparse embedding methods. Recently, some works
such as SPLADE (Formal et al., 2021) and BGE-
M3 (Chen et al., 2024a) utilize foundational BERT
architecture to generate sparse embedding vectors.

4.3 Retrieval.

Hybrid search is a widely used strategy for RAG
applications (Finardi et al., 2024). It conducts
dense retrieval and the sparse retrieval simultane-
ously. To be specfic, given a query q, we retrieve t
most relevant queries based on dense embedding:

[ci1 , · · · , cit ] = dense(q, {ci}ti=1). (4)

In parallel, another t most relevant queries are re-
trieved based on sparse embedding:

[cj1 , · · · , cjt ] = sparse(q, {ci}ti=1). (5)

Then 2t retrieved chunks from both sparse and
dense retrieval are de-duplicated and re-ranked by
a ranking model, and top s ranked chunks are as
the context for LLM to generate the answer:

[ck1 , · · · , cks ] = rerank({cil}tl=1, {cjl}tl=1) (6)
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Embedding Model Recall@1 Recall@3 Recall@5 Recall@10
BM25 (Robertson et al., 1995) 0.004 0.010 0.023 0.074

NV-QA (Verma et al.) 0.277 0.540 0.651 0.752
Arctic-L (Merrick et al., 2024) 0.313 0.552 0.660 0.786

NV-EMB (Lee et al., 2024) 0.360 0.618 0.742 0.839

Table 1: The evaluation of the embedding models.

NV-QA Arctic-L NV-EMB Recall@1 Recall@3 Recall@5 Recall@10D 0.360 0.618 0.742 0.839D D 0.325 0.590 0.697 0.808D D 0.350 0.640 0.746 0.858D D 0.358 0.639 0.751 0.863D D D 0.348 0.648 0.748 0.857

Table 2: The results from combining multiple embedding models.

4.4 Reranking

Cross-encoder. In the reranking phase, we nor-
mally takes a cross-encoder architecture. Different
from bi-encoder model used in embedding model,
cross-encoder takes a query-chunk pair (q, cki) as
the input and output a relevance score:

ri = cross-enc(q, cki). (7)

Chunks {cki}si=1 are sorted by relevance scores.
Detailed discussions on the cross-encoder and bi-
encoder are in Appendix A.

4.5 Answer Generation

We fill the query and the chunks {cki}si=1 from
reranking into the prompt template and feed the
prompt into a LLM to generate answer.

5 Benchmark on Retrieval

Metrics. There are multiple metrics to evaluate the
retrieval such as mAP, Precision@K, Recall@K,
NDCG. In RAG scenarios, Recall@K is the most
cruial metric, which reveals the coverage of rele-
vant information in the retrieved chunks. Thus, by
default, we use Recall@K as the evaluation metric.

5.1 Ablation on Embedding Models

Ablation on embedding models. We compare 4
models, including BM25 (Robertson et al., 1995),
NV-QA (Verma et al.), Arctic-L (Merrick et al.,
2024) and NV-EMB (Lee et al., 2024). NV-EMB is
a decoder-only large language model (LLM)-based
embedding model. Compared with BERT-based
models, it achieves significantly higher accuracy
on public benchmarks but takes much high com-
putational cost. As shown in Table 1, NV-EMB
significantly outperforms other embedding models.

Multi-embedding vector. To make use of multi-
ple embedding model simultaneously, a straight-
forward method is to concatenate the embedding
vectors from multiple models into a long vector,
which we term as multi-embedding vector. For
example, we denote the query/chunk embedding
from the first embedding model by q1/c1 and that
from the second embedding model by q2/c2. We
normalize and concatenate the query/chunk embed-
ding vectors into a multi-embedding vector:

q̄ =
[
α1

q1

∥q1∥2
, α2

q2

∥q2∥2
]
,

c̄ =
[
α1

c1
∥c1∥2

, α2
c2

∥c2∥2
]
,

(8)

where α1 and α2 are pre-defined constants to
weight the contributions of each embedding vector.
By default, we set α1 = α2 = 1. Emperically, we
could assign a higher weight to a better embedding.
The relevance between the query and the chunk is
computed by the dot product between q̄ and c̄:

r(q, c) = ⟨q̄, c̄⟩ = α2
1cos(q1, c1) + α2

2cos(q2, c2). (9)

We evaluate multi-embedding vectors in Table 2.
As shown, multi-embedding vector using Arctic-L
and NV-EMB achieves the highest recall@5. By
default, we use this setting for embedding.
Hybrid Search. In Table 4, we compare the
hybrid search with methods using solely dense-
embedding. To be specific, dense-based method
adopts a multi-embedding settings using both NV-
EMB and Archtic-L. As shown, hybrid search
does not bring considerable improvement for re-
call. Thus, by default, we exclude hybrid search.

5.2 Retrieval boosting strategies
Average query expansion (AQE) (Carpineto and
Romano, 2012) refines the query embedding by
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LLM for HYDE Recall@1 Recall@3 Recall@5 Recall@10
w/o 0.360 0.618 0.742 0.839

Mistal-7B (Jiang et al., 2023) 0.358 0.625 0.736 0.836
Llama3-8B (AI@Meta, 2024) 0.358 0.621 0.737 0.830

Gemma2-7B (Team, 2024) 0.351 0.621 0.737 0.838
Llama3-70B (AI@Meta, 2024) 0.361 0.624 0.740 0.842

Mixtral-8x7B (Jiang et al., 2024) 0.351 0.621 0.742 0.836
Mixtral-8x22B (Mistral AI team, 2024) 0.358 0.629 0.740 0.838

Table 3: The evaluation of the HYDE.

Recall@1 Recall@3 Recall@5
Dense 0.403 0.688 0.707
Hybrid 0.404 0.687 0.707

Table 4: Evaluation on hybrid search.

n 0 1 2 3 4
NV-QA 0.651 0.660 0.647 0.652 0.662
Arctic-L 0.660 0.689 0.667 0.663 0.652
NV-EMB 0.742 0.725 0.716 0.721 0.731

Table 5: The influence of average query expansion.

the embeddings from the top-retrieved chunks. To
be speicifc, we denote the original query embed-
ding by q and the embeddings for the retrieved top
n chunks as {ci}ni=1. AQE generates the revised
query embedding by suming up the original query
embedding with each chunk embedding ci:

q̂ =
q+

∑n
i=1(ci)

n+ 1
(10)

We evaluate the influence of AQE on the retrieval
Recall@5. As shown in Table 5, when we set
n = 1, AQE consistently improves Recall@5 for
NV-QA and Arctic-L embedding models, but it
drops Recall@5 for the NV-EMB. Considering the
computation cost, we do not use AQE, by default.
HYDE (Gao et al., 2022) utilizes the LLM’s knol-
wedge to generate a hypothetical document d =
LLM(q) for the query q. Then the embedding
model encodes document d into the embedding
vector d = femb(d). The refined query embedding
q̂ is obtained by summing up q and d:

q̂ = αq+ (1− α)d, (11)

where α is a pre-defined positive constant (α ∈
[0, 1]) controlling the contribution from each
component. We explore multiple open-source
LLMs including Mistal-7B (Jiang et al., 2023),
Llama3-8B (AI@Meta, 2024), Gemma2-7B (Team,
2024), Llama3-70B (AI@Meta, 2024), Mixtral-
8x7B (Jiang et al., 2024) and Mixtral-8x22B (Mis-
tral AI team, 2024) to generate the hypothetical
document. As shown in Table 3, HYDE could not
consistently improve the recall. Thus, we exclude
HYDE in retrieval pipeline.

5.3 Reranking
By default, we use QA-Mistral-4B(NVIDIA AI,
2024) for reranking. As shown in Table 6, the
reranking model consistently and significantly im-
proves the recall of all embedding models. There-
fore, we use rerakning model in default settings.

6 Benchmark on Answer Generation

6.1 Metrics
Correctness measures the alignment between the
generated answer and the ground-truth answer.
Relevance quantizes the relevance between the gen-
erated answer and the ground-truth context.
Faithfulness measures the relevance between the
retrieved context and generated answer.
We design three types of judge mechanisms includ-
ing embedding-model-as-judge, ranking-model-as-
judge and LLM-as-judge.

6.2 Embedding-model-as-judge
We denote the embedding of the ground-truth an-
swer by ag, that of answer generated from RAG
by ar, the embedding of the ground-truth con-
text by cg and that of the retrieved context by cr.
When using embedding model as judge, correct-
ness/relevance/faithfulness is measured by the co-
sine similarity between embeddings:

Cemb =
⟨ar,ag⟩

∥ar∥2∥ag∥2
,

Remb =
⟨ar, cg⟩

∥ar∥2∥cg∥2
,

Remb =
⟨ar, cr⟩

∥ar∥2∥cr∥2
.

(12)

6.3 Ranking-model-as-judge
We denote the labeled groundtruth answer by ag,
the answer generated from RAG by ar, the ground-
truth context by cg and the embedding of the re-
trieved context by cr. We denote the cross(x, y)
as the cross-encoder model maps a pair of texts
(x, y) into a relevance score s ∈ [−∞,+∞]. The
higher score means that x is more relevant with
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Rerank NV-QA Arctic-L NV-EMB Arctic-L + NV-EMB
Recall@1 Recall@5 Recall@1 Recall@5 Recall@1 Recall@5 Recall@1 Recall@5

w/o 0.277 0.651 0.313 0.552 0.360 0.742 0.358 0.751
QA-Mistral-4B 0.389 0.757 0.391 0.767 0.401 0.782 0.403 0.787

Table 6: The influence of ranking model.

Models Embedding-model-as-judge Ranking-model-as-judge LLM-as-judge
Corre. Relev. Faith. Corre. Relev. Faith. Corre. Relev. Faith.

Mistral-7B 0.789 0.747 0.707 0.891 0.693 0.668 0.925 0.894 0.977
Llama3-8B 0.779 0.744 0.724 0.880 0.691 0.692 0.945 0.915 0.976

Mixtral-8x7B 0.792 0.738 0.691 0.891 0.684 0.651 0.913 0.875 0.963
Mixtral-8x22B 0.769 0.760 0.742 0.885 0.698 0.674 0.939 0.912 0.977
Llama3-70B 0.793 0.739 0.694 0.894 0.693 0.695 0.944 0.915 0.978

Table 7: The evaluation results on the generated answers from multiple open-source LLMs.

y. To normalize the score to the range [0, 1], we
process the relevance score by a sigmoid func-
tion: ŝ = sigmoid(s). We define the correct-
ness/relevance/faithfullness as below:

Crank = sigmoid(cross(ar, ag)),

Rrank = sigmoid(cross(ar, cg)),

Frank = sigmoid(cross(ar, cr)).

(13)

6.4 LLM-as-judge
We design the prompt templates for correctness,
relevance and faithfulness, respectively. Given the
query q, ground-truth answer ag, answer generated
from RAG ar, ground-truth context by cg, retrieved
context by cr, we fill them into the pre-defined
templates, which is further feed into an LLM:

CLLM =LLM(TemplateC(q, ar, ag))

RLLM =LLM(TemplateR(q, ar, cg))

FLLM =LLM(TemplateF(q, ar, cr)).

(14)

Since LLM is not good at evaluating outputs in
continuous range, we prompt the LLM to output
a integer score within [1, L] and divide the integer
score by L to normalize it. By default, we use
Mistral-Large as the judge.

6.5 Experimental results

Ablation on LLMs for answer generation. We
evaluate the generation capabilities across a spec-
trum of Large Language Models (LLMs). The
assessment includes smaller-scale models such as
Mistral-7B and Llama3-8B, as well as larger-scale
models including Mixtral-8x7B, Mixtral-8x22B,
and Llama3-70B. The comparative results, pre-
sented in Table 7, reveal that the larger-scale mod-
els do not demonstrate a substantial performance
advantage over their smaller counterparts in this
specific task. Given these findings, and taking into
account computational efficiency, we have opted to

# chunks 0 1 3 5 10
EM-as-J 0.717 0.764 0.777 0.779 0.775
RM-as-J 0.772 0.861 0.879 0.880 0.876

LLM-as-J 0.630 0.902 0.940 0.945 0.945

Table 8: Impact of the count of chunks on correctness.

utilize Llama3-8B as our default model for answer
generation. This choice represents an optimal bal-
ance between performance and resource utilization
in our experimental framework.
Influence of the retrieved chunks. Table 8 illus-
trates the impact of the number of retrieved docu-
ments on answer correctness. The results demon-
strate that the absence of retrieved chunks signifi-
cantly diminishes answer correctness compared to
scenarios where chunks are utilized, thus validat-
ing the efficacy of RAG over standalone LLMs. As
the number of retrieved chunks increases from 1
to 5, we observe a consistent improvement in an-
swer accuracy. However, this trend plateaus and
potentially reverses when the number of chunks
increases from 5 to 10. This phenomenon can be
attributed to the introduction of extraneous infor-
mation as the chunk count rises, which may im-
pede the generation of accurate responses. These
findings suggest an optimal retrieval window that
balances comprehensive context with focused rel-
evance, highlighting the importance of judicious
document retrieval in RAG systems.

7 Conclusion
Our comprehensive study on Retrieval-Augmented
Generation (RAG) for enterprise knowledge
question-answering has yielded several significant
insights. Through the creation and utilization of
the EKRAG dataset, comprising 3200 manually
curated questions, we have conducted an exten-
sive evaluation of various components within the
RAG pipeline. The insights gained from this study
have broad implications for the optimization of
RAG pipelines in enterprise knowledge manage-
ment systems. By shedding light on the effective-
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ness of various retrieval strategies and introducing
new evaluation paradigms, our work contributes
to the ongoing refinement of question-answering
systems tailored to enterprise needs.
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A Bi-encoder versus Cross-encoder

Bi-encoders individually encodes each input (e.g.,
a query or a document) into dense embeddings.
Bi-encoders are scalable because the embeddings
for inputs can be pre-computed and stored. This
allows for efficient retrieval from large datasets us-
ing approximate nearest neighbor (ANN) search
techniques. Cross-encoder jointly encodes a query
and a document by concatenating them and feeding
the concatenated sequence through a single model.
It allows the model to directly capture the interac-
tions between the inputs. Cross-encoder normally
achieves higher retrieval accuracy. Nevertheless,
cross-encoder is computationally expensive since it
could not pre-compute embeddings like bi-encoder.
This limitation forbids its application in large-scale
retrieval scenarios. Therefore, cross-encoder is
only applied in re-ranking tens of candidates re-
trieved based on embedding models.

B Annotation Process

The annotation was conducted using the LabelStu-
dio platform by a team of 14 experienced annota-
tors with professional backgrounds in business and
finance. The process occurred in two phases:

• Retrieval Annotation: Annotators were pre-
sented with individual or grouped documents
and tasked with formulating queries and se-
lecting relevant context(s) that answered these
queries.

• Generator Evaluation: A different set
of annotators reviewed the query-context
pairs along with multiple LLM-generated an-
swers (using GPT-4, Claude 3.5, and Mixtral
7x22B). These LLM outputs served as guide-
lines for the annotators in creating the final
ground truth answers.

Each annotation underwent rigorous vetting by
a lead annotator and a data team lead to ensure
adherence to guidelines and maintain quality.
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Abstract

Large Language Models (LLMs) show promis-
ing performance on various programming tasks,
including Automatic Program Repair (APR).
However, most approaches to LLM-based APR
are limited to the static analysis of the pro-
grams, while disregarding their runtime behav-
ior. Inspired by knowledge-augmented NLP,
in this work, we aim to remedy this poten-
tial blind spot by augmenting standard APR
prompts with program execution traces. We
evaluate our approach using the GPT family
of models on three popular APR datasets. Our
findings suggest that simply incorporating ex-
ecution traces into the prompt provides a lim-
ited performance improvement over trace-free
baselines, in only 2 out of 6 tested dataset /
model configurations. We further find that the
effectiveness of execution traces for APR di-
minishes as their complexity increases. We ex-
plore several strategies for leveraging traces in
prompts and demonstrate that LLM-optimized
prompts help outperform trace-free prompts
more consistently. Additionally, we show trace-
based prompting to be superior to finetuning a
smaller LLM on a small-scale dataset; and con-
duct probing studies reinforcing the notion that
execution traces can complement the reasoning
abilities of the LLMs.

1 Introduction

Automatic Program Repair (APR) is a critical chal-
lenge in software engineering, aiming to reduce
human effort in debugging and fixing software de-
fects. Software bugs can lead to significant security
vulnerabilities, financial losses, and system failures,
necessitating efficient repair mechanisms. While
large language models (LLMs) have demonstrated
remarkable capabilities in generating and modify-
ing code, their effectiveness in APR remains con-
strained by their reliance on static code analysis.

*equal contribution.

9 ### Buggy Program:
10 def search(x, seq):
11 index = 0
12 def helper(index):
13 if not seq:
14 return 0
15 elif x <= seq[index]:
16 return index
17 else:
18 if index + 1 >= len(seq):
19 return index + 1
20 else:
21 return helper(index+1)
22

23 ### Failing test case:
24 result = search(42, (-5, 1, 3, 5, 7, 10))
25 assert result == 6,

'Expected 6 but got %s' % result↪→
26 AssertionError: Expected 6 but got None
27

28 ### Execution trace:
29 Starting var:.. x = 42
30 Starting var:.. seq = (-5, 1, 3, 5, 7, 10)
31 call 10 def search(x, seq):
32 line 11 index = 0
33 New var:....... index = 0
34 line 12 def helper(index):
35 New var:....... helper = <function search.<locals>

.helper at 0x7fd455b89040>↪→
36 return 12 def helper(index):
37 Return value:.. None

Figure 1: Example buggy program, a failing test case
and its execution trace. While the failure message sim-
ply indicates the output is wrong, the execution trace
provides a detailed explanation how it was produced.

Debugging complex software issues often necessi-
tates a deeper understanding of the program’s exe-
cution behavior, including variable modifications
and control flow changes, which conventional Deep
Learning-based and LLM-based APR approaches
fail to capture effectively (Xia and Zhang, 2022;
Jiang et al., 2023; Tian et al., 2023; Sutton et al.,
2023).

Recent advancements in knowledge-augmented
NLP have emphasized integrating external informa-
tion into language models to enhance reasoning and
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accuracy. Inspired by this, our research explores
augmenting LLM-based automated program repair
(APR) with program execution traces—structured
runtime data that reveal a program’s actual behav-
ior. These traces provide diagnostic insights be-
yond static code analysis. By embedding them
into repair prompts, we aim to bridge the gap be-
tween static and dynamic program understanding,
aligning with trends in knowledge-augmented NLP
that leverage external sources to enhance language
model capabilities.

We frame our work in terms of three research
questions (RQs). In RQ1 (Section 3.2), our ob-
jective is to quantify the gains from incorporat-
ing execution traces into the APR prompt over the
prompts only containing the failing test case as
well as the trace-free chain-of-thought prompting
baseline (Chen et al., 2023). We find that simply
adding the execution trace does not consistently
outperform trace-free prompts.

To inform a more finegrained approach, in RQ2
(Section 3.3), we analyze the relationship between
trace complexity and the likelihood of the LLM
producing a working fix. To measure this complex-
ity, we consider two parameters: trace length and
the number of variable modifications. We find that
the effectiveness of trace-based prompts decreases
with the growing length and number of variable
assignments.

Motivated by this finding, in RQ3 (Section 4),
we aim at improving the consistency of trace-based
APR by experimenting with three different repre-
sentations of execution traces: traces in a collated
format, LLM-optimized traces, and a trace repre-
sentation conditionally selected based on query-
ing the LLM’s confidence. We find that LLM-
optimized trace-based prompts provide the most
consistent results with respect to program repair.

We additionally perform two follow-up studies:
in the first, we compare our trace-based prompt-
ing approach with a fine-tuned baseline inspired
by TraceFixer (Bouzenia et al., 2023); and in the
second one, we directly probe the LLM on two
trace understanding tasks.

The rest of the paper is organized as follows. In
Section 2, we discuss the related work and how it
differs from our approach. Section 3 details our
methodological setup and covers RQ1 and RQ2.
Section 4 covers RQ2 and in Section 5, we discuss
the additional studies.

2 Related Work

Recent work looked into augmenting code LLMs
with execution information to improve perfor-
mance on downstream tasks, including APR.

SelfAPR (Ye et al., 2022) proposed to use com-
piler and test diagnostics during self-supervised
training of the language model for improving APR.
Additionally, several works have proposed the use
of execution traces for pretraining code LLMs. In
TRACED (Ding et al., 2023), authors finetuned
a BERT-like model to predict execution paths and
quantized values, which allowed it to outperform an
AST-based UniXcoder (Guo et al., 2022) on clone
detection and vulnerability detection. Whereas,
Liu et al.’s program state prediction pre-training
improved code search and generation (Liu et al.,
2023). Finally, TraceFixer, based on CodeT5 and
finetuned with execution traces, showed a 13% im-
provement in APR on synthetic bugs over the code-
only baseline but struggled with real bugs, hinting
at potential generalization limitations (Bouzenia
et al., 2023).

Among training-free approaches, Self-Debug
(Chen et al., 2023) improved program generation
by generating code explanations directly from the
LLM, in a chain-of-thought fashion, as part of solv-
ing the APR task.

To the best of our knowledge, all of these works
do not consider the effect of putting execution
traces in the prompt of a pretrained LLM.

3 Analyzing the Impact of Execution
Traces on Program Repair

In this section, we analyze the effects of adding
traces in the LLM prompt on APR performance,
compared to two trace-free baselines (Ye et al.,
2022), (Chen et al., 2023). Additionally, we per-
form a differentiated analysis of APR performance
based on trace complexity. We formulate the corre-
sponding two research questions as follows.
RQ1. Are prompts with execution traces more
effective at program repair than prompts without
traces?
RQ2. How does trace complexity affect the effec-
tiveness of trace-based prompts?

3.1 Set Up

Datasets. We surveyed 15 popular datasets across
Python, Java, C++, and other major languages, fo-
cusing on dataset size, program diversity, unit test
availability, and dataset origin (e.g., self-contained
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algorithmic problems like CodeNet (Puri et al.,
2021) or full open-source projects like PyTrace-
Bugs (Akimova et al., 2021)). While realistic
datasets are ideal, evaluating them requires signif-
icant manual effort due to complex dependencies.
Algorithmic datasets offer advantages like man-
ageable length and easily testable, self-contained
functions, enabling trace generation through execu-
tion.

We selected three APR datasets: Refactory (Hu
et al., 2019), RunBugRun (Prenner and Robbes,
2023), and HumanEval-Java (Jiang et al., 2023).
Refactory includes nearly 2000 faulty Python pro-
grams submitted by students, enabling coverage of
diverse mistakes. RunBugRun, derived from Co-
deNet, contains a quarter million submissions for
4000 distinct problems; we sampled 1000 Python
bugs for evaluation. HumanEval, originally for
Python, was adapted into HumanEval-Java, inject-
ing synthetic bugs for APR testing.

Each dataset includes at least 5 test cases per
problem. For RunBugRun, we implemented a
wrapper to handle input/output via standard input
and print statements for accurate result comparison.
Models. With the landscape of state-of-the-art code
LLMs rapidly changing, we chose use two most
widely studied commercial models from OpenAI
for ease of comparison with other work: GPT-3.5
Turbo (Ouyang et al., 2022) and GPT-4 (OpenAI,
2023). These two models represent two different
performance tiers both in terms of the number of
parameters and different release timelines, hence,
studying these models could shine the light on the
LLMs’ evolving ability to reason about program ex-
ecution across product generations. While there is
undoubtedly scope for including more proprietary
as well as open source models, given our narrow
focus on traces, we leave this to be explored in
future work.
Execution Traces Generation. As the program is
being executed, it is possible to step through it pro-
grammatically, while also capturing every change
to the function’s variables, akin to interactive de-
bugging. PySnooper(pys) library for Python pro-
vides this functionality via a decorator that can be
added to a function of interest to automatically log
state changes, such as variable initialization and
modification, subroutine calls, returned values, and
runtime exceptions. Crucially, each state change
reference a specific line of code on which it oc-
curred. Examples of execution traces are given
in the Appendix A.2. Before appending traces to

the prompt we perform basic postprocessing, in-
cluding the removal of timestamps and stripping of
terminal formatting command sequences.

Prompt Types. We follow the instruction template
for complete function generation used by Xia et al.
(2023), expanding it with two additional types of
information, namely, a failing test case (henceforth,
referred to as Error Prompts) and a program exe-
cution trace (referred as Trace Prompts). We offer
our rationale for these choices, along with other
prompt types considered, in Appendix B.

To ensure the prompt and response fit within the
GPT model context size, we truncate the content
of the prompt if the number of lines exceeds 200.
We have added an example of all the prompts in
Section A in the Appendix.

Baseline. We consider the Prompt-based base-
line Self-Debug. With this baseline, we explore
prompting LLMs using execution traces generated
by LLMs themselves (instead of actual program
execution traces). This baseline inspired by Self-
Debugging (Chen et al., 2023) where LLMs are
prompted to debug their own generated code. In
particular, we draw inspirations from the Explana-
tion step of this work where the model is asked
to generate execution traces for a predicted code.
We tailored Self-Debugging’s prompts to fit our
usecase: in our prompts, we provide LLMs with
a program and a test case feedback, and ask them
to trace through the execution of the program and
determine the needed fix, and correct the function
accordingly. We perform these experiments with
both GPT-3.5 and GPT-4.

Metrics. In previous work on APR, models are
evaluated either at the granularity of distinct bugs
solved (Xia et al., 2023; Jiang et al., 2023) or in-
dividual test cases passed (Tian et al., 2023). In
contrast, we generate multiple prompts for each
program tailored to a specific failing test case and
its corresponding execution trace (e.g., A.1, A.2).
Rather than aggregating predictions from multiple
samples, we generate a single prediction per test
case-specific prompt and aggregate across prompts
when computing metrics. The key metrics are Cor-
rect Fix Accuracy (CFA), the percentage of fixes
passing all test cases, and Correct Program Ac-
curacy (CPA), the percentage of programs with at
least one correct fix. We do not report test case-
level accuracy, as it can be too lenient and doesn’t
account for variations in the number of test cases
per program.
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Model Dataset Method # FPs # Fixes # CF # CP CFA CPA

GPT-3.5

Refactory
Self-Debug

138 579
244 73 0.421 0.529

Error Prompt 304 91 0.525 0.659
Trace Prompt 295 87 0.509 0.630

HumanEval-Java
Self-Debug

157 634
210 75 0.331 0.477

Error Prompt 241 85 0.380 0.541
Trace Prompt 212 86 0.334 0.547

RunBugRun
Self-Debug

456 559
151 132 0.270 0.289

Error Prompt 260 221 0.465 0.484
Trace Prompt 249 216 0.445 0.473

GPT-4

Refactory
Self-Debug

138 579
414 117 0.715 0.847

Error Prompt 458 122 0.791 0.884
Trace Prompt 427 113 0.737 0.818

HumanEval-Java
Self-Debug

157 634
312 105 0.492 0.668

Error Prompt 313 104 0.493 0.662
Trace Prompt 324 112 0.511 0.713

RunBugRun
Self-Debug

456 559
337 287 0.602 0.629

Error Prompt 296 264 0.529 0.578
Trace Prompt 312 266 0.558 0.583

Table 1: RQ1 Quantitative Results. FP = Faulty Programs, CF = Correct Fixes, CP = Correct Programs,
CFA = Correct Fix Accuracy, CPA = Correct Program Accuracy.

3.2 RQ1. Are prompts with execution traces
more effective at program repair than
prompts without traces?

In this research question, our objective is to eval-
uate the effectiveness of including program exe-
cution traces into LLM prompts, for solving APR
tasks, compared to the baselines. The effectiveness
is measured through reporting CPA and CFA. The
evaluation results can be found in Table 1. The
number of faulty programs, number of fixes, and
total test cases are the same for all types of prompts
per each dataset.

Across the board, the Self-Debug baseline per-
forms the worst except in one configuration using
GPT-4 on the RunBugRun dataset. This general
outcome is unsurprising as having the LLM gen-
erate an execution trace could introduce hallucina-
tion and thus undermine the resulting fixes. For
both GPT-3.5 and GPT-4 on the Refactory dataset,
prompts including just a failing test case decisively
outperform ones with execution traces by multiple
percentage points on both fix accuracy and program
accuracy.

On the HumanEval-Java dataset with GPT-3.5,
error-only prompts are only ahead of trace-based
prompts in terms of fix accuracy but are slightly
behind in program accuracy. Meanwhile, with
GPT-4, trace-based prompts consistently outper-
form error-only prompts on both metrics. Results
on RunBugRun paint a similar picture, where GPT-

3.5 doesn’t seem to benefit from including traces,
while GPT-4 gets a tangible lift over the error-only
prompts. Overall, on two out of three datasets,
trace-based prompts significantly improve the abil-
ity of GPT-4 to generate working bug fixes.

While GPT-3.5 lagging behind in terms of abso-
lute scores irrespective of prompt type is expected,
more broadly, its inability to benefit from execution
traces (even degraded performance) could high-
light a qualitative generational gap when it comes
to emergent abilities of LLMs. Notwithstanding,
there remain a few unexplained results, such as the
lack of performance gain from using traces on the
Refactory dataset and the unusually strong perfor-
mance of the Self-Debug baseline in one particular
configuration. To gain a fine-grained understand-
ing, in the next research question, we focus on
studying the varying complexity of execution traces
and how they affect downstream APR performance.

RQ1 Summary. Trace prompts do not
consistently outperform Error Prompts on
program repair.

3.3 RQ2. How does trace complexity affect
the effectiveness of trace-based prompts?

Unlike other elements of the prompt, execution
traces are dynamic in nature and are highly depen-
dent on a particular input as much as the program
itself. Additionally, execution traces can be dramat-
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Figure 2: Distributions of trace lengths and variable
changes across correct vs incorrect program fixes gener-
ated by GPT-4. Analysis for GPT-3.5, showing a similar
trend, is given in the appendix.

ically different in the presence of a runtime error,
compared to when the function finishes executing
correctly (even if the returned value itself is wrong).
Thus, variations in trace complexity could be a cru-
cial factor in how beneficial their inclusion is in the
prompt. On the one hand, traces that are too short
may not provide much information beyond what
is already conveyed by the program itself and the

failing test case. On the other hand, overly long
and complex traces may overwhelm LLMs’ long
context and ultimately confuse it. We believe there
is a sweet spot at which the inclusion of traces is
most beneficial. As such, we observed great vari-
ability with respect to the overall trace length, as
well as in the number and type of individual state
changes.

To gain insights into nuanced differences among
our evaluated datasets, we compute the statistics
of overall trace length and the number of variable
modifications in all prompts, while differentiating
by whether the resulting fix was correct (Figure
2). For both the HumanEval-Java and RunBugRun
datasets, median1 trace length and number of vari-
able modifications were significantly higher for
failing fixes than for the correct ones. This corrob-
orates our presupposition that longer traces could
undermine rather than help APR. Conversely, in
the Refactory dataset, somewhat contrary to our in-
tuitions, for failing fixes median trace length were
actually lower than for successful fixes. Regarding
the number of variable modifications, the median
was just one, compared to 5 in RunBugRun. This
disparity implies variable modifications could play
a key role in the effectiveness of a trace for APR.

RQ2 Summary. The prompts having
longer execution traces have a lower
chance of generating a correct fix.

4 Impact of Modified Traces

As we find that longer trace length could have a
negative impact in the effectiveness of GPT mod-
els, we focus on modified trace strategies and their
impact on the effectiveness of the model. In this
section, we discuss one research question.
RQ3. Can the format of traces be optimized to
guarantee gains for APR?

4.1 Modified Traces

Collated Execution Traces. Even though execu-
tion traces for both languages reference code lines
from the original program, they are placed in the
standalone section of the prompt, separate from
the program itself. In order to thoroughly ablate

1In all datasets and for both correct and failing fixes we
observed the presence of extremely long traces in excess of
10,000 entries. Additionally, a significant number of trace
prompts got truncated (5% for Refactory and almost 10% for
RunBugRun).
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trace format, we experimented with combining the
two by placing each trace entry directly to its corre-
sponding line of code as an inline comment 2. The
rationale behind this design choice is to consoli-
date the two types of information in the common
location, potentially freeing the LLM from having
to constantly cross-reference between them.
LLM-Optimized Execution Traces (OPT). While
in a general case deterministic traces provide valu-
able information regarding variable changes, log-
ging every single event is not always ideal. In
scenarios such as infinite loops, traces end up re-
peating the same information, while also unbound-
edly growing in length. It can thus be desirable
to optimize potentially lengthy traces by condens-
ing superfluous information. To optimize execu-
tion traces, we prompt a long context GPT4-32k
model with the deterministic execution trace and
an instruction to generate a shorter version of it,
optimized for downstream APR.
Confidence Based Prompt Selection (Conf OPT).
In addition to modifying the format or content of
the prompt itself, we experimented with a simple
prompt routing mechanism based on pre-querying
LLM’s confidence about correctly solving a pro-
gram repair task using the deterministic trace. If
the confidence level is low, we fallback onto using
an LLM-optimized trace instead.

We have considered multiple ways to find the
confidence value of the model. One possible way is
to prompt the model to find whether it’s confident
or not (boolean) to use a specific prompt to repair
a program. But on a small prompt set, we find that
the model outputs that it is always confident for all
inputs. Additionally, another way is to feed both
prompts and ask the model for which prompt it is
more confident to repair the program. However,
based on the findings of recent work (Huang et al.,
2023), LLM might be biased for a specific position
(prompt one or prompt two). Hence, based on the
findings of Huang et al. (Huang et al., 2023), we
use a Likert-scale based confidence score. Given a
score range of 1-5, if the confidence score provided
by the model is less than 3, we consider that the
model has low-confidence. The approach is shown
in Figure 3.
Trace-length Based Prompt Selection (TRL
OPT). As we have found through investigating

2In case of multiple passes through the same line e.g.,
variable changes within a loop, we concatenate each of the
traced events by a new line, providing a full history of state
changes at that line.
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Figure 3: The Flow of Conditional Selection of Traces

RQ2 that trace prompts work well if the trace length
is within a specific range; hence, switching to a dif-
ferent prompt given a longer trace might be benefi-
cial. In this technique, instead of using a confidence
score like Conf OPT, we use trace length for rout-
ing between prompts. The routing is investigated
in two settings: trace prompt and OPT prompt, and
trace prompt and error prompt. If the trace length
is less than N , we use trace prompt, or we use
OPT prompt or error prompt based on the setting.
We use the following N values for the experiment:
25,30,35,40,45,50.

4.2 RQ3 Results.

The results could be found in Table 2. For ease
of comparison, for each dataset and model we
include the best performing strategy from RQ1,
which could be either error prompt, trace prompt or
the Self-Debug baseline. Of the three trace modifi-
cation strategies, LLM-Optimized prompts (OPT)
provide the most consistent performance gains on
both CFA and CPA metrics. With respect to CPA,
for all dataset and model pairs, OPT is among the
top three performing prompting techniques. The
CFA values for OPT are even more commendable,
whereas, for three out of six model-dataset pairs,
OPT has the best CFA (second best in the other
three). Furthermore, this confirms our implication
from RQ2 that less complicated traces are better
for prompting for program repair tasks.

For confidence-based prompt selection, while we
find the CFA and CPA values are comparatively bet-
ter for GPT4, the performance in GPT3.5 is worse.
This would imply that GPT-4 is significantly better
in providing confidence scores for prompts than
GPT-3.5. But, as the performance is significantly
worse than OPT on average, the application of the
method for GPT-4 is still not reliable.

For trace length-based prompt selection, we only
report the best results in the table. We have two
findings here; first, although routing could improve
the CFA and CPA values more than individual
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Metric Method GPT-3.5 GPT-4
Refactory HumanEval-Java RunBugRun Refactory HumanEval-Java RunBugRun

CFA

Collated Trace 0.452 0.391 0.381 0.656 0.531 0.483
OPT Trace 0.502 0.430 0.472 0.753 0.572 0.570
Conf OPT Trace 0.368 0.380 0.429 0.735 0.549 0.527
TRL OPT Trace (EP) 0.490 0.312 0.457 0.742 0.492 0.549
TRL OPT Trace (OPT) 0.493 0.353 0.466 0.737 0.473 0.574
RQ1 Best 0.525 0.380 0.465 0.791 0.511 0.602

CPA

Collated Trace 0.587 0.497 0.407 0.818 0.681 0.508
OPT Trace 0.601 0.535 0.497 0.862 0.713 0.589
Conf OPT Trace 0.384 0.522 0.453 0.847 0.732 0.550
TRL OPT Trace (EP) 0.623 0.528 0.484 0.826 0.694 0.589
TRL OPT Trace (OPT) 0.623 0.573 0.491 0.826 0.675 0.603
RQ1 Best 0.659 0.547 0.484 0.884 0.713 0.629

Table 2: RQ3 Quantitative Results. CFA = Correct Fix Accuracy, and CPA = Correct Program Accuracy.

prompts, we find that only for the GPT-3.5 model
and HumanEvalJava dataset could routing get the
best CPA score among all considered techniques.
Second, changing the value of N would have a
limited impact on CFA and CPA values. Overall,
we could not find any strong result suggesting that
routing between techniques based on trace length
might be significantly beneficial. Detailed results
could be found in Figures 6 and 7 (in Appendix).

Lastly, collated trace prompts disappointingly
do not provide an improvement over trace prompts.
One possible explanation is a lack of exposure to
this format during LLM training as code doesn’t
normally include inline comments about state
changes. Second, inline traces within loops can
“stretch” the length of the program quite a bit, pos-
sibly diluting LLMs attention to the continuation of
the program after the loop. In our probing studies
of LLM trace understanding, we find that, indeed,
LLMs struggle to keep up with variable changes
across multiple iterations. Finally, the problem
of truncation becomes more severe with collated
traces, as not just the trace but also part of the orig-
inal problem could be excluded from the prompt.

RQ3 Summary. Optimized trace prompt
is the most consistent type of prompting
technique, specifically for CFA metric.

5 Additional Studies

5.1 Trace-based prompting compared to
finetuning a smaller model.

In this RQ, we focus on evaluating if fine-tuning a
small-sized LLM would generate better results w.r.t
program repair rather than prompting GPT mod-
els with different prompts. For that purpose, we

fine-tune the deepseek-coder-1.3b-instruct 3 model
with training data extracted from HumanEval-Java
and RunBugRun datasets. Finally, we compare
the program repair performance of fine-tuning and
prompting-based techniques on test data.
Finetuning Setup. Our finetuning approach is in-
spired by TraceFixer (Bouzenia et al., 2023), which
finetunes a CodeT5 model using the buggy pro-
gram’s code, its execution trace, and the desired
state of the program. As we didn’t have access to
TraceFixer’s code, we implemented our own fine-
tuning pipeline. In our case, the input to the model
consists of a buggy program, the failing test case
results, and corresponding execution traces. Dur-
ing training, the correct version of the program is
included in the prompt, while during inference it
is omitted, to be filled in by the model. For each
dataset, 80% of the problems are randomly selected
for training, and the rest are reserved for testing.
This accounts for 459 samples for RunBugRun and
517 samples for HumanEval-Java datasets. We use
the training settings and parameters suggested by
deepseek-coder developers to finetune this model.
Details of these parameters can be found in the
model’s repo.
Result. Figure 4 shows the results. For com-
parison purposes, we calculate CPA and CFA for
prompting-based techniques on the same test pro-
grams. It can be noted that all the prompting tech-
niques outperform fine-tuned model’s CPA and
CFA. It is observed that models fine-tuned with
and without trace show lower CPA and CFA than
prompting-based techniques. One of the reasons
behind the results might be the limited training
data for each task. Also, the TraceFixer technique
showed better results in the original work, but the
number of training examples for TraceFixer was

3https://github.com/deepseek-ai/DeepSeek-Coder
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Figure 4: CPA and CFA of Prompting-Based Tech-
niques vs. Model Fine-Tuned for APR Tasks.

significantly higher, too. In our future work, we
plan to use a larger training dataset and larger mod-
els for finetuning.

5.2 Probing Studies of Trace Understanding
To gain insights into the observed lack of improve-
ment in APR performance using collated traces and
results from using traces for APR in general, we
investigate two additional questions via small-scale
probing experiments.

Can the LLM align the program with its ex-
ecution trace? We directly measure the LLM’s
ability to perform trace collating given a standalone
program and its execution trace. The rationale be-
hind this experiment is that if an LLM can do this
task with high accuracy, then there is no added
benefit of adding collating traces into prompts.

Can the LLM infer the execution trace from
the program alone? Although the Self-Debug
approach implicitly traces through the program’s
execution, it is never formally evaluated. If an
LLM can accurately generate a program’s execu-
tion trace, then adding such a trace into the prompt
would understandably not provide additional value
for APR. Prompts used for each task can be found
in Appendix C.2.

For both of these experiments we used GPT-4
on a subset of programs from the Refactory dataset.
Since trace prediction behavior can be different
depending on whether a function executes success-
fully or raises an error, for each experiment we
differentiate between traces produced for working
and failing programs. In addition, due to a limited
number of distinct problems in Refactory, we addi-

tionally evaluate on the Geeks-for-geeks dataset4.
To evaluate the LLM’s output, we compute a diff
against the ground truth trace or collated trace/pro-
gram and report the exact match rate, after light
post-processing, in Table 3 of Appendix C.1.

Based on these results, trace collating accuracy
reaches 88% on reference Refactory programs,
however it degrades by nearly ten percent on pro-
grams containing failures. Furthermore, on the
more diverse Geeks for geeks dataset, which also
eliminates the possibility of prompt leakage, collat-
ing performance sharply decreases to just 45%.

Prediction of a program’s execution trace by an
LLM from scratch is a significantly more challeng-
ing task compared to merely modifying the format
of the trace. As a result, the rate of zero-diff trace
predictions does not exceed 50% in the case of ref-
erence Refactory programs and is further halved
for programs containing failures. Across the Geeks
for geeks dataset, only 15% of generated traces
perfectly match the ground truth. We provide qual-
itative analysis of a manually reviewed sample of
diffs in the appendix.

Despite the impressive ability of GPT-4 at ma-
nipulating execution traces neither of the two tasks
appear to be trivially solvable. Hence, we conclude
real execution traces can contribute information
for downstream tasks not yet easily inferrable by
strong LLMs such as GPT-4.

6 Conclusion

In this study, we examined the impact of incorpo-
rating program execution traces into prompts on
the program repair capabilities of the GPT model
family. Our findings indicate that trace-based
prompts do not consistently outperform error-based
prompts; their effectiveness varies with the dataset
and LLM used. Analysis reveals that longer traces
and more variable assignments reduce prompt ef-
fectiveness. Using this insight, we developed vari-
ations of trace-based prompts, finding that LLM-
optimized traces offer more consistent improve-
ments without limiting trace complexity heuristi-
cally. We validated our results against a fine-tuned
baseline and found that LLMs have limited capacity
for trace generation, explaining the weaker perfor-
mance of the Self-Debug baseline and highlighting
the potential utility of traces in code tasks.

4https://github.com/facebookresearch/
TransCoder
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7 Disclaimer

Disclaimer: This paper was prepared for informa-
tional purposes by the Artificial Intelligence Re-
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affiliates ("JP Morgan”) and is not a product of the
Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever
and disclaims all liability, for the completeness, ac-
curacy or reliability of the information contained
herein. This document is not intended as invest-
ment research or investment advice, or a recom-
mendation, offer or solicitation for the purchase
or sale of any security, financial instrument, finan-
cial product or service, or to be used in any way
for evaluating the merits of participating in any
transaction, and shall not constitute a solicitation
under any jurisdiction or to any person, if such so-
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A Different Prompt Types

A.1 Error Prompt
1 ### Provide a fix for the buggy function.
2 ### Buggy Function:
3 def sort_age(lst):
4 return lst.sort(key = lambda x: x[1])
5

6 ### Failing Test Case:
7 Traceback (most recent call last):
8 File "temp.py", line 13, in <module>
9 result = sort_age([('F', 18), ('M', 23), ('F', 19), ('M', 30)]); assert result == [('M', 30),

('M', 23), ('F', 19), ('F', 18)], 'Expected [(\'M\', 30), (\'M\', 23), (\'F\', 19), (\'F\',
18)] but got %s' % result

↪→
↪→

10 AssertionError: Expected [('M', 30), ('M', 23), ('F', 19), ('F', 18)] but got None
11

A.2 Trace Prompt
1 ### Provide a fix for the buggy function.
2 ### Buggy Function:
3 def sort_age(lst):
4 return lst.sort(key = lambda x: x[1])
5

6 ### Failing Test Case:
7 Traceback (most recent call last):
8 File "temp.py", line 13, in <module>
9 result = sort_age([('F', 18), ('M', 23), ('F', 19), ('M', 30)]); assert result == [('M', 30),

('M', 23), ('F', 19), ('F', 18)], 'Expected [(\'M\', 30), (\'M\', 23), (\'F\', 19), (\'F\',
18)] but got %s' % result

↪→
↪→

10 AssertionError: Expected [('M', 30), ('M', 23), ('F', 19), ('F', 18)] but got None
11

12 ### Function Execution Trace:
13 Source path:... temp.py
14 Starting var:.. lst = [('F', 18), ('M', 23), ('F', 19), ('M', 30)]
15 call 10 def sort_age(lst):
16 line 11 return lst.sort(key = lambda x: x[1])
17 Modified var:.. lst = [('F', 18), ('F', 19), ('M', 23), ('M', 30)]
18 return 11 return lst.sort(key = lambda x: x[1])
19 Return value:.. None

A.3 Collated Prompt
1 ### Provide a fix for the buggy function, annotated with its execution trace of the below failing

test case.↪→
2 ### Buggy Function (execution states indicated via inline comments):
3 # Starting var:.. lst = [('F', 18), ('M', 23), ('F', 19), ('M', 30)]
4 def sort_age(lst): # Call def sort_age(lst):
5 lst.sort(key=lambda x: x[1],reverse=True) # Modified var:.. lst = [('M', 30), ('M', 23), ('F',

19), ('F', 18)]↪→
6 print(lst) # Return print(lst)
7 # Return value:.. None
8

9 ### Failing Test Case:
10 [('M', 30), ('M', 23), ('F', 19), ('F', 18)]
11 Traceback (most recent call last):
12 File "temp.py", line 14, in <module>
13 result = sort_age([('F', 18), ('M', 23), ('F', 19), ('M', 30)]); assert result == [('M', 30),

('M', 23), ('F', 19), ('F', 18)], 'Expected [(\'M\', 30), (\'M\', 23), (\'F\', 19), (\'F\',
18)] but got %s' % result

↪→
↪→

14 AssertionError: Expected [('M', 30), ('M', 23), ('F', 19), ('F', 18)] but got None

A.4 OPT Prompt
1

2 ### Provide a fix for the buggy function.
3 ### Buggy Function:
4 def sort_age(lst):
5 lst.sort(key=lambda x: x[1],reverse=True)
6 print(lst)
7
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8 ### Failing Test Case:
9 [('M', 30), ('M', 23), ('F', 19), ('F', 18)]

10 Traceback (most recent call last):
11 File "temp.py", line 15, in <module>
12 result = sort_age([('F', 18), ('M', 23), ('F', 19), ('M', 30)]); assert result == [('M', 30),

('M', 23), ('F', 19), ('F', 18)], 'Expected [(\'M\', 30), (\'M\', 23), (\'F\', 19), (\'F\',
18)] but got %s' % result

↪→
↪→

13 AssertionError: Expected [('M', 30), ('M', 23), ('F', 19), ('F', 18)] but got None
14 ### Function Execution Trace:Source path: temp.py
15 Function: sort_age(lst)
16 Input: lst = [('F', 18), ('M', 23), ('F', 19), ('M', 30)]
17 Line 12: Sorted list based on age in descending order
18 Updated lst: [('M', 30), ('M', 23), ('F', 19), ('F', 18)]
19 Line 13: Printed sorted list
20 Return: None
21
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B Rationale behind prompt choice and other prompts considered.

In our preliminary experiment error-based prompts always performed better than program-only prompts.
Hence, we use Error Prompts as a point of comparison for Trace Prompts, foregoing prompts only
containing the buggy program. Furthermore, we explored the option of including all failing test cases in
the same prompt, however that did not provide a lift compared to a single test case, and overall performed
slightly worse. We hypothesize multiple test cases could be more helpful for program generation to
help define the space of valid solutions, whereas in APR the buggy function itself provides a bulk of
information for fixing a bug, and a single failing test case, while inexhaustive, is generally sufficient
for setting the LLM on the right path to finding a fix. The use of few-shot prompts, while feasible for
improving the accuracy of error-based prompts, is problematic for traces as it can greatly increase the
overall length of the prompt, potentially exceeding the 8k context window.

C Comparison of Refactory Fixes Generated by GPT 3.5 for Error and Trace Prompts
1 ### Provide a fix for the buggy function.
2 ### Buggy Function:
3 def sort_age(lst):
4 return lst.sort(key = lambda x: x[1])
5

6 ### Failing Test Case:
7 Traceback (most recent call last):
8 File "temp.py", line 13, in <module>
9 result = sort_age([('F', 18), ('M', 23), ('F', 19), ('M', 30)]); assert result == [('M', 30),

('M', 23), ('F', 19), ('F', 18)], 'Expected [(\'M\', 30), (\'M\', 23), (\'F\', 19), (\'F\',
18)] but got %s' % result

↪→
↪→

10 AssertionError: Expected [('M', 30), ('M', 23), ('F', 19), ('F', 18)] but got None
11

12 ### Function Execution Trace:
13 Source path:... temp.py
14 Starting var:.. lst = [('F', 18), ('M', 23), ('F', 19), ('M', 30)]
15 call 10 def sort_age(lst):
16 line 11 return lst.sort(key = lambda x: x[1])
17 Modified var:.. lst = [('F', 18), ('F', 19), ('M', 23), ('M', 30)]
18 return 11 return lst.sort(key = lambda x: x[1])
19 Return value:.. None

1 # GPT 3.5 EP Response:
2 '''The issue with the buggy function is that
3 the `lst.sort()` method modifies the list
4 in-place and does not return a sorted list.
5 To fix this, we can modify the function to
6 first sort the list using `lst.sort()` and
7 then return the sorted list by simply
8 returning the original list `lst`. Here's
9 the fixed function:'''

10

11 def sort_age(lst):
12 lst.sort(key=lambda x: x[1])
13 return lst
14

15 '''Now, running the failing test case
16 should give us the expected output:'''

1 # GPT 3.5 TP Response:
2 '''To fix the buggy function, we need to make
3 two changes: 1. Instead of returning the
4 result of the `lst.sort()` method, we need
5 to return the sorted list itself. 2. We need
6 to sort the list in descending order by
7 modifying the sorting key lambda function to
8 `lambda x: -x[1]`. Here is the fixed version
9 of the function:'''

10

11 def sort_age(lst):
12 lst.sort(key=lambda x: -x[1])
13 return lst
14

15 '''This will return the correct sorted
list.'''↪→
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Figure 5: Distributions of trace lengths and variable changes across correct vs incorrect program fixes generated by
GPT-3.5
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Figure 6: Ablations of trace length threshold values used with the routing strategy for GPT3.5
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Figure 7: Ablations of trace length threshold values used with the routing strategy for GPT-4.
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C.1 Trace Understanding Probing Studies Full Results and Qualitative Findings

Table 3: Trace Understanding Probing Results

Dataset partition (#prompts) Trace Collating Trace Prediction
Refactory reference (34) 88% 50%
Refactory fail (38) 79% 26%
Geeks for geeks (300) 45% 15%

We manually reviewed a sample of diffs to gain qualitative insights of LLM trace manipulation behavior.
Most discrepancies between ground truth and either LLM-collated or predicted traces are due to additions
or deletions of variable modifications from the trace. In particular, within loops, the LLM tends to either
miss or add extra variable modifications., which could hit at a potential limitation in the depth of reasoning
and memory. In the task of trace prediction from scratch, the second most erratic behavior is around
predicting function returns, which can amount to both wrong value and wrong placement within the
execution flow. Interestingly, in addition to generating traces, the LLM consistently attempts to fix code
formatting, and in many cases optimizes away code branches not taken. Similarly, in the presence of
execution failures, the LLM is unreliable at correctly predicting exceptions – either predicting exception
types not commonly raised by a given operation, missing the exception altogether or, in some cases,
patching the code to prevent an exception. Miscellaneous observed other discrepancies are due to the
LLM adding superfluous commentary, trace formatting mistakes and hallucination of object hashes and
other literals.
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C.2 Prompts for Predicting and Collating Traces

1 ### Given a function and its invocation, trace the function's execution, using inline comments in
the format shown in the below examples:↪→

2 ### Example program:
3 def unique_day(day, possible_birthdays):
4 count = 0
5 for birthday in possible_birthdays:
6 if birthday[1] == day:
7 count += 1
8 return count == 1
9

10 ### Example invocation:
11 unique_day(day = '1', possible_birthdays = (('January', '1'), ('February', '1')))
12

13 ### Example traced program:
14 # Starting var:.. day = '1'
15 # Starting var:.. possible_birthdays = (('January', '1'), ('February', '1'))
16 def unique_day(day, possible_birthdays):
17 count = 0 # New var:....... count = 0
18 for birthday in possible_birthdays: # New var:....... birthday = ('January', '1')
19 # Modified var:.. birthday = ('February', '1')
20 if birthday[1] == day:
21 count += 1 # Modified var:.. count = 1
22 # Modified var:.. count = 2
23 return count == 1
24 # Return value:.. False
25

26 ### Example program with exception:
27 def remove_extras(lst):
28 result = []
29 for i in lst and not result:
30 result += result + i
31 return result
32

33 ### Example invocation with exception:
34 remove_extras(lst = [3, 4, 5, 1, 3])
35

36 ### Example traced program with exception:
37 # Starting var:.. lst = [3, 4, 5, 1, 3]
38 def remove_extras(lst):
39 result = [] # New var:....... result = []
40 for i in lst and not result: # Exception:..... TypeError: 'bool' object is not iterable
41 result += result + i
42 return result
43

44 ### Valid traces types the following: 'Starting var', 'Modified var', 'New var', 'Return value',
'Exception'. Do not insert any other comments.↪→

45

46 ### Program:
47 def search(x, seq):
48 for i in range(len(seq)):
49 if x <= seq[i]:
50 return i
51 return len(seq)
52 ### Invocation:
53 search(-100, ())
54
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1 ### Given a function and its execution trace, can you align each element in the trace with the corresponding line in the program, using the format
shown in the below examples:↪→

2 ### Example program:
3 def unique_day(day, possible_birthdays):
4 count = 0
5 for birthday in possible_birthdays:
6 if birthday[1] == day:
7 count += 1
8 return count == 1
9

10 ### Example trace:
11 Source path:... temp.py
12 Starting var:.. day = '1'
13 Starting var:.. possible_birthdays = (('January', '1'), ('February', '1'))
14 call 10 def unique_day(day, possible_birthdays):
15 line 11 count = 0
16 New var:....... count = 0
17 line 12 for birthday in possible_birthdays:
18 New var:....... birthday = ('January', '1')
19 line 13 if birthday[1] == day:
20 line 14 count += 1
21 Modified var:.. count = 1
22 line 12 for birthday in possible_birthdays:
23 Modified var:.. birthday = ('February', '1')
24 line 13 if birthday[1] == day:
25 line 14 count += 1
26 Modified var:.. count = 2
27 line 12 for birthday in possible_birthdays:
28 line 15 return count == 1
29 return 15 return count == 1
30 Return value:.. False
31
32 ### Example aligned:
33 # Starting var:.. day = '1'
34 # Starting var:.. possible_birthdays = (('January', '1'), ('February', '1'))
35 def unique_day(day, possible_birthdays):
36 count = 0 # New var:....... count = 0
37 for birthday in possible_birthdays: # New var:....... birthday = ('January', '1')
38 # Modified var:.. birthday = ('February', '1')
39 if birthday[1] == day:
40 count += 1 # Modified var:.. count = 1
41 # Modified var:.. count = 2
42 return count == 1
43 # Return value:.. False
44
45 ### Example program with exception:
46 def remove_extras(lst):
47 result = []
48 for i in lst and not result:
49 result += result + i
50 return result
51
52 ### Example trace with exception:
53 Source path:... temp.py
54 Starting var:.. lst = [3, 4, 5, 1, 3]
55 call 10 def remove_extras(lst):
56 line 11 result = []
57 New var:....... result = []
58 line 12 for i in lst and not result:
59 exception 12 for i in lst and not result:
60 Exception:..... TypeError: 'bool' object is not iterable
61 Call ended by exception
62
63 ### Example aligned with exception:
64 # Starting var:.. lst = [3, 4, 5, 1, 3]
65 def remove_extras(lst):
66 result = [] # New var:....... result = []
67 for i in lst and not result: # Exception:..... TypeError: 'bool' object is not iterable
68 result += result + i
69 return result
70
71 ### Note aligned versions only include capitalized entries from the trace. Do not insert any other comments.
72
73 ### Program:
74 def search(x, seq):
75 for i in range(len(seq)):
76 if x <= seq[i]:
77 return i
78 return len(seq)
79 ### Trace:
80 Source path:... temp.py
81 Starting var:.. x = 42
82 Starting var:.. seq = (-5, 1, 3, 5, 7, 10)
83 call 10 def search(x, seq):
84 line 11 for i in range(len(seq)):
85 New var:....... i = 0
86 line 12 if x <= seq[i]:
87 line 11 for i in range(len(seq)):
88 Modified var:.. i = 1
89 line 12 if x <= seq[i]:
90 line 11 for i in range(len(seq)):
91 Modified var:.. i = 2
92 line 12 if x <= seq[i]:
93 line 11 for i in range(len(seq)):
94 Modified var:.. i = 3
95 line 12 if x <= seq[i]:
96 line 11 for i in range(len(seq)):
97 Modified var:.. i = 4
98 line 12 if x <= seq[i]:
99 line 11 for i in range(len(seq)):

100 Modified var:.. i = 5
101 line 12 if x <= seq[i]:
102 line 11 for i in range(len(seq)):
103 line 14 return len(seq)
104 return 14 return len(seq)
105 Return value:.. 6
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C.3 Qualitative Examples of Trace Prediction Errors

1 # Starting var:.. lst = [3, 4, 5, 1, 3]
2 def remove_extras(lst):
3 i = 0 # New var:....... i = 0
4 while i < len(lst):
5 j = i + 1 # New var:....... j = 1
6 # Modified var:.. j = 2
7 # Modified var:.. j = 3
8 while j < len(lst):
9 if lst[i] == lst[j]:

10 lst = lst[:j] + lst[j+1:] #
Modified var:.. lst = [3,
4, 5, 1]

↪→
↪→

11 j += 1 # Modified var:.. j = 2
12 # Modified var:.. j = 3
13 # Modified var:.. j = 4
14 # Modified var:.. j = 5
15 # Modified var:.. j = 3
16 # Modified var:.. j = 4
17 # Modified var:.. j = 4
18 i += 1 # Modified var:.. i = 1
19 # Modified var:.. i = 2
20 # Modified var:.. i = 3
21 # Modified var:.. i = 4
22 return lst # Return value:.. [3, 4, 5, 1]

1 # Starting var:.. lst = [3, 4, 5, 1, 3]
2 def remove_extras(lst):
3 i = 0 # New var:....... i = 0
4 while i < len(lst):
5 j = i + 1 # New var:....... j = 1
6 # Modified var:.. j = 2
7 # Modified var:.. j = 3
8 # Modified var:.. j = 4
9 # Modified var:.. j = 5

10 while j < len(lst):
11 if lst[i] == lst[j]:
12 lst = lst[:j] + lst[j+1:] #

Modified var:.. lst = [3,
4, 5, 1]

↪→
↪→

13 j += 1
14 i += 1 # Modified var:.. i = 1
15 # Modified var:.. i = 2
16 # Modified var:.. i = 3
17 # Modified var:.. i = 4
18 return lst # Return value:.. [3, 4, 5, 1]
19

20

Figure 8: Example of erroneous variable modifications within a nested loop (Ground truth – left, prediction – right)

1 # Starting var:.. date = '3'
2 # Starting var:.. possible_birthdays =

(('January', '1'), ('January', '2'))↪→
3 def unique_day(date, possible_birthdays):
4 if date in possible_birthdays[1]:
5 return False
6 else:
7 return True # Return value:.. True

1 # Starting var:.. date = '3'
2 # Starting var:.. possible_birthdays =

(('January', '1'), ('January', '2'))↪→
3 def unique_day(date, possible_birthdays):
4 if date in possible_birthdays[1]:
5 return True # Return value:.. True
6 else:
7 return False

Figure 9: Example of wrong return value placement and code modification. (Ground truth – left, prediction – right)

1 # Starting var:.. lst = [('M', 23), ('F', 19),
('M', 30)]↪→

2 def sort_age(lst):
3 return lst.sort(key = lambda x: x[1],

reverse = True) # Modified var:.. lst
= [('M', 30), ('M', 23), ('F', 19)]

↪→
↪→

4 # Return value:.. None

1 # Starting var:.. lst = [('M', 23), ('F', 19),
('M', 30)]↪→

2 def sort_age(lst):
3 return lst.sort(key = lambda x: x[1],

reverse = True) # Return value:.. None↪→
4 # Exception:..... AttributeError: 'NoneType'

object has no attribute 'sort'↪→

Figure 10: Example of a falsely predicted exception. (Ground truth – left, prediction – right)
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1 # Starting var:.. lst = [('F', 19)]
2 def sort_age(lst):
3 sort1 = [] # New var:....... sort1 = []
4 while lst:
5 largest = lst[0][1] # New var:.......

largest = 19↪→
6 if i[1] > largest: # Exception:.....

NameError: name 'i' is not defined↪→
7 largest = i[1]
8 lst.remove(i)
9 sort1.append(i)

10 return sort1

1 # Starting var:.. lst = [('F', 19)]

2 def sort_age(lst):
3 sort1 = [] # New var:....... sort1 = []
4 while lst:
5 largest = lst[0][1] # New var:.......

largest = 19↪→
6 for i in lst: # New var:....... i =

('F', 19)↪→
7 if i[1] > largest:
8 largest = i[1]
9 lst.remove(i) # Modified var:.. lst =

[]↪→
10 sort1.append(i) # Modified var:..

sort1 = [('F', 19)]↪→
11 return sort1 # Return value:.. [('F', 19)]

Figure 11: Example of a code modification to fix an exception. (Ground truth – left, prediction – right)
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Abstract

Multi-document retrieval approaches often
overlook the ways different retrievals com-
plement each other when addressing complex
queries. In this work, we study journalist
source selection in news article writing and ex-
amine the discourse roles that different sources
serve when paired together, finding that dis-
course function (not simply informational con-
tent) is an important component of source us-
age. We introduce a novel IR task to benchmark
how well language models can reason about
this narrative process. We extract a journalist’s
initial query and the sources they used from
news articles and aim to recover the sources
that support this query. Then, we demonstrate
that large language models (LLMs) can be em-
ployed in multi-step query planning, identify-
ing informational gaps and enhancing retrieval
performance, but current approaches to inter-
leave queries fall short. By training auxiliary
discourse planners and incorporating this infor-
mation into LLMs, we enhance query planning,
achieving a significant 5% improvement in pre-
cision and a 2% increase in F1 score over the
previous SOTA, all while maintaining recall.

1 Introduction

Tasks in information retrieval (IR) traditionally fo-
cus on retrieving documents based on factual rel-
evance to queries (Manning, 2008), even in ap-
proaches that incorporate multi-document retrieval
objectives (Zhai et al., 2015; Yu et al., 2023).
This overlooks the discourse function that different
sources of information play in addressing complex
queries (Hearst, 2009). Across a variety of commu-
nicative domains – e.g. storytelling (Bruner, 1991),
education (Egan, 1989) and journalism (Tuchman,
1978) – humans synthesize information from mul-
tiple sources to fulfill different narrative roles. For
example, in news articles, it is not enough to cover
different subtopics (Zhai et al., 2015): journalists
bring together experts, witnesses, and authorities

Figure 1: We present a new multi-document retrieval
task: source-finding for journalism. Shown above is a
complex query, extracted from news articles. On the
left are the sources the journalist used to support the
query, each annotated with their discourse role. Shown
on the right are the queries issued by an LLM to our
sandbox retrieval environment, and the sources retrieved.
Although initially retrieving the same sources that the
journalist used (green) the LLM soon meanders and
departs from the original query, retrieving irrelevant
sources (red).

(Spangher et al., 2024a). Together, these sources
tell a more complete story (Van Dijk, 1998).

Building off this insight, we introduce a novel IR
task that requires us to retrieve multiple documents
to support complex queries the way a human would
retrieve them. Specifically, given (1) a dataset of
news articles, (2) the initial queries guiding each
news article, and (3) sources extracted from all ar-
ticles, our task is to retrieve the ground-truth set
of sources a journalist chose for the article. Suc-
cessfully addressing this requires reasoning about
the roles and contributions of each source within a
narrative context (Schank and Abelson, 1977).

We start by testing an interleaving retrieval ap-
proach to (Trivedi et al., 2023) address this task,
as shown in Figure 1. In this approach, an LLM
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is used to iteratively: (1) issue queries to a re-
triever (2) reason about the sources returned (3)
issue follow-up queries. However, human valida-
tion shows that these interleaved queries frequently
repeat, meander, or degenerate, ultimately failing
to capture the diversity of sources present in human
writing (Section 5).

We hypothesize that a higher-level planner can
guide the interleaving process towards diversity
while staying focused on the query. For example,
based off the example in Figure 1, we would like
a higher-level planner to predict: “this query is
likely to answered by anecdotes, data, experts and
actors” – we can then use this plan to guide in-
terleaving steps. To make training such a planner
tractable, we first constrain the space of possible
plans: we do this by developing a novel discourse
schema (described in Section 2.2). With this lower-
dimensional planning space in hand, we train a
high accuracy autoregressive planner.

Finally, we introduce a novel retrieval method
called Planned Interleaved Retrieval (PIR) to uti-
lize retrieval plans in an interleaving fashion. PIR
uses discourse labels in three ways: (1) querier:
The LLM is given the discourse label for each in-
terleaved query in the prompt. (2) retriever: The
retrieval database is segmented based on discourse
roles. (3) re-ranker: The results are reranked
within each discourse segment. Taken together,
we find that PIR increases retrieval precision by 5%
and improves F1 score by 2%.

In summary, our contributions are threefold:

• We present a novel IR task grounded in ob-
served sources curated by journalists. This
task benchmarks our ability to reason about
the different information types that contribute
to comprehensive narratives.

• Through extensive analysis, we demonstrate
how various sources contribute different el-
ements to a narrative, offering unique view-
points and fulfilling specific roles within the
story’s discourse structure. This understand-
ing gives us insights into why certain sources
are used together and how they collectively
enhance the narrative.

• We introduce a novel method, Planned Inter-
leaved Retrieval, and demonstrate that plan-
ning can be used to guide a multi-step, inter-
leaved querying process. Incorporating dis-

course into the retrieval process, we show, sig-
nificantly improves performance on the task.

Although we focus on news, our focus discourse
in retrieval is flexible, and we have offered a vision
of how retrieval might incorporate higher-level
planning structures. We seek not only to enhance
IR systems’ ability to meet complex user needs, but
also contribute to a deeper understanding of how
source-inclusion occurs in narrative structures.

2 Task and Dataset Creation

To set up our multi-document retrieval task, we
wish to create a large retrieval database where
multiple “documents” are labeled as ground-truth
for answering each query. Obtaining gold labels in
journalism, though, is challenging: news is experts’
domain that is difficult to crowdsource. So, to
construct our task, we reverse-engineer the text of
finished news articles, as described below.

2.1 Dataset Creation

For each news article, we extract two items: (1)
a query describing the initial question answered
by the journalist and (2) the set of informational
sources used by the journalist. The queries serve
as the input to our retrieval problem, while the text
of each source serves as the ground truth match-
ing “document” for each query. Following the
definitions in Spangher et al. (2023), sources can
be people (e.g., individuals interviewed or issuing
statements), documents (e.g., studies, legal doc-
uments), or datasets. We use a dataset of articles
released by Spangher et al. (2024b), which includes
380,000 news articles covering business press re-
leases. From this dataset, we sample 50,000 arti-
cles and their corresponding press releases. Press
release coverage is a practically useful domain, be-
cause press-releases coverage is a necessary and
time-sensitive part of business coverage (Petridis
et al., 2023).

Query Generation We provide an LLM with
both the press release and the corresponding news
article, asking it to generate a query that might
describe an initial question the journalist had upon
reading the press release, which led them to write
the article.

Source Extraction First, we identify all infor-
mational sources in each news article using mod-
els trained by Spangher et al. (2023). Then, we
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use Llama-3.1-70B1 to extract, for each source, a
stand-alone packet of information provided by that
source2 “Standalone” means that we can accurately
identify the source later in the retrieval database.
In total, we extract 400,000 sources, averaging ap-
proximately 8.3 sources per document.

2.2 Schema Generation

As described in Section 1, we seek to create a low-
dimensional schema to describe our sources (in
order to ground our planner). We describe that pro-
cess now. Inspired by Pham et al. (2024), we first
ask an LLM to generate descriptive labels for the
discourse role of each source, based on its source
extraction. This allows for a broad superset of la-
bels (examples are shown in the Appendix, Table
10.). Then, we cluster these labels by (1) annotat-
ing pairs of labels with similarity judgments using
an LLM3, (2) using these annotations to train an
SBERT embedding model (Reimers and Gurevych,
2019a), and (3) clustering these embeddings us-
ing k-means. We identify eight distinct clusters
that represent different narrative roles (e.g., “Main
Actor,” “Expert” “Background Info”). Definitions
for each discourse role are shown in the Appendix,
Table 5. Additionally, we ask the LLM to label
the centrality of the source: “High” (the source
is crucial to the narrative), “Medium” (the source
plays a significant role but is not necessary) and
“Low” (the source could be easily replaced with
another source). We show the breakdown of Dis-
course Roles by Centrality in Figure 2, and give
additional analysis in the Appendix.

2.3 Data Validation

Query and Source Extraction Validation First,
we present two professional journalists a sample
of 150 queries and ask them if these queries (1)
contain the appropriate level of background infor-
mation that an experienced journalist would have,
and (2) reflect reasonable starting-points for sto-
ries. The journalists confirm 95% of our queries
meet these criteria. Next, the journalists manually
annotate a set of 396 sources using pyramid sum-
marization evaluation (Nenkova et al., 2007): they
count the informational units present in each of

1https://huggingface.co/meta-llama/
Meta-Llama-3.1-70B-Instruct/

2This includes: describing resolving all coreferences and
stating the full names of places, people, and events.

3Specifically, whether two different narrative roles genera-
tions are substantially the same or not.

Discourse Label % Discourse Label %

Main Actor 19.0% Data 10.2%
Background Info. 18.9% Confirmation 9.2%
Counterpoint 11.3% Analysis 7.8%
Anecdotes 10.8% Broadening 1.6%
Expert 10.5% Subject 0.7%

Table 1: Distribution of Discourse Types in News Arti-
cles. ‘Main Actor’ and ‘Background Info.’ are the most
common, and ‘Subject’ the least common.

Figure 2: Proportion of sources within each discourse
role that occupy High, Medium or Low Centrality in
their stories.

extracted source and then examine the news arti-
cle to count the units of information attributable to
that source. Overall, we find that 87% of units in
source summaries correspond to units expressed in
the original news article. We also manually vali-
date whether the information in each source stands
on its own or if there are unclear coreferences. In
80% of our sources, we are satisfied with the level
of detail.

Discourse Schema Validation To validate the
reliability of these labels, we ask the same two
expert journalists to manually annotate the 396
sources with labels from our schema. The journal-
ists achieve a high inter-annotator agreement rate
(Cohen’s κ = 0.75) as well as a high agreement
rate with our applied labels (κ = 0.64), indicating
substantial agreement (Cohen, 1960).

3 Analysis

In order to better understand our dataset, we con-
duct a series of analyses to show how sources are
used in news writing by journalists. We express
our findings as three primary insights.

Insight #1: Diversity and perspective alone
do not characterize source inclusion Diver-
sity is a common threads in multi-document re-
trieval: the underlying assumption is that combin-
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ing diverse sources leads to a more comprehen-
sive retrieval (Carbonell and Goldstein, 1998; Al-
lan, 2003; Clarke et al., 2008). However, we ob-
serve that, in news writing, while many sources are
chosen for diverse information, others are chosen
specifically to confirm facts. For example, ∼10%
of sources play a Confirmation role, as in Table 1.
We show more analysis in Appendix B.

What other theories exist to explain source-
selection criteria in journalism? Gans (1979) sug-
gests that supporting and opposing viewpoints are
selected to give a balanced narrative, suggesting
that stance is a primary driver for source selection.
We conduct an analysis of sources’ stances in the
narrative, using Ma et al. (2024)’s stance-detection
method4. We find that while some sources do fit
into the “for” and “against” categories, this is not
universally the case. Over 30% of sources take
an informational perspective without explicitly sup-
porting or opposing any viewpoint5. This suggests
that source selection is more nuanced than the bi-
nary “for and against” model implies. Journal-
ists often include sources to provide context, back-
ground information, or expert analysis, which may
not directly relate to a polarized viewpoint (Tuch-
man, 1978).

Insight #2: Certain Kinds of Stories Use Dif-
ferent Kinds of Sources Finally, we examine
whether different types of news stories use sources
differently. We manually identify different kinds
of coverage: investigative reports, breaking news,
etc. (see Appendix E.3 for a full list). We find
that different kinds coverage tend to be dominated
by different source discourse roles. For instance,
investigative reports tend to include more “Expert
Analysis” and “Background Information” sources,
while event coverage focuses on “Main Actors” and
“Eyewitnesses.” Detailed analysis of these is pro-
vided in Appendix E.3, along with examples of sto-
ries. This analysis highlights that source selection
is context-dependent and varies across different
types of journalism. Understanding these patterns
can inform the development of more sophisticated
information retrieval systems that tailor source rec-
ommendations based on the story type.

4Ma et al. (2024) used Llama 3.1 with chain-of-thought
prompts to detect stance; this scored highly on popular stance
benchmarks. Specifically, we prompt the model to classify the
stance of each source as “supporting,” “opposing,” or “neutral”
with respect to the main event or topic of the article (see
Appendix E.4 for the full prompt).

5Shown in Figure 9 in the Appendix

Insight #3: Sources used in multiple documents
tend to have the same discourse roles. We ex-
pected that sources would often be used in different
roles in differet articles: for instance, in Story #1, a
police officer might be a “Main Actor”, in Story #2
the same police officer might used for “Background
info.” and in Story #3, for an “Anecdote”.

We conduct an analysis on all named sources that
we name-match across two or more articles and find
that, on average, sources tend to be classified in the
same role (sources have .43 gini impurity6, .33
label inconsistency7, .95 entropy and .55 diversity8

across discourse roles). One possible explanation
is that journalists observe how other journalists use
sources, and use them similarly. This is a crucial
insight: for simplicity, in the rest of the paper, we
assume that sources’ discourse role is only based
on their original source-text.9

4 Discourse in Multi-Document
Information Retrieval

Given our source and query dataset, described in
Section 2, we now present our methodology for
discourse-aware multi-document retrieval. Moti-
vated by our findings in Section 3, we posit that
incorporating discourse structures can significantly
enhance the retrieval process. In Section 4.1, we
discuss how discourse information can inform the
retrieval process and in Section 4.2 we discuss ways
to infer a story’s discourse requirements.

4.1 Overview of Planned Interleaved Retrieval

Our retrieval framework consists of three main
stages, illustrated in Figure 3: (1) Query Planning,
(2) Discourse-Specific Indexing and Retrieval, and
(3) Re-ranking. We describe each of these steps,
focusing on how discourse roles can be involved.

Stage 1: Interleaved Querying In the first stage,
we employ an LLM to generate queries q1, ...qn se-
quentially in order to retrieve sources, as in Trivedi
et al. (2023). Discourse-awareness in this stage
means the LLM can reference the discourse role

6Gini impurity is measured as 1−∑i

(
li

ltotal

)2
, where li

is the count of label i and ltotal is the sum of all label counts
7Inconsistency is defined as 1− lmax/ltotal where lmax

is the label with the maximum count.
8Where diversity is defined as lnumunique/ltotal
9We hold this constant to simplify computation. We ac-

knowledge this is a limiting assumption, and in follow-up
work we will remove that assumption. Allowing sources to
adapt their discourse roles dynamically in response to novel,
unseen queries is a crucial area for future research.
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Figure 3: The three-stage discourse-aware retrieval process: (1) Discourse-aware query planning using an LLM
with interleaving and discourse role planning, (2) querying discourse-specific indices, and (3) re-ranking retrieved
documents within discourse categories.

of the source it desires to obtain in query round
qt while generating it’s query (we will discuss in
Section 4.2 how we infer these discourse roles).

Stage 2: Indexing and Retrieval Given a query,
qt, we then retrieve sources s1, ...sk relevant to this
query. Discourse-awareness in this stage means
that the retrieval indices themselves are filtered to
discourse roles of sources in our corpus. Tradi-
tional multi-document retrieval systems treat all
documents equally (Voorhees and Tice, 1999), but
our approach organizes the index into hierarchical,
discourse-driven sub-indices. This stratification al-
lows for more targeted retrieval. When the LLM
generates a query for a particular discourse role, it
is directed to the corresponding sub-index.

Stage 3: Re-ranking Finally, given a large set
of sources s1, ...sm retrieved in the prior steps, we
re-rank them to surface the sources that are most
relevant together. In this stage, discourse awareness
means that we take the most relevant documents
within each discourse category. This additional
layer of categorization prioritizes documents that
best fulfill the intended narrative role. We use a re-
ranking model that incorporates both relevance and
discourse compatibility, similar to the approach in
Nogueira and Cho (2019).

4.2 Two Different Planning Approaches

As outlined in the previous section, we can incor-
porate discourse information at each stage in our
retrieval process. However, left unexplained was
how we would infer these discourse roles. Now we

discuss the two approaches we take.

Approach #1: Sequential Planning Here, the
query-generator is informed of the possible dis-
course categories, and is asked to pick the next dis-
course role that a story requires. In other words, at
turn t, the LLM views prior q1,...t−1 and discourse
roles d1,...t−1 of retrievals, and is asked to generate
the next discourse role, dt that the story requires.

By allowing an LLM to sequentially generate
roles, we hypothesize that we can introduce a
human-like planning ability – i.e. often humans
do not know the exact discourse roles a story needs
until they get deeper in (Sedorkin, 2015). However,
this approach relies the LLM’s inherent ability to
reason independently about discourse roles without
explicit guidance. Prior studies have shown that
LLMs struggle with structural reasoning in com-
plex tasks (Spangher et al., 2022), suggesting that
this method may be less effective.

Approach #2: A-priori Planning In this ap-
proach, we train an auxiliary planner to predict the
entire distribution of discourse roles the document
will take, a-priori, based on the initial query. To do
this, we cluster articles based on the distribution
of source narrative roles, using K-means clustering
with k = 8 clusters and train a DistilBERT-base
classifier (Sanh et al., 2019) to infer which story
cluster a query belongs to.

In other words, the a-prior planner predicts the
proportion of each discourse role expected in the
final document, based on the initial query. The
predicted distribution is then provided to the LLM
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Retriever Discourse Strategy Overall Results Results by Centrality
Sequential A-priori Recall Prec. F1 High (F1) Med. (F1) Low (F1)

BM25 (Robertson and Walker, 1994) 0.00 0.00 0.00 0.00 0.00 0.00
DPR (Karpukhin et al., 2020) 13.98 9.12 11.04 14.42 6.82 5.68
Interleaving (Trivedi et al., 2023) 25.81 27.04 26.34 37.66 22.60 14.37

PIR
✓ – 24.07 25.27 24.60 33.88 21.28 14.05
– ✓ 25.49 31.61 28.04 40.43 22.17 14.32
✓ ✓ 24.84 33.15** 28.12** 40.16 22.55 14.77

Oracle PIR – – 42.77 42.98 42.86 54.02 37.73 26.78

Table 2: We show retrieval strategies and methods in terms of Recall, Precision, F1 score. Each strategy uses
multiple retrievers. with the Oracle strategy demonstrating the highest performance metrics. ** indicates significant
increases at p < .01, obtained via bootstrap resampling (b = 1, 000).

during the query planning phase10 We train the aux-
iliary model on our dataset, achieving a macro F1
score of 0.72 in classifying queries into the correct
discourse clusters. The average KL divergence be-
tween the predicted and true discourse distributions
is 0.7, indicating a close approximation.

4.3 Experiment Setup

Retriever We use SFR11: a 7B text-embedding
model developed by Salesforce AI Research that
has demonstrated superior performance across mul-
tiple benchmarks. We choose SFR as a powerful,
large instruction-tuned model in order to under-
stand richer and more nuanced queries that we an-
ticipate our task will require.

LLM As in Trivedi et al. (2023), an LLM is used
to plan and reason about the next query to issue.
As in the rest of the paper, we use Llama-3.1-70B.

Dataset We perform an 80/20 split for training
and test sets. To construct the retrieval index, we
aggregate all sources from both sets and organize
them according to discourse role, such that each
role is indexed separately. That is, for every query,
a distinct retrieval index is created for each type.

Baselines (1) BM25: a widely-used probabilis-
tic retrieval framework, calculating the relevance
of documents to a query based on the frequency
of query terms in each document. (2) Dense Pas-
sage Retrieval (DPR) (Karpukhin et al., 2020): we
fine-tune a transformer-based model12 to to effec-

10Prompt example: “We expect this document will
contain 50% Background, 30% Expert Analysis, and
20% Main Actor information. Please choose the next
discourse role you want to use.”

11https://huggingface.co/Salesforce/
SFR-Embedding-2_R

12https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

tively capture semantic similarities beyond key-
word matching. Fine-tuned DPR allows us to test
whether learned knowledge is more important than
planning or reasoning. To finetune DPR, we build a
training dataset that including negative samples for
in-batch training (Karpukhin et al., 2020). For each
positive pair of query qj and its relevant sources s+j ,
we include n negative tools as negative samples.
(3) Interleaving: we employ SFR with an identical
setup to Trivedi et al. (2023) in order to test the
ability of LLMs to reason about the needs of the
query in the absence of discourse labels.

Oracle Finally, to differentiate the role of dis-
course from these two noisy discourse inference
techniques, we test an oracle approach. In this
approach, we provide the LLM with ground-truth
discourse labels extracted during our analysis. By
supplying the actual distribution of discourse roles
present in the target documents, we assess how well
the system can perform when it has perfect knowl-
edge of the sources’ discourse structure. Also, this
highlights potential improvements in retrieval plan-
ning and reasoning mechanisms.

4.4 Results

Our main finding is that incorporating discourse
labels helps us retrieve sources with significantly
higher accuracy than baseline approaches (we
find that these improvements are significant at
p < .01 by running bootstrapped resamples with
b = 1, 000). As evidenced in Table 2, including
discourse labels (with both a-priori and sequen-
tial strategies) elevates the F1 score from 26.34%
to 28.12% compared with the baseline Interleave.
Further, when incorporating oracle discourse infor-
mation, the F1 score boosts up to 42.86%. This
indicates that discourse awareness and planning
can provide insights into query needs.
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Figure 4: Retrieval accuracy scores, broken down by different discourse types. As can be seen, introducing my
discourse planning has a greater impact on certain kinds of discourse categories (e.g. Main Actor and Background
Info.) compared with other discourse types (e.g. “Experts”, “Anecdotes” and “Counterpoint”).

Secondly, and intriguingly, our results suggest
that an a-prior planning-based approach has a more
pronounced impact than sequential planning. Ac-
cording to the results in Table 2, employing a-priori
planning without sequential planning13 yields an
F1 score of 28.04%. In contrast, combining both
sequential and a-prior planning results in a slightly
higher F1 score of 28.12%. The small difference
between these two trials suggests that a-priori plan-
ning alone can substantially enhance retrieval effec-
tiveness, potentially diminishing the incremental
benefits introduced by sequential planning. This
contrasts with recent results on more conventional
QA-based IR tasks, where prompt-based planning
strategies were shown to significantly enhance re-
trieval performances (Trivedi et al., 2023; Huang
et al., 2024). These results suggest that our task
possesses inherent differences. We do caveat our
results with awareness that our a-priori planner was
trained while our sequential planner relied on LLM
pretraining (as did (Trivedi et al., 2023)). This
suggests both that (1) a narrative-focused query ob-
jective is distinct from purely informational query
tasks like those studied previously, and (2) an a-
prior plan is useful in this task, indicating that tem-
plates exists that journalists follow.

5 Discussion

We investigate why incorporating the discourse as-
pects into the systems enhances machine’s source
retrieval ability above the Interleaving approach.

Vanilla Interleaving Tends to Meander To
explain the subpar performance of Interleaving,
which has shown state-of-the-art results on QA
benchmarks, we examine multiple query threads,

13In other words, we simply retrieve k×n-rounds of candi-
dates in the first round, without interleaving, and then re-rank
according to the a-priori predicted discourse distribution

shown in Appendix A.1. Vanilla interleaving
exhibits three notable failure modes. (1) Many
queries generated by the planner tend to restate the
same objectives or focus on overly narrow aspects
of the broader topic without expanding into comple-
mentary dimensions (see Appendix A.1, Table 6).
This restricts the planner’s ability to explore the full
range of sources that a humans typically consider
(e.g. expert opinions, counterpoints, or data anal-
ysis), thus producing a less well-rounded article.
(2) Paradoxically, while interleaving often remains
closely aligned with the initial query’s intent, it also
suffers from a tendency to drift when progressing
through subsequent queries. For instance, an initial
focus on the societal consequences of an issue may
eventually lead to highly specific and less general-
izable topics that deviate from the core inquiry (e.g.
in Figure 1 and Appendix A.1, Table 7). (3) Finally,
even when the planner maintains alignment with
the initial query, it often fails to explicitly request
critical discourse roles, such as expert analyses or
contrasting viewpoints (Appendix A.1, Table 8).
Consequently, the output of vanilla interleaving
lacks the depth and balance.

Varied Centrality Improvements As shown in
Table 2, the retrieval system shows marked im-
provement in handling sources of varying central-
ity when informed by discourse roles, particularly
with the oracle setup. For high centrality sources,
the Micro-F1 score leaps from 37.66 to 54.02, in-
dicating enhanced effectiveness in identifying and
retrieving crucial sources. Similarly, for low cen-
trality sources, the Micro-F1 score rises from 14.37
to 26.78, demonstrating the system’s expanded ca-
pability to incorporate less central, yet informative
perspectives into the narrative, thereby enriching
the overall information retrieval process. The im-
provement from our planning strategies, we ob-
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serve, originates from the enhanced retrieval of
more central sources; this indicates that our plan-
ning strategies effectively identifies and prioritizes
sources crucial for constructing detailed narratives.
However, while the system excels at retrieving
high centrality sources, there is room for improve-
ment in capturing more medium and low centrality
sources. Enhancing our planning to better include
these sources could further enrich the comprehen-
siveness of the IR process.

Discourse Role F1 Analysis As shown in Fig-
ure 4, incorporating discourse role information sig-
nificantly enhances retrieval performance across
discourse roles. By accounting for the specific
functions that sources play in constructing a narra-
tive, the retrieval system is more adept at identify-
ing and selecting comprehensive information. The
consistent enhancements across diverse categories
highlight the effectiveness of a discourse-aware ap-
proach, suggesting that a nuanced understanding
of narrative structures is essential for optimizing
retrieval outcomes in complex tasks such as multi-
document source retrieval.

However, the selective improvements observed
with our planning strategies indicate that while
these strategies are beneficial, their effectiveness
varies across different source categories. Signifi-
cant gains are achieved in categories central to the
narrative—such as Main Actor and Background
Information—where the discourse roles are closely
aligned with the main query and can be explicitly
planned for. This suggests that planning strate-
gies are most effective when the narrative role is
straightforward and directly related to the primary
focus of the query. In contrast, categories requir-
ing nuanced understanding—such as Analysis, Ex-
pert, Anecdotes, and Counterpoint—exhibit less
improvement, implying that current planning strate-
gies may not fully capture the complexities inherent
in these discourse roles. Consequently, further re-
finement of these strategies is necessary to enhance
retrieval performance in categories that demand
deeper contextual and interpretive analysis.

Retrieval Hyperparameters Our preliminary
experiments reveal that the effectiveness of
discourse-aware retrieval is sensitive to the choice
of k, the number of documents retrieved per query.
As shown in Figure 5 in the Appendix, the bene-
fits of incorporating discourse information become
more pronounced with larger k values. This is con-
sistent with findings from Craswell et al. (2020),

who note that re-ranking models have more impact
when the initial retrieval set is large. We attempt
different methods for learning the ideal k per query:
we train a Poisson regression model using a simple
Multilayer Perceptron (MLP) on SBERT embed-
dings (Reimers and Gurevych, 2019b). However,
the model achieves a low Pearson correlation of
r = 0.35 between the predicted and actual opti-
mal k values. Overall, this additional planning step
fails to measurably impact performance. We leave
further steps to future work.

Future Work and Extensions While our current
approach is specialized for journalistic source se-
lection, we see the potential applicability to other
domains like scientific literature and legal docu-
ment retrieval. Adapting our method to these areas
would involve redefining discourse categories rele-
vant to the target domain, retraining discourse-role
classifiers on domain-specific corpora, and validat-
ing with subject matter experts. Journalists often
face time-constraints on the number of sources they
can talk to, making news article analysis a particu-
larly tractable domain to start in, but we anticipate
that structured discursive frameworks common in
these domains would particularly benefit from our
planned retrieval methodology.

Additionally, we recognize the computational
overhead introduced by large models such as
Llama-3.1-70B and SFR-7B. In the future, we plan
to explore smaller, distilled models and computa-
tionally efficient techniques, including knowledge
distillation and quantization. Additionally, we look
forward to testing additional baselines to validate
our approach, such as token-level dense retriev-
ers (Khattab and Zaharia, 2020; Santhanam et al.,
2022) or in-context learning approaches (Zhao
et al., 2021; Rubin et al., 2022).

6 Related Work

Traditional information retrieval (IR) frameworks
primarily focus on finding individual documents
that match factual relevance to a query (Man-
ning, 2008). Extensions of these models for
multi-document retrieval often target coverage or
subtopic diversity, aiming to capture distinct an-
gles of a topic to improve completeness (Carbonell
and Goldstein, 1998; Allan, 2003; Clarke et al.,
2008; Zhai et al., 2015). However, such methods
typically overlook why sources are combined. In
particular, they neglect how different documents
fulfill complementary discourse functions—for ex-
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ample, how “expert opinions” versus “first-person
accounts” each play unique roles in constructing
a cohesive narrative (Hearst, 2009; Bruner, 1991;
Egan, 1989).

Classical work suggests that human sense-
making processes often organize multiple sources
based on how those sources fit into a broader com-
municative structure (Tuchman, 1978; Schank and
Abelson, 1977; Van Dijk, 1998). These insights
pave the way for discourse-aware retrieval systems,
which factor in narrative roles such as main ac-
tors, background info, or expert analysis when
seeking relevant material. Early steps toward it-
erative or interleaving retrieval show promise for
complex queries by harnessing large language mod-
els (LLMs) to generate sequential queries and re-
fine results on-the-fly (Trivedi et al., 2023). Yet,
these methods often lack explicit discourse plan-
ning, leading to overlapping or irrelevant retrievals.

Recent work in LLM-based reasoning have intro-
duced methods such as chain-of-thought (Wei et al.,
2022; Trivedi et al., 2023), which encourage mod-
els to articulate intermediate inferences improve
multi-hop or compositional queries. While inter-
leaving IR iteratively refines queries, they largely
neglect explicit discourse roles. Our work ad-
dresses this gap by designing a discourse-driven
selection paradigm, where roles like “expert opin-
ion” or “background info” are explicitly modeled.
We show how this lens significantly enriches the set
of retrieved documents — an essential step toward
tasks that value not just what sources provide, but
why they are chosen.

7 Conclusion

In this work, we have introduced the concept of
discourse in multi-document retrieval tasks, and
have framed and introduced a novel task aimed at
retrieving sources to assist journalists. We have
shown that discourse planning can impact scores,
and have introduced two different planners; one
based on an LLM and the other based on a learned
algorithm. We noted throughout the paper the nu-
merous simplifying assumptions we made in order
to implement our task, including: the lack of a
trained sequential model, the reliance on ground-
truth k and the assumption that sources would re-
tain their initial discourse. We look in future work
to more fully return and address these.

8 Limitations

8.1 Ethical Considerations

Our methodology relies on large-scale language
models, which have known issues related to bias
and fairness (Sheng et al., 2019; Bender et al.,
2021). We take steps to mitigate these concerns
by filtering training data for harmful content and
evaluating the outputs for biased representations.

8.2 Reproducibility

We provide all code and data necessary to re-
produce our experiments at [GitHub repository
link], following the guidelines set by Pineau et al.
(2021) for reproducible research in machine learn-
ing. While we provide our code and data in a public
repository to promote reproducibility, the compu-
tational demands may prevent full replication by
those with limited resources. Furthermore, some
aspects of our work, particularly the a-priori plan-
ning strategy and the LLM’s discourse role labeling,
involve stochastic elements, which may lead to vari-
ations in the results when the models are retrained
or fine-tuned on different hardware or datasets.

8.3 Implementation Details

The discourse role classifier and auxiliary planning
model are trained with a learning rate of 2e−5 and
batch size of 32.

8.4 Model Limitations

Our study, relying heavily on large language mod-
els (LLMs), presents inherent limitations in un-
derstanding complex narrative structures. While
LLMs such as Llama-3.1-70B are effective at ex-
tracting and labeling discourse roles, their perfor-
mance can be inconsistent when handling nuanced
roles like “Anecdote” or “Expert.” These roles often
require deeper contextual knowledge and interpre-
tative capabilities, which current models struggle
to grasp fully. The sequential and a-priori plan-
ning strategies we employ only partially mitigate
these limitations, leaving room for improvements,
particularly in capturing low centrality sources.

8.5 Computational Budget

We conducted our experiments on a combination of
BM25, Dense Passage Retrieval (DPR), and SFR-
7B embedding models. The SFR model required
significant computational resources due to its size
(7B parameters). We employed a distributed clus-
ter of 8 NVIDIA A100 GPUs for model training
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and testing. Fine-tuning the discourse role clas-
sifier and auxiliary planner models took approx-
imately 72 hours on this hardware setup. Addi-
tionally, large-scale inference, especially with SFR
and Llama-3.1-70B, added another 50 hours across
multiple processes. This heavy reliance on high-
computation hardware restricts the reproducibility
of our results for researchers without access to sim-
ilar resources.

8.6 Data and Annotator Limitations

Our dataset consists of 50,000 news articles sam-
pled from a larger corpus of 380,000, but this sam-
ple size may not fully represent the diversity of
journalism across various media outlets. Moreover,
the annotations for discourse roles were generated
using LLMs, and while we manually validated a
subset of 50 documents, this represents only a small
fraction of the dataset. We involved two profes-
sional journalists to assess the validity of our ex-
tracted queries and source roles, but this limited
human annotation introduces the possibility of bias
and errors not being sufficiently captured across
the entire dataset.

8.7 Risks and Ethical Considerations

There are several risks associated with the use of
LLMs in journalism-related tasks. Firstly, LLMs
have known biases, which may inadvertently influ-
ence source retrieval, particularly when retrieving
contentious or polarized information. Although we
filtered the training data to remove harmful content,
biases in the models remain a potential issue, espe-
cially in politically charged narratives or sensitive
topics. Additionally, relying on automated systems
for source selection in journalism introduces ethical
concerns regarding the transparency of source cu-
ration, as these systems may favor certain sources
or viewpoints without clear justification.
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A Appendix

A.1 Examples of Query Threads

B Further Characterization of Discourse
Roles

As shown in Table 3, several sources provide over-
lapping or identical information (e.g. Jeff Horwitz
and Newley Purnell). To investigate further, we
compute the pairwise cosine similarity between
the SBERT embeddings (Reimers and Gurevych,
2019b) of all sources within each article. While the
average cosine similarity between source pairs is
0.45 (indicating diversity), a significant minority
(7%) of source pairs have a cosine similarity above
0.70, suggesting they provide similar information.
This highlights a practice of verification, where
multiple sources are used to corroborate facts and
enhance credibility (Tuchman, 1972; Kovach and
Rosenstiel, 2014).

C Expanded Related Works

D Related Works

In this section, we situate our work at the intersec-
tion of information retrieval (IR), discourse-driven
narrative construction, and reasoning-based NLP
frameworks (e.g., chain-of-thought, interleaving re-
trieval, and agentic NLP). We highlight how meth-
ods in each of these areas contribute to our pro-
posed task of multi-document source retrieval for
journalism and illustrate how discourse modeling
adds a crucial layer of planning beyond conven-
tional IR objectives.

D.1 Information Retrieval
Information retrieval has a rich history, beginning
with classical keyword-based approaches (e.g., TF-
IDF, BM25) that treat queries and documents as
bags of words (Manning, 2008; Salton and McGill,
1983). These methods remain foundational to mod-
ern IR pipelines. Over time, specialized paradigms
like diversified retrieval (Carbonell and Goldstein,
1998; Clarke et al., 2008) and subtopic retrieval (Al-
lan, 2003) have evolved to handle broad, multi-
faceted queries by reducing redundancy and max-
imizing coverage. Our work follows the spirit of
multi-document retrieval (Zhai et al., 2015), em-
phasizing that single-document relevance alone is
inadequate for tasks requiring multiple complemen-
tary sources.

Building upon these foundations, dense vector
retrieval has emerged, leveraging neural embed-

dings to map queries and documents into a shared
semantic space (Karpukhin et al., 2020; Reimers
and Gurevych, 2019a). These approaches excel
at capturing deeper lexical and semantic relation-
ships, outperforming bag-of-words techniques in
various domains. “Retrieval-augmented” language
models further enhance this by prompting LLMs
to iteratively refine queries and re-rank candidate
documents (Izacard et al., 2022). Our framework
extends this line of work by explicitly modeling dis-
course roles rather than purely semantic or topical
overlaps, aiming to retrieve sources that comple-
ment each other functionally in narrative building.

D.2 Planning and Chain-of-Thought
Reasoning

Concurrently, large language models (LLMs) have
catalyzed progress in few-shot learning, text gen-
eration, and reasoning. Chain-of-Thought (CoT)
prompting (Wei et al., 2022) encourages models
to articulate intermediate reasoning steps, improv-
ing factual accuracy and multi-hop inference in
question-answering (Zhang et al., 2022) and math
tasks (Kojima et al., 2022). Our work adapts these
insights to iterative query planning, where sub-
queries are tied to distinct discourse functions.

Recent research has explored enhanced planning
frameworks in LLM-driven pipelines. For instance,
“self-ask” prompts (Press et al., 2022) or symbolic
reasoning modules (Anonymous, 2023) help break
down complex tasks. We incorporate and extend
these ideas by linking intermediate reasoning steps
to specific discourse roles—such as “expert per-
spective” or “main actor”—thereby imposing addi-
tional structure on the retrieval process.

D.3 Interleaving Retrieval and Follow-Ups
Interleaving retrieval (Trivedi et al., 2023) de-
scribes a process where an LLM iteratively queries
a retrieval system, inspects the results, and refines
queries for subsequent rounds. Follow-up works
build on this paradigm with more advanced plan-
ning modules (Huang et al., 2024) or specialized
retrieval agents (Nakano et al., 2021). These tech-
niques aim to systematically explore or fill infor-
mation gaps across multiple query iterations.

However, existing interleaving methods com-
monly focus on retrieving the most relevant docu-
ments. Our work posits that “relevance” alone is
insufficient for tasks like journalistic source selec-
tion, where each source must also fulfill a partic-
ular narrative function. Accordingly, we propose
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Query: Is Facebook’s (FB) leadership inadequately addressing concerns that moderation policies are applied inconsistently
in India, with regards to hate speech from Hindu nationalist politicians?

Name Information Discourse

Ankhi Das (FB Public
Policy team)

Opposed internal moves to apply hate-speech rules to a BJP politician and at
least three other Hindu nationalist individuals and groups for violating
FB’s standards.

Main Actor

Former FB employees A pattern of favoritism exists in India toward the country’s ruling party and
Hindu hardliners.

Confirmation

FB’s Muslim affinity
group

Said that Facebook needed to make its policy-enforcement process for high-
profile users more transparent and less susceptible to political influence.

Counterpoint

Jeff Horwitz Wrote an article about FB employees pressing leadership to review its han-
dling of hate speech in India

Background
Info.

Newley Purnell Wrote an article about FB employees pressing leadership to review its han-
dling of hate speech in India.

Confirmation

Table 3: A sample article from our corpus, with query and sources extracted. Labels from our discourse schema
(induced from an LLM) is shown in the right column. As can be seen, some sources do not differ greatly from
the query (e.g. Former FB employees) while others offer novel dimensions (e.g. Muslim affinity group). Some
sources have nearly identical informational content to each other (e.g. Newley Purnell and Jeff Horwitz), and serve
to confirm their information.

Centrality High Medium Low

Percentage 21.8% 37.8% 40.0%

Table 4: Percentage of sources by centrality label,
queried via LLM.

Planned Interleaved Retrieval, which explicitly en-
codes discourse roles in a plan or distribution of
roles needed for a coherent story. This approach
reduces the tendency for queries to meander or be-
come repetitive, facilitating diversity and functional
complementarity in the retrieved documents.

D.4 Reasoning in NLP

While NLP systems have historically tackled clas-
sification and generation tasks, multi-step rea-
soning is increasingly central to modern chal-
lenges (Creswell et al., 2022; Bubeck et al., 2023).
Prior work explored neural memory networks for
logical inference (Weston et al., 2015); LLMs, how-
ever, can now articulate more explicit, symbolic
reasoning steps in few-shot or chain-of-thought
paradigms. Yet, even advanced models struggle
with tasks requiring strict logical consistency or
complex entity tracking across documents (Khot
et al., 2023).

Our framework adds a discourse reasoning lens
to multi-step retrieval. Instead of merely stringing
together sub-questions for coverage, we examine
why different sources are chosen together. We label
sources by narrative role (e.g., confirming facts,
providing an anecdote, serving as an expert) and
reason about how each source contributes to the

story’s completeness. By encoding these discourse
intentions, we achieve richer retrieval outcomes
aligned with real-world journalistic practices (Tuch-
man, 1978).

D.5 Agentic NLP

A growing interest in agentic NLP frames LLMs
as autonomous agents that plan, retrieve, and act
upon external tools, such as search engines or
databases (Shinn et al., 2023; Liang et al., 2023).
Architectures like MRKL (Schick et al., 2022) and
tool-augmented LLMs (Parisi et al., 2022) treat the
language model as a decision-making orchestrator
that delegates subtasks to specialized APIs. Such
systems can handle multi-hop QA or web brows-
ing by adaptively issuing queries and integrating
results.

Our method can be viewed as a specialized agen-
tic approach, where an LLM “agent” controls a
multi-document retrieval pipeline using discourse-
level guidance. Instead of purely seeking factual
coverage, the LLM is tasked with ensuring that
each source fulfills a unique narrative function. By
incorporating higher-level organizational structures
(i.e., discourse roles) into the agent’s plan, we steer
retrieval towards more comprehensive and multi-
faceted sets of sources. This approach fits into the
broader shift toward agentic NLP, where language
models do more than “respond”—they coordinate
the entire solution process.

Overall, our work is informed by classical IR
insights on coverage, strengthened by neural re-
trieval methods, and guided by chain-of-thought
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Label Definition

Main Actor Individuals or entities involved in decision-making that effects events in the
story.

Subject Individuals or entities being affected/targeted by events in the story (i.e. The
converse of “Main Actor”).

Anecdote Real-world stories of people, groups or organizations being affected by events
in the story.

Background Info. Provides broader context to events, helping readers understand the main topic
in the context of what is going on and grasp peripheral details.

Broadening Sources that induce the reader to think about the events of the news article in
new or bigger picture.

Analysis These sources offer insights and forecasts, often explaining what things mean
going forward.

Counterpoint These sources offer diverse perspectives or examples of differences, opposing
opinions to provide a more balanced understanding.

Expert These sources provide essential facts, rules or interpretations to help us under-
standing the events.

Confirmation A source whose role is primarily to confirm events that occurred in the news
article.

Data Resource These sources provide statistics and other survey or scientific resources.

Table 5: Definitions for our discourse labeling scheme, generated via LLM-labeling and clustering.

style planning. We build on the interleaving re-
trieval paradigm but innovate by imposing explicit
discourse structure, effectively bridging the gap
between unstructured multi-document IR and agen-
tic NLP approaches. By elevating why sources are
chosen (discourse intentions) alongside what they
contain (semantic relevance), we deliver more jour-
nalistically valid and functionally diverse retrieval
outcomes. The subsequent sections introduce our
dataset, experimental setup, and evaluation, illus-
trating how discourse reasoning substantially im-
proves multi-document retrieval for journalism.

E Analysis of Source Centrality and
Perspective in Newswriting

In this section, we explore the role that sources play
in newswriting by analyzing two key attributes:
centrality and perspective. Using the Llama-3.1-
70B language model, we conducted experiments
to label sources based on these attributes and ex-
amined how they correlate with the sources’ place-
ment and prominence within news articles.

E.1 Centrality of Sources

We employed Llama-3.1-70B to label the centrality
of sources in news stories. Centrality refers to
how integral a source is to the main narrative of

the article. Our hypothesis was that more central
sources would not only appear earlier in the articles
but also be attributed more sentences.

Figure 6 illustrates the relationship between a
source’s centrality and its position in the story. The
plot indicates that sources labeled as more central
tend to appear earlier in the narrative. This sug-
gests that journalists prioritize central sources to
establish the main storyline promptly.

Figure 7 shows the number of sentences at-
tributed to sources based on their centrality. The
data reveal that more central sources are associated
with a higher number of sentences, highlighting
their prominence in the discourse of the article.

E.2 Perspective of Sources
In a separate experiment, Llama-3.1-70B was used
to label the perspective of sources, categorizing
them as either Informational or Authoritative. We
investigated how these perspectives influence the
placement of sources in articles and the extent of
coverage they receive.

Figure 7 and 7 presents the positions of sources
based on their labeled perspective. Both Informa-
tional and Authoritative sources tend to appear
earlier in the articles. This pattern suggests that
sources providing essential information or authori-
tative insights are introduced promptly to establish
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Queries

1. What economic and social impacts can the local communities surrounding Mount Everest expect
in the aftermath of the earthquake, and how are international aid organizations contributing to the
relief and recovery efforts?"

2. What measures is the Nepalese government taking to support the recovery of the climbing industry
and affected communities after the earthquake, and how will these efforts impact the long-term
sustainability of climbing on Mount Everest?"

3. What specific measures did the Nepalese government take to respond to the earthquake and its
impact on Mount Everest, and what lessons have been learned from the disaster to improve future
disaster response and preparedness?",

4. What are the long-term plans and strategies being implemented by the Nepalese government and
international aid organizations to support the recovery of local communities and the climbing
industry affected by the April 2015 Nepal earthquake?"

5. What were the personal experiences and challenges faced by climbers and guides who were on
Mount Everest during the April 2015 Nepal earthquake, and how did they respond to the disaster?"

6. What was the impact of the April 2015 Nepal earthquake on Mount Everest climbers, and how
would it affect the climbing season?

Retrieved Sources

"A professional mountaineer who was on Makalu, a mountain in the Himalayas southeast of Everest,
near the Nepal-China border: Arjun Vajpai said in a video he posted to Facebook from his campsite
that there have been a lot of disturbances due to the earthquake, and that there have been a few
avalanches in the area, as well as rockfalls, and that most climbers on his team were fine, but he
had not yet heard from climbers who moved to other camps."

"The director general of the Nepal Tourism Department: Tulasi Prasad Gautam said that climbing
Mount Everest may be canceled this year due to the avalanche, and that the cancellation of the
climbing season last year was a key part of Nepal’s tourism industry."

"Government officials of Nepal: Nepalese officials said that at least 17 climbers were killed and at
least 37 others were injured in the avalanche on Mount Everest."

"A guide at the base camp of Mount Everest and the base camp manager for Asian Trekking: Nima
Namgyal Sherpa said the avalanche caused many injuries at the base camp of Mount Everest, and
that many camps have been destroyed by the shake and wind from the avalanche, and that all the
doctors at the base camp are doing their best to treat and save lives."

"A hiker at the base camp of Mount Everest: Alex Gavan described on Twitter a huge earthquake then
huge avalanche that sent him running for life from his tent at the base camp of Mount Everest, and
warned that many of the wounded would die if they were not evacuated soon."

"An experienced guide: Ang Sherpa said that about 800 people were already staying at the Everest
base camp, which is always a somewhat chaotic collection of tents, equipment and exhausted
climbers and their attendants, and that a helicopter rescue operation to the base camp was planned
for Sunday morning, when a full tally of the dead and injured should become available."

Table 6: Sample interleaving query for the article www.nytimes.com/2015/04/26/world/asia/
everest-climbers-killed-as-nepal-quake-sets-off-avalanche.html, paired with the sources re-
trieved by this sequence. Many of the sources repeat information, and the queries appear to restate the same
objective. Beyond the initial query, subsequent queries primarily pertain to government policies or personal
accounts from individuals affected by the disaster. The scope of these queries remains significantly narrower than
the range of sources utilized by the human journalist.
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Queries

1. What strategies are technology companies, such as Facebook and Twitter, implementing to help
users manage their screen time and reduce mindless social media checking, and are these efforts
effective?

2. What are the potential long-term health consequences of mindless social media checking, and how
have some individuals successfully broken the cycle of excessive social media use?

3. What insights do sociologists or cultural critics offer on the ways in which societal and cultural
factors, such as the pressure to present a curated online persona or the fear of missing out, contribute
to mindless social media checking, and how can individuals resist these influences to develop
healthier social media habits?

4. What strategies or techniques do mental health professionals or behavioral psychologists recommend
for individuals to break the cycle of mindless social media checking, and how can these strategies
be combined with the features implemented by tech companies to achieve lasting change?

5. What strategies have individuals who have successfully reduced their social media use employed to
maintain their new habits over time, and what role do they believe societal and cultural factors play
in perpetuating mindless social media checking?

6. How can I, and others, break the cycle of mindless social media checking, which seems to be
exacerbated by the constant stream of news and updates from sources like President Trump’s Twitter
feed?

Retrieved Sources

Experts in the field of neuroscience: Neuroscientists recommend techniques for coping with social
media’s grip on our brains.

Experts in the field of psychology: Psychologists recommend techniques for coping with social media’s
grip on our brains.

The President of the United States: Donald Trump’s tweets can be annoying and disrupt your workflow,
and it’s not necessary to see his tweets first thing in the morning.

A technology news website: TechCrunch obtained a Facebook slide deck that shows people check
their phones about 100 times a day and Facebook 10-15 times a day.

Surveys and polls conducted by various media outlets: According to a media poll, people don’t find
news anymore, the news finds them, on Facebook, Twitter, Instagram, and Snapchat.

A newspaper: The New York Post found that the average American checked their phone 80 times per
day, or once every 12 minutes, in 2017. One in 10 people surveyed checked it once every four
minutes, or about 240 times per day.

People who observe the effects of social media on others: The evidence that we aren’t coping well
with social media is on display at dinner tables where everyone is staring at screens–and even at
crosswalks, where distracted pedestrians walk into traffic.

Social media platforms: Facebook and Instagram will roll out features that show people how much
time they’ve spent on the apps. These features include an activity dashboard that shows how long
you’re spending on Facebook or Instagram, a daily reminder for when you’re hitting your total time
for the day, and a way to tune out notifications. These tools can be accessed via the settings page
on either app.

Table 7: Sample interleaving query for the article www.wsj.com/articles/
take-back-your-brain-from-social-media-1485968678, paired with the sources retrieved by this se-
quence. This example highlights another failure mode of vanilla interleaving planning: its tendency to drift away
from the main query. While Queries 1-5 primarily focus on the consequences of mindless social media usage,
Query 6 deviates significantly, introducing highly specific and less generalizable information. This divergence
results in poorer retrieval performance.
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Queries

1. What role could renewable energy sources, such as solar or wind power, play in replacing the
capacity lost due to nuclear power plant closures, and how might policymakers or industry leaders
support the development of these alternatives?

2. What are the potential environmental and social consequences of the recent wave of nuclear power
plant closures in the US, and how might policy changes or regulatory reforms help mitigate these
effects?

3. What are the potential economic and social impacts of the recent wave of nuclear power plant
closures on local communities, and how can policymakers or industry leaders mitigate these effects
to support workers and local economies?

4. What are the potential national security implications of the recent wave of nuclear power plant
closures in the US, and how might the shift towards natural gas and renewables impact the country’s
energy independence and security?

5. What are the potential health and safety implications of the recent wave of nuclear power plant
closures in the US, and how might these closures impact local communities and the long-term
stability of the US energy grid?

6. What’s behind the recent wave of nuclear power plant closures in the US, and what does this trend
mean for the future of nuclear energy in America?

Retrieved Sources

Official documents from the government: The government documents stated that multiple nuclear
plants are at risk for early closure and several others have already closed prematurely due to
economic circumstances.

A nuclear power plant located in Massachusetts: Pilgrim Nuclear Power Station is closing, with a
capacity of 685 megawatts.

A US energy company: FirstEnergy Corp. has said it might decide next year to sell or close its three
nuclear plants – Davis-Besse and Perry in Ohio and Beaver Valley in Pennsylvania.

One of the largest providers of nuclear power in the United States: Exelon Corp. announced that it
would close two of its nuclear plants in northern Illinois, called Byron and Dresden, in roughly
one year’s time, even though the plants are licensed to operate for decades more. The plants face
revenue shortfalls in the hundreds of millions of dollars. Exelon also said it may need to bring
forward the closure dates of two other northern Illinois plants, LaSalle and Braidwood.

A nuclear power plant near Los Angeles: The second and third units of the San Onofre nuclear
generating plant near Los Angeles ceased operation in 2013.

A utility company that operates nuclear power plants: Exelon recently announced that it would close
the last remaining reactor at the Three Mile Island nuclear plant by 2019 unless policy makers
stepped in to support it, due to cheap natural gas cutting regional electricity prices in half and
pushing Pennsylvania’s nine reactors toward unprofitability.

The industry that generates electricity through nuclear power in the United States: The U.S. nuclear
power industry is quietly suffering, with the decline of coal power in the United States making the
headlines every week, but the nuclear power industry, which accounts for about 20 percent of U.S.
electricity production, is also struggling.

Table 8: Sample interleaving query for the article slate.com/business/2015/10/
nuclear-power-is-losing-its-appeal-thanks-fossil-fuels.html, paired with the sources retrieved by
this sequence. Vanilla interleaving planning often remains closely aligned with the initial query. In this instance,
the queries thoroughly explore the environmental, social, security, and safety implications of nuclear power plant
closures. However, they fail to explicitly request expert opinions, data, or counterpoints, critical source types
essential for constructing a comprehensive news article.
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Queries

1. What are the marketing and business strategies behind EVA Air’s decision to introduce the Hello
Kitty jet on the San Francisco-Taipei route, and how does this fit into the airline’s overall brand and
growth plans?

2. What do passengers who have flown on EVA Air’s Hello Kitty jets think of the experience, and how
does it compare to other themed flights or regular flights?

3. What are the key demographic groups that EVA Air is targeting with its Hello Kitty jet on the San
Francisco-Taipei route, and how does the airline plan to tailor its marketing efforts to effectively
reach and engage with these groups?

4. What demographic groups are EVA Air targeting with its Hello Kitty jet on the San Francisco-Taipei
route, and how does the airline expect this unique offering to differentiate itself from competitors
and attract new passengers?

5. What specific marketing and promotional efforts is EVA Air planning to undertake to attract its
target demographic groups to the Hello Kitty jet on the San Francisco-Taipei route, and how does
the airline expect this unique offering to impact its brand awareness and passenger loyalty in the
North American market?

6. What’s behind EVA Air’s decision to bring its popular Hello Kitty jet to the San Francisco-Taipei
route, and what can passengers expect from this unique flying experience?

Retrieved Sources

The founder of TravelSkills.com: The author stated that EVA Air made a media splash several years
ago when it decided to cover its jets with cute animated characters created by Japan’s Sanrio
Company, the most popular of which is Hello Kitty, and that the Hello Kitty planes bring the theme
to more than just their paint jobs, with passengers getting specially designed boarding passes and
baggage stickers at check-in, and seeing Hello Kitty figures on the flight attendants’ aprons, the
headrest covers, pillows, tissues, hand cream, napkins, paper cups, and even utensils and snack
packaging.

A major Taiwanese airline: For the rest of April, Taiwan’s EVA Air will operate three weekly Taipei-
SFO flights, three to Seattle and three or four a week to LAX, all with 777-300ERs.

Taiwan’s flag carrier: China Airlines plans to increase capacity between San Francisco International
and Taipei on May 2, boosting its schedule from seven flights a week to nine, using 777-300ERs.

A Taiwanese airline: EVA Air provided delightful flights and service to the author, unlike their
experience on Asiana Airlines.

A Singaporean airline: Singapore Airlines plans to pull its extra-long-range A350-900ULRs off the
San Francisco route next fall. The ULR version – which has only business class and premium
economy seating – currently operates three of the airline’s 10 weekly SFO-Singapore non-stop
flights; the others use a standard three-class A350-900, and that model will be used for all 10 of the
airline’s weekly SFO non-stop flights beginning in October of next year.

A Chinese airline: Air China is planning to boost frequencies on its San Francisco-Beijing route
effective March 31 from seven flights a week to 10. The three extra flights will be operated with a
787-9 Dreamliner, while the regular daily service will use a 747-8.

Table 9: Sample interleaving query for the article www.sfgate.com/travel/article/
Hello-Kitty-jet-san-francisco-13788445.php, paired with the sources retrieved by this sequence.
All of the queries primarily focus on the effects of the new marketing campaign on the airline’s passengers,
neglecting other important information needs such as data, analysis, or background context. This highlights the
vanilla planner’s lack of creativity and strategic planning capabilities.
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Figure 5: Retrievals benefits of discourse planning grow
as k increases relative to baseline.

Figure 6: Correlation between centrality assigned to
sources by Llama-3.1-70B and the first time that source
is introduced in the story.

context and credibility.
As depicted in Figure 10, Authoritative sources

occupy more sentences compared to Informational
sources. This indicates that while both types are in-
troduced early, Authoritative sources receive more
extensive coverage, possibly due to their perceived
expertise and influence on the topic.

E.3 A-prior Plans: Clustering
As described in the main body, the approach to
a-priori planning involved first clustering our label
distributions and then training a SequenceClassi-
fier model to predict the cluster, based on the query.
We now share more details about the clustering.
We clustered KMeans with 8 clusters, cluster cen-
ters are shown in Figure 11. Example queries and
documents are shown in Tables 11, 12, 13.

E.4 Prompts
Prompt to Score Centrality You will receive a
news article and a set of sources to examine in that
article.

For each source, provide the following informa-
tion: (1) Name: who the source is. (2) Perspective:
What is their perspective on the main events of the
article? Choose as many labels as fit from: ("Au-
thoritative", "Informative", "Supportive", "Skepti-
cal", "Against", "Neutral"). (3) Centrality: How
central is this source to the main events of the arti-
cle? Choose from "High", "Medium", "Low". (4)

Figure 7: Correlation between centrality assigned to
sources by Llama-3.1-70B and the percentage of sen-
tences attributed to that source by (Spangher et al.,
2023)’s methods.

Figure 8: Correlation between perspective assigned to
sources by Llama-3.1-70B and the first time that source
is introduced in the story. Prompts for perspective are
shown in Appendix E.4

Is_Error: Did we annotate this source in error?
This can happen for many reasons, including if a
sentence from the webpage was included in the
story unintentionally. Answer with "Yes" or "No".

Here is a news article:
“‘{news_article}“‘
Please examine the role of each of the following

sources:
“‘

{target_sources}

“‘
For each source, answer the questions above.

Output the summary in a list of python dictionaries
as in the examples. Don’t say anything else.

Prompt to Label Discourse Function You will
receive a news article and a set of sources to exam-
ine in that article.

For each source in the list, provide the following
information, once per source: (1) Name: Exactly
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Figure 9: Percentage of sources holding each perspec-
tive role, as identified by Llama-3.1-70B.

Figure 10: Correlation between perspective assigned
to sources by Llama-3.1-70B and the percentage of
sentences attributed to that source by (Spangher et al.,
2023)’s methods.

copy the name of the source. (2) Narrative Func-
tion: Give a generic keyword label to categorize
the narrative role the source playes in the article.
Infer why the author used the source, and a gener-
alizable statement about the role they play in the
article. Don’t just summarize their identity. Return
in the format: "LABEL": DESCRIPTION.

Here are example outputs. Again, your main
task here is to identify a generalizable label that
can characterize the narrative role of each source
and why the author used them.

[Examples] Example 1:
{{ "Name": "Match Group", "Narrative Func-

tion": "Counterpoint: This source is used to com-
pare to the main actor in the news article and pro-
vide grounding." }}

Example 2:
{{ "Name": "Dubai Airshow", "Narrative Func-

tion": "More Context: This source is used to further
expand the context offered and offer a visual set-
ting." }}

Example 3: {{
"Name": "Ann Gough", "Narrative Function":

"Victim": This source provides the voice of a user
for the product, giving us a personal view of the
harm caused by the event. }}

[Instructions]
Now it’s your turn. Here is a news article:
“‘{news_article}“‘
Please examine the narrative role of each of the

following sources:
“‘

{target_sources}
“‘

For each source, answer the questions above.
Output the summary in a list of python dictionaries
as in the examples. Don’t say anything else.

Prompt to extract source descriptions from
news articles You are a helpful news assistant.
Here is a news article:
{news_article}

Please summarize each informational source
providing information in the article.
Include unnamed or passively expressed sources
(e.g. "witnesses", "price signals") if there is
information attributable to them.
Include any facts that might have come from the
source.
Make sure each source you return refers to just
one source. For example: if "John and Jane" both
contribute the same information, generate two
separate summaries, one for "John" and one for
"Jane".
Generate only ONE summary per source.

For each source, provide the following informa-
tion:
(1) Name: just the name of the source.
(2) Biography: A brief biography of the source
mentioned in the article.
(3) Information: Restate the facts provided by the
source. Be as SPECIFIC and as VERBOSE as
possible.
Contextualize ALL the information the source
describes. State the full names of all people, places,
events, and ideas mentioned and everything the
source says with AS MUCH BACKGROUND
INFORMATION from the article so I can fully
understand the information the source is giving.
I will look at each source independently without
looking at any others, so help me understand the
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Figure 11: The cluster centers for our KMeans algorithm are distinctive and high-entropy clusters.

context.

Here are some examples:
example 1:
{ "Name": "Supermarkets around the country",
"Biography": "Retail stores that sell food and other
household items",
"Information": "Supermarkets around the country
alerted shoppers that prices are likely to continue
going up due to the avian flu outbreak, with eggs
now average $2.88 per dozen, up 52% since
the first confirmed case of avian influenza in
February." }

example 2:
{ "Name": "The article’s author (unnamed)",
"Biography": "The author of the article",
"Information": "The author stated that Wing,
which is collaborating with FedEx and Walgreens
on drone delivery, was the first to receive a
limited Part 135 certificate. Wing is launching
operations in Virginia this month, and the Standard
certification allows UPS to send an unlimited
number of drones to the skies, for their cargo load
to exceed 55 pounds and for them to fly at night." }

example 3:
{ "Name": "Delta’s customers",
"Biography": "People who travel with Delta Air
Lines",
"Information": "Delta’s customers suggested that
they preferred more space on flights amid the
COVID-19 pandemic, and they continue to tell
Delta that more space provides more peace of
mind." }

example 4:
{ "Name": "European Union countries",

"Biography": "Countries that are part of the
European Union",
"Information": "European Union countries are
working on adopting copyright rules that allow
news companies and publishers to negotiate
payments with large tech companies like Facebook,
Microsoft, and Google that use their content on
their platforms." }

Output the summary in a list of python dictionar-
ies as in the examples. Don’t say anything else.

201



Source Text (to embed) Narrative Function Discourse

The FBI The Federal Bureau of Investigation: The FBI
shows that 82 percent of white homicide
victims were killed by other white people
and 15 percent of white homicide victims
were killed by black people

"Fact Checker": This
source can provide ac-
curate information and
debunk the false statis-
tics.

Data
Re-
source

The U.S. Se-
curities
and Ex-
change
Commis-
sion

A regulatory agency responsible for enforcing
federal securities laws and regulating the
securities industry: The U.S. Securities and
Exchange Commission has postponed a de-
cision on whether to allow the listing of an
exchange-traded fund backed by Bitcoin...

"Authority": This source
can be used to establish
the regulatory frame-
work and provide the
official decision."

Main
Actor

The Privacy
Rights
Clearing-
house

An organization that provides information on
how to deal with security breaches: If you
learn of a breach involving your driver’s
license information, contact the agency (in
this case the state Department of Driver’s
Services)

"Authority": This source
can be used to provide
expert advice and rec-
ommendations on how
to deal with the data
breach.

Expert

CNN A news organization: Both the Pfizer/BioN-
Tech and Moderna vaccines use an mRNA
platform and are well tolerated and safe.
Moderna was estimated to be 36.8% effec-
tive against symptomatic disease for kids
2-to-5 years of age...

"Providing Data": This
source can be used
to provide data and
statistics to support the
claims made in the arti-
cle.

Data
Re-
source

Tech Crunch A technology news website: According to a re-
port by Tech Crunch, Detroit Mayor Mike
Duggan said on Wolf Blitzer’s show on
CNN that the city of Detroit received the
test kits manufactured by Abbott on April
1.

"Secondary Source": This
source can be used to
provide additional in-
formation and context
to the main story.

Background
Infor-
ma-
tion

Anil Agar-
wal

The chairman of the Vedanta group: Anil Agar-
wal recently said that the group is scouting
for more energy and metal assets across
India, which includes coal, oil and iron ore.

"Company Strategy": This
source can be used to
provide insight into the
strategy and interests
of the Vedanta group.

Analysis

Experts Unspecified experts in the field of economics
or education: Some experts have raised
concerns that forgiving student loans may
effectively penalize people who already
paid off their debt, often while making con-
siderable financial sacrifices.

"Counterpoint": This
source can be used
to raise concerns
and questions about
the fairness and ef-
fectiveness of the
policy."

Counter-
point

Table 10: An example of sources randomly selected from our retrieval database. We show the narrative function
originally labeled by Llama-3.1 along with the discourse label applied after clustering. Note how initial narrative
function label applied by the LLM narrative function doesn’t always align with the final label: for example, row #2
and #3 are both labeled “Authority”, however #2 is a more active participant while #3 is more an expert.
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Query: How did news websites handle the expected surge in traffic and demand for video streams
during President Barack Obama’s inauguration, and what were the consequences for users trying to
watch the event online?

Name Biography Discourse Label

Daniel Wild A Web site editor at the New York University School
of Medicine

Anecdotes, Examples and
Illustration

Akamai A company that helps many media companies keep
up with visitor demand on their Web sites

Data Resource

A Facebook repre-
sentative

A spokesperson for Facebook Data Resource

The article’s author
(unnamed)

The author of the article Background Information

Table 11: Example of query and ground-truth sources in Cluster #5, the “Data and Resources” cluster.

Query: What are the unintended consequences of receiving a Michelin star, and why would a chef
choose to give one up?

Name Biography Discourse Label

Julio Biosca A chef and owner of Casa Julio, a restaurant in Fonta-
nars dels Alforins, outside of Valencia, Spain, that
was awarded a Michelin star in 2009

Main Actor

Julia Perez Lozano A Spanish food critic Expert
Frederick Dhooge A chef and owner of ’t Huis van Lede in Belgium Counterpoint
Skye Gyngell An Australian chef and owner of Petersham Nurs-

eries Cafe in London
Anecdotes, Examples and
Illustration

Gary Pisano A professor of business administration at Harvard
Business School

Analysis

David Munoz A chef and owner of DiverXo Anecdotes, Examples and
Illustration

Authors of ’Behind
the stars...’

Researchers who published a study in the Cornell
Hotel & Restaurant Administration Quarterly

Data Resource

Table 12: Example of query and ground-truth sources in Cluster #7, the “Data and Resources” cluster.
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Query: What has been the public reaction to Target’s decision to allow transgender customers and
employees to use the bathroom and fitting rooms that correspond with their gender identity?

Name Biography Discourse Label

Tim Wildmon President of the American Family Association, a
Christian nonprofit organization based in Mississippi

Counterpoint

Kris Hayashi Executive director at the Transgender Legal Center Expert
Williams Institute An organization that conducted a study on transgen-

der people’s experiences with bathrooms
Data Resource

Article’s author The author of the article Background Information
American Family
Association

A Christian nonprofit organization based in Missis-
sippi

Counterpoint

Southern Poverty
Law Center

An organization that has deemed the American Fam-
ily Association an extremist group

Counterpoint

Bill Partridge Oxford Police Chief Counterpoint
Human Rights
Campaign

An organization that publishes the Corporate Equal-
ity Index report

Background Information

Target The second-largest discount retailer in the nation Main Actor
City of Oxford A city in Alabama Counterpoint
Supporters of the
boycott

People who have taken to social media to show their
support for the boycott called for in the petition

Counterpoint

Opponents of the
petition

People who have shown opposition to the petition Counterpoint

Table 13: Example of query and ground-truth sources in Cluster #1, the “Counterpoint” cluster.
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Abstract
Retrieval-Augmented Generation (RAG) en-
hances Large Language Models (LLMs) by in-
tegrating external document retrieval to provide
domain-specific or up-to-date knowledge. The
effectiveness of RAG depends on the relevance
of retrieved documents, which is influenced by
the semantic alignment of embeddings with the
domain’s specialized content. Although full
fine-tuning can align language models to spe-
cific domains, it is computationally intensive
and demands substantial data. This paper in-
troduces Hierarchical Embedding Alignment
Loss (HEAL), a novel method that leverages
hierarchical fuzzy clustering with matrix factor-
ization within contrastive learning to efficiently
align LLM embeddings with domain-specific
content. HEAL computes level/depth-wise con-
trastive losses and incorporates hierarchical
penalties to align embeddings with the under-
lying relationships in label hierarchies. This
approach enhances retrieval relevance and doc-
ument classification, effectively reducing hallu-
cinations in LLM outputs. In our experiments,
we benchmark and evaluate HEAL across di-
verse domains, including Healthcare, Material
Science, Cyber-security, and Applied Maths.

1 Introduction

Large Language Models (LLMs), such as GPT-4
(OpenAI, 2023), have demonstrated exceptional
capabilities in natural language understanding and
generation. However, LLMs are prone to hallucina-
tions, generating plausible but incorrect or nonsen-
sical content (Ji et al., 2023). Retrieval-Augmented
Generation (RAG) frameworks (Lewis et al., 2020)
mitigate this issue by integrating external knowl-
edge through document retrieval, enhancing the
factual accuracy of LLM outputs. A critical compo-
nent of RAG systems is the embedding model used

for document retrieval. Standard embedding mod-
els, however, often fail to capture the hierarchical
and semantic relationships within domain-specific
corpora, leading to suboptimal retrieval and, con-
sequently, increased hallucinations. This issue is
particularly pronounced in domains with increased
specificity such as Healthcare, Legal sytem, and
Scientific research.

Corpus of documents for a specialized domain
inherently exhibit a high degree of semantic co-
herence, presenting an opportunity to align embed-
ding models for retrieving the most contextually
relevant information. Hierarchical Non-negative
Matrix Factorization (HNMF) (Eren et al., 2023) is
a powerful technique for semantically categorizing
documents into clusters that exhibit thematic co-
herence. By grouping documents into hierarchical
clusters of supertopics and subtopics, HNMF pro-
vides a rich semantic categorization of the corpus,
enabling a deeper understanding of document rela-
tionships. Leveraging this semantic knowledge in
the form of hierarchical cluster labels, we can align
embedding models to preserve hierarchical infor-
mation within the embedding space. This align-
ment enhances the embeddings to capture both
coarse-grained and fine-grained document similar-
ities, improving contextual relevance in retrieval
tasks and enabling better downstream capabilities.

To tackle the challenges of hallucination and sub-
optimal retrieval in RAG systems, we introduce
the Hierarchical Embedding Alignment Loss
(HEAL), a refined extension of the Hierarchical
Multi-label Contrastive Loss (Zhang et al., 2022).
HEAL leverages an improved hierarchical weight-
ing scheme to align embeddings more effectively
with the underlying hierarchical structure. By in-
corporating hierarchical label structures, HEAL
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fine-tunes embedding models to align with docu-
ment clusters derived from HNMF. The method
computes contrastive losses at each hierarchical
level, combining them with depth-specific penal-
ties to emphasize distinctions at higher levels of
the hierarchy.

2 Related Work

Contrastive learning has become a cornerstone of
representation learning, particularly in computer
vision and natural language processing. Methods
like SimCLR (Chen et al., 2020) and MoCo (He
et al., 2020) have achieved state-of-the-art perfor-
mance in unsupervised settings by learning repre-
sentations that are invariant to data augmentations.
In supervised contrastive learning, Khosla et al.
(2020) extended the contrastive loss to utilize label
information, improving performance on classifica-
tion tasks. Similarly, the SciNCL framework em-
ploys neighborhood contrastive learning to capture
continuous similarity among scientific documents,
leveraging citation graph embeddings to sample
both positive and negative examples (Ostendorff
et al., 2022). However, these methods generally
assume flat label structures and do not exploit hier-
archical relationships.

Hierarchical classification has been studied ex-
tensively, with approaches such as hierarchical
softmax (Goodman, 2001) and hierarchical cross-
entropy loss (Deng et al., 2014). These methods
aim to leverage hierarchical label structures to im-
prove classification efficiency and accuracy. In
the context of representation learning, Deng et al.
(2011) introduced hierarchical semantic embed-
ding, aligning image embeddings with WordNet
hierarchies. More recent works, such as Bertinetto
et al. (2020), have explored hierarchical proto-
types to capture hierarchical relationships. Zhang
et al. (2022) propose a hierarchical multi-label
contrastive learning framework that preserves hi-
erarchical label relationships through hierarchy-
preserving losses. Their method excels in scenarios
with hierarchical multi-label annotations, such as
biological or product classifications. In contrast,
our approach focuses on enhancing information
retrieval to mitigate hallucinations.

RAG frameworks combine retrieval models with
generative models to enhance the factual accuracy
of language generation (Lewis et al., 2020). These
systems rely heavily on the quality of the embed-
dings used for retrieval. Prior work has focused on

improving retrieval through better indexing and re-
trieval algorithms (Karpukhin et al., 2020), but less
attention has been given to aligning embeddings
with hierarchical document structures.

3 Method

In this section, we propose an embedding align-
ment framework comprising hierarchical label ex-
traction with HNMF, embedding alignment using
HEAL, and retrieval with aligned embeddings as
outlined in Figure 1.

3.1 Hierarchical Document Clustering with
HNMFk.

Hierarchical Non-negative Matrix Factorization
with automatic latent feature estimation (HN-
MFk) Eren et al. (2023) is an advanced technique
for uncovering hierarchical patterns within doc-
ument collections. It builds on traditional Non-
negative Matrix Factorization (NMF) Vangara et al.
(2021) by dynamically and automatically deter-
mining the optimal number of latent features at
each level. Effective contrastive learning relies
on well-separated document cluster labels to align
embeddings effectively. HNMFk’s ability to au-
tomatically balance stability and accuracy using a
bootstrap approach enhances the quality of cluster-
ing results. In this work, we utilize the publicly
available HNMFk implementation from the TELF
library 1.

Given a Term Frequency-Inverse Document Fre-
quency (TF-IDF) matrix X ∈ Rn×m, where n rep-
resents the vocabulary size and m denotes the num-
ber of documents, HNMFk performs a sequence of
matrix factorizations across hierarchical levels to
capture the nested structure of topics. At each level
l, the factorization is expressed as X ≈W(l)H(l),
where W(l) ∈ Rn×kl is the basis matrix represent-
ing latent topics, and H(l) ∈ Rkl×m is the coeffi-
cient matrix quantifying the contribution of each
topic to the composition of documents. Here, kl is
the number of topics at level l, which is determined
automatically through stability analysis (Vangara
et al., 2021). This analysis involves bootstrapping
the data to create resampled versions of the TF-IDF
matrix, applying NMF across a range of k values,
and evaluating the stability of clusters across the
resampled datasets. The optimal kl is selected as
the value that produces the most consistent cluster-
ing results, indicating a robust underlying structure

1TELF is available at https://github.com/lanl/T-ELF
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Figure 1: Overview of the HEAL-Based Embedding Model Alignment and Retrieval. The left side illustrates
hierarchical label generation using HNMF, where documents corresponding to a cluster from each preceding depth
are converted into TFIDF matrices and further decomposed to extract sub-clusters. The TSNE visualizations
highlighting cluster memberships in document embeddings. The right side depicts fine-tuning of the SciNCL model
using HEAL loss on generated embeddings and HNMF derived labels. Once trained, the aligned model computes a
vector store from the corpus, enabling retrieval of the nearest p documents for a given query embedding.

in the data.
To construct hierarchical labels for each docu-

ment, the coefficient matrix H(l) is used to deter-
mine topic assignments. For each level l, the topic
for document i is identified by selecting the index
of the maximum value in the corresponding column
of H(l), expressed as y(l)i = argmaxkH

(l)
k,i. The

hierarchical label for document i is then formed by
aggregating the topic assignments across all levels,
resulting in yi = (y

(0)
i , y

(2)
i , . . . , y

(L−1)
i ). Here, L

is the total number of hierarchical levels, or hierar-
chical depth that is the number of NMFk operations
from the first one to the leaf. yli is the label of sam-
ple i at level l, with l = 0 corresponding to the
shallowest(most general or root node) level and
l = L− 1 to the deepest (most fine-grained, or leaf
node) level.

3.2 Hierarchical Multilevel Contrastive Loss
(HEAL)

Upon the unsupervised data decomposition with
HNMFk, the datasets have clusters with hierarchi-
cal structures. To incorporate such structures, we
propose the HEAL, which extends supervised con-
trastive loss (Khosla et al., 2020) by introducing
level-wise contrastive losses and aggregating them

with level-specific penalties.

3.2.1 Level-wise Contrastive Loss
For a batch of N samples {(xi,yi)}Ni=1, where
xi ∈ Rd is the input and yi ∈ RL is the hierarchi-
cal cluster label, we obtain normalized embeddings
{hi}Ni=1 using an encoder network fθ(·):

hi =
fθ(xi)

∥fθ(xi)∥2
, hi ∈ Rd. (1)

For a given level l, the set of positive samples
for sample i is:

P (i, l) = {p | ylp = yli, p ̸= i}. (2)

The contrastive loss at level l for sample i is:

Li,l =
−1
|P (i, l)|

∑

p∈P (i,l)

log
exp

(
h⊤
i hp/τ

)
∑N

a=1 exp
(
h⊤
i ha/τ

) .

(3)
If P (i, l) is empty (i.e., no positive samples at

level l for i), Li,l is excluded from the total loss.

3.2.2 Aggregating Level-wise Losses with
Penalties

To prioritize discrepancies at shallower levels, we
assign penalties λl to each level l, where shallower
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levels have higher penalties. The penalties are de-
fined as:

λl =
2L−l−1

∑L−1
k=0 2

k
=

2L−l−1

2L − 1
. (4)

The penalties λl satisfy:

1. λl > λl+1 for l = 0, 1, ..., L−2, i.e., penalties
decrease for deeper levels.

2.
∑L−1

l=0 λl = 1, i.e., the penalties are normal-
ized.

The total HEAL loss is then:

LHEAL =
1

N

L−1∑

l=0

λl

N∑

i=1

Li,l. (5)

Algorithm 1 Computation of HEAL Loss

Require: Mini-batch {(xi,yi)}Ni=1, temperature
τ , number of levels L

1: Compute embeddings: hi =
fθ(xi)/∥fθ(xi)∥2

2: Initialize total loss: LHEAL ← 0
3: for l = 0 to L− 1 do
4: Compute penalty λl using Eq. (4)
5: for i = 1 to N do
6: Determine positive set P (i, l) using

Eq. (2)
7: if |P (i, l)| > 0 then
8: Compute Li,l using Eq. (3)
9: Update total loss: LHEAL ← LHEAL +

λlLi,l
10: end if
11: end for
12: end for
13: return LHEAL

Algorithm 1 outlines the computation of LHEAL
for a mini-batch.

3.3 Fine-tuning Embedding Models with
HEAL for RAG

To enhance retrieval performance in RAG systems,
we fine-tune the embedding model to align with
the hierarchical structure of the document corpus.
Given a specialized document corpus, we first ap-
ply HNMFk (as described in Section 3.1) to the
corresponding TF-IDF matrix X producing hierar-
chical cluster labels yi = (y

(0)
i , y

(2)
i , . . . , y

(L−1)
i )

for each document i. Next, we generate embed-
dings from each document xi using a pretrained
embedding model fθ(.). The embedding model is
initialized with pre-trained weights and produces
normalized embeddings hi ∈ Rd for document i.
To align embeddings with the hierarchical structure,
we optimize the HEAL presented in 3.3.

The embedding model is trained by minimizing
LHEAL using gradient-based optimization:

θ∗ = argmin
θ
LHEAL,

where θ are the parameters of the embedding model
fθ(·).

After fine-tuning, the updated embeddings hi =
fθ∗(xi) are used to replace the initial embeddings
in the vector store. During inference, a query q
is embedded using fθ∗(·) as hq = fθ∗(q), and re-
trieves top p documents based on cosine similarity:

Similarity(q,xi) =
h⊤
q hi

∥hq∥∥hi∥
.

To maximize retrieval performance in RAG sys-
tems, it is essential to align the query embeddings
with the hierarchically aligned document embed-
dings. Since queries are typically shorter and may
not capture the full semantic richness of the docu-
ments, we need to semantically align queries and
documents in the embedding space. To achieve
this, we generate question-answer (Q&A) pairs
using a language model (e.g., LLaMA-3.1 70B)
for each document and leverage HEAL to jointly
align both query and document embeddings during
training. For each document xi, we generate a set
of queries {qi,k}Ki

k=1, where Ki is the number of
queries generated for document i. Each query qi,k
is associated with the same hierarchical labels yi
as its source document xi, since it is derived from
the content of xi.We extend the HEAL framework
to include both documents and queries by defining
a unified set of samples:

S = {x1, . . . ,xN}∪{qi,k | i = 1, . . . , N ; k = 1, . . . ,Ki}.
Each sample sj ∈ S has an associated hierarchi-

cal label yj , where:

yj =

{
yi, if sj = xi (document)
yi, if sj = qi,k (query generated from document xi).

(6)
Based on this dataset, the HEAL is leveraged to

finetune the embedding model .

208



4 Experiments

4.1 Datasets
We evaluate our method on datasets specifically
constructed from scientific publications in the do-
mains of Material Science, Medicine, Tensor De-
composition, and Cybersecurity. To construct our
datasets, we leveraged the Bibliographic Utility
Network Information Expansion (BUNIE) method,
a machine learning-based approach that integrates
subject-matter expertise in a human-in-the-loop
framework (Solovyev et al., 2023). For complete-
ness, we briefly summarize the BUNIE approach in
this paper. BUNIE begins with a small core corpus
of documents selected by subject-matter experts
(SMEs). From this starting point, it constructs a
citation network to identify additional relevant doc-
uments, leveraging BERT based text embeddings to
assess semantic similarity. Through iterative cycles
of dataset expansion and pruning—guided by em-
bedding visualization, topic modeling, and expert
feedback—the method ensures the corpus is both
comprehensive and domain-specific. We apply this
procedure to each scientific domain with guidance
from SMEs, who provide target keywords/phrases
and/or a core set of papers relevant to the sub-topic
of interest within the domain. Using this knowl-
edge base, we employ BUNIE to expand the dataset
from the initial core papers to a larger collection of
domain-specific documents.

1. Material Science: A collection of 46,862 sci-
entific articles, which explore 73 Transition
Metal Dichalcogenides (TMD) compounds,
combining transition-metal and chalcogen
atoms (S, Se, or Te). With a layered structure
similar to graphite, TMDs excel as solid lubri-
cants and exhibit unique quantum phases like
superconductivity and charge density waves.
Their atomically thin layers offer tunable prop-
erties, with applications in spintronics, opto-
electronics, energy harvesting, batteries, and
flexible electronics.

2. Healthcare: A collection of 9,639 scientific
articles, which examine Pulmonary Hyper-
tension (PH) disease - a rare condition caus-
ing elevated pulmonary arterial pressure, right
heart strain, and reduced oxygen delivery. The
WHO classifies PH into five groups based on
causes, including pulmonary arterial hyperten-
sion (PAH), which has a prevalence of 15-25
cases per million in the U.S. Treatments such

as endothelin receptor antagonists and prosta-
cyclin analogs aim to improve symptoms, but
prognosis varies, with untreated PAH having
a median survival of less than three years.

3. Applied Mathematics: A collection of 4,624
scientific articles, which explore tensor net-
work techniques, such as Tensor-Train (TT)
decomposition, which recently emerged as a
powerful mathematical tool for solving large-
scale Partial Differential Equations (PDEs).
Tensor network PDE solvers efficiently man-
age high-dimensional data by mitigating the
curse of dimensionality, drastically reducing
computational costs and memory usage while
maintaining high solution accuracy. These ad-
vancements hold significant promise for break-
throughs in scientific computing, including
material science, climate modeling, and engi-
neering design optimization.

4. Cyber-security: We created a dataset of
8,790 scientific publications focusing on the
application of tensor decomposition meth-
ods in cybersecurity and ML techniques for
malware analysis. This dataset serves as a
knowledge base covering topics for cyber-
security such as ML-based anomaly detection,
malware classification, novel malware detec-
tion, uncertainty quantification, real-world
malware analysis challenges, tensor-based
anomaly detection, malware characterization,
and user behavior analysis.

4.2 Experimental Setup

For training, we used the Adam optimizer with
a learning rate of 10−5, a batch size of 128, and
early stopping based on validation performance
with a patience of 5 epochs. The experiments
were conducted on a high-performance computing
cluster, with each node equipped with 4 NVIDIA
GH200 GPUs. Document metadata, comprising
the title and abstract combined, were used as input.
Hierarchical labels were generated using HNMF
with dataset-specific factorization depths: Material
Science (depth 3), Healthcare (depth 4), Applied
Mathematics (depth 3), and Cybersecurity (depth
3). HEAL loss was applied with a temperature
parameter of 0.07. The embedding base model,
SciNCL (Ostendorff et al., 2022), was chosen for
its robust contrastive pretraining on scientific docu-
ments, serving as a strong baseline for fine-tuning.
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The data was split into 60% training, 20% valida-
tion, and 20% test sets, with early stopping moni-
tored on the validation set. Evaluation metrics were
reported on the test set, while Q&A retrieval analy-
sis used the entire dataset (train + validation + test)
for constructing the vector store.

The efficacy of the RAG system was evaluated
at two levels. First, we characterized the embed-
dings on document-level tasks, including hierarchi-
cal classification, retrieval, and hallucination mea-
surement. For hierarchical classification, we used
a hierarchical classifier applying random forests
to each node (Miranda et al., 2023). The clas-
sifier is trained on embeddings corresponding to
train dataset and evaluated against the test set. We
perform this for embeddings derived from aligned
and unaligned embedding model. Retrieval per-
formance was assessed by measuring whether re-
trieved documents belonged to the same hierarchi-
cal class as the query document. Hallucination
likelihood was evaluated based on the retrieval of
incorrect documents for a given query. Second, we
evaluated the performance of the embedding model
within a RAG framework. To support retrieval and
hallucination analysis, we used the LLaMA-3.1
70B model to generate 10 Q&A pairs per docu-
ment using abstracts as input, providing a robust
test for embedding alignment and retrieval capabili-
ties. Next, we leveraged the questions as queries to
the embedding model to retrieve the best metadata
and assessed whether the model retrieved the exact
document that generated the query during Q&A
analysis, as well as the rank of the returned docu-
ment within the top 10 results. Furthermore, the
retrieved documents were augmented with LLaMA-
3.1 70B LLM to generate responses, with halluci-
nations evaluated based on response accuracy and
relevance.

Given the specialized nature of our dataset
and the requirement for hierarchical labels, fine-
tuning is essential. Comparing our method to ap-
proaches that do not leverage hierarchical labels
is inequitable, as they are inherently less effective
for this task. Our approach simplifies training by
eliminating HEAL loss hyperparameter tuning, un-
like HiMulCon (Zhang et al., 2022), which requires
extensive tuning of penalty parameters for optimal
results. While HiMulCon focuses on root-level
classification in vision datasets, our method aligns
embeddings across all hierarchical depths. We op-
timize hierarchical metrics such as classification,
retrieval, and hallucination indirectly through the

HEAL loss, ensuring a robust alignment with the
hierarchical structure.

For these reasons, we evaluate the performance
of HEAL using the baseline model SciNCL, both
without and with hierarchical alignment on our
diverse specialized datasets. We evaluate perfor-
mance using hierarchical metrics to capture nu-
ances of hierarchical label structures in retrieval,
classification, and hallucination assessments as pre-
sented in Appendix Table 2 .

4.3 Results
Table 1 summarizes the performance metrics for
three datasets (Healthcare, Materials, Applied
Mathematics, and Cybersecurity) across three
tasks: classification, retrieval, and hallucination
evaluation. The aligned model corresponds to the
embedding model trained using the HEAL loss,
whereas the non-aligned model corresponds to the
original embedding model without HEAL-based
training. The metrics are reported for both non-
aligned and aligned SciNCL embeddings, demon-
strating the significant impact of HEAL on improv-
ing performance. Figure 2 illustrates hierarchi-
cal embedding alignment achieved through HEAL
training, resulting in well-separated super and sub-
clusters for the Materials and Healthcare datasets
which enhances the performance of downstream
tasks. The density contours, computed via Kernel
Density Estimation (KDE), highlight the under-
lying clustering structure by depicting regions of
high and low embedding concentration. In subplots
(a) and (c), the embeddings before model align-
ment appear more dispersed, indicating weaker
intra-cluster cohesion and greater overlap between
different data regions. However, in subplots (b)
and (d), after model alignment, the contours be-
come more compact and well-separated, signifying
improved structural coherence and enhanced dis-
criminability of the learned representations. This
transformation suggests that alignment enhances
the model’s ability to encode meaningful relation-
ships, ultimately improving feature organization
and representation learning within the embedding
space. The increased cluster compactness and sepa-
ration indicate a more refined, task-specific feature
space, which is crucial for downstream applications
such as classification and retrieval.

First, we evaluate the performance on document-
level tasks using hierarchical labels. Specifically,
we assess the ability of the hierarchical classifier to
predict hierarchical labels in the classification task.
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(d) Healthcare dataset after model alignment

Figure 2: Embedding visualizations for the Material and Healthcare datasets, projected using t-SNE for dimen-
sionality reduction. The density contours represent the kernel density estimation (KDE) of the embeddings in the
2D space, highlighting the clustering structure. Subplots show the Material dataset, (a) before and (b) after model
alignment, and the Healthcare dataset, (c) before and (d) after model alignment. The contours reveal changes in the
density distribution of embeddings, emphasizing the effect of alignment on cluster organization and separability.

Table 1: Performance Metrics Across Datasets (Healthcare, Materials, Cyber, Applied Mathematics) for Aligned
and Non-aligned Embeddings for k = 10

Task *Metric Healthcare Materials Cyber Applied Mathematics
Non-aligned Aligned Non-aligned Aligned Non-aligned Aligned Non-aligned Aligned

Classification F1 Score 0.5164 0.6588 0.6469 0.990 0.7130 0.8151 0.7541 0.8048
Precision 0.5134 0.6590 0.6453 0.990 0.6975 0.8121 0.7415 0.8112
Recall 0.5194 0.6586 0.6485 0.990 0.7293 0.8180 0.7672 0.7985

Retrieval Precision@k 0.3103 0.4983 0.4787 0.9707 0.6397 0.7518 0.6576 0.7636
Recall@k 0.0164 0.0290 0.0058 0.0116 0.0112 0.0133 0.0182 0.0212
MRR 1.6259 2.2525 1.6541 2.9972 2.7538 3.1482 2.9065 3.2245
nDCG@k 0.3752 0.5908 0.4982 0.990 0.6781 0.7908 0.7187 0.8280

Hallucination FPR@k 0.9386 0.8771 0.8534 0.0878 0.7968 0.6236 0.8191 0.6529
Severity 0.7306 0.5533 0.6041 0.0644 0.4402 0.3654 0.4119 0.3353

Additionally, we quantify the retrieval of docu-
ments from the same hierarchical category based on
a query document to characterize retrieval accuracy
and evaluate hallucinations. The results presented
in table 1 demonstrate that HEAL significantly im-
proves hierarchical classification metrics across all
datasets. For the Healthcare dataset, the Hierarchi-
cal F1 Score improves from 0.5164 to 0.6588, re-
flecting a more accurate representation of hierarchi-

cal labels. Similarly, the Materials dataset achieves
near perfect classification metrics (F1 Score, Pre-
cision, Recall = 0.99) with aligned embeddings,
while the most challenging Healthcare dataset (4
depth cluster label) sees improvements in F1 Score
from 0.5164 to 0.6588. In retrieval tasks, HEAL
aligned embeddings consistently outperform non-
aligned embeddings across all metrics. For the
Healthcare dataset, Hierarchical MRR improves
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from 1.6259 to 2.2525, and nDCG@k increases
from 0.3752 to 0.5908 where k = 10, indicat-
ing better ranking and retrieval relevance. The
Materials dataset achieves a dramatic increase in
retrieval precision, with Precision@k rising from
0.4787 to 0.9707, while nDCG@k reaches 0.99,
showcasing near-perfect retrieval performance. For
the Cyber dataset, aligned embeddings yield an
MRR improvement from 2.7538 to 3.1482 and a
corresponding nDCG@k increase from 0.6781 to
0.7908. Hallucination metrics further underscore
the superiority of HEAL. Aligned embeddings re-
duce hallucination rates significantly across all
datasets. For the Healthcare dataset, FPR@k drops
from 0.9386 to 0.8771, and severity decreases from
0.7306 to 0.5533, indicating fewer irrelevant or
misleading retrievals. The Materials dataset shows
the most striking improvement, with FPR@k re-
duced from 0.8534 to 0.0878 and severity declining
from 0.6041 to 0.0644, nearly eliminating halluci-
nation tendencies. For the Cyber dataset, aligned
embeddings lower FPR@k from 0.7968 to 0.6236
and severity from 0.4402 to 0.3654.

Next, we evaluate the performance of aligned
RAG in retrieving the correct documents for gener-
ated queries to augment the LLM and minimize hal-
lucinations. From each test dataset, we randomly
sampled 100 documents and generated 10 Q&A
pairs per document using the LLAMA-3.1 70B
model, resulting in a total of 1,000 Q&A pairs for
each dataset. Each Q&A pair was tagged with the
corresponding document from which it was gener-
ated. The prompt used for Q&A generation was as
follows: “First, provide a concise summary of the
following abstract that emphasizes its key concepts
and hierarchical relationships. Then, based on
this summary, generate 10 unique, nuanced Q&A
pairs. Focus on creating questions that delve into
specialized details of the hierarchical concepts dis-
cussed.” The generated queries were used to fetch
documents via both aligned and unaligned models.
We assessed the ability of each model to correctly
retrieve the original document and evaluated the
rank/order of retrieval. On average, the unaligned
model achieved an MRR of 0.273 and a Recall@10
of 0.415. These metrics represent regular retrieval
scores, not hierarchical scores. In contrast, the
aligned model significantly improved performance,
achieving an MRR of 0.514 and a Recall@10 of
0.731, demonstrating its superior ability to retrieve
the correct set of documents. Furthermore, when
integrating RAG with LLAMA-3.1 70B for gener-

ating answers from the queries and retrieved doc-
uments, the unaligned model produced a ROUGE
score of 0.42, while the aligned model achieved
a ROUGE score of 0.68. This highlights the im-
pact of alignment on improving the quality and
relevance of generated responses.

5 Conclusion

In this work, we introduced HEAL, a novel frame-
work for aligning embeddings in RAG systems
through hierarchical fuzzy clustering and matrix
factorization, integrated within a contrastive learn-
ing paradigm. HEAL effectively computes level-
specific contrastive losses and applies hierarchical
penalties to align embeddings with domain-specific
structures, enhancing both retrieval relevance and
classification performance. Experimental results
across diverse domains — Healthcare, Materials
Science, Cybersecurity, and Applied Mathematics
— demonstrate HEAL’s capability to significantly
improve retrieval accuracy and mitigate hallucina-
tions in LLM-based systems. By bridging hierar-
chical semantics with contrastive alignment, HEAL
establishes itself as a versatile and robust tool for
advancing RAG methodologies, enabling more pre-
cise, reliable, and domain-adaptive applications of
large language models.
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Metric Formula Description
Hierarchical Relevance(q, r) = Average label match
Relevance 1

L

∑L−1
l=0 δ(y

l
q, y

l
r) across hierarchy levels

Fraction of
Hierarchical 1

k

∑k
i=1 Relevance(q, ri) hierarchically relevant

Precision@k documents among top k.
Fraction of

Hierarchical
∑k

i=1 Relevance(q,ri)∑
r∈Relevant(q) Relevance(q,r) hierarchically relevant

Recall@k documents retrieved.
Discounted gain based

Hierarchical
∑k

i=1
2Relevance(q,ri)−1

log2(i+1)

∑k
i=1

2IdealRelevance(q,ri)−1
log2(i+1)

on hierarchical relevance.

nDCG@k
Balance between

Hierarchical 2·Precision·Recall
Precision+Recall hierarchical precision

F1 Score and recall.
Measures retrieval

Hierarchical 1−
∑k

i=1 Relevance(q,ri)
k of irrelevant documents

Severity in hierarchical setting.
Hierarchical Fraction of
False Positive Irrelevant hierarchical documents in top k

k irrelevant hierarchical
Rate@k documents among top k.

Table 2: Hierarchical Metrics for classification, retrieval and hallucination
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Abstract

Retrieval-Augmented Generation (RAG) sys-
tems and large language model (LLM)-
powered chatbots have significantly advanced
conversational AI by combining generative ca-
pabilities with external knowledge retrieval.
Despite their success, enterprise-scale deploy-
ments face critical challenges, including di-
verse user queries, high latency, hallucinations,
and difficulty integrating frequently updated
domain-specific knowledge. This paper intro-
duces a novel hybrid framework that integrates
RAG with intent-based canned responses, lever-
aging predefined high-confidence responses for
efficiency while dynamically routing complex
or ambiguous queries to the RAG pipeline. Our
framework employs a dialogue context man-
ager to ensure coherence in multi-turn inter-
actions and incorporates a feedback loop to
refine intents, dynamically adjust confidence
thresholds, and expand response coverage over
time. Experimental results demonstrate that
the proposed framework achieves a balance of
high accuracy (95%) and low latency (180ms),
outperforming RAG and intent-based systems
across diverse query types, positioning it as a
scalable and adaptive solution for enterprise
conversational AI applications.

1 Introduction

Recent progress in NLP has drastically changed
the landscape of conversational AI, and among
such new state-of-the-art solutions, a class of
Retrieval-Augmented Generation (RAG) systems
has emerged. By combining large language mod-
els (LLMs) with separate information retrieval
pipelines, RAG systems can generate contextu-
ally rich and factually grounded responses, which
are necessary for knowledge-intensive applications
(Lewis et al., 2020). However, enterprise-scale con-
versational AI systems often face real-world chal-
lenges such as diverse user query patterns, vary-
ing levels of query complexity, and stringent la-

tency requirements for seamless user experiences.
High computational costs, susceptibility to hallu-
cinations when retrieval is misaligned, and ineffi-
ciencies in managing frequently updated domain-
specific knowledge further compound these chal-
lenges, particularly in dynamic environments like
customer support (Sanh et al., 2020b; Rocktäschel
et al., 2020). In practice, ensuring that such sys-
tems can scale while maintaining accuracy and low
latency remains an industry pain point.

In contrast, classical intent-based chatbots are ef-
ficient in processing frequently asked questions
(FAQ) and other predictable queries, thanks to us-
ing pre-defined responses. Their lightweight com-
putational footprint and scalability also make them
well-suited for high-confidence, domain-specific
scenarios (Serban et al., 2017; Shah et al., 2018).
However, these systems are inherently rigid and of-
ten struggle with query diversity, especially when
faced with ambiguous or context-dependent user in-
teractions. In high-demand enterprise settings, the
inability of intent-based systems to adapt quickly to
evolving user needs or handle complex multi-turn
dialogues (Shah et al., 2018; Zhao, 2020) results in
inconsistent user experiences and increased oper-
ational overhead for manual updates. The inabil-
ity to balance adaptability with efficiency under-
scores the need for hybrid systems that synergize
the strengths of RAG and intent-based approaches.

In order to solve these challenges, we propose a
novel hybrid framework that combines RAG sys-
tems with intent-based canned responses for dy-
namic, multi-turn customer service interactions.
While prior works have explored combining RAG
and intent-based systems independently, our contri-
bution lies in a cohesive framework that not only
integrates these elements but also introduces a dy-
namic confidence-based routing mechanism refined
through user feedback. This mechanism ensures
that query routing decisions are continuously op-
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timized based on real-time user interactions, en-
abling a system that evolves and adapts without
manual intervention. Additionally, our framework
addresses scalability challenges by efficiently bal-
ancing computational resources, making it par-
ticularly suited for enterprise-scale applications
where latency and accuracy are paramount. Our
approach utilizes a dynamic query routing mecha-
nism that evaluates the intent confidence level of
user queries:

• High-confidence queries are resolved using
predefined canned responses to ensure low
latency and computational efficiency.

• Low-confidence or ambiguous queries are
routed to the RAG pipeline, enabling contex-
tually enriched responses generated from ex-
ternal knowledge.

The framework is further enhanced with a dia-
logue context manager, keeping track and man-
aging evolving intents across multiple turns, ensur-
ing consistent and coherent interactions. Addition-
ally, a feedback loop continuously refines the intent
repository, adapting to emerging user needs and ex-
panding response coverage over time. Our system
is designed to meet enterprise latency standards,
delivering responses within an acceptable thresh-
old (sub-200ms latency and high turn efficiency),
thereby ensuring user engagement and satisfaction
in real-time applications(Pattnayak et al., 2024).

Our Contributions This work makes the follow-
ing key contributions:

1. Hybrid Conversational Framework: We
propose a novel architecture which combines
RAG systems with intent-based canned re-
sponses; the queries are routed dynamically
for optimizing response latency and computa-
tional cost without compromising accuracy.

2. Multi-Turn Dialogue Management: We in-
troduce a dialogue context manager which can
track the evolving user intents and guarantee
coherence in responses over multiple turns,
thus addressing a key gap in the current sys-
tems.

3. Feedback-Driven Adaptability: Our frame-
work incorporates a feedback loop to enable
continuous refinement of intents, canned re-
sponses and confidence thresholds, thereby
improving system adaptability and coverage

for real-world applications.

4. Comprehensive Evaluation: Extensive ex-
periments on synthetic and real-world datasets
demonstrate significant improvements in ac-
curacy, latency, and cost efficiency compared
to state-of-the-art baselines.

5. Real-World Applicability: Our framework
is designed for enterprise-scale deployment,
handling diverse user queries efficiently, from
repetitive FAQs to complex knowledge-based
questions, while adhering to industry latency
standards critical for user retention.

By addressing key challenges faced by enterprise
conversational AI systems, such as query diver-
sity, dynamic knowledge updates, and real-time la-
tency requirements, our proposed framework offers
a scalable, adaptive, and efficient solution. This
work advances task-oriented dialogue systems, par-
ticularly in domains where multi-turn interactions
and dynamic knowledge management are essential
for operational success.

2 Related Work

2.1 Retrieval-Augmented Generation (RAG)

Recent advancements in RAG have enhanced con-
textual retrieval and generative capabilities, improv-
ing incident resolution in IT support (Isaza et al.,
2024), question-answering systems, and domain-
specific chatbots (Veturi et al., 2024). Research on
noise handling (Cuconasu et al., 2024) and rein-
forcement learning (Kulkarni et al., 2024) further
optimizes RAG for precision and adaptability in
complex applications. By retrieving relevant doc-
uments during inference, RAG systems mitigate
common LLM challenges such as hallucinations
and outdated knowledge (Lewis et al., 2020; Sanh
et al., 2020b). These systems are particularly effec-
tive for knowledge-intensive tasks where accuracy
and factual grounding are critical.

Despite their effectiveness, RAG systems face sig-
nificant challenges, including high computational
costs and latency due to the dual retrieval and gen-
eration processes. Enterprise settings also pose
unique challenges, such as diverse user queries,
latency constraints, and evolving domain knowl-
edge needs (Lewis et al., 2020; Pattnayak et al.,
2025). Moreover, most existing RAG systems are
optimized for single-turn interactions and strug-
gle with maintaining coherence in multi-turn di-
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Approach Strengths Weaknesses Multi-Turn Support Feedback Adaptation

RAG Systems Accurate, dynamic re-
sponses

High latency, computa-
tionally expensive

Limited No

Intent-Based Chatbots Efficient, low latency Rigid, poor adaptability No No

Hybrid RAG-Intent
Systems

Balance between effi-
ciency and flexibility

Limited multi-turn and
feedback mechanisms

Partial No

Proposed Framework Low latency, multi-turn
adaptable

Scalability challenges Yes Yes

Table 1: Comparison of Existing Approaches and the Proposed Framework.

alogues, where evolving user intents require dy-
namic retrieval and contextual adaptation (Rock-
täschel et al., 2020). Recent efforts to optimize
RAG pipelines, such as multi-stage retrieval sys-
tems (Lee et al., 2020) and model distillation (Sanh
et al., 2020b), have reduced latency but do not ad-
dress the complexities of multi-turn interactions
(Sanh et al., 2020a).

2.2 Intent-Based Chatbots

Intent-based chatbots work well for predictable,
high-confidence queries by mapping user inputs to
predefined intents. These systems are widely used
in domains like customer support, where they effi-
ciently handle FAQs and repetitive queries with
minimal computational overhead (Serban et al.,
2017; Shah et al., 2018). However, their reliance
on predefined intents limits their adaptability to
ambiguous or evolving queries, particularly in
multi-turn conversations (Michelson et al., 2020;
Friedrich et al., 2020).

Recent developments have involved the inclusion
of transformer-based models to enhance intent
recognition and increase coverage (Michelson et al.,
2020). However, these methods are resource-heavy,
as they require a lot of labeled data and compu-
tational resources, which makes scalability quite
limited for dynamic domains.

2.3 Hybrid Approaches

Hybrid retrieval systems integrating lexical search
(e.g., BM25 (Robertson and Walker, 1994))
and semantic search (e.g., dense embeddings via
FAISS (Douze et al., 2024)) effectively balance
speed and semantic depth (Agarwal et al., 2025),
improving retrieval accuracy (Mitra et al., 2021;
Hernandez et al., 2020).

In conversational AI, hybrid approaches integrating
RAG with intent-based responses have emerged to
address limitations in single-mode systems by en-

hancing flexibility and efficiency (Bordes et al.,
2020). Prior works, such as (Gao et al., 2020b;
Zhao, 2020; Patel et al., 2024), have explored blend-
ing retrieval-augmented pipelines with canned re-
sponses to improve response efficiency and contex-
tual depth. However, these systems are primarily
designed for single-turn interactions and do not
address the complexities of multi-turn dialogues,
where query context evolves dynamically (Agar-
wal et al., 2024a). While existing research relies
on static threshold-based routing, the integration
of adaptive threshold driven routing and response
generation for real-time, multi-turn applications
remains an under explored area with significant
potential for optimization.

2.4 Positioning of This Work

While prior research has advanced RAG systems,
intent-based chatbots, and hybrid architectures, key
limitations remain. RAG systems excel in generat-
ing contextually rich responses but struggle with
coherence in multi-turn conversations, high latency,
and computational costs (Lewis et al., 2020; Rock-
täschel et al., 2020). Intent-based chatbots are effi-
cient but lack flexibility for ambiguous or evolving
queries in dynamic settings (Serban et al., 2017;
Agarwal et al., 2024b). Hybrid systems balance
efficiency and adaptability but often fail to track
dialogue context or refine responses dynamically
based on user feedback (Gao et al., 2020a). Ta-
ble 1 summarizes the key differences between the
existing work and our proposed framework.

This work addresses real-world challenges by
proposing a hybrid framework that integrates RAG
systems with intent-based canned responses. It uses
dynamic query routing to handle high-confidence
queries efficiently with canned responses while re-
lying on RAG pipelines for complex cases. A dia-
logue context manager ensures coherence in multi-
turn interactions, and a real-time feedback loop
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Figure 1: High-level Architecture of the Hybrid Framework.

enables continuous refinement of intents, thresh-
olds and canned responses. For instance, in an
enterprise customer support setting, our system ef-
ficiently handles high-frequency queries such as,

“How do I reset my password?” using canned re-
sponses with minimal latency (under 200ms), en-
suring quick resolution for routine tasks. In con-
trast, more complex queries such as, “Can you
help me troubleshoot a payment gateway integra-
tion issue with API X?” are dynamically routed to
the RAG pipeline, leveraging external documen-
tation and past incident reports to generate accu-
rate responses. This adaptability is further evident
when users provide feedback on response quality,
prompting the system to refine its intent classifi-
cation and adjust confidence thresholds for future
queries. Unlike existing systems that either focus
on single-turn interactions or static routing and
struggle with multi-turn dialogue management, our
framework continuously adapts to diverse queries
and user needs, optimizing latency and scalability.

By focusing on these critical aspects, this frame-
work advances the state-of-the-art in task-oriented
dialogue systems, particularly for enterprise-scale
applications where efficiency, scalability, and
adaptability are paramount.

3 Proposed Framework

The proposed framework integrates the efficiency
of intent-based canned responses with the con-

textual richness and adaptability of Retrieval-
Augmented Generation (RAG) systems (Lewis
et al., 2020; Gao et al., 2020c). By dynamically
routing queries based on intent confidence and
leveraging user feedback for adaptive refinement,
the framework addresses latency, accuracy, and
scalability challenges while maintaining coherence
across multi-turn interactions. Figure 1 illustrates
the architecture with key modules, data flow and
a Redis Cache which stores frequently accessed
intents and responses for faster retrievals.

3.1 Key Modules
The framework comprises the following key com-
ponents, each designed to address specific chal-
lenges in multi-turn dialogue systems:

Intent Classifier. The Intent Classifier utilizes
a fine-tuned BERT model (Devlin et al., 2019) to
encode user queries into semantic embeddings ex-
tracted from last layer of the model. See Appendix
A.3 for datatset detail. Confidence scores (c) are
calculated by comparing the query embedding with
predefined intent embeddings: Based on c, the
query is classified as:

• c > 0.85: FAQ (Canned Response).

• 0.5 < c ≤ 0.85: Contextual.

• c ≤ 0.5: Out-of-Domain.

The above thresholds are default for the system
which are updated based on the user-feedback on
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Algorithm 1 Context-Aware Intent Confidence Calculation

Require: Query Q, Set of Intent Embeddings {E1, E2, . . . , En}, Historical Context Embeddings Ht

Ensure: Highest Confidence Score c, Corresponding Intent: Intentmax
1: Step 1: Calculate Query Embedding
2: Eq ← BERT(Q)
3: Step 2: Contextual Query Embedding
4: Contextt ← ϕ(Eq,Ht) ▷ Augment query embedding with historical context
5: Step 3: Confidence Calculation
6: for each intent embedding Ei in {E1, E2, . . . , En} do
7: ci ← CosineSimilarity(Contextt, Ei) ▷ Compute similarity for intent i
8: end for
9: Step 4: Find Best Match

10: c← max(ci) ▷ Highest confidence score
11: Intentmax ← argmaxi(ci) ▷ Intent corresponding to c
12: Output: c, Intentmax

the fly. Algorithm 1 provides the pseudo-code for
the classification process, which incorporates his-
torical context from the Dialogue Context Manager.

Dialogue Context Manager. The module tracks
dialogue history using embeddings of prior queries
and responses, stored in a sliding window. For
multi-turn interactions, historical context embed-
dings are computed dynamically:

Ht = ψ
(
{(Qt−i, Rt−i) | i = 1, ..n}

)

where ψ represents a bi-encoder (in-house architec-
ture) that computes the embeddings by appending
prior context, queries, and responses into a string.
Qt−i and Rt−i represents previous query and cor-
responding responses within a chat session. The
aggregated historical context Ht is then used to
compute the current contextual query embedding:

Contextt = ϕ(Eq,Ht)

Here, ϕ represents a lightweight transformer block
(in house cross-encoder) to compute attention, Eq
is the current query embedding. Relevant historical
context embedding is appended to the current query
embedding for downstream processing.

Dynamic Routing. The module checks the confi-
dence (c) of the classified intent: Intentmax, against
the threshold (τFAQ) of the particular intent in the
Intent Data Store. τFAQ for each intent is dynami-
cally updated with user-feedback.

Response Generator. The module refines the fi-
nal response to user by either blending the static
canned responses (Rc) with dynamic RAG outputs

(Rr) using a language module or directly passing
the Rc or Rr to the user based on the Dynamic
Router.

Feedback Mechanism. Explicit (ratings) and im-
plicit (e.g., query refinements) feedback is logged
and used to refine thresholds, intents, and response
mappings. New intents are created for recurring un-
handled queries. Specifically, recurring unhandled
queries are logged and grouped based on semantic
similarity. When a threshold number of similar un-
resolved queries is reached in a group, the system
automatically flags for creation of a new intent and
response. Explicit user feedback is collected via
a post-response prompt in the chat interface, al-
lowing users to rate responses positive or negative
(thumbs up or thumbs down), which dynamically
updates the system’s confidence thresholds every
100 interactions.

3.2 Workflow
The framework integrates query classification, re-
sponse routing, multi-turn handling, and feedback
adaptation into a cohesive workflow:

Query Classification. Queries are classified into
types (FAQ, Contextual, or Out-of-Domain) based
on the confidence score c from the Intent Classifier
and the threshold τFAQ & τOut-of-Domain for each
intent, stored in the Intent Data Store, which is
dynamically updated with the user feedback. The
classification logic is as follows:

• FAQ: If c > τFAQ, the query is resolved using
a predefined canned response for the intent.

• Out-of-Domain: If c ≤ τOut-of-Domain, the
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query is routed exclusively to the RAG
pipeline for domain-specific response genera-
tion.

• Contextual: If τOut-of-Domain < c ≤ τFAQ, the
query is processed by both canned responses
for the intent and the RAG pipeline. The Re-
sponse Generator then combines the outputs.

Response Routing. The final response for the
user is based on the query classification. The re-
sponse generation varies by query type:

1. Canned Response (FAQ): The predefined the
canned response for the intent is passed di-
rectly to the user for rapid resolution.

2. RAG Response (Out-of-Domain): The RAG
output is passed as is, ensuring the most con-
textually rich response for undefined intents.

3. Hybrid Response (Contextual): Both the
canned response and the RAG output are re-
trieved and combined into a unified response
using a language model (LLM):

Rf = LLM(c ·Rc, (1− c) ·Rr),

where c is the confidence of the Intentmax,
passed to the LLM in to the prompt to en-
sures coherence and contextual alignment in
the final response.

Multi-Turn Handling. Context tracking ensures
coherence in multi-turn interactions by retrieving
and appending the most relevant embeddings from
dialogue history.

Feedback-Driven Adaptability. User feedback
dynamically influences system thresholds and in-
tent mappings. The threshold for FAQs (τFAQ) is
adjusted based on feedback trends, ensuring that
frequently misclassified queries are handled appro-
priately. The update mechanism follows::

τFAQ = τFAQ + λ · (NFR− PFR),

where:

• NFR: Negative Feedback Rate.

• PFR: Positive Feedback Rate.

• λ: Scaling factor controlling the sensitivity of
the adjustment.

• τFAQ: By default is set to 0.85 whenever the
intents (and dependent intents) are updated in
intent data store.

High negative feedback increases the threshold, re-
ducing the likelihood of misclassification as FAQs,
while positive feedback reduces the threshold to
favor FAQ classification. Threshold for Out-of-
Domain queries (τOut-of-Domain) is kept constant at
0.5 to prevent over-restricting or over-generalizing
OOD classification. This adaptive threshold mecha-
nism ensures that the system remains responsive to
user feedback while maintaining stability in query
classification. Further details are provided in Ap-
pendix A.1

3.3 Prototype Implementation
The framework is implemented as a modular sys-
tem using microservices:

• Frontend: Built with React.js for user inter-
action and feedback collection (Contributors,
2023).

• Backend: Flask microservices handle query
classification, retrieval, and feedback process-
ing (Grinberg, 2018).

• Storage: OCI (Oracle Cloud Infrastructure)
Opensearch stores canned responses & exter-
nal knowledge base, while FAISS and dense
embeddings support retrieval (Karpukhin
et al., 2020).

• Memory Cache: A memory-augmented mod-
ule maintains embeddings of prior inter-
actions in OCI Cache (Managed Redis), al-
lowing the system to retain relevant historical
context across multiple dialogue turns.

• Model Deployment: Models (e.g., BERT, En-
coder, Cross-Encoder, GPT-3 & other propri-
etary LLMs) are deployed using in-house ar-
chitecture and OCI Gen AI Service for scala-
bility.

4 Experiment and Results

The hybrid framework was evaluated on four met-
rics: accuracy, response latency, cost efficiency,
and turn efficiency. These evaluations spanned in-
house datasets of live customer queries, and scal-
ability tests. Table 2 summarizes overall results,
while Table 5 in the appendix provides category-
wise performance.

4.1 Experimental Setup
The evaluation dataset comprised 10,000 queries,
categorized as :- a) Predefined FAQ Queries (40%):
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High-confidence queries resolved via canned re-
sponses, b) Contextual Queries (30%): Queries
requiring both canned & RAG responses, and c)
Out-of-Domain Queries (30%): Undefined intents
handled exclusively by RAG pipeline.

For multi-turn interactions, 20% of queries in-
cluded follow-ups designed to assess context re-
tention. Scalability tests evaluated performance
with dataset sizes up to 50,000 queries, preserving
category proportions. Results are shown in Table
3.

Evaluation Metrics The system was assessed
using the following metrics:

• Accuracy: Percentage of correctly resolved
queries across predefined FAQs, contextual
queries, and out-of-domain scenarios. Ac-
curacy is a fundamental evaluation metric
in retrieval-based and generative NLP mod-
els (Karpukhin et al., 2020; Lewis et al., 2020),
ensuring that responses align with the in-
tended knowledge base. We determine ac-
curacy using a cosine similarity metric, as
used in prior works on retrieval-based QA sys-
tems (Reimers and Gurevych, 2019). For Pre-
defined FAQ, the framework has to fetch the
correct FAQ, leading to a 100% cosine sim-
ilarity. For Contextual and Out-of-Domain
Queries, the generated resposne needs to be
similar (90%) to annotated ground truth an-
swer.

• Response Latency: Average response time
in milliseconds taken to generate responses.
Response latency is crucial in real-time con-
versational AI applications, as delays directly
impact user experience (Shuster et al., 2021).
Faster response times enhance engagement,
making this metric essential for evaluating
system efficiency.

• Cost Efficiency (CE): A normalized measure
of cost efficiency, defined as:

CE = min

(
1,

Latencybaseline

Latencyproposed
×

Accuracyproposed

Accuracybaseline

)

Inspired by cost-aware NLP evaluations (Tay
et al., 2023), this metric balances accuracy
and latency trade-offs. It ensures that the pro-
posed framework maintains or improves ac-

curacy while reducing computational costs, a
key factor in large-scale AI deployment.

• Turn Efficiency: Average number of turns
required to resolve a query in a conversation:

Turn Efficiency =
Total Turns

Resolved Queries

Turn efficiency measures conversational con-
ciseness, ensuring that the system minimizes
unnecessary back-and-forth interactions (Ser-
ban et al., 2017). A lower number of turns
per resolved query indicates a more efficient
dialogue system, reducing user dissatisfaction
and operational overhead.

4.2 Results and Analysis

Overall Performance. Table 2 compares the pro-
posed framework with baseline systems. Our pro-
posed framework achieves a balance of high ac-
curacy (95%) and low latency (180ms), outper-
forming the canned-response system and the RAG
pipeline’s accuracy. The proposed system reduces
the chances of hallucination for the most common
user queries by leveraging canned responses hence
outperforming accuracy of just RAG pipeline’s.

Category-Specific Insights. Table 5 (Appendix
A.2) highlights performance variations across
query types:

• FAQs: Similar accuracy compared to the
canned-response system, with a 82% reduc-
tion in latency compared to RAG Pipeline.

• Contextual Queries: Accuracy improved
over 47% compared to canned-response sys-
tem, with over 50% reduction in latency com-
pared to RAG Pipeline with similar accuracy.

• Out-of-Domain Queries: The RAG pipeline
and our proposed framework exceed the base-
line intent-based system’s accuracy by over
85%, as intent systems default to fallback re-
sponses for out-of-domain queries.

Scalability. The hybrid framework’s scalability
was evaluated under query loads ranging from
1,000 to 50,000. We observed graceful perfor-
mance degradation under increasing query loads.
Accuracy remains within enterprise-grade thresh-
olds (92% at 50,000 queries), while latency in-
creases proportionally due to retrieval bottlenecks.
Table 3 summarizes the results, demonstrating the
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Framework Accuracy (%) (↑) Response Latency (ms) (↓) Cost Efficiency (↑) Turn Efficiency (↓)
Canned-Response (Baseline) 53 68 1.0 NA

RAG Pipeline 91 380 0.3 2.3

Proposed Framework 95 180 0.7 1.7

Table 2: Evaluation Results for Canned-Response (Intent) Systems, RAG, and Proposed Frameworks. Metrics
represent averages across the evaluation dataset. The desired direction for improvement: (↑) higher is better, (↓)
lower is better. Turn Efficiency is not available for Canned-Response as it lacks multi-turn capabilities.

frameworks ability to maintain balanced perfor-
mance in terms of accuracy, latency, and cost effi-
ciency under increasing concurrent loads.

Cost Efficiency. Proposed framework demon-
strates effective trade-offs, achieving a CE score of
0.7 compared to 0.3 for RAG. The introduction of
dynamic query routing minimizes computational
overhead for high-confidence queries.

Turn Efficiency. Turn efficiency (1.7) highlight
the framework’s ability to maintain coherence and
minimize dialogue complexity while trying to re-
solve queries, relatively outperforming both base-
lines when compared in conjunction with accuracy
and response latency.

Multi-Turn Interaction Analysis With 20%
(2,000) queries including follow-up interactions,
the dialogue context manager maintained high co-
herence in these multi-turn interactions, effectively
tracking evolving user intents and ensuring context
continuity. Minor context drift was observed in ses-
sions exceeding 10 turns, indicating that optimiz-
ing context management for prolonged dialogues
remains an area for future improvement. See Ap-
pendix A.5 for common failure scenarios and error
analysis.

Query Load Accuracy (%) Latency (ms) Cost Efficiency

1,000 96 174 0.77

5,000 96 177 0.74

10,000 95 180 0.71

20,000 94 186 0.70

50,000 92 193 0.69

Table 3: Scalability Results for the proposed Framework.
Query Load indicates the number of queries processed
in the evaluation.

4.3 Error Analysis:
We conducted a manual error analysis on 500 dia-
logue samples covering diverse user intents. Only
32 (6%) samples were found erroneous. Three in-

dependent annotators with subject matter expertise
in Oracle cloud customer support evaluated these
dialogue samples with an inter-annotator agree-
ment of 0.91. Errors were categorized into four
main types: 1) Edge Cases in Intent Classification
(21%) due to subtle semantic differences, 2) Long
Multi-Turn Dialogues (35%) where latency and
context tracking issues arose, 3) Retrieval Inaccu-
racy (25%) from incomplete or outdated document
retrieval, and 4) Feedback Misalignment (19%) due
to misinterpretation of user feedback. Future work
to remediate these could include refining fallback
strategies, optimizing context management, regular
index updates, and context-aware feedback process-
ing. Further details are provided in Appendix A.5.

4.4 Final Insights and Implications
The evaluation metrics, error analysis and scalabil-
ity underscore the proposed framework’s effective-
ness:

• Efficiency-Accuracy Trade-offs: Dynamic
query routing achieves optimal balance be-
tween computational cost and response qual-
ity.

• Multi-Turn Adaptability: Superior context
retention validates its applicability in complex
dialogue scenarios.

• Scalability and Robustness: Modular de-
sign ensures operational resilience under high
query loads.

5 Conclusion

We proposed a hybrid conversational framework
that integrates intent-based canned responses with
Retrieval-Augmented Generation (RAG) systems,
explicitly designed to handle multi-turn interac-
tions. The framework dynamically routes queries
based on intent confidence, ensuring low latency
for predefined intents while leveraging RAG for
complex or ambiguous queries. The inclusion
of a dialogue context manager guarantees coher-
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ence across multi-turn interactions, and a feedback-
driven mechanism continuously refines intents and
confidence thresholds over time.

Experimental results demonstrated the proposed
framework’s ability to balance accuracy (95%), re-
sponse latency (180ms), and cost efficiency (0.7),
while achieving superior context retention and turn
efficiency in multi-turn scenarios. The system
effectively handles multi-turn dialogues with mi-
nor limitations in long conversations exceeding 10
turns. Our contributions include a scalable, adap-
tive solution for dynamic conversational AI, ad-
dressing key industry challenges such as query di-
versity, evolving knowledge bases, and real-time
performance requirements. Future research will fo-
cus on enhancing multi-turn context management,
conducting ablation studies to isolate module con-
tributions, and exploring real-time learning mech-
anisms for continuous adaptation. This work ad-
vances the state-of-the-art in enterprise conversa-
tional AI, providing a robust framework for han-
dling complex, multi-turn interactions efficiently.

6 Limitations and Future Work

While our system demonstrates strong performance
in enterprise customer support scenarios, it is opti-
mized for English language applications and may
require adaptation for multilingual deployments.
Expanding to other languages introduces chal-
lenges such as acquiring labeled training data and
handling linguistic variations, which may increase
operational costs and training time. Additionally,
our intent classifier is trained on domain-specific
datasets, and extending to new domains or indus-
tries will necessitate retraining with relevant data,
impacting both cost and deployment timelines.

Lastly, integrating real-time learning mechanisms
that adapt continuously without periodic retraining
is an avenue for future exploration, providing a
more seamless and cost-effective method for main-
taining system relevance over time. Future work
will also include studies to isolate the impact of the
dialogue context manager and quantify its contri-
bution to system performance, as well as extending
our framework to support multilingual conversa-
tions by improving intent recognition and retrieval
efficiency across diverse languages.
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A.1 Extended Workflow

Feedback-Driven Adaptability. The feedback
rates are used to dynamically change the thresholds
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Scenario Query Type Response Type Impact
Predefined FAQ High-confidence intent Canned Response Reduced Latency, Cost

Savings
Contextual Query Low-confidence intent Hybrid (RAG + canned) Increased Coherence,

Cost Saving
Out-of-Domain Query Undefined intent Full RAG pipeline Increased Accuracy

Table 4: Query Handling Scenarios in the Hybrid Framework.

Framework Category Accuracy
(%)

Response Latency
(ms)

Cost Efficiency

Canned Response

Predefined FAQ 93 65 1.00

Contextual 49 65 1.00

Out-of-Domain 5 75 0.08

RAG

Predefined FAQ 91 376 0.31

Contextual 92 381 0.31

Out-of-Domain 90 379 0.31

Proposed Framework

Predefined FAQ 96 65 1.00

Contextual 96 182 0.67

Out-of-Domain 93 379 0.32

Table 5: Performance comparison of different frameworks across various categories. Baseline cost efficiency
is established using average latency and accuracy for canned responses across the entire evaluation dataset as
mentioned in Table 2.

defined as follows:

NFR =
NegativeFeedback

TotalQueries

PFR =
PositiveFeedback

TotalQueries

New intents are generated from user feedback and
query patterns, which are processed offline to up-
date the Intent Data Store. Intent classification is re-
fined continuously by an adaptive system feedback
loop. Unresolved queries are logged, clustered on
the basis of semantic similarity, and flagged for
review. When a cluster reaches a certain size, a
new intent is created offline and integrated into the
classifier. Additionally, confidence thresholds are
periodically adjusted based on user feedback to
improve the routing of ambiguous queries.

A.1.1 Intent Evolution through Feedback
In addition to threshold tuning, the system expands
its intent data store based on observed usage pat-

terns and unresolved queries. The intent creation
process operates in the following stages:

1. Logging and Clustering: All unhandled
queries are logged and grouped using seman-
tic similarity clustering.

2. Pattern Detection: If a cluster of unresolved
queries exceeds a predefined frequency thresh-
old, it is flagged for intent creation.

3. New Intent Generation: A new intent is pro-
posed & validated by SMEs, and added to the
Intent Data Store.

This process ensures that frequently occurring un-
resolved queries are automatically handled by the
intent classifier going forward, thereby improving
future query routing.

Improving FAQ Classification via Threshold Ad-
justment

Query: “Why am I seeing high costs for my Oracle
Autonomous Database instance?”
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The system classifies this as an FAQ and responds:
Response: "Oracle Autonomous Database costs
depend on the compute shape, storage capacity,
and workload type. You can adjust your settings to
optimize cost."

However, users frequently provide negative feed-
back, indicating that the response lacks details on
Auto Scaling, Always Free tier limits, and OCI
pricing policies. This causes NFR to increase, lead-
ing to an increase in τFAQ. The system becomes
more selective in assigning queries to FAQs. More
complex cost-related queries are routed to context-
aware retrieval mechanisms rather than FAQs.

Intent Creation for Repeated OOD Queries
Query: “How do I configure OCI Object Storage
to replicate data to another region?”

Initially, the system classifies this as Out-of-
Domain (OOD), as no existing intent covers cross-
region object storage replication. However, after
multiple users ask similar questions, the system
clusters these unresolved queries. Once the cluster
surpasses the predefined frequency threshold, it is
flagged for new intent creation by SMEs:

New Intent: “OCI Object Storage Cross-Region
Replication”
Associated Response: “Detailed steps to enabled
and configure cross-region replication as deter-
mined by SME”

The system proactively resolves similar future
queries by classifying them under the newly created
intent. Users receive accurate responses immedi-
ately instead of being redirected to general support.

Proposed Framework. The workflow of the pro-
posed system is summarized in Table 4

A.2 Detailed Performance Comparison
This section provides a detailed breakdown of the
performance of the proposed hybrid framework
compared to baseline systems (Canned Response
System) and RAG Pipeline across different query
categories: Predefined FAQs, Contextual Queries,
and Out-of-Domain Queries. The metrics include
accuracy, response latency, and cost efficiency,
highlighting the strengths and trade-offs of each
approach.

Analysis The results in Table 5 demonstrate the
trade-offs between accuracy, latency, and cost effi-
ciency:

• Predefined FAQs: The proposed framework
achieves a balance, with similar accuracy with
the canned-response system while reducing la-
tency by 82% compared to the RAG pipeline.

• Contextual Queries: The proposed frame-
work strikes a balance between RAG’s accu-
racy (92%) and the canned-response system’s
latency (65ms), achieving 96% accuracy with
an acceptable latency of 182ms.

• Out-of-Domain Queries: The RAG Pipeline
and the proposed framework have a very simi-
lar latency and performance with our proposed
framework have slight better accuracy (3%)
owing to the better handling of context and
queries.

A.3 In-House Dataset Overview
The evaluation leveraged a in-house dataset on
customer support for OCI Cloud based Services
of 10,000 queries across three categories: prede-
fined FAQs, contextual queries, and out-of-domain
queries. Table 6 provides a sample of the queries
used in the evaluation.

For BERT fine-tuning, we used in-house conversa-
tional dataset which is domain specific, with 35,000
human-customer conversations curated over a pe-
riod of 6 months.

A.4 Multi-Turn Interaction Examples
To demonstrate the framework’s adaptability, Ta-
ble 7 outlines examples of evolving user queries
and how the system dynamically adapts to maintain
coherence.

A.5 Failure Cases and Error Analysis
We conducted a manual error analysis on 500 dia-
logue samples spanning diverse user intents. Three
independent annotators with experience in enter-
prise conversational AI systems evaluated these
dialogues, with an inter-annotator agreement of
0.91 (Cohen’s Kappa). Inter-annotator agreement
was calculated by comparing the categorical labels
assigned (out of 4 shown below) by each annota-
tor across all 500 dialogue samples. Annotators
independently labeled each dialogue, and disagree-
ments were resolved through discussion to refine
the labeling criteria. The high agreement score
(0.91) reflects consistency in identifying and cate-
gorizing errors across evaluators.

Errors were categorized as follows:
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Query Category Confidence Level
How do I reset my password? Predefined FAQ 0.95

What are the steps to integrate autoscaling? Contextual 0.70

What are compliance requirements for data? Out-of-Domain 0.40

Can you elaborate on scaling options? Multi-Turn Follow-Up 0.75

Table 6: Sample Queries from the in-house Dataset.

Turn User Query Framework System Response
1 What are the steps to enable ad-

vanced analytics?
Canned Response Analytics can be enabled in the dash-

board settings.

2 Can you explain what metrics are
available?

Hybrid Response Available metrics include user engage-
ment, retention, and revenue.

3 How can I visualize these metrics
effectively?

RAG Response Visualization tools like Tableau and
Power BI integrate seamlessly with our
platform.

4 What steps are required to con-
nect Tableau?

Hybrid Response Refer to the integration settings under
"Analytics" and provide your Tableau
API key.

5 Are there any tutorials for ad-
vanced analytics setup?

RAG Response Yes, detailed tutorials can be found in
the documentation section under "Ad-
vanced Analytics."

Table 7: Multi-Turn Example Showcasing Evolving Intents and Follow-Ups.

• Edge Cases in Intent Classification (21%
of errors): Queries were misclassified due to
subtle semantic differences. For example, the
query “Can you assist with integrating API X
for multi-platform deployment?” was routed
to a general FAQ response about API usage
due to high lexical similarity.

• Long Multi-Turn Dialogues (35% of er-
rors): In conversations exceeding 10 turns,
latency increased, and context tracking some-
times failed. For instance, after handling a
billing query, the system mistakenly retained
billing context when the user shifted to tech-
nical support.

• Retrieval Inaccuracy (25% of errors):
Some queries led to incomplete or off-topic
document retrieval. For example, a query like

“Provide the latest number of regions your
cloud service is available in” retrieved out-
dated documents due to incomplete index up-
dates.

• Feedback Misalignment (19% of errors):
User feedback was sometimes misinterpreted.
For instance, a user rated a correct response

poorly due to slow response time rather than
content accuracy, leading to unnecessary ad-
justments in the intent classifier.

Table 8 summarizes these failure cases and sug-
gested remedies. This detailed error analysis high-
lights both the strengths of our system and areas
for future improvement.

A.6 Prototype Implementation
The framework is implemented as a modular sys-
tem using microservices:

• Frontend: Built with React.js for user inter-
action and feedback collection (Contributors,
2023).

• Backend: Flask microservices handle query
classification, retrieval, and feedback process-
ing (Grinberg, 2018).

• Storage: Elasticsearch stores canned re-
sponses & external knowledge base, while
FAISS and dense embeddings support re-
trieval (Karpukhin et al., 2020).

• Memory Cache: A memory-augmented mod-
ule maintains embeddings of prior inter-
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Scenario Issue Remedy Error Distribu-
tion (%)

Edge Cases in Intent Classification Query incorrectly routed to
canned responses

A stronger fallback strategy
could improve reliability

21% (7/32)

Long Multi-Turn Dialogues Latency for very long conver-
sations

Optimize dialog context man-
ager to reduce latency.

35% (11/32)

Retrieval Inaccuracy Incomplete or outdated docu-
ments retrieved

Regular index updates and im-
proved retrieval ranking

25% (8/32)

Feedback Misalignment User feedback misinterpreted
during adjustments

Implement context-aware
feedback processing

19% (6/32)

Table 8: Failure Cases and Suggested Remedies. A total of 32 erroneous dialogues were identified out of 500 tested
samples.

actions in OCI Cache (Managed Redis), al-
lowing the system to retain relevant historical
context across multiple dialogue turns.

• Model Deployment: Models (e.g., BERT, En-
coder, Cross-Encoder, GPT-3 & other propri-
etary LLMs) are deployed using in-house ar-
chitecture and OCI Gen AI Service for scala-
bility.

B Technical Implementation of
Multi-Turn Adaptation

The Dialogue Context Manager is implemented
using a transformer-based architecture with the fol-
lowing components:

• Context Embeddings: Queries are encoded
using fine-tuned BERT embeddings capturing
semantic information and historical contexts
are encoded using an in-house Bi-Encoder.

• Memory Module: A memory-augmented
module maintains embeddings of prior inter-
actions in cache (Redis), allowing the system
to retain relevant historical context across mul-
tiple dialogue turns.

• Context Attention Mechanism: An atten-
tion layer prioritizes recent or semantically
relevant interactions, dynamically retrieving
context embeddings as input to the intent clas-
sifier and response generator.

• Sliding Context Window: Implements a
fixed-length sliding window to limit the mem-
ory footprint and computational complexity
by retaining only the most relevant context
from prior turns.

The context manager utilizes the embeddings and
attention scores to generate a composite represen-
tation of the current dialogue state, which is passed
to downstream components, such as the hybrid
response generator. The dynamic adaptation en-
sures responses remain coherent and contextually
grounded in multi-turn settings.

C Technical Implementation of Hybrid
Routing

Hybrid routing combines canned responses and
RAG outputs using a confidence-based decision-
making pipeline:

• Confidence Scoring: The intent classifier as-
signs a confidence score to each query based
on the similarity between the query embed-
ding and predefined intent embeddings.

• Thresholding Mechanism: Queries with a
confidence score above a pre-defined thresh-
old (e.g., 85%) are routed to the canned re-
sponse repository for rapid resolution.

• Response Generation: For low-confidence
queries or multi-turn scenarios, responses are
generated by blending canned responses with
retrieved content from the RAG pipeline. Sam-
ple prompt used for blending the responses
using confidence scores is shown in Figure 2

This mechanism optimizes query handling for di-
verse scenarios while ensuring minimal latency and
maximal accuracy.
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Figure 2: Prompt for Blending Responses

D Feature Limitations & Related Future
Work

D.1 Limitations

Despite the strong performance of the proposed
framework on a variety of metrics, certain feature-
specific limitations remain:

• Edge Cases in Intent Classification: Ambigu-
ous queries near confidence thresholds may
cause inconsistencies, as seen in our error
analysis, where subtle semantic differences
led to misclassification. A stronger fallback
strategy could improve reliability.

• Latency in Long Multi-Turn Dialogues: La-
tency issues for very long conversations (over
10 turns) were identified in 30% of errors,
highlighting the need to optimize the dialogue
context manager for faster context updates.

• Retrieval Inaccuracy: Incomplete or outdated
document retrieval (20% of errors) due to in-
dex inconsistencies highlights the need for
regular index updates and improved retrieval
ranking.

• Feedback Misalignment: User feedback mis-
interpretation (10% of errors) occasionally

led to suboptimal adjustments, suggesting the
need for context-aware feedback processing.

D.2 Future Work
Future research could address these limitations by:

• Developing advanced intent detection tech-
niques and fallback mechanisms to handle
ambiguous and low-confidence queries more
effectively.

• Enhancing multi-turn context tracking with
memory-augmented models to improve coher-
ence across long dialogues.

• Implementing regular index updates and fine-
tuned retrieval processes to ensure accurate
document retrieval.

• Integrating context-aware feedback process-
ing to ensure accurate adaptation of system
responses based on user ratings.

• Exploring distributed architectures and load-
balancing techniques for scalability under
peak query loads.
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Abstract

While chain-of-thoughts (CoT) prompting has rev-
olutionized how LLMs perform reasoning tasks,
its current methods and variations (e.g, Self-
consistency, ReACT, Reflexion, Tree-of-Thoughts
(ToT), Cumulative Reasoning (CR) etc.,) suffer
from limitations like limited context grounding,
hallucination/inconsistent output generation, and
iterative sluggishness. To overcome these chal-
lenges, we introduce a novel mono/dual-step zero-
shot prompting framework built upon two unique
strategies Chain of Evidences (COE) and Evi-
dence to Generate (E2G). Instead of unverified
reasoning claims, our innovative approaches lever-
age the power of "evidence for decision making" by
first focusing exclusively on the thought sequences
explicitly mentioned in the context which then serve
as extracted evidence, guiding the LLM’s output
generation process with greater precision and effi-
ciency. This simple yet potent approach unlocks
the full potential of chain-of-thoughts prompting,
facilitating faster, more reliable, and contextually
aware reasoning in LLMs. Our framework con-
sistently achieves remarkable results across vari-
ous knowledge-intensive reasoning and generation
tasks, surpassing baseline approaches with state-
of-the-art LLMs. For instance, (i) on the LogiQA
benchmark using GPT-4, COE achieves a new state-
of-the-art accuracy of 53.8%, surpassing CoT by
18%, ToT by 11%, and CR by 9%; (ii) COE with
PaLM-2 outperforms the variable-shot performance
of Gemini Ultra by 0.9 F1 points, achieving an F1
score of 83.3 on DROP. We release our prompts and
outputs on these benchmarks as a new instruction
tuning dataset for future research at Hugging Face1.

1 Introduction

Retrieval-augmented or context-based generation
serves as a mean for leveraging relevant information,
empowering large language models (LLMs) to reduce
the factual errors in their generation (Islam et al.,
2024b; Asai et al., 2023a,b). However, despite the
expansion in model and data size, LLMs struggle in
contextual reasoning. This challenge is further ampli-

1https://huggingface.co/datasets/kagnlp/Chain-of-Evidences/

Query: How many years did the city suffer wars against 
the Almoravid and Almohad Empires?
Ground-truth Answer: 127 

Ans: 267 
Step-by-step reasoning: ... The context states that the city suffered 
wars against the  Almoravid and the Almohad Empires from 1085 
until the Battle of Las Navas de Tolosa in 1212. Therefore the ...

Retrieved
top-k docs

Query: Companies with highest
number of employees?
Ground-truth Answer: Walmart

Ans: Department of Defense (DoD) 
Step-by-step reasoning: ... The United States Department of Defense
is the largest employer in the world with  the total to over 2.8 million
employees...

Context

Walmart
is the largest private employer in the
world with 2.3 million employees..

Department of Defense..

Figure 1: CoT & variants falter in context-aware reasoning.
Top: Overwhelming long-text complexity leads models’ fail-
ure even when it generates partially/fully correct reasoning
(in green). Bottom: Ungrounded internal reasoning fails to
grasp context, confusing "DoD" (ungroundeded private org
in red) vs Walmart (in green).

fied when dealing with retrieved information that are
often long and imperfect text with distractive contents.

To bolster LLM’s reasoning capabilities, the Chain-
of-Thought (CoT) prompting paradigm has emerged as
a potent tool (Wei et al., 2022). Subsequent meth-
ods, including Self-consistency (SC; (Wang et al.,
2022)), ReACT (Yao et al., 2022), Reflexion (Shinn
et al., 2023), Tree of Thoughts (ToT; (Yao et al.,
2023)), and Cumulative Reasoning (CR; (Zhang et al.,
2023b)), generalize CoT with various multi-objective,
ensemble-based, or tool-augmented, and trial & er-
ror approaches but do not address the complexities of
context-grounded or retrieval augmented generations
(RAG). We highlight two of their pivotal bottlenecks:
(i) CoT focuses solely on expanding steps without ver-
ifying hypotheses; (ii) excessively long retrieved text
can lead to incorrect conclusions even with valid CoT
reasonings (example in Figure 1).

Multi-step reasoning prompting has emerged as a
promising alternative to traditional chain-of-thought
(CoT) approaches by decomposing complex problems
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Query: The football manager who recruited David Beckham
managed Manchester United during what timeframe?

Ans: 1995-1996

Retrieved
top-k docs

CoT: Given a context and a question, your task is
to answer the   question based on the context.
Think step by step and generate the answer.

CoE: Given a context and a question, your task is to
answer the question based on the context. Generate the
answer with evidence and explanation

Step-by-step reasoning:  The context mentions  that
Manchester United won the Double of Premier League and FA
Cup in the 1995-1996 season.  It also mentions that David
Beckham scored a goal in the 1996 FA Charity Shield match
played by Manchester United. Therefore, the football manager
who recruited David Beckham managed Manchester United
during the 1995-1996. 

Ans: Alex Ferguson

Evidence & explanation: The context mentions several football
managers, but the one who managed Manchester United during
the timeframe when David Beckham was recruited is Sir Alex
Ferguson. This is stated in the context: 'Instead, he had drafted in
young players like Nicky Butt, David Beckham, Paul Scholes and
the Neville brothers, Gary and Phil.' The 'he' in this sentence
refers to Alex Ferguson, who was the manager of Manchester
United from 1986 to 2013.

ContextContext

CoE OutputCoT Output

Query

Plan/Trial-1: 
Thought-1: It asks about David Beckham. From context we
know that…Action-1: Search [David Beckham]  Output-
1/Predction-1: 1995-1996. 
Observation-1 & Reflection-1: ...

Plan/Trial-2:
Thought-2: Search [Manchester United ] (Continued) …

CoT-V: Given a context and a question, your task is
to answer the   question based on the context.
Think/plan step by step and   generate the
answer.  Evaluate your response, then reflect on
mistakes and modify accordingly and repeat back.

Context

CoT-V Output

CoT Variants: Self-consistency, ReACT,
Reflexion, ToT, Cumulative Reasoning

CoT prompting E-Step using CoE

G-Step using CoE

Ans: 1986-2013

Evidence & explanation:  Sir Alex Ferguson managed
Manchester United during the timeframe when David
Beckham was recruited, which was from 1986 to 2013.

CoE Output

CoE

Retrieved
top-k docs

Context

Figure 2: (left) CoT and generic view of its (iterative) variants, (right) The E2G pipeline: In E-step our "generate ans with
evidence and explanation" instruction extracts the rationales, coupled with the ans, grounded in the original context, then in
G step we use the same instruction to derive the final answer solely from the "evidence and explanation" or along with the
original context.

into sequential reasoning substeps (Dhuliawala et al.,
2023; Wang et al., 2023a; Zhao et al., 2023; Trivedi
et al., 2023; Fu et al., 2022; Creswell et al., 2022;
Li et al., 2023). However, these techniques typi-
cally require rigorous verification of each intermedi-
ate step. Although simpler iterative verification strate-
gies—such as self-check (Miao et al., 2023) and self-
refine (Madaan et al., 2024)—have been proposed,
they do not fully address the challenges inherent in
long-context processing or retrieval-augmented gen-
eration. Moreover, they often rely on disparate in-
termediate prompts—such as rationale selection and
inference/premise derivation—that necessitate k-shot
annotated in-context exemplars, which are often diffi-
cult to construct (Islam et al., 2025, 2024a; Yasunaga
et al., 2024). Therefore, unlocking CoT’s true potential
for RAG & context driven reasoning remains unan-
swered. To address, in this paper, we propose a simple

verification-free zero-shot prompting framework for
context-grounded and retrieval augmented reasoning.

Our framework consists of two unique and real-time
prompting strategies particularly tailored for long con-
text reasoning. First, single-step Chain-of-Evidences
(COE): to address the problem of ungrounded reason-
ing hypotheses, our designed prompt asks for specific
thought sequences that are explicitly mentioned in the
context. We call this series of intermediate reasoning
steps, with directly extracted rationales from the given
context, ’Evidence’ (as in human decision making).
Our key distinction from existing CoT approaches is
that instead of mere "thinking step-by-step" (Kojima
et al., 2022) our prompt instruction asks for "step-by-
step reasoning with explicit evidence and explanation".

Second, dual-step Evidence to Generate (E2G): to
facilitate LLMs’ answering the query properly even
with retrieval augmented long-text contexts, we split
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the task into steps. In the first step (E), we adopt
prompts similar to COE and generate both the Answer
& Evidence . Then in next step (G), we pass only the
Evidence as context for a second round of COE to
LLM. G Step Answer is predicted as the final answer.
In contrast to complex long original context in E step,
the Evidence is a concise short text that directly an-
swer the input query, G step is very fast, and simpler
for the model to generate answer.

In experiments with different LLMs, we show
that our prompts consistently outperform existing ap-
proaches in a diverse set of eight context-driven tasks,
including natural QA, complex multi-hop, long-form
QA, fact checking, dialog generation, and reading com-
prehension tasks. Since, even with such techniques, it
is non-trivial to comprehend why and how this works
and how to setup the prompt to function correctly, cost-
effectively, and robustly. To this end, we perform case
studies, analyze different alternatives and reveal the
strengths and weaknesses of our approach. We open-
source our prompts and outputs on these benchmarks
as a new instruction tuning dataset for future research.

2 Related Works and Preliminaries

2.1 Prompting LLMs

Various prompting paradigms have been studied in lit-
erature toward enhancing reasoning in LLMs. In Sec-
tion 1, we provide a (non-exhaustive) list of CoT ap-
proaches. Among others, search-based (Pryzant et al.,
2023; Lu et al., 2021), Program-aided LLM genera-
tion (Liu et al., 2023a; Gao et al., 2023; Jung et al.,
2022; Zhu et al., 2022), self generation of prompts (He
et al., 2023; Yasunaga et al., 2023; Sun et al., 2022;
Kim et al., 2022; Li et al., 2022), self evaluation based
approaches (Madaan et al., 2023; Xie et al., 2023; Kim
et al., 2023; Paul et al., 2023) have been studied. Other
works have also been extended with more complex
multi-step reasoning procedure (e.g., using a different
fine-tuned model (Yu et al., 2023; Nye et al., 2021;
Lester et al., 2021)) or for domain specific applications
(Parvez et al., 2023, 2021; Ouyang et al., 2022; Sanh
et al., 2021; Wei et al., 2021).

2.2 Chain-of-Thoughts (CoT) Prompting

Chain-of-thoughts (CoT; (Wei et al., 2022)) is a prompt-
ing framework that guides LLMs to produce intermedi-
ate reasoning steps towards the final answer, enhancing
its reasoning. Original version of CoT employs a few-
shot version by providing multiple exemplars of the
reasoning process (question–reasoning–answer), lever-
aging LLMs’ in-context learning abilities. However,
due to the requirement of labeled exemplars, it quickly
evolved with a 0-shot instance (Kojima et al., 2022). 0-

shot CoT prompts LLMs with a general instruction like
“think step by step” to produce intermediate reasoning
steps (See Figure 2).

3 Our Prompting Framework

In this section, we develop our prompting framework
for context-grounding and retrieval augmented long-
text reasoning. We design two unique (mono/dual-step)
prompts that does not require any exemplars and re-
moves the hurdles of choosing multi-objective instruc-
tions. Below we first present the prompt instruction
for defining the objective for the target task (a.k.a sys-
tem prompt), next the single-step prompting technique
Chain of Evidences (COE) and finally dual-step Evi-
dence to Generate (E2G) that uses COE twice.

3.1 System/Objective Instruction
Our proposed framework is a single-intent system, hav-
ing only one target task to solve at a time. Given a
target task T, our objective/system prompt is:

# You are a/an [T] agent. Given a
context and a [T[x]] as input, please
give a [T[y]] output based on the
context.

T[x] and T[y] depends on the task T. Examples of
T, T[x] and T[y] are (QA, fact verification, dialogue
generation), (question, claim, previous dialogue), and
(answer, judgement, next turn dialogue) respectively.
An example for fact checking:

# You are a text classification
agent. Given a context and a claim,
please give a judgement to the claim
(’SUPPORTS’ or ’REFUTES’) based on the
context.

3.2 Chain of Evidences (COE)
While the 0-shot CoT instruction (i.e., Answer the ques-
tion. Think step-by-step.) expands the query answer
generation into small reasoning steps, it does not focus
on context-grounding and generate imaginary hypothe-
ses. To address, our prompt asks for answering the
query specifically with evidence and explanation from
context. We design two alternatives COE-SHORT &
COE-LONG.

CoE-Short

# Objective Instruction from Section
3.1
# Generate the answer with evidence and
explanation.
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|Context| Multi- Context- Cost- E-step G-step
>200 Query Aware Minimize Prompt Context Prompt Context

✗ ✗ ✗ ✗ CoE-Long - - -
✗ ✗ ✗ ✓ CoE-Short - - -
✗ ✗ ✓ ✗ CoE-Long OC - -
✗ ✗ ✓ ✓ CoE-Short OC - -
✗ ✓ ✗ ✗ CoE-Long - - -
✗ ✓ ✗ ✓ CoE-Short - - -
✗ ✓ ✓ ✗ CoE-Long OC CoE-Long E + OC
✗ ✓ ✓ ✓ CoE-Short OC CoE-Short E + OC
✓ ✗ ✓ ✗ CoE-Long OC CoE-Long E
✓ ✗ ✓ ✓ CoE-Short OC CoE-Short E
✓ ✓ ✓ ✗ CoE-Long OC CoE-Long E + OC
✓ ✓ ✓ ✓ CoE-Short OC CoE-Short E + OC

Table 1: Recommended alternative mono/2-step prompts, & contexts in each step. OC, E refer to original context, Evidence.

CoE-Long

# Objective Instruction from Section
3.1
# Think step-by-step and generate the
answer with evidence and explanation.

An overview is in Figure 2. However, depending on
the task T, we add one or two additional instructions to
clarify how the answer should be generated, and what
should be the output format:

# Your answer must be the either of
(’SUPPORTS’ or ’REFUTES’) based on the
claim and the context.
# Generate your response in a json
output format with an ’answer’ tag and
an ’evidence and explanation’ tag

While both COE prompts generates more context-
driven reasonings which are often very concise w.r.t
the original context, COE-LONG prompt, which in-
cludes "step-by-step" command, instructs the model to
generate more verbose and expanded reasoning paths
in compare to COE-SHORT. Hence, typically COE-
LONG tends to be more accurate (e.g., for common-
sense, multi-step reasoning, or arithmetic cases) while
COE-SHORT is more cost-effective.

3.3 Adaptation

In this section, we outline how our framework adapts
to various tasks and objectives. Our framework offers
choices between mono/dual step prompting, COE alter-
natives, and context inputs. Considering task complex-
ity, we examine the nature of the task (context-aware
or context-free), context length, and query complexity

(single or multi-question). Regarding objectives, we
prioritize cost optimization or performance triggering.
Our design principles are mainly three-folds:

1. Single-step COE is generally sufficient, except for
longer contexts where E2Gis employed.

2. Cost-effectiveness is tied to the number of steps or
LLM API calls. Thus, for E2G, COE-SHORT is
more cost-effective in each step, while COE-
LONG offers granular reasoning steps, enhancing
performance, particularly in context-less reason-
ing tasks like arithmetic and commonsense.

3. The G-step context is typically derived from
Evidence from the E-step. However, for queries
involving multiple sub-queries or answers, a brief
Evidence may provide only partial answers. In
such cases, the G-step context should include
Evidence concatenated with the original context.
Table 1 summarizes these principles.

Another objective, we consider is inference time.
While the worst-case runtime of our approach is approx-
imately double that of CoT, shorter Evidence reduces
runtime (e.g., 1.5s vs CoT’s 1s on average), making it
suitable for practical use cases. However, more con-
strained inference time can be achieved via single-step
COE.

4 Experimental Setup

We evaluate our prompting framework across eight
context-intensive language tasks, requiring reasoning
over given contexts, including those with distracting
documents and retrieval augmentation for generation.
Using three LLMs (ChatGPT, GPT-4, PaLM-2 (540B))
via APIs, we conduct comprehensive experiments. Due
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Dataset Size Reasoning ∣Context∣ Task Metric

LogiQA 651
MRC

77 Logical Reasoning Acc
DROP 500 196 Arithmetic Reasoning F1

HotpotQA 7.41KCG/1.5KP Distarctor 1106 Multi-hop QA
EM, F1NQ 500

RAG 650-675

Open-domain QA
TQA 1.5K
WOW 500 Know. Grounded Dialouge Gen.

F1
ELI5 300 Long Form QA
FEVER 10.1KCG/.1KP Fact Verification Acc

Table 2: Evaluation Datasets. MRC, and distractor denote machine reading comprehension, and context with distracting
documents. |Context| denotes avg token length. CG/P denotes with ChatGPT and PALM-2 respectively.

to the size of the datasets, we use sampling and dev
splits for evaluation, following established practices.
We compare our results with CoT baselines and other
frameworks from the literature, reproducing 0-shot
CoT where necessary. For retrieval tasks, we utilize
datasets from Wang et al. (2023b), comprising DPR
(Karpukhin et al., 2020) retrieved top-5 context doc-
uments from Wikipedia. Benchmark summaries are
in Table 2. By default, we use the single-step COE-
LONG for LogiQA & DROP, and two-step E2G (with
COE-SHORT) for other tasks where G-step contexts are
sourced from Evidence, unless otherwise specified.
We use Dalvi et al. (2024) in implementation.

5 Main Results

Arithmetic/Logical Context Reasoning We evaluate
our approach on the MRC tasks LogiQA and DROP,
known for heavy arithmetic and logical reasoning com-
plexities. LogiQA tasks involve choosing among four
options inferred from a small context, while DROP
tasks require answering questions with complex arith-
metic computations from the context.2 Although rea-
soning in both tasks is largely independent, LLMs still
need to align their reasoning with the context. Our
method, presented in Table 3 for LogiQA and Table
5 for DROP, robustly enhances real-time contextual
reasoning in both benchmarks, achieving new state-
of-the-art 0-shot results. In both benchmarks, COE-
LONG significantly outperformed existing approaches.

For instance, in Table 3 using GPT-4 as backbone
COE-LONG achieves 9% and 11% higher Acc than CR
and ToT respectively on LogiQA while their iterations
are much higher in number. This reveals that vari-
ants built on CoT also suffer from generating outputs
inconsistent to context, and guiding their reasoning
paths with grounding precision can enhance CoT ap-
proaches broadly. We find that while CoT prompts give

2We compare with baseline performances (i.e., CoT, CoT-SC)
reported in previous works if they are higher than our reproduced
ones.

Backbone Method Acc Steps

GPT-4

CoTa 38.6 1

CoT-SCa 40.4 16

ToTa 43.0 19.87

CRa 45.3 17

COE-LONG 53.8% 1

PaLM-2

CoT 35.0 1

CoT-SC 36.3 3

COE-LONG 36.4 1

PREVIOUS SOTAb - 45.8 -

Table 3: Performance on LogiQA. a−b refer to Zhang et al.
(2023b) and Ouyang et al. (2021) respectively.

decisions for MCQ options directly in every step, COE-
LONG explains how the option can/not be inferred
from the context (example: Appendix Fig 5). Similarly,
Table 4 shows an example how COE provides superior
reasoning w.r.t CoT (more in Appendix). On DROP,
PaLM-2 achieves higher performances than GPT-4 in
general, and with COE-LONG it outperforms the few-
shot F1 scores of recent performer LLM Gemini Ultra.

Besides, in compare to the best performances of
COE-LONG in these two tasks, F1 performances of
COE-SHORT are (LogiQA 53.8 vs 51.8) and (83.3 vs
82.7) which validates our intuition that COE-LONG ex-
cels more when the task is based on arithmetic and
logical reasoning. In addition, replacing the COE-
LONG with COE-SHORT, we observe a performance
drop of around 2% & 0.6% in LogiQA amd DROP
respectively– which validates our intuition that COE-
LONG reasoning is both more context-driven and mod-
ular combining both the COE-SHORT and CoT. In sim-
ple math tasks (e.g., GSM8K), our method performs as
good as CoT as they are often context-free.

Multi-hop QA with Distracting Contexts We tackle
more complex QA challenges, evaluating on the dis-
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Q: How many field goals of at least 40 yards did Neil Rackers make
Ans: [‘2’, ‘2’]

Context: .. In the fourth quarter, the Seahawks took the lead with Brown kicking an-
other 28-yard field goal. However, Arizona rallied to tie the game on a
Rackers 52-yard .. Arizona quickly moved into field goal range after the Seahawk TD,

but Rackers hit the upright from 53 yards as time expired. .. Arizona then drove to

the Seahawks’ 25-yard line, where Rackers kicked a game-winning 42-yard field goal
with 11 seconds left.

CoT Reasonings: The question is asking for the number of field goals of at least 40 yards that Neil Rackers
made. The context states that Rackers made a 52 yard field goal , a 42-yard field goal ,

and a 53-yard field goal . Therefore, the answer is 3.

CoE-Short Reasonings: The question is asking for the number of field goals of at least 40 yards that Neil
Rackers made. The context states that Rackers made a 52 yard field goal and a

42-yard field goal . Hence, the answer is 2.

Table 4: CoT distracted by focusing on numerical precision only. COE-LONG provides superior reasoning by considering
both arithmetic and validity of rationales.

Backbone Method EM F1

GPT-4
CoT 56.2 71.3

COE-LONG 56.4 73.7

PaLM-2
CoT - 82.0a

COE-LONG 79.6 83.3

FEW-SHOT SOTA - 82.4a/83.0b

Table 5: Results on DROP. a−b refer to Gemini Technical
Report (Team et al., 2023) and Huang et al. (2022).

tractor split of HotpotQA (Yang et al., 2018), where
each query faces a large context with two relevant and
eight irrelevant documents, with only 2-5 far-apart sen-
tences serving as rationales. Results in Table 6 show
that E2G , using both ChatGPT and PaLM-2, outper-
forms CoT and other variants by a large margin. With
ChatGPT, E2G achieves a 4% gain in both EM and F1
scores over CoT, while with PaLM-2, the gains are 2%.
Other iterative baselines like ReACT and Reflexion find
the relevant texts one by one, leading to longer trials or
failure to utilize all relevant hops effectively. Note that
with PaLM-2, their literature reported performances
are found with PaLM-1 and we do not reproduce them
as they use few-shot examples, leverage external tools,
and involve iterative generations. In contrast, both E
and G steps of E2G address the entire problem in each
step, demonstrating greater efficiency. As connecting
the relevant texts distant apart is one of the key chal-
lenges in multi-hop QA, to understand the advantages
of extracting Evidence along with the answer (i.e., sin-
gle objective in both steps), we perform an additional
experiment towards a multi-agent or multi-objective

Backbone Method
HotpotQA FEVER

EM F1 Acc

ChatGPT
CoT 43.4 55.3 76.7

Rct+Rfl3 (t=2) 42 - -
E2G 47.1 59.6 80.7

PaLM-2
CoT 44.49 55.76 78.0
E2G 46.76 57.90 82.0

SOTA - 72.71 85.01 94.2 2

Table 6: Performance on HotpotQA. 1−3 refers to Zhang et al.
(2023a), Wang et al. (2023b), Shinn et al. (2023) respectively.
t=2 refers to our equivalent 2 trials. Rct, Rfl denote ReACT,
and Reflexion respectively.

approach. We employ ChatGPT to establish one agent
tasked with co-reference resolution, another as a re-
triever model for sentence ranking, and a third as a
QA agent for generating the final answer. However,
this approach lags behind by 10EM points compared
to ours. We identify multiple issues, including each
agent contributing to propagating its own errors such
as imperfect co-reference resolution and ranking. We
also find that the agents are overly sensitive to input
objective instructions.

In addition, a key bottleneck arises from the retriever
agent as it is unaware of how its outputs will be com-
bined by the later QA agent, leading to sub-optimal
ranking. For instance, when queried about two persons,
all top-k sentences pertaining to one same person may
be ranked higher than those about the other, adding
complexity to the task. In addition, we observe some
interesting hallucination trends with CoT when the con-
text contains distractions: LLMs’ hallucination even
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Q: Are both Dafeng District and Dazhou located in the same province?
Ans: No

CoT Reasonings: Dafeng District and Dazhou are both located in the same province, which is Sichuan
province. False information is given in the context that Dafeng and Dazhou are located
in different provinces.

Ans: Yes

COE-SHORT Reasonings: Dafeng District and Dazhou are not located in the same province.
Dafeng District is in Jiangsu province while Dazhou is in Sichuan province.

Ans: No

Table 7: CoT reasoning does not account for grounding–even overrides the contextual fact with its pre-trained knowledge (or
hallucinates). Finding Evidence, E2G enables more factually verified reasoning.

Backbone Method
NQ TQA WOW ELI5

EM F1 EM F1 F1 F1

ChatGPT
CoT 41.6 51.9 68.3 75.4 13.4 27.0
E2G 42.8 53.0 69.5 76.9 15.0 25.1

PaLM-2
CoT 28.4 36.6. 46.9 51.9 12.2 15.3
E2G 31.2 39.5 46.7 52.1 12.4 17.4

SUP. SOTA1 61.8 - 71.1 68.3 73.9

Table 8: Results on NQ, TQA, WOW, and ELI5. 1 & Red refer to Wang et al. (2023b) & an inferior performance.

override the factual information in the context. Table 7
illustrates this with an example where E2G construc-
tively emphasizes on evidences and tackles this. In a
further experiment, we find an increase of 5 points both
EM and F1 score when using COE-LONG instead of
COE-SHORT –validating its higher effectiveness.
Retrieval Augmented Generation In addition to the
MRC and Distractor, we evaluate our framework on
the following five RAG tasks in the KILT benchmark
(Petroni et al., 2021).
Fact Verification: We adopt the Fact Extraction and
VERification (FEVER) dataset (Thorne et al., 2018).
The task involves determining whether a claim aligns
with facts in a Wikipedia reference ("SUPPORTS") or
contradicts them ("REFUTES"). As shown in Table 6,
E2G outperforms strong baselines by more than 4%
across both LLMs. Further comparisons with CoT-SC
(Self-consistency; (Wang et al., 2022)) validate that
performance gaps of over 2% persist. Our Evidence
captures essential rationales for claim evaluation, and
akin to HotpotQA, our global problem-solving ap-
proach provides advantages over iterative CoT variants
(FEVER reasoning examples are in Appendix).
Open-Domain Question Answering: We adopt the
Natural Questions (NQ) (Kwiatkowski et al., 2019)
and TriviaQA (TQA) (Joshi et al., 2017) benchmark
to analyze our prompting framework. For each exam-
ple, there is a short associated answers (less than five
tokens) to generate. We present model performances
w/ E2G in Table 8. We note that questions in NQ are

often joint or has multiple named entity answers, and
hence we choose to the analyze the affect of differ-
ent alternatives for the G-Step context. As shown in
Table 9, LLMs outputs can answer partially in E-step
and using Evidence + Original Context as G-step
context provides additional chances to the model for an-
swering the query fully - consequently enhances model
enhances. To grasp more on improving E2G, investi-

41.6

51.75

42.8

53.02

43.2

53.25

35

40

45

50

55

EM F1

Context in G-step Vs Performance

Evidence Evidence+Orginal Context Adaptive

Figure 3: Reasoning with different "Context" in G-step.
Adaptive means selecting them dynamically on the fly.

gating the dataset more, we further develop an adaptive
G-step context with a heuristic that the well formed
questions (starts with wh words or "be/do/have/modal"
words) are often from this multi-query type. Hence
using Evidence + Original Context for them and
using only Evidence) for ill-formed others (e.g., my
age is what?)–leading to even better performances. Fig-
ure 3 compares them.
Open-ended Long Form Generation: Though, our
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Q: Who was in dont worry be happy video?
Ans: [’Bill Irwin’, ’Robin Williams’, ’McFerrin’]

E-Step (CoE-Short) Reasonings: The comedic original video for ’Don’t Worry Be Happy’ stars Bobby McFerrin, Robin
Williams, and Bill Irwin.

Ans: Robin Williams

G-Step (CoE-Short) Reasonings The video for ’Don’t Worry Be Happy’ stars Robin Williams and Bill Irwin along with
McFerrin.

Ans: Robin Williams and Bill Irwin

Table 9: E-step may focus on answering partially when asked joint questions or multiple named entity answers. Hence, to
increase our chances, in second step (G) Context, we use the Evidence + Original Context.

Q: Sounds complicated. How long did it take you to learn to do that?
Ans: It depends on how fast you can learn the languages such as COBOL, C, C++, C#,

Java, Lisp, Python, etc

CoT Reasonings: The context provided discusses various topics such as game programming..The user’s
claim does not relate to any of these topics.

Ans: I am sorry, but your claim does not relate to the context provided.

Our final G-Step Reasonings: Based on the context, it is mentioned that software development takes weeks or months
to complete, but it depends on the complexity of the software. Some complex software
may require more than a year of work, while others are..

Ans: Learning to create software can take varying amounts of time depending on the

complexity of the software and the individual’s learning ability.

Table 10: Dialogue by ChatGPT using CoT and E2G.

focus is toward the reasoning tasks, we also explore its
potential in open-ended generation tasks. We examine
two verbose QA tasks: (i) Knowledge-Grounded Di-
alog Generation using the WoW dataset (Dinan et al.,
2019), where short dialog histories are provided as
context for generating next-turn responses; (ii) Long
Form QA on the ELI5 dataset (Fan et al., 2019), requir-
ing detailed answers to open-ended questions. Table
8 compares E2G with CoT baseline. Although the
performance difference is marginal due to verbosity,
E2G shows a slight gain over CoT in WoW. A small-
scale human evaluation also favored E2G responses
by 71% for factual correctness, similarity to gold re-
sponses, and naturalness. Table 10 illustrates a dia-
logue example, where the overall responses are similar
despite verbosity. However, our results in both bench-
marks lag behind recent Supervised SOTA models. In
Appendix A.1, we perform additional experiments and
further discuss the generalizability.

6 Qualitative Case Study: Why and How
Our Methods Work?

To understand more on why and how COE and E2G en-
hance CoT like reasoning in RAG or with long context,
we conduct a case study on CoT reasoning on com-
plex multihop HotpotQA with a set of 50 examples.
We observe 4 types of errors: (a) when the question

is very hard in reasoning (even for human) (b) when
relevant text lies in the middle or at bottom of retrieved
context, as noted in (Liu et al., 2023b). (c) linguis-
tically or logically challenging questions with long
contexts (d) reasoning is not mentioned in the context.
We focus on c, and d. For problem c, among the erro-
neous wh questions, in 23% of them, the gold answer
span is actually present in the reasoning, and for the
erroneous yes/no questions, 75% of their reasoning
actually hypotheses opposite of the predicted answer
(e.g., "yes" should be derived from reasoning but the
predicted answer is "no"). This indicates that just using
the reasoning to answer the question can achieve quite
some improvements–justifying our intuition for two-
step E2G prompt. For problem d, in our analyses, 23%
of erroneous wh and 25% of yes/no questions are of this
category. This suggests a root change in the prompt-
ing strategy to focus on verification of the reasoning
rationales and to verify, COE shows an 8% lower error
rate. In addition to qualitative analysis, we employ the
self-reflection approach (Shinn et al., 2023) by delib-
erately querying two state-of-the-art LLMs (ChatGPT
and Gemini Pro) about the internal advantages of our
designed instruction over CoT. Details are provided in
Appendix A.2.
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Q: Who has the most trophies in the premier league?
Ans: Manchester United

CoT Reasonings: Manchester United has won more trophies than any other club in English football, with a
record 20 League titles, 12 FA Cups, 5 League Cups and a ...

Ans: Manchester United

Our final G-Step Reasonings: Former Blackburn Rovers and Newcastle United striker Alan Shearer holds the record
for most Premier League goals with 260...

Ans: Alan Sheare

Table 11: Overemphasizing on grounding can hinder model from leveraging world knowledge, common sense, etc., (e.g.,
Manchester United is a team in premier league ).

7 Error Analysis and Challenges

Figure 4: F1 scores w/ E2G & CoT vs (sorted) recall.

Apart from persisted hallucination to some extent,
our experiments and ablations reveal two main limi-
tations of our framework. Overemphasis in context-
grounding Some overemphasis on grounding leading
to the model’s failure to infer simple common sense,
leverage generic world knowledge, arithmetic, logic,
and principles (See Table 11), and in many cases, it
causing the model to generate responses such as "un-
known," or "cannot be determined". Specific examples
of categorical mistakes are provided in the Appendix.
Low performance in long form generation We find
that the retrieval recalls in WoW and ELI5 are lower
than our other RAG tasks (See Figure 4) which may
cause this. Upon investigating more on a performance
drop in ELI5: while the task is to generate verbose
answers, ours are still short (Word length 130 vs <100)
and may actually not fulfilling the target requirements–
suggesting a future work of model fine-tuning/domain
adaptation.

8 Conclusion

In this paper, we address the limitations of existing
prompting frameworks for context-aware and retrieval
augmented reasoning. We highlight the challenge of un-
grounded reasoning rationales leading to potential hal-
lucinations in LLMs. Our novel framework introduces
two new prompting methods to identify evidences in
the context and generate answers based on that evi-
dence. Across various tasks, our approach empowers

LLMs to deliver robust, and accurate. Future work in-
volves LLM instruction fine-tuning using our prompted
outputs.

9 Limitations

Our proposed inference framework has achieved sig-
nificant gains over baseline approaches across various
tasks, and in English. However, in certain data domains
(e.g., bio-medical domain (Nentidis et al., 2023)), or
language (e.g., low-resource languages (Parvez and
Chang, 2021)), under automatic evaluation metrics,
and with sufficient computational resources or LLMs,
it may not exhibit such trends. Another aspect is that
the performance scale in RAG tasks may also vary
if the retrieval accuracy is quite different than ours.
Our evaluation considers the EM, F1, Accuracy, and
such matrices for method comparisons, and a different
comparison outcomes may be found while using dif-
ferent sets of matrices. For RAG tasks, we use top-5
retrieved documents with any context filtering (e.g.,
(Parvez et al., 2023)) and for all tasks, we did not adopt
any model fine-tuning. Under these change in settings,
a different kind of results may be obtained regarding
which we do not conduct any experiments on. We
also note an additional risk of getting different perfor-
mances on a different number of test instances in the
benchmark datasets we reported.

Ethics

In this paper, we conduct a small scale human evalu-
ation. All our participants were pre-informed about
the voluntary nature of our survey, approximated re-
quired time, criteria of the feedback. An example
human evaluation screen-shot can be found: https:
//forms.gle/h6WJtC7TrDj9LUNc6. The participants
span different continents, and asked through author’s
research channels.
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A Appendix

A.1 Additional Experiments on Generalizability

To further discuss the generalizability of our approach
with new LLM models and on new benchmark datasets,
we consider two additional experiments on logical/-
factual reasoning tasks on a randomly sampled 100
examples from (i) LogiQA and DROP dataset using
Gemini-Pro as backbone foundation model in Table 12
(ii) ReCLOR dataset (Yu et al., 2020) using ChatGPT
as backbone LLM in Table 13.
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Question:  Which of the following can be the order of recording these 7 records from 1 to 7?

context:  A producer is recording 7 albums one after another? F, G, H, J, K, L and M, but it is not necessary to record in this order. When 
arranging the sequence of recording these 7 albums, the following conditions must be met? (l) F must be ranked second. (2) J cannot be 
ranked seventh. (3) G can neither be directly in front of H nor immediately after H. (4) H must be somewhere in front of L. (5) L must be 
somewhere before M

options': ['F, K, G, L, H, J, M.', 'G, F, H, K, L, J, M.', 'G, F, H, K, L, M, J.', 'K, F, G, H, J, L, M.’]
Answer: 1

cot ans:  {
"answer": 0,
"step_by_step_reasoning": [
"Step 1: F must be ranked second. This eliminates option 2 and 3 as they have F in the wrong position.",
"Step 2: J cannot be ranked seventh. This eliminates option 3.",
"Step 3: G can neither be directly in front of H nor immediately after H. This eliminates option 4 as G is immediately after H.",
"Step 4: H must be somewhere in front of L. Option 1 satisfies this condition.",
"Step 5: L must be somewhere before M. Option 1 satisfies this condition.",
"Conclusion: Option 0 (F, K, G, L, H, J, M) is the correct order of recording the albums."

]
}
e2g:  {
"answer": 1,
"step_by_step_reasoning_with_evidence_and_explanation": [
"Step 1: F must be ranked second. We can eliminate option 3 because F is not in the second position.",
"Step 2: J cannot be ranked seventh. We can eliminate option 2 because J is in the seventh position.",
"Step 3: G can neither be directly in front of H nor immediately after H. We can eliminate option 4 because G is immediately after H.",
"Step 4: H must be somewhere in front of L. Option 1 meets this condition.",
"Step 5: L must be somewhere before M. Option 1 meets this condition.",
"Based on the given conditions, option 1 ('G, F, H, K, L, J, M.') is the correct order of recording the 7 albums."

]
}

Figure 5: Example-1 w/ different prompting for LogiQA
benchmarks

A.2 Self-Reflection: Why COE Works?
Along with statistical motivation, to further understand
why it works, we consider the self-reflection (Shinn
et al., 2023) approach–deliberately asking two different
SoTA LLMs (ChaTGPT and Gemini Pro) the internal
advantages of our designed instruction over CoT. Be-
low we summarize them.

1. Logical Reasoning: promotes more structured and logical
thought process, reducing unsupported statements.

2. Factual Basis: Explicitly asking to focus on justifying its
answer by providing evidence & explanation encourages the
LLM to ground its reasoning in the context and relevant facts,
making it less likely to resort to imaginary or unsupported
claims.

3. Reduced Speculation: Prompting for evidence encourages
to rely on what is known or can be reasonably inferred from
existing information.

4. Accountability: When prompted to provide evidence, mod-
els are held accountable for the accuracy and reliability of
their responses.

A.3 Qualitative Examples
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context: July 16, 2013, Snowden, the whistleblower of the US "Prism Gate" incident, formally submitted an application for asylum to 
Russia. The United States has been hunting for Snowden. If Russia accepts Snowden\'s application, it will surely lead to the 
deterioration of Russia-US relations. However, there are high voices in Russia and other countries in the world that Snowden is a 
defender of the rights of the people of the world. If he refuses his application, Russia will suffer moral and national
 dignity.
Q: If the above statement is true, which of the following statements must be true?
Gold answer:  3
Options : ['Russia does not want the Snowden incident to harm Russia-US relations.', 'Russia will not give Snowden to the United 
States, but may send him to a third country.', "If Snowden's asylum application is accepted, Russia will not be compromised morally or 
nationally.", 'If Russia does not want to worsen relations between Russia and the United States, it will suffer morally and national 
dignity.’], 
cot ans:  {
  "answer": 0,
  "step_by_step_reasoning": [
    "The context states that if Russia accepts Snowden's application, it will lead to the deterioration of Russia-US relations.",
    "The context also mentions that if Russia refuses his application, it will suffer moral and national dignity.",
    "Option 0 states that Russia does not want the Snowden incident to harm Russia-US relations, which aligns with the context.",
    "Option 1 is not supported by the context.",
    "Option 2 is not supported by the context.",
    "Option 3 is partially true but does not fully capture the situation described in the context.",
    "Therefore, the best answer is option 0."
  ]
}
E2G:  {
  "answer": 3,
  "step_by_step_reasoning_with_evidence_and_explanation": [
    "Step 1: Identify the key points in the context. The context states that if Russia accepts Snowden's application, it will lead to the 
deterioration of Russia-US relations
. If Russia refuses his application, it will suffer moral and national dignity.",
    "Step 2: Evaluate each option based on the context.",
    "Option 0: 'Russia does not want the Snowden incident to harm Russia-US relations.' - This statement is true, but it does not 
necessarily follow from the context that it 
must be true.",
    "Option 1: 'Russia will not give Snowden to the United States, but may send him to a third country.' - This statement is a possible 
outcome, but it is not mentioned in th
e context and therefore cannot be considered as a must-be-true statement.",
    "Option 2: \"If Snowden's asylum application is accepted, Russia will not be compromised morally or nationally.\" - This statement is 
not true, as the context states that
 if Russia accepts Snowden's application, it will lead to the deterioration of Russia-US relations.",
    "Option 3: 'If Russia does not want to worsen relations between Russia and the United States, it will suffer morally and national 
dignity.' - This statement is true and f
ollows directly from the context, as it states that if Russia refuses Snowden's application, it will suffer moral and national dignity.",
    "Step 3: Select the index of the option that must be true based on the context. In this case, the correct answer is option 3."
  ]
}

Figure 6: Example-2 w/ different prompting for LogiQA benchmarks
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HotpotQA

Q1: What ancestries were self-identified by fewer than 7% of the population?
A: ["English", "Polish", "French", "English", "Polish", "French"]
(CoT) Step by step reasoning: The context states that the top ancestries self-identified by people on the census are talian (13.6%), Guyanese (12.3%), Irish (12.1%), 
Puerto Rican (10.1%), German (8.7%), English (6.0%), Polish (5.4%), French (4.4%). Therefore, the ancestries that were self-identified by fewer than 7% of the 
population are Race (United States Census), two or more races, Asian (U.S. Census), Native American (U.S.Census), and Pacific Islander (U.S. Census).
(CoT) Output: Asian (U.S. Census), Native American (U.S.Census), and Pacific Islander (U.S. Census).
E2G) Evidence & explanation: The context states that the top ancestries self-identified by people on the census are Italian (13.6%), Guyanese (12.3%), Irish (12.1%), 
Puerto Rican (10.1%), German (8.7%), English (6.0%), Polish (5.4%), French (4.4%). (E2G) Output: English, Polish, French

Q2: How many years was it in between when Ava ceded to Mohny in all northern Avan territory down to present-day Shwebo and the confederation wiping out Ava's 
defences in Shwebo? A: [17, 20]
(CoT) Step by step reasoning: n 1507, Ava ceded to Mohnyin all northern Avan territory down to present-day Shwebo. he confederation wiped out Ava's defences in 
Shwebo in 1524. 1524-1507=7 (CoT) Output: 7
(E2G) Evidence & explanation: In 1507, Ava ceded to Mohnyin all northern Avan territory down to present-day Shwebo in the vain hope that the raids would stop. It 
did not. The confederation wiped out Ava's defences in Shwebo in 1524. (E2G) Output: 17

DROP

WoW

WoW

Q: There is not a computer game that goes by the name of Firefox. A: SUPPORTS
(CoT) Step by step reasoning: The context states that Firefox is a web browser. The context does not mention anything about a computer game that goes by the 
name of Firefox. (CoT) output: REFUTES. (E2G) Evidence & explanation: The context states that Firefox is a web browser, not a computer game. (E2G) Output: 
SUPPORTS
Q: There exists a punk band called The Times.
True answer and e2g answer:  REFUTES
(CoT) Step by step reasoning: The first context states that The Times are a British indie band. Therefore, the claim is supported. (CoT) output: SUPPORTS
(E2G) Evidence & explanation: The first context states that The Times are a British indie band. (E2G) Output: REFUTES
Q:  The English Wikipedia is definitely not an edition of a free online almanac.
True answer and e2g answer:  SUPPORTS
(CoT) Step by step reasoning: English Wikipedia is not an edition of a free online almanac. The English Wikipedia is a free encyclopedia. An almanac is a reference 
book that contains information about the year, such as weather forecasts, astronomical events, and sports schedules. The English Wikipedia does not contain 
information about the year, such as weather forecasts, astronomical events, and sports schedules. (CoT) output: REFUTES
(E2G) Evidence & explanation: The context states that the English Wikipedia is not an edition of a free online almanac. This supports the claim that the English 
Wikipedia is definitely not  an edition of a free online almanac. (E2G) Output: SUPPORTS

FEVER

Q: Target always felt like the slightly classier walmart.
A: They have certainly always seemed to have a better reputation, considering all the protest from small-town advocates, labor unions, and the like.
(CoT) Step by step reasoning: Based on the context, Target is known for offering more upscale, trend-forward merchandise at lower costs, which differentiates it from its 
competitors like Walmart. This concept attracts younger customers than Walmart, and the median Target shopper is 40, the youngest of all major discount retailers that 
Target competes directly against. Additionally, the median household income of Target's customer base is roughly $64,000. It is also worth noting that roughly 76% of 
Target customers are female. Lastly, Target has acquired the San Francisco-based jeweler Shreve & Co., which it merged with previously acquired J.B. Hudson & Son to 
become Dayton Jewelers.
(CoT) Output: Target is known for offering more upscale, trend-forward merchandise at lower costs, which attracts younger customers than Walmart. The median Target 
shopper is 40, the youngest of all major discount retailers that Target competes directly against. The median household income of Target's customer base is roughly 
$64,000. Roughly 76% of Target customers are female, and more than 43% have acquired the San Francisco-based jeweler Shreve & Co., which it merged with previously 
acquired J.B. Hudson & Son to become Dayton Jewelers.
(E2G) Evidence & explanation: As mentioned in the context, Target has intended to differentiate its stores from its competitors by offering what it believes is more upscale, 
trend-forward merchandise at lower costs, rather than the traditional concept of focusing on low-priced goods. This has resulted in Target stores attracting younger 
customers than Walmart, among other competitors. Additionally, the median household income of Target's customer base is roughly $64,000, which is higher than 
Walmart's customer base. While Walmart is a discount department store that carries general merchandise and limited groceries, Target is often considered a slightly 
classier version of Walmart due to its focus on more upscale merchandise and attracting a slightly more affluent customer base.
(E2G) Output: Yes, Target is often considered a slightly classier version of Walmart.

Q1:  Are both Dafeng District and Dazhou located in the same province?   A: No
(CoT) Step by step reasoning: Dafeng District and Dazhou are both located in the same province, which is Sichuan province. False information is given in the context that 
Dafeng and Dazhou are located in different provinces. (CoT) Output: Yes. 

(E2G) Evidence & explanation: Dafeng District and Dazhou are not located in the same province. Dafeng District is in Jiangsu province while Dazhou is in Sichuan province. 
(E2G) Output: No.

Q2: This Celtic ruler who was born in AD 43 ruled southeastern Britain prior to conquest by which empire?  A: Roman
(CoT) Step by step reasoning: The Celtic ruler who was born in AD 43 ruled southeastern Britain prior to conquest by the Catuvellauni tribe, as mentioned in the context. 
(CoT) Output: Catuvellauni
(E2G) Evidence & explanation: The context mentions that the Celtic ruler ruled southeastern Britain prior to conquest by the Roman Empire, so the answer is Roman. 
(E2G) Output: Roman

Q: I am a retired computer programmer. I enjoyed my life as a person who creates computer software.\nThat sounds interesting, what kind of software did you create?\nI
create all sort of software as long as long it is an executable code consisting of machine language instructions\nThat sounds complicated. How long did it take you to learn 
to do that?
A: It depends on how fast you can learn the languages such as COBOL, C, C++, C#, Java, Lisp, Python, etc
(CoT) Step by step reasoning: The context provided discusses various topics such as game programming, software maintenance, and computer-aided maintenance. The 
user's claim does not relate to any of these topics. However, it is interesting to know that the user enjoyed creating all sorts of software as a retired computer programmer.
(CoT) Output: I am sorry, but your claim does not relate to the context provided. However, it is interesting to know that you enjoyed creating all sorts of software as a 
retired computer programmer.

(E2G) Evidence & explanation: Based on the context, it is mentioned that software development takes weeks or months to complete, but it depends on the complexity of 
the software. Some complex software may require more than a year of work, while others are never considered 'complete' but rather are continuously improved as long as
they stay in use. Therefore, the time it takes to learn to create software may vary depending on the complexity of the software and the individual's learning ability.
(E2G) Output: Learning to create software can take varying amounts of time depending on the complexity of the software and the individual's learning ability.

Figure 7: Example Model I/O (E2G vs CoT)
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Q:  when does not going out series 9 start? A: ['8 March 2018']
(CoT) Step by step reasoning: The eighth series of 'Not Going Out' began airing on 13 January 2017 and ended on 3 March 2017. Therefore, the ninth series did
not start before 8 January 2017 (CoT) output: 8 January 2017 (E2G) Evidence & explanation: Series 9 of 'Not Going Out' began on 8 March 2018. (E2G) Output: 8 
March 2018

Q: when did honolulu become the capital of Hawaii? A: ['1845’]
(CoT) Step by step reasoning: In 1850, Kamehameha III declared Honolulu to be the official capital of the Kingdom of Hawaiʻi. (CoT) output: 1850 (E2G) Evidence 
& explanation: In 1845, Kamehameha III moved the permanent capital of the Hawaiian Kingdom from Lahaina on Maui to Honolulu. (E2G) Output: 1845

NQ

Q:  In which Formula One team did Damon Hill replace Nigel Mansell? A:  ['Williams (disambiguation)', 'Williams (company)', 'Williams']
(CoT) Step by step reasoning: "Damon Hill replaced Alain Prost in Williams team in 1994. In the previous season, Nigel Mansell was the driver for Williams. So, 
Damon Hill replaced Nigel Mansell in Williams team."
(CoT) output: "Nigel Mansell
(E2G) Evidence & explanation: Damon Hill replaced Nigel Mansell in the Williams team." ", (E2G) output: Williams",

Q: Before breaking up, how was the Union of Soviet Socialist Rebublics abbreviated in Russian, using the Russian Cyrillic alphabet? A: ['C C C P', 'The C. C. C. P.', 
'The C–C–C–P', 'U.-S.-S.-R.', 'СССР', 'The U.–S.–S.–R.', 'Советской Социалистической Республикаослэн Союззы', 'Совет, Ушем', 'The Soviet–Union', 'The Soviet-
Union’, ]
(CoT) Step by step reasoning: The abbreviation for the Russian Soviet Federative Socialist Republic (Russian SFSR) was commonly used as RSFSR. This abbreviation 
was used until the Soviet Union officially ceased to exist on December 26, 1991. During 1992, it was allowed to use the old name of the RSFSR for official business 
(forms, seals and stamps).
(CoT) output: RSFSR (E2G) Evidence & explanation:  The abbreviation for the Union of Soviet Socialist Republics (USSR) in Russian Cyrillic alphabet was 'CCCP’.  
(E2G) output: CCCP

TQA

Q: who has the most trophies in the premier league?
A: ['Manchester United]
(CoT) Step by step reasoning: Manchester United has won more trophies than any other club in English football, with a record 20 League titles, 12 FA Cups, 5 
League Cups and a
(CoT) output: 'Manchester United (E2G) Evidence & explanation: Former Blackburn Rovers and Newcastle United striker Alan Shearer holds the record for most 
Premier League goals with 260.. (E2G) Output: Alan Shearer

Negative Results NQ 
(Gen knowledge)

Negative Results HotpotQA
(Low conf. and hallucinate)Q: who is younger Keith Bostic or Jerry Glanville ?

A: [Keith Bostic]
(CoT) Step by step reasoning: We do not have any information about the age of Jerry Glanville or Keith Bostic in the given context except for their 
birth years. Therefore, we cannot determine who is younger based on the given context.
(CoT) output: Keith Bostic (E2G) Evidence & explanation: The context does not provide information about who is younger between Keith Bostic 
and Jerry Glanville. (E2G) Output: Unknown
Q: Which Australian city founded in 1838 contains a boarding school opened by a Prime Minister of Australia and named after a school in London of the same name.
A: [Marion, South Australia]
(CoT) Step by step reasoning: The only city mentioned in the context that can fit the query is Marion. 
(CoT) output: Marion (E2G) Evidence & explanation: The Australian city founded in 1838 that contains a boarding school opened by a Prime Minister of Australia and 
named after a school in London of the same name is Melbourne. The boarding school is called Melbourne Grammar School and was opened by Prime Minister James H. 
Scullin in 1930. It was named after the prestigious school in London, Westminster School. E2G) Output: Melbourne

Negative Results FEVER 
(Commonsense)Q: Brian De Palma is a writer.

A: ['SUPPORTS']
(CoT) Step by step reasoning: The context states that Brian De Palma is a director. The context also states that Brian De Palma is a graduate student in their 
theater department. The context also states that Brian De Palma is a composer. Therefore, the claim that Brian De Palma is a writer is supported by the 
context.'(CoT) output: SUPPORTS (E2G) Evidence & explanation: The context does not mention that Brian De Palma is a writer. (E2G) Output: REFUTES

Negative Results DROP 
(Arithmetic)Q: How many percent combined did the smallest three racial groups have?

A: 3.45
(CoT) Step by step reasoning: the smallest three racial groups are Asian, Native American, and Pacific Islander.', 'The percentage of Asian people in the city is 
2.62%.', 'The percentage of Native American people in the city is 0.69%.', 'The percentage of Pacific Islander people in the city is 0.14%.', 'Adding these three 
percentages together, we get 3.45%. CoT) output: 3.45 (E2G) Evidence & explanation: The smallest three racial groups are Asian, Native American, and Pacific 
Islander. The percentage of people in these groups combined is 3.55%. (E2G) Output: 3.55%

Q: How many points did the Ravens have at the half? A: 17
(CoT) Step by step reasoning: The game was tied 3-3 with 4:32 remaining in the first half. Quarterback Joe Flacco struck quickly, however, completing touchdown 
passes of 65 yards and 10 yards, to Todd Heap and Derrick Mason respectively, just before half time.', 'So the Ravens had 3 + 7 + 7 = 17 points at the half.
CoT) output: 3.17 (E2G) Evidence & explanation: The Ravens scored two touchdowns just before half time, giving them 10 points. (E2G) Output: 10

Figure 8: Example Model I/O (correct and incorrect outcome)
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Abstract

The utility of retrieval augmented generation
(RAG) systems is actively being explored
across a wide range of domains. Reliable gen-
erative output is increasingly useful in fields
where routine tasks can be streamlined and
potentially improved by integrating domain-
specific data in addition to individual expert
knowledge, such as medical care. To that end,
we present a hybrid RAG and GraphRAG user
interface system to summarize the key infor-
mation (KI) section in IRB informed consent
documents. KI summaries are a unique task,
as generative summarization helps the end user
(clinical trial expert) but can pose a risk to the
affected user (potential study participants) if
inaccurately constructed. Thus, the KI summa-
rization task requires reliable, structured output
with input from an expert knowledge source
outside of the informed consent document. Re-
viewed by IRB domain experts and clinical
trial PIs, our summarization application pro-
duces accurate (70% to 100% varied by accu-
racy type) and useful summaries (63% of PIs
stating summaries were as good as or better
than their accepted summaries).

1 Introduction

Applied in the medical field, retrieval augmented
generation (RAG) systems have shown promise
in streamlining routine tasks, providing structure
for standard medical procedures, and ensuring cur-
rent information is integrated into decision making
(Hammane et al., 2024; Unlu et al., 2024; Zhang,
2024; Jeong et al., 2024). However, there is con-
cern surrounding the reliability and trustworthiness
of generative output in high-risk, real-world imple-
mentations in which incorrect information can lead
to severe personal harm. Researchers and practi-
tioners have focused on studying and identifying
reliable generative artificial intelligence (GenAI)
use cases to optimize a routine procedure for the
end user (e.g., medical professional) and minimize

potential harm for the affected individual (e.g., pa-
tient receiving care).

As technical advances in GenAI, natural lan-
guage generation, and information retrieval con-
tinue, applications of these systems and models
become viable tools for real-world implementa-
tion. Building on the RAG pipeline (a user query
coupled with an LLM and knowledge base), the
development of GraphRAG created a retriever sys-
tem that uses a knowledge graph to provide con-
text and entity relationships derived from the se-
lected knowledge base (Edge et al., 2024). Thus,
GraphRAG systems can be used to extract key in-
formation with known feature relationships, pro-
viding more transparent outputs linked directly to
data sources in the knowledge base.

In this study, we design a hybrid RAG and
GraphRAG system to optimize summaries of key
information in IRB informed consent documents.
Informed consent documents (ICDs) are provided
to individuals who are considering participating in
a medical study for new treatment that may affect
their health and path to recovery. Thus, ICDs are
required and reviewed to ensure that participants
are well-informed about their rights as well as the
nature, risks, and benefits of the study. The key
information portion of the ICD serves as a concise
summary highlighting the most critical aspects of
the study. Specifically, it helps potential partici-
pants understand the key information to make a
well-informed decision about agreeing to partici-
pate. It is important that these summaries balance
providing comprehensive details with clarity and
minimizing technical jargon.

We designed and evaluated a pilot key informa-
tion summary application on four key measure-
ments: (1) factual accuracy, (2) standard of care
vs. research differentiation, (3) information weight-
ing, and (4) style and structure. Evaluations were
performed by three IRB subject matter experts to
iteratively improve our model design and output
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over 11 cycles. Additionally, eight senior principal
investigators assessed the machine-generated sum-
maries for further improvement input. We found
that the key challenge in our pilot summarizer was
differentiating between standard of care risks ver-
sus research risks (i.e., what risks were associated
explicitly with participating in the study outside of
standard treatment?).

To address the risk differentiation challenge
we implement Temporary Auxiliary GraphRAG
(TAGRAG) for expert question and answering.
Using search terms associated with the proposed
study’s disease focus and standard of care medi-
cal treatment, we query open-source articles via
PubMed Central’s API and select relevant research
publications as input to a GraphRAG system. The
GraphRAG is instantiated for each summary in-
stance and removed after each summary is gen-
erated. Our TAGRAG component enables expert
information to support current and relevant stan-
dard of care risks associated with the corresponding
study’s disease focus without maintaining a large
knowledge graph of medical research.

2 GenAI in Medical Research

Prior research has investigated the utility of GenAI
in the medical field for a wide range of tasks using
text and image data. Sai et al. (2024) provide a
survey on how models like ChatGPT and DALL-E
can be implemented in medical tasks such person-
alized patient treatment, healthcare operations and
research, and clinical trial optimization. The au-
thors highlight four directions for future research:
(1) customized/personalized suggestions and a plat-
form for information exchange, (2) enhanced pa-
tient and worker interactions, (3) streamlining ad-
ministrative operations, and (4) enhancing deci-
sion making and bridging the knowledge gap. Re-
searchers have studied the utility of chatbots as
tools to reduce time on routine tasks and assist
non-experts with understanding technical medical
language (Barak-Corren et al., 2024; Shyr et al.,
2024; Zaretsky et al., 2024). Specifically, using re-
trieval augmented generation (RAG) systems in the
medical field has been recently explored (Alkhalaf
et al., 2024; Hammane et al., 2024; Jeong et al.,
2024; Unlu et al., 2024; Zhang, 2024). We summa-
rize the work that follows similar processes to our
KI summary application.

Alkhalaf et al. (2024) use zero-shot prompting
with Llama 2 (13B model) to generate structured

summaries for clients describing their nutritional
status and extracting key information about malnu-
trition risk factors. Implementing RAG improved
their accuracy results from 93% to 99%; however,
the authors note that RAG did not improve ex-
tracting risk factors (accuracy maintained at 90%).
Unlu et al. (2024) implement a RAG system, RAG-
Enabled Clinical Trial Infrastructure for Inclusion
Exclusion Review (RECTIFIER), to evaluate if
GenAI could “improve the accuracy, efficiency, and
reliability of screening for a trial involving patients
with symptomatic heart failure.” The authors find
that RECTIFIER (achieving 97.9% accuracy) out-
performs medical professionals (achieving 91.7%
accuracy) at determining symptomatic heart fail-
ure.

Jeong et al. (2024) present Self-BioRAG, a
RAG system trained on 84k filtered biomedical
instruction sets that provides customized explana-
tions; the authors highlight the benefit of domain-
specific components (e.g., a retriever, related doc-
ument corpus, and instruction sets) for high per-
formance. Self-BioRAG achieves an average of
7.2% improvement over the state-of-the-art open-
foundation models and outperforms traditional
RAG by 8% Rouge-1 score. Hammane et al. (2024)
design SelfRewardRAG, a RAG system that ref-
erences PubMed for evidence-based responses to
user queries and includes a self evaluation layer
to thoroughly evaluate and update its output. The
authors evaluate the model on three benchmarks:
(1) PubMedQA (achieving 81.1% accuracy), (2)
MedQA-USMLE (achieving 50% accuracy), and
(3) BioASQ (achieving 95% accuracy).

Our work covers each of the four areas high-
lighted by Sai et al. (2024), as we designed, de-
veloped, and deployed a generative summarization
tool that incorporates expert knowledge (enhancing
decision making and bridging the knowledge gap),
decreases administrative work for clinical experts
(streamlining administrative operations), supports
effective communication between clinical experts
and non-expert study participants (enhanced pa-
tient and worker interactions), and provides a user
interface for summarizing a document based on the
domain-specific implementation (customized/per-
sonalized suggestions and a platform for informa-
tion exchange).
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3 Informed Consent Key Information
Summary Structure

An Institutional Review Board (IRB) works to reg-
ulate human-subject research, ensuring ethical pro-
cedures and minimal risk to participants. Research
institutions are required to receive IRB approval
prior to engaging with any potential participants or
beginning any human-subject experiments. Produc-
ing an informed consent document is a requirement
of the IRB approval process and these documents
follow a regulated structure and format to main-
tain consistency across research studies—they are
designed to consistently protect participants.

A critical component (and requirement) of an
informed consent document is the key information
section, which explains the details of the study in
clear language (with minimal technical jargon) and
identifies the potential risks involved as a partici-
pant that are distinct from the risks involved from
standard of care treatment. Specifically, key infor-
mation summaries are designed to support potential
participants in deciding whether or not they would
like to be a part of the research study. According
to U.S. federal regulations, key information sum-
maries should include the following five elements:
(1) a statement acknowledging that the project is
research and participation is completely voluntary;
(2) a summary of the proposed research (purpose,
duration, and list of procedures); (3) potential risks
(distinct from standard of care treatment); (4) ex-
pected benefits; and (5) alternative treatment op-
tions or procedures (if applicable).

With their structured output and routine require-
ment for researchers, writing key information sum-
maries is a suitable task for experimentation using
generative AI. Additionally, key information sum-
maries require knowledge of the informed consent
document and context-relevant medical expertise
for the proposed study.

4 Pilot RAG KI Summary Application

Given the application setting, our experimental de-
sign involved iterating through results with evalu-
ations from three subject matter experts (SMEs).
Our pilot RAG system (shown in Figure 1) takes
two inputs: (1) one informed consent document
used as the knowledge base in the RAG system,
and (2) a prompt dictionary for structured question-
and-answering for reliable KI summary output.

In Sections 4.1 and 4.2 we describe the details
of the pilot KI summary application after 11 itera-

user uploads informed
consent document

extracted text is used in a RAG
system for structured Q&A

template prompt for
structured Q&A

generated key
information summary

Figure 1: Pilot RAG system diagram for key information
summaries.

tions1. Section 4.4 provides the details on the SME
evaluations for each evaluation, and Section 4.5
provides the details on the PI evaluations. Table
1 contains brief summaries of the main changes
made in each iteration.

4.1 Informed Consent Documents as
Knowledge bases

We used 18 human-authored informed consent doc-
uments approved by an institution’s medical school
IRB. This set of ICDs covered studies on clinical
trials for drugs and medical devices, data registries,
cancer and other health studies, and pediatric popu-
lations. Table 2 displays the descriptive statistics
on the ICDs page length and token count.

Each user-uploaded ICD is used as the knowl-
edge base in the RAG system for summariza-
tion, thus the document text extraction, chunk-
ing, and vectorization is computed in real time.
Our system processes .pdf and .docx files; we
used pypdf to extract text from .pdf files and
docx2txt to extract text from .docx files. We
built the RAG framework with llama-index2, and
selected the HierarchicalNodeParser to chunk
the parsed document text (with chunk_sizes ∈
[128, 256, 512]). Node parsing enables efficient
and scalable text processing with the hierarchical
structure maintaining the relationship between sec-
tions. The chunked documents are stored using
the VectorStorageIndex using the default param-
eters for the StorageContext.

4.2 Agentic Summarization

Using OpenAI’s GPT-4 (gpt-4-0125-preview),
we instantiate a chatbot with the following persona
assigned in the system prompt:

## YOUR ROLE
You are a bioethicist specializing in
patient advocacy and human subjects
research. Your focus is on interpreting
and explaining Informed Consent

1https://github.com/autumntoney/TAGRAG
2https://pypi.org/project/llama-index/
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Version Design Details/Changes

v1 Naive, general instructions with reference to template content.
v2 Single prompt with each paragraph of the Key Information template was included. Similar to

how a human would generate a summary (e.g., “Fill in the blanks on the provided template.”).
v3 <major change> Single prompt is still used, but instructions are more detailed and we begin

using meta-language to exert more fine-grained control on the model’s choices.
v4 <major change> Each paragraph of the KI section is given it’s own custom prompt. We load

the complete ICD as context for each paragraph. We no longer use a single prompt.
v5 <major change> Use simple sub-questions to distill information from the ICD in a decision

tree format. The answers from the sub-questions are used to inform the KI sections. Example:
“Will the study enroll children?” If yes, use paragraph option 1; if no, use paragraph option 2

v6 Same approach as v5 but question decomposition is more elaborate, with more sub-questions
used to distill knowledge.

v7 Same approach as v6 but we create a draft KI, then the model evaluates this draft KI before
generating its final response. V7 has the following system components: (1) decompose the
content needed to generate a paragraph into sub-questions, (2) answer the sub-questions, (3)
use those answers to complete the paragraph, (4) join all paragraphs together into a “draft” KI,
and (5) edit the draft into a final version.

v8 <major change> Test the newly introduced “Assistant” functionality where all questions and
answers are fed into a continuing conversation that the chatbot can draw on (i.e., when the
chatbot is given a task such as answering a question or completing a paragraph, it is able to
draw on all previous questions and tasks it has completed for the provided ICD).

v9 Continue with v8 but continue prompt engineering for improved question/instruction phrasing
v10 <major change> Stop using the Assistant thread approach due to: (1) cost (it is significantly

more expensive), (2) availability (it is available on OpenAI but not Azure), and (3) control (we
do not have as much control over structured and reliable responses). New prompt engineering
designs with tehcnical experts to provide similar performance using the original
chatCompletion framework.

v11 Finalized prompt instruction design to optimally manage section-level changes and provide
generalizability for other implementations.

Table 1: RAG system pipeline design details and changes throughout each of the 11 iterations.

Mean Min Max Std. Dev

Page Count 17 7 41 10
Token Count 8,081 3,939 16,718 4,547

Table 2: Descriptive statistics on the 18 ICDs page
length and token count.

documents to potential human subjects
research participants.

## RULES
- Ensure all responses are directly
grounded in the context you are provided
- Responses should be clear and
authoritative , delivered in a more
formal tone.
- Avoid conjunctive adverbs , discourse
markers , and both introductory and
conclusive statements.

- Do not include disclaimers or refer to
yourself as an AI.

- Provide information in a way that is
clear and understandable to potential
research participants.
- Prioritize accuracy and relevance in
your responses. Do not include
unnecessary information.

The assigned role is written to encourage a focus
on the affected user (potential participant) and the
rules are written to provide explicit instruction to
the chatbot that will produce reliable and consis-
tently formatted results for the summarization task.

We formulate a structured open-ended prompt
dictionary, containing nine sections, for an auto-
mated question and answering pipeline that gener-
ates the components for the key information sum-
mary. These prompts were designed by technical
experts and SMEs to ensure relevant information
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is extracted and to further instruct the chatbot on
how to formulate responses for the corresponding
section. For example, the section 6 prompt reads:

"section6 ": [
(

"Imagine that I am the study
participant and you are explaining the

most important risks that are introduced
or enhanced because of participation in
this research study to me.\n"

"Rather than trying to
explain every risk , focus on the risks
that will cause me pain or emotional
distrees. What are the most important
risks that you would explain to me?\n"

"Do not include risks
associated with standard of care
treatments. Only include risks that
could reasonably be introduced or
enhanced due to participation in this
research study.\n"

"Use plain language to
describe the risks with few words. Your
response should be no more than 3
sentences in length ."

),
(

"You have been provided with
template text after the triple dashes

below. Adhere to this text in your
response. When you encounter a phrase in
this text that is enclosed by double

brackets ([[ example instructions ]]),
replace it with relevant details based
on what you have learned about this
research study. \n\n"

"---\n\n"
"There can be risks

associated with joining any research
study. The type of risk may impact
whether you decide to join the study.
For this study , some of these risks may
include [[ Briefly describe the risks
while maintaining a formal tone ]]. More
detailed information will be provided
later in this document ."

)
],

There are portions of the summaries that maintain
standardized phrasing (e.g., “There can be risks
associated with joining any research study. The
type of risk may impact whether you decide to
join the study. For this study, some of these risks
may include [identified risks]”); all templates are
included in the Appendix.

4.3 Generated Text Post-Processing
The output text of each relevant section is cleaned
and joined together to form the final key informa-
tion summary text returned to the end-user. We im-
plement basic text cleaning functions and remove
unwanted characters (e.g., extra quotation marks,
brackets, or special characters), correct text spacing

(e.g., remove extra spaces or line breaks), and stan-
dardize the formatting to ensure consistency across
each section. With the cleaned text, we assemble
the responses to form one summary. We remove
any sections that are empty, as not all sections are
relevant to each ICD and proposed study, and we
set predefined text for two sections if the chatbot
did not generate a response. The predefined text
provides general information about research using
standard language. For example, section 2 reads:
predefined_entries = {

"section2 ": "A research study is
different from the regular medical care
you receive from your doctor. Research

studies hope to make discoveries and
learn new information about diseases and
how to treat them. You should consider

the reasons why you might want to join a
research study or why it is not the

best decision for you at this time ."}

4.4 SME Evaluation Criteria
With the support of three IRB subject matter ex-
perts, we evaluated our key information summary
system continuously over the course of 11 itera-
tions, with two distinct cohorts. In the first co-
hort, IRB SME evaluators compared the same
AI-generated summaries against existing human-
authored key information summary sections. In
the second cohort, IRB SME evaluators examined
a new series of informed consents to assess the
AI tool’s adaptability to content it had not previ-
ously encountered. SMEs were asked to evaluate
the model’s response on four key components: (1)
factual accuracy, (2) standard of care vs. research
differentiation, (3) information weighting, and (4)
style and structure.

The three IRB SMEs provided scores between 0
and 1 and we present the average scores in Table
3. The result of these evaluations prompted our
final model design (presented in Section 6), as a
key challenge for RAG system was presenting in-
formation surrounding the risks associated with the
proposed study that were distinct from risks associ-
ated with standard of care. Our prompt engineering
experiments resulted in the highest performing fea-
ture, style and structure, achieving 0.72 accuracy
(cf. the accuracy score is 0.4 in version 1). The
RAG system demonstrated improved factual accu-
racy with each version, improving from 0.3 to 0.7
with the final model. The two lowest performing
features are information weighting and standard
of care versus research differentiation, with both
achieving 0.63.
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

Factual Accuracy 0.3 0.35 0.43 0.42 0.5 0.55 0.53 0.62 0.6 0.65 0.7
Risk Differentiation 0.33 0.38 0.43 0.4 0.45 0.5 0.47 0.55 0.53 0.58 0.63
Information Weighting 0.22 0.28 0.37 0.35 0.43 0.48 0.47 0.55 0.53 0.58 0.63
Style and Structure 0.4 0.45 0.5 0.47 0.52 0.57 0.55 0.63 0.62 0.67 0.72

Table 3: Average SME ratings on the four evaluation metrics for RAG output. (Risk differentiation references the
standard of care versus research risk differentiation.)

4.5 Clinical Trial PI Evaluations

After iterating through system versions with IRB
SMEs, eight PIs evaluated their accepted KI sum-
maries (from previous studies with accepted ICDs)
against the draft generative summaries. Answering
six survey questions the PIs provided their assess-
ments of the generative summaries; the percentages
of their agreement is presented in Figure 2.

Figure 2: Percentage of PI agreement for six evaluation
questions.

We found that 78% of PIs assessed the gener-
ated summary drafts to contain factually accurate
explanations of the nature of the research proposed
in the study. Notably, 100% of PIs found that the
generated summaries described the anticipated ben-
efits accurately, with 75% stating that the generated
summaries produced accurate descriptions of po-
tential risks. Finally, 87.5% of the PIs gave a score
of 3 or higher (on a five point scale) that they were
likely to use our tool to draft KI summaries.

5 Hybrid RAG Application Design

Improving on our pilot key information summary
application described in Section 4, we introduce
a GraphRAG component (TAGRAG) to our RAG
summary pipeline to address the challenge of risk
differentiation between the current standard of care
and the proposed study. We maintain the same

inputs from our pilot application (a user-uploaded
informed consent document and a prompt message
dictionary), and implement the GraphRAG using
information extracted from the RAG component
and an expert document database. The full end-to-
end pipeline is shown in Figure 3.

user uploads informed
consent document

extracted text is used in a RAG
system for structured Q&A

template prompt for
structured Q&A

generated key
information summary

identified risk and disease used to retrieve
top K relevant research publications 

input to
GraphRAG system

identified risks in
standard of care

Hybrid RAG and GraphRAG Output

Figure 3: End-to-end hybrid RAG and graph RAG
pipeline diagram for key information summaries.

5.1 Expert Document Database

We use the PubMed Central (PMC) dataset as our
expert document database to select current medical
research on the standard of care for a given disease
(National Center for Biotechnology Information,
2000). PMC is the largest subset of PubMed3, with
over 10 million open-source, full-text biomedical
and life science research publications. We query
PMC via the API tool available through the pymed4

Python package.
Following the PMC query format, we search the

database for the top 10 most relevant articles. Our
query is formatted to always contain “Standard
of Care” and “Practice Guidelines as Topic” in
addition to disease-relevant terms identified in the
RAG component of our pipeline. For example,
if the ICD was for a proposed study for diabetic
treatment a PMC query would be composed as:
(" diabete "[All Fields] OR "diabetes
mellitus "[MeSH Terms] OR (" diabetes "[All
Fields] AND "mellitus "[All Fields ]) OR

3PubMed contains over 37 million research publications
that are both open-source and pay-walled.

4https://pypi.org/project/pymed/
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"diabetes mellitus "[All Fields] OR "
diabetes "[All Fields] OR "diabetes
insipidus "[MeSH Terms] OR (" diabetes "[
All Fields] AND "insipidus "[All Fields ])
OR "diabetes insipidus "[All Fields] OR

"diabetic "[All Fields] OR "diabetics "[
All Fields] OR "diabets "[All Fields ])
AND "standard of care"[MeSH Terms] AND "
practice guidelines as topic"[MeSH Terms
]

This query then returns the research publications’
sections (e.g., title, abstract, methods, results, and
conclusion) and corresponding metadata (e.g., key-
words, doi, pubmed id, authors, and journal).

5.2 Temporary Auxiliary GraphRAG
The expert TAGRAG component is instantiated in
real time with each summary, similar to the RAG
component. In addition to the document extraction,
text chunking, and vectorization required in a RAG
system, a GraphRAG requires a schema for entity
extraction to build its knowledge graph. We define
the entities and relationships for optimal retrieval
on research publications for our risk differentia-
tion task; Table 4 lists the terms selected for our
schema builder. We select more general entities for
generalizability to other areas of research.

Using neo4j and neo4j_graphrag, we
design our knowledge graph pipeline with
the SimpleKGPipeline and OpenAI models
(text-embedding-3-large for embeddings and
gpt-4o-mini for the chatbot). The subset of
expert documents for the given instance are input
to the knowledge graph pipeline; no additional data
is used. The GraphRAG system is then finalized by
setting the retriever with the expert document
vectors and the llm to gpt-4o-mini.

To generate the output for standard of care and
research risk differentiation, we set the following
prompts for TAGRAG Q&A:

``You are a medical researcher
tasked with extracting information from
papers surrounding the potential risks
during medical treatment and care.
Please answer the following two
questions:

1) What is the standard of care for
{disease} based on the PubMed articles?

2) What are the main differences
between the risks associated with
standard of care and the following risks
associated with a proposed study for

new medical treatment:
{RAG_extracted_risks}''

The TAGRAG prompt takes disease and
RAG_extracted_risks as arguments that are ex-
tracted from the RAG component (described in Sec-

tion 4). We consider the output from the TAGRAG
to be expert input to the ICD key information
summary, as the knowledge graph is derived from
peer-reviewed, relevant research publications from
global research institutions and researchers.

6 KI Summary Application UI

Our finalized informed consent document key in-
formation summary application is deployed on
Vercel5 with a private server connection for the
Python backend. The webpage displays a file up-
load box via drag-and-drop or directory search.
Once uploaded, users can generate the KI summary
which references the hybrid RAG and TAGRAG de-
scribed in Sections 4 and 5. The section summaries
are computed concurrently for efficient processing
and then used to compose the final summary. Each
section summary is displayed to the user in order,
with the final summary including the standard of
care and proposed study risk differentiation high-
lighted. Figure 4 displays the various components
of the deployed application (file upload, subset of
the drafted KI summary, and Section 6 summary)
and Figure 5 displays the corresponding risk differ-
entiation output resulting from TAGRAG.

The KI summary application includes how-to
guidance, to emphasize that the summary output
is a draft that requires review. We also state the
limitations in using GenAI tools, reminding users
not to upload sensitive or prohibited materials into
the system. Lastly, we clarify that the users must
ensure the accuracy and appropriateness of the fi-
nal document. To encourage author review and
summary refinement, our application provides the
end-user with the summaries of each section as
well as the final summary with academic references
for the stated risks associated with the proposed
study. We additionally do not include a download
format that would enable immediate download and
submission—a user can download the final sum-
mary in a .txt file. There is a “view pdf” button
that allows the user to view their uploaded pdf next
to the summaries for additional review and valida-
tion of the drafted summary.

7 Ethical Considerations and Discussion

There are ethical considerations when using closed
source, privately owned large language models for
medical-care related tasks. While chatbots are
highly functional, it is necessary to understand the

5https://vercel.com/
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Type Terms

Entities
General "Object", "Entity", "Group", "Person", "Organization", "Place"
Research "Intervention", "AdverseEvent", "Outcome", "StandardOfCare", "Condition", "Disease",

"Population" "RiskMitigation", "RiskFactor", "Complication", "LevelOfEvidence",
"Citation", "StudyType"

Relationships "HAS_RISK", "HAS_OUTCOME", "SUPPORTED_BY", "REFUTED_BY",
"INCREASES_RISK", "REDUCES_RISK"

Table 4: Terms used for entity and relationship schema builder.

Home Page
KI Draft Summary (Example Section)

Section 6 (Identified Study Risks)

Figure 4: TAGRAG system UI and output example.

implications of using personally identifiable infor-
mation (PII) data as input. Medical professionals
using chatbots should evaluate the appropriate use-
cases and data for a given task.

In our experimental design process, we identi-
fied three main challenges in using a RAG system
for KI summary generation of ICDs: (1) preserv-
ing medical accuracy, (2) differentiating ambigu-
ous topics, and (3) using simple language where
appropriate. Balancing simple language for non-
experts while maintaining necessary medical terms
is difficult for a chabot, thus we assigned a persona
that that explicitly stated the task of focusing and
interpreting ICDs to potential non-expert study par-
ticipants. Additionally, the RAG system struggled
to different more ambiguous topics such as distinct
risks associated with the proposed study, which we
addressed by including the TAGRAG component
in our final version of the KI summary application.

The challenges we identified aligned with prior

work in related application areas (Alkhalaf et al.,
2024; Shyr et al., 2024) and we focused on ad-
dressing these challenges via our hybrid RAG and
GraphRAG system. We believe that other RAG
systems can also benefit from including external
expert knowledge base that can provide auxiliary
information for the domain-specific task. While
our study focused on IRB informed consent docu-
ments and medical research, the general pipeline of
our hybrid system can be adapted to other domains.

8 Conclusion

Our hybrid RAG and TAGRAG system improves
the routine procedure of generating key information
sections of IRB informed consent documents. The
KI summary application leverages GenAI to assist
clinical trial experts in the preparation of informed
consent documents and improves the communi-
cation between experts and non-expert potential
participants. By including the expert TAGRAG
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Risk Differentiation 

Figure 5: Risk differentiation sample output.

in our system we address the current challenge of
risk extraction in RAG systems, and ensure that
the end-user (clinical trial expert) is well-informed
with relevant research evidence to support their
summaries to the affected users (potential study
participants).
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A Structured Prompts for KI
Summarization

Here we provide each section prompt used to gen-
erate the full KI summary:

Section 1
"section1 ": [

"Who can take part in this study
?",

"What are the eligibility
criteria for this study?",

"Are children eligible to
participate in this study , either as
primary participants or in any other
capacity?",

(
"Choose the text below that

is most appropriate .\n"
"---\n\n"
"If children are eligible to

participate in the study , write the
following text verbatim :\n"

"You , or your child , may be
eligible to take part in a research
study. Parents or legal guardians who
are giving permission for a child 's
participation in the research , note that
in the sections that follow the word '

you ' refers to 'your child '. This form
contains information that will help you
decide whether to join the study. All of
the information in this form is

important. Take time to carefully review
this information. After you finish , you
should talk to the researchers about

the study and ask them any questions you
have. You may also wish to talk to

others such as your friends , family , or
other doctors about your possible
participation in this study. If you
decide to take part in the study , you
will be asked to sign this form. Before
you do , be sure you understand what the
study is about.\n\n"

"Otherwise , if children are
not eligible to participate in the study
, or it is not possible to determine
whether they are , then write the
following text verbatim :\n"

"You may be eligible to take
part in a research study. This form

contains important information that will
help you decide whether to join the

study. Take the time to carefully review
this information. You should talk to

the researchers about the study and ask
them any questions you have. You may
also wish to talk to others such as your
family , friends , or other doctors about
joining this study. If you decide to

join the study , you will be asked to
sign this form before you can start
study -related activities. Before you do,
be sure you understand what the

research study is about ."
)

],

Section 2 (used if relevant and no generative
text required)

"section2 ": "A research
study is different from the regular
medical care you receive from your
doctor. Research studies hope to make
discoveries and learn new information
about diseases and how to treat them.
You should consider the reasons why you
might want to join a research study or
why it is not the best decision for you
at this time.",

Section 3 (used if relevant and no generative
text required)

"section3 ": "Research
studies do not always offer the
possibility of treating your disease or
condition. Research studies also have
different kinds of risks and risk levels
, depending on the type of the study.
You may also need to think about other
requirements for being in the study. For
example , some studies require you to

travel to scheduled visits at the study
site in Ann Arbor or elsewhere. This may
require you to arrange travel , change

work schedules , find child care , or make
other plans. In your decision to

participate in this study , consider all
of these matters carefully ."

Section 4
"section4 ": [

"What is the disease or
condition targeted by the research study
?",

"What is the purpose or
objective of the research study?",

"How many people are expected to
take part in the research study?",

"Will the research study involve
the collection of biological specimens

such as blood , urine , tissue , cells , DNA
, etc.?",

"What types of specimens will be
collected and for what purposes?",

(
"You have been provided with

template text and instructions below.
To customize the text:\n"

"1. Make a decision at each
choice point indicated by angle brackets
(<< >>) with options separated by

slashes (//). Select the option that
best matches the study particulars. If
the existing options are not appropriate
, you may choose to omit them or to
create a more appropriate alternative .\n
"
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"2. Replace placeholders
enclosed in double brackets ([[ ]]) with
pertinent details based on your

understanding of the research study.\n"
"3. Use lay -friendly

language to describe the study. Do not
use technical or scientific jargon
unless there is no plain language
alternative or converting to plain
language would change the meaning of the
text , such as in the case of disease or
procedure names.\n"

"5. When technical terms ,
scientific jargon , or acronyms must be
used , attempt to define them using plain
language the first time they are used.

For example , 'This research is studying
DIPG (diffuse intrinsic pontine glioma),
a type of brain tumor that occurs in

children.'\n"
"---\n\n"
"This research is <<

studying // collecting >> << a // a new
// >> [[ state the general category of
the object of the study , for example: '
drug ', 'device ', 'procedure ', '
information ', 'biospecimens ', '
behavioral change ', 'diagnostic tool ',
etc. If applicable , also indicate
whether or not the object of the study
has already been approved by the Food
and Drug Administration (FDA) and for
what]] in << people // large numbers of
people // small numbers of people //
children // large numbers of children //
small numbers of children >>. The

purpose is to [[ briefly describe the
purpose of the study ]]. This study will
[[ briefly describe goals or objectives
]]. Your health -related information will
be collected during this research. [[If
any biospecimen collection will be

performed , indicate it here; otherwise ,
do not mention biospecimen collection
]]."

)
],

Section 5
"section5 ": [

"Does the study involve
randomization? Answer this question by
checking the Informed Consent document
for any of the following words: '
randomize ', 'randomization ', 'randomized
'? If any of these EXACT terms are
present , then the study involves
randomization and you should respond , '
Yes , this study involves randomization.'
Otherwise you should respond , 'No, the

study does not involve randomization.'",
"Review the Informed Consent

document with the aim of identifying if
it is a 'washout ' study. A 'washout '
study is characterized by requiring
participants to discontinue certain
prescribed medications for a period
BEFORE or DURING the study. This
discontinuation is typically to ensure
that the effects of the study treatments

can be observed without interference
from other medications. Analyze the
document for any instructions or
requirements that align with this
definition of a washout study. Based on
your analysis , determine if the provided
example text indicates that the study

is a washout study. Respond with a clear
'Yes ' or 'No '.",

(
"You have been provided with

template text and instructions after
the triple dashes below .\n"

"Choose the text that is
most appropriate based on what you have
learned about this research study .\n"

"When you encounter a choice
enclosed in double angle brackets and

delimited by double forward slashes (<<
choice one // choice two >>), replace it
with the choice that best fits the study
's specifics. If you do not see an
appropriate choice , then you may choose
not to include any of the choices in
your response or you may choose to
generate an additional choice that is
more appropriate. \n"

"When you encounter a phrase
in this text that is enclosed by double
brackets ([[ example instructions ]]),

replace it with relevant details derived
from the STUDY INFORMATION provided

above. \n\n"
"---\n\n"
"Step 1: If the study

involves randomization , write the
following text , otherwise skip this step
:\n"

"\n\nThis study involves a
process called randomization. This means
that the << drug // device // procedure
>> you receive in the study is not

chosen by you or the researcher. The
study design divides study participants
into separate groups , based on chance (
like the flip of a coin), to compare
different treatments or procedures. If
you decide to be in the study , you need
to be comfortable not knowing which
study group you will be in.\n\n"

"Step 2: If the study
requires me to stop taking any
medications before I can participate ,
write the following text , otherwise skip
this step:\n"

"\n\nThis study may require
you to stop taking certain medications
before and possibly during the research
study. If you decide to be in the study ,
you should understand that some

symptoms that were controlled by that
medication may worsen .\n\n"

"If both Step 1 and Step 2
are skipped , meaning the study neither
involves randomization nor requires me
to stop taking a particular medication
before I can participate , then simply
write an empty space: "

)
],
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Section 6
"section6 ": [

(
"Imagine that I am the study

participant and you are explaining the
most important risks that are introduced
or enhanced because of participation in
this research study to me.\n"

"Rather than trying to
explain every risk , focus on the risks
that will cause me pain or emotional
distrees. What are the most important
risks that you would explain to me?\n"

"Do not include risks
associated with standard of care
treatments. Only include risks that
could reasonably be introduced or
enhanced due to participation in this
research study.\n"

"Use plain language to
describe the risks with few words. Your
response should be no more than 3
sentences in length ."

),
(

"You have been provided with
template text after the triple dashes

below. Adhere to this text in your
response. When you encounter a phrase in
this text that is enclosed by double

brackets ([[ example instructions ]]),
replace it with relevant details based
on what you have learned about this
research study. \n\n"

"---\n\n"
"There can be risks

associated with joining any research
study. The type of risk may impact
whether you decide to join the study.
For this study , some of these risks may
include [[ Briefly describe the risks
while maintaining a formal tone ]]. More
detailed information will be provided
later in this document ."

)
],

Section 7
"section7 ": [

(
"Imagine that I am the study

participant and you are explaining the
benefits of participating in this study.
\n"

"Create a list of the
benefits and categorize them based on
whether they will directly benefit me. \
n"

"Do not mention financial
compensation .\n"

"---\n\n"
"[ Direct personal benefits

to me]\n"
"<List direct personal

benefits to me. If there are no direct
personal benefits me, then skip this
section >\n\n"

"[Other potential benefits ]\
n"

"<List other significant
potential benefits >"

),
(

"You have been provided with
template text after the triple dashes

below. Adhere to this text in your
response. "

"When you encounter a choice
enclosed in double angle brackets and

delimited by double forward slashes (<<
choice one // choice two >>), "

"replace it with the choice
that best fits the study 's specifics. If
you do not see an appropriate choice ,

then you may choose not to include "
"any of the choices in your

response or you may choose to generate
an additional choice that is more
appropriate ."

"\n\n"
"When you encounter a phrase

in this text that is enclosed by double
brackets ([[ example instructions ]]),

replace it with relevant details based "
"on what you have learned

about this research study.\n"
"If there are no meaningful

direct personal benefits to me , then
select the second choice in the template
text below. Otherwise , select the first
choice .\n"

"---\n\n"
"<<This study may offer some

benefit to you now or others in the
future by "

"[[ Briefly summarize
benefits based on what you have learned
about this research study. Make sure the
summarized text fits with the rest of

this sentence and doesn 't repeat or
restate information that has already
been provided .]]>> "

"// "
"This study may not offer

any benefit to you now but may benefit
others in the future by "

"[[ Briefly summarize
potential benefits based on what you
have learned about this research study.
Make sure the summarized text fits with
the rest of this sentence and doesn 't
repeat or restate information that has
already been provided .]]>>. More
information will be provided later in
this document ."

)
],

Section 8
"section8 ": [

"How much of my time , in total ,
will be needed to take part in this
study? How long will I be in the study?
What is the total duration of the study?
In other words , how much of my time

will be taken up by the study and how
long will the overall study last?",

(
"After the triple dashes
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below , you have been provided with
template text. Adhere to this text in
your response , replacing any double
bracketed instructions ([[ example
instructions ]]), with relevant
information about the research study.\n"

"---\n\n"
"The study will take [[

Indicate how long the subject will be in
the study based on what you have

learned about this research study ]]."
)

],

Section 9
"section9 ": [

"If I decide not to take part in
this study , what other options do I

have?",
(

"If participating in the
study will not affect my current or
future treatment/care options , or if
this question is not applicable to this
study , respond with the following text:
\n"

"'Even if you decide to join
the study now , you are free to leave at
any time if you change your mind.'\n\n"

"Otherwise , respond with the
following text:\n"

"'You can decide not to be
in this study. Alternatives to joining
this study include [[Based on what you
have learned about this research study ,
briefly specify potential treatment/care
alternatives for this disease or

condition such as the current standard
of care ]].\n\n"

"Even if you decide to join
the study now , you are free to leave at
any time if you change your mind.'"

)
]
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Abstract

This paper introduces MSR2, a benchmark
for multi-source retrieval and reasoning in
visual question answering. Unlike previous
knowledge-based visual question answering
datasets, MSR2 focuses on questions involv-
ing multiple fine-grained entities, providing a
unique opportunity to assess a model’s spatial
reasoning ability and its capacity to retrieve
and aggregate information from various sources
for different entities. Through comprehensive
evaluation using MSR2, we gain valuable in-
sights into the capabilities and limitations of
state-of-the-art large vision-language models
(LVLMs). Our findings reveal that even state-
of-the-art LVLMs struggle with questions re-
quiring multi-entities and knowledge-intensive
reasoning, highlighting important new direc-
tions for future research. Additionally, we
demonstrate that enhanced visual entity recog-
nition and knowledge retrieval can significantly
improve performance on MSR2, pinpointing
key areas for advancement.1

1 Introduction

Knowledge-based visual question answering (KB-
VQA) is a challenging visual question answering
task that requires integration of external knowledge.
It assesses a model’s ability to recognize entities
within images, interpret spatial relationships be-
tween them, and retrieve relevant information from
a knowledge corpus to answer questions accurately.

There are several existing KBVQA datasets.
Early datasets (Wang et al., 2017; Marino et al.,
2019; Jain et al., 2021; Schwenk et al., 2022) typ-
ically involves questions requiring commonsense
knowledge. This requirement made retrieval neces-
sary for models at that time to answer the questions.
However, due to the emergence of large vision lan-
guage models (LVLMs) (Chen et al., 2023a; Li
et al., 2023a; Dai et al., 2023; Achiam et al., 2023),

1https://github.com/MiuLab/MSR-VQA

Q: Which dog is more popular; the 

light brown one or the one beside it? 

Knowledge Source 

Poodle: Poodle is ranked 5th in 

registrations with the American Kennel 

Club …

Dachshund: Dachshund is ranked 6th 

in registrations with the American 

Kennel Club …

Figure 1: MSR2 requires an understanding of spatial
relationships and the ability to retrieve information from
various sources for different entities.

the knowledge required by earlier datasets has be-
come too simple for LVLMs. Recent KBVQA
datasets (Mensink et al., 2023; Lin et al., 2023;
Chen et al., 2023b) have increased the complexity
of questions, making them challenging for LVLMs
to answer directly. Nevertheless, due to the diffi-
culty of annotating these datasets, these datasets
still focus on single entity, limiting their applicabil-
ity to more complex, real-world scenarios.

In this work, we explore the question: Can cur-
rent LVLMs handle questions involving multiple
entities that require information retrieval? To an-
swer this, we propose a dataset with the following
characteristics, as illustrated in Figure 1:

• Questions should reference multiple entities
within the image, requiring the model to inte-
grate information from diverse sources. For
example, identifying the light brown dog re-
quires knowledge about Poodles, while the
dog beside it corresponds to a Dachshund.

• Questions should emphasize spatial relation-
ships. For example, “the light brown dog and
the one next to it” requires the model to un-
derstand the arrangement of the dogs.

• Questions should involve knowledge that is
not based on commonsense, so the model
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Image Dataset 

(Openv7)

Multi-Entity Images
There are several cars parked in the image. …

(Question, Answer) 

related to multiple 

entities and knowledge

Chrysler Ford Focus

Detailed Entities

Knowledge

Chrysler is invented …

Ford Focus is invented…

Multi-Entity Questions

Caption

Multi-Source Reasoning 

Visual Questions

(Question, Answer) 

related to multiple entities 

and knowledge with 

spatial relationship

Figure 2: Data generation pipeline for MSR2.

needs to retrieve external information beyond
the image content. For example, the popular-
ity of a dog breed may vary over time.

We evaluate several state-of-the-art LVLMs and
pipeline baselines, including an entity tagging
model followed by an LLM. Our results reveal that
current models struggle in recognizing fine-grained
entities and exhibit poor performance in spatial rea-
soning involving multiple entities. Additionally,
we demonstrate that performance significantly im-
proves when entity recognition is more accurate
and supported by external knowledge sources. The
dataset will be released publicly upon acceptance.

2 Dataset Construction

We present our data generation pipeline in Figure
2. Below are the detailed steps for constructing the
MSR2 dataset.

Image Source We utilize the Openv7 dataset
(Kuznetsova et al., 2020) as our source of images.
This dataset originally includes images accompa-
nied by bounding boxes with coarse labels. To
align with our objective of analyzing multi-entity
images, we apply the following filtering criteria: (1)
Each selected image must contain multiple objects
with the same coarse, broad label; (2) We focus
on a limited set of categories–AIRCRAFT, AIR-
PLANE, ANIMAL, CAR, CAT, DOG, DOLPHIN,
INSECT, MOTORCYCLE, VEGETABLE, MUSICAL

INSTRUMENT, SHARK, HORSE, FRUIT, WEAPON,
TRUCK, TOOL, and FISH, since most other labels
lack the fine-grained categorization necessary for
our subsequent analysis.

Entity Finding After filtering the images, our
next step is to identify these entities and filter
those relevant for VQA generation. For each im-
age retained from the previous step, we employ
GPT-4V (Achiam et al., 2023) to generate fine-
grained object labels by querying the model with

object images cropped from the bounding boxes.
Once all entities within an image are tagged, we
retain only those images that contain distinct fine-
grained labels. In addition, we also apply filtering
to check whether the labeled fine-grained object
labels match the original coarse label type.

Knowledge Retrieval Next, we perform knowl-
edge retrieval for each entity by querying relevant
wiki titles and their corresponding contents. We
use BM25 (Robertson and Zaragoza, 2009), a tra-
ditional sparse retrieval method, to select the top-k
passages. These passages are then filtered using
GPT-4 (Achiam et al., 2023), which evaluates their
relevance to the entity. As a result, for each entity,
we retain the top-k′ passages. In our implementa-
tion, k and k′ is set to 50 and 1, respectively.

Question Generation With the entity names and
their corresponding knowledge, we proceed to gen-
erate the corresponding questions. We utilize GPT-
4 (Achiam et al., 2023) to generate these questions
by providing the model with the entity labels and
their associated knowledge.

Visual Question Generation In order to in-
corporate the visual information into the ques-
tions, we first generate image captions using GPT-
4V (Achiam et al., 2023). Next, we query GPT-
4 (Achiam et al., 2023) to replace the entities men-
tioned in the question-answer pair with the corre-
sponding objects identified in the image captions.

LLM/VLM Filtering To ensure dataset quality,
we utilize various GPT-based filtering mechanisms
for entity extraction, question generation, and vi-
sual question generation.

Human Filtering To ensure the quality of our
dataset, we have human evaluators on Amazon
MTurk filter out any data that is incorrect or insuf-
ficiently natural after generation. Given the com-
plexity of our data, we divide the human evalua-
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Dataset Fine-grained
Entity

Knowledge
Retrieval

Multiple
Entities

FVQA (Wang et al., 2017) ✗ ✗ ✓

OKVQA (Marino et al., 2019) ✗ ✗ ✓

S3VQA (Jain et al., 2021) ✗ ✓ ✗

A-OKVQA (Schwenk et al., 2022) ✗ ✗ ✓

Encyclopedic VQA (Mensink et al., 2023) ✓ ✓ ✗

InfoSeek (Chen et al., 2023b) ✓ ✓ ✗

Ours: MSR2 ✓ ✓ ✓

Table 1: In comparison to existing knowledge-based VQA datasets, we focus on three primary aspects. (1)
Fine-grained Entities: whether the model recognizes specific entities or relies on broad categories; (2) Knowledge
Retrieval: whether external knowledge is needed or only image-based information suffices; and (3) Multiple Entities:
whether questions involve multiple entities in the image.

tion into two steps: (1) Image Labels Reference:
This step checks the correctness of entity label-
ing and the associated references. (2) Knowledge-
Based QA Validation: This step verifies whether
the provided knowledge source correctly answers
the question and whether the answer itself is accu-
rate. The evaluation user interfaces for the Mechan-
ical Turk workers are shown in Figures 3. Only
data that passes both evaluations is included in our
final dataset. Originally, our dataset contained 2.8k
entries; after human filtering, we retained 1.3k en-
tries.

For further details on the data generation and
filtering, please refer to Appendix A.1.

3 MSR2: Benchmarking Multi-Source
Retrieval and Reasoning in Visual
Question Answering

3.1 Dataset Statistics

We compare the statistics of our dataset with those
of recently proposed datasets that share some simi-
lar characteristics with MSR2, as shown in Table 2.
Note that we focus exclusively on the test set, as
we aim to evaluate LVLM’s zero-shot capabilities.
K-VQA (Shah et al., 2019) is a multi-entity dataset
that requires understanding relationships between
entities to provide answers. However, its entity
types are limited to humans, restricting its appli-
cability across different domains. Encyclopedic
VQA (Mensink et al., 2023) and InfoSeek (Chen
et al., 2023b) are both datasets that require fine-
grained entity and knowledge retrieval. However,
their questions and images primarily focus on sin-
gle entities, limiting their effectiveness on testing
spatial reasoning.

3.2 Evaluation Metrics

Previous work primarily relied on VQA accu-
racy (Goyal et al., 2017) as the evaluation metric.
However, Mañas et al. (2024) highlighted that VQA
accuracy can be overly rigid, often marking correct
answers as incorrect due to formatting discrepan-
cies. To address this, they proposed using LLM-
based evaluation for reliable accuracy. Building on
this approach, we utilize GPT-4 as the evaluator to
assess VQA performance. Details of the evaluation
prompts are provided in Appendix A.2.

3.3 Qualitative Analysis

We show several random examples and quality as-
sessment of our dataset in Figure 4 and Appendix
A.3. This dataset offers a broad range of object cat-
egories (e.g., cars, airplanes, animals) and scenes
(e.g., outdoor shows, hangars, parks), fostering
comparative visual reasoning through questions
about foreground vs. background objects and at-
tributes like historical significance or function. Its
strength lies in filtering overly specialized subcat-
egories while retaining sufficient detail for tasks
such as distinguishing car models or dog breeds.
However, due to the nature of the dataset, some
images show partially occluded or out-of-frame
entities, leading to ambiguous tagging and inac-
curate identification—especially when key distin-
guishing features fall outside the frame or are
blocked by other objects. This limitation can hin-
der tasks requiring fine-grained classification or
detailed object-specific reasoning. Despite these
challenges, the dataset remains a rich multimodal
resource for VQA, reference resolution, and spatial
reasoning, provided that annotations and bounding
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Figure 3: UI of human filtering for Mturk human evaluation. Top: Filtering of tags. Bottom: Filtering of generated
questions and answers based on the provided knowledge.

boxes are carefully maintained and extended meta-
data is considered to address issues of ambiguity
and partial visibility.

4 Experiments

4.1 Tested Models and Settings
We adopt the evaluation method from InfoS-
eek (Chen et al., 2023b), which includes an end-
to-end approach without knowledge retrieval and a
pipeline approach with knowledge retrieval.

Large Models without Retrieval We assessed
existing LVLMs—BLIP2 (Li et al., 2023a), LLaVA
(Liu et al., 2024), and GPT-4V (Achiam et al.,
2023)—to evaluate their ability to answer VQA
questions without external knowledge sources.

Large Models with Retrieval Following Chen
et al. (2023b), we first use CLIP (Radford et al.,
2021) to tag the visual entities. Then, an
LLM/LVLM (GPT4-V in our case) is employed to
answer the question, leveraging knowledge either
within its parameters or from an external source.

We also include oracle toplines in our ablation
studies to evaluate the model’s performance in iden-
tifying fine-grained entities, spatial reasoning, and
knowledge coverage. Two methods are used to in-
corporate entities: (1) entities are provided without
being mapped to the question, and (2) entities are
provided and mapped to the question. This setup
allows us to evaluate the model’s spatial reasoning,
specifically whether it can accurately map entities
to their corresponding references in the question.

4.2 Evaluation Results
As shown in Table 3, existing LVLMs perform
poorly on MSR2, achieving only a 10% improve-
ment over the random baseline. Furthermore,
pipeline methods, which first identify entities and
then use an LVLM to answer, demonstrate even
worse performance. We further discuss the results
from the following aspects:

Existing models fail to identify fine-grained en-
tities. The oracle baselines demonstrate an im-
provement of 15.9% when entity recognition is
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Dataset # {Q, I} Avg # Ent. per I # Ent. Type Rationale

K-VQA (Shah et al., 2019) 183k > 1 1 ✗

Encyclopedic VQA (Mensink et al., 2023) 5.7k 1 2.1k ✗

InfoSeekHuman (Chen et al., 2023b) 8.9k 1 527 ✗

Ours: MSR2 1.3k 2.25 53 ✓

Table 2: Dataset Statistics. Q: Questions; I: Images; Ent.: Entities. The test set is used for comparison.

Figure 4: Random examples VQA question of MSR2.

accurate. This highlights the limitations of LVLMs
in identifying fine-grained entities.

Since the image contains multiple entities,
pipeline methods using CLIP to compute embed-

dings for the image and match them to the closest
entity embedding may be too coarse, potentially
missing the details of individual entities.
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Model Accuracy

Without KB
Random 50.00
BLIP2 (Li et al., 2023a) 54.45
LLaVA (Liu et al., 2024) 53.05
GPT4-V (Achiam et al., 2023) 62.47

With KB
CLIP→ GPT4-V (parameter) 51.73
CLIP→ GPT4-V (wiki) 57.86
Oracle ent. → GPT4-V (parameter) 63.96
Oracle ent. → GPT4-V (wiki) 69.35
Oracle→ GPT4-V (parameter) 76.97
Oracle→ GPT4-V (wiki) 81.44

Table 3: Main results on MSR2 (%). The “Oracle ent.”
toplines provide the entity without mapping it to the
question, whereas the “Oracle” toplines include both
the entity and its mapping to the question.

LVLMs are poor at spatial reasoning. We com-
pare the performance of ’Oracle ent.’ to ’Oracle’ to
evaluate the spatial reasoning ability of LVLM. The
results show that providing entities improves per-
formance by 6.9% compared to GPT4-V, where no
entities are given. However, there is an 12.1% per-
formance gap between the ’Oracle’ toplines (where
entities are mapped to the question) and ’Oracle
ent.’, indicating that LVLM struggles with correctly
mapping entities back to the questions.

External knowledge can further boost perfor-
mance. The ’Oracle→ GPT-4 (parameter)’ ap-
proach shows a significant improvement over ex-
isting baselines, demonstrating that a large number
of questions can be effectively answered using the
knowledge encoded within the model’s parameters.
Additionally, integrating external knowledge from
Wikipedia further boosts performance by 4.47%,
highlighting the importance of the external knowl-
edge.

4.3 Qualitative Study

In Figure 5, we study two different types of er-
rors. The top image illustrates that answering
more precise questions (e.g., identifying a specific
span) requires verifying information across multi-
ple sources. The bottom image reveals a failure in
entity mapping, where the model struggles to link
the correct entity to the question despite possessing
accurate knowledge.

5 Related Work

Visual Question Answering. Visual Question An-
swering (VQA) is a long-standing problem where
models must answer questions based on a given
image. There have been numerous benchmark
datasets proposed for the VQA task, including
VQAv1 (Antol et al., 2015), VQAv2 (Goyal et al.,
2017), DAQUAR (Malinowski and Fritz, 2014),
FMIQA (Gao et al., 2015) and Visual Madlibs (Yu
et al., 2015).
Knowledge-based VQA. Knowledge-based VQA
is a type of VQA where the questions require ex-
ternal knowledge beyond the image content. Some
of the well-known benchmarks include OKVQA
(Marino et al., 2019), which focuses on open-ended
questions that require world knowledge, FVQA
(Wang et al., 2017), where answers are derived
from facts stored in a structured knowledge base,
S3VQA (Jain et al., 2021), which involves selec-
tive question answering using different knowledge
sources, and A-OKVQA (Schwenk et al., 2022),
which emphasizes the reasoning ability of models.
Several solutions have been proposed to solve these
problems (Salemi et al., 2023; Lin and Byrne, 2022;
Lin et al., 2022; Ma et al., 2024; Si et al., 2023;
Hu et al., 2023; Lin et al., 2024; Hu et al., 2024).
Most models use a two-stage approach: retriev-
ing relevant knowledge then answering the ques-
tion. However, much of the knowledge required
by these benchmarks is commonsense, which re-
cent (LVLMs) can handle directly through their
embedded knowledge.
Knowledge-based VQA with LVLMs. Prior re-
search has demonstrated LVLMs’ capabilities for
knowledge-intensive VQA. Li et al. (2023b) pro-
vides a comprehensive evaluation of GPT-4V on
its knowledge-based VQA capabilities. PROOF-
READ (Zhou et al., 2023) and Prophet (Shao et al.,
2023) leverage LLMs as implicit knowledge en-
gines, paired with visual-language models to filter
irrelevant or noisy information and improve ac-
curacy. Uehara et al. (2024) introduces a chain-
of-thought framework with question-asking capa-
bilities, leveraging LLM-generated datasets for
knowledge-based VQA. Xu et al. (2024) proposes a
novel reverse image retrieval approach for improv-
ing multimodal LLM performance on knowledge-
intensive VQA tasks. Cao and Jiang (2024) uses
LLMs as a knowledge source which generates rele-
vant knowledge snippets for the downstream VQA
task. To evaluate LVLMs on knowledge-intensive
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Figure 5: Qualitative analysis of two different error types: (1) Insufficient Multi-Source Knowledge: The top
image illustrates that answering more precise questions requires integrating knowledge from multiple sources.
Entity Mapping Failure: The bottom image demonstrates the model’s inability to correctly map the relevant entity
to the question, despite having accurate knowledge.

and information-seeking questions that go beyond
visual content, we need more rigorous benchmarks
with detailed knowledge. Recent benchmarks like
Infoseek (Chen et al., 2023b) and Encyclopedic
VQA (Mensink et al., 2023) assess models’ capa-
bilities in fine-grained object recognition and an-
swering rare questions about those objects. Build-
ing on these efforts, we introduce a new benchmark
with multi-entity, knowledge-intensive, and spatial
reasoning questions.

6 Conclusion

We introduce MSR2, a VQA dataset focused on
KBVQA questions involving multiple entities, re-

quiring both multi-retrieval and spatial reasoning.
Our experiments demonstrate that MSR2 presents
a substantial challenge for standard LVLMs. How-
ever, incorporating an oracle retrieval component
significantly enhances performance. We anticipate
that MSR2 will inspire future research into more
generalized retrieval-augmented LVLMs.

Limitations

MSR2 is limited to English; future research could
extend it to a multilingual setting. Additionally, the
image sources employed in our study lack sufficient
diversity—particularly regarding images contain-
ing multiple objects within the same broad category.
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This limitation may affect the quality and diversity
of the generated dataset. Future work should ex-
plore more varied and representative image datasets
that include multiple instances of different objects
within the same category to improve the robustness
and generalizability of the approach.
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A Appendix

A.1 Details for data generation
The following section are the prompts for different
stage of our generation pipeline.

Entity Finding The following are the prompts
for entity finding.

Given the object , you have to generate
↪→ one question to gain a more
↪→ detailed class of the object.
↪→ The answer of the question
↪→ should be the detailed class of
↪→ the object.

Examples:
{examples}
Object: {label}
Question:

Listing 1: Prompt for entity finding query generation

{generated_query} Answer with a noun.

Listing 2: Prompt for entity finding

Decide whether the statement is true.
Examples:
Question: Panther is a type/class of

↪→ Giraffe ,
Answer: False
{more examples}
Question: {tag} is a type/class of {

↪→ label}
Answer:

Listing 3: Prompt for entity filtering - subclass

Given a tag list , decide whether the
↪→ tag list contains multiple
↪→ different entities.

Examples:
Entities:[' volkswagen t1 ', 'audi a4 ']
Answer: True
{more examples}
Entities :{tags}
Answer:

Listing 4: Prompt for entity filtering - different tags

Question Generation The following are the
prompts for question generation.

You are a knowledge -based question
↪→ answer generator. Given the
↪→ objects and knowledge of each
↪→ objects , generate a question and
↪→ answer with rationale and a
↪→ short answer.

Rules:
1. Answer should be a word , not a

↪→ sentence.
2. Only ask one short question.
3. Question should be generated based

↪→ on the object and knowledge.

4. Question should be related to at
↪→ least two objects and the object
↪→ must be in the Object List.

5. Question should be hard , do not ask
↪→ common question that can be
↪→ easily answered without
↪→ knowledge source.

6. **All the options in the question
↪→ and answer should be in the
↪→ Objects List , question should
↪→ contain the choices. i.e. _____ ,
↪→ A or B?. Both A and B should in
↪→ the Object List**

7. Do not output Objects List and
↪→ Knowledge , only output Question ,
↪→ Rationale and Answer.

Format: {...}
Examples: {examples}
Objects List: {objects_list}
Knowledge: {knowledge}

Listing 5: Prompt for QA generation

Decide whether the QA question follow
↪→ this criteria.

1. All the entities in the question are
↪→ in the object list , it can be a
↪→ slightly calling difference

2. The question contains more than one
↪→ entities. If the provided
↪→ question and object list satisfy
↪→ the criteria above , output True
↪→ Otherwise output False. Do not
↪→ output any other information
↪→ other than True or False.

Question: {question}
Object List: {objects_list}

Listing 6: Prompt for QA filtering

Visual Question Generation The following are
the prompts for visual question generation.
There are {tags} in the image.
Describe their (1) appearance (2) place

↪→ it located (3) other objects/
↪→ people that are related to this
↪→ object in the image.

Do not describe objects that are not
↪→ related to the provided object
↪→ list.

Write the response in a short passsage.

Listing 7: Prompt for image captioning

You are a VQA rewriter. Given a QA
↪→ question and an image caption ,
↪→ rewrite the part after the comma
↪→ in the question to create a
↪→ more natural and human -like
↪→ visual question answering format
↪→ .

Rules:
1. Rewrite the entities in both the

↪→ answer and the part of the
↪→ question after the comma , using
↪→ the visual information provided
↪→ in the image.
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2. The part of the question before the
↪→ comma should remain unchanged.

3. Rewrite with simpler words and fewer
↪→ object details.

Format: {...}
Examples: {examples}
Caption: {caption}
Question: {question}
Answer: {answer}

Listing 8: Prompt for VQA generation

A.2 Details for evaluation
The following are the prompts for model evalua-
tion.

Given a question , a prediction , and an
↪→ answer , evaluate whether the
↪→ prediction aligned with the
↪→ answer based on the question.
↪→ Answer with Yes or No.

Question: {question}
Prediction: {prediction}
Answer: {answer}

Listing 9: Prompt for model answer evaluation

A.3 Example data of MSR2

Figure 4, 6 and 7 contain some random example
data of MSR2.
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Figure 6: Random examples VQA question of MSR2 - group2
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Figure 7: Random examples VQA question of MSR2 - group3
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Abstract
Optimizing discrete prompts for small and
medium-sized language models (1–8 billion
parameters) poses unique challenges due to
their relatively weaker instruction-following
capabilities compared to larger counterparts.
We present PRompt OPtimization with Ex-
pert priors for LLMs (PROPEL), a novel
knowledge-augmented iterative optimization
framework leveraging the collaborative capa-
bilities of three distinct roles assigned to large
language models (LLMs): Responder, Judge,
and Optimizer. Unlike prior works that focus
on larger LLMs for prompt optimization with
natural language feedback, our approach em-
phasizes improving prompt effectiveness for
resource-efficient smaller and medium-sized
models through structured iteration and the in-
tegration of prompt design principles as ex-
pert priors. Our experiments across diverse
tasks such as long-text summarization and en-
tity extraction demonstrate significant improve-
ments. PROPEL improves response quality
by 10–24% for Query-Based Summarization
and 5–16% for Query-Based Entity Extrac-
tion over initial prompts, outperforming base-
line approaches by at least 12% and 9%, re-
spectively. Ablation studies further show that
incorporating prompt design principles as pri-
ors enhances response quality by 21% for
Llama-3.2 1B and 9% for Llama-3.2 3B.

1 Introduction and Related Works

Large Language Models (LLMs) have excelled in
various NLP tasks, including summarization, ques-
tion answering, and classification (OpenAI et al.,
2024b; Grattafiori et al., 2024; Abdin et al., 2024).
This success stems from extensive pretraining on di-
verse datasets and advancements in prompting tech-
niques (Brown et al., 2020). Prompt engineering-
designing task-specific instructions or queries to
elicit optimal responses—has proven critical for
achieving high performance across tasks and do-
mains (Reynolds and McDonell, 2021).

However, creating effective prompts requires
substantial manual effort (Jiang et al., 2022), often
relying on domain expertise (Reynolds and Mc-
Donell, 2021; Zamfirescu-Pereira et al., 2023), in-
tuition, and trial-and-error. This resource-intensive
process poses challenges for non-expert users.
Moreover, LLM performance is highly sensitive
to prompt quality (Gao et al., 2021), emphasizing
the importance of robust prompt engineering.

Techniques such as Chain-of-Thought (Wei et al.,
2023), Few-Shot Prompting (Brown et al., 2020),
and Role Prompting (Wang et al., 2024) introduce
prompting strategies to improve response quality.
Survey Works (Schulhoff et al., 2024; Sahoo et al.,
2024; Chen et al., 2024) have systematically com-
piled and organized these approaches into Prompt
Design Principles or Prompt Principles. Bsharat
et al. 2024 identified 26 principles, showing that
their effectiveness varies across LLMs, indicating
model-specific applicability.

To mitigate the challenges of manual prompt
engineering, various automated methods have
been proposed, categorized by their underlying
techniques:
Soft Prompt-Tuning Methods: Soft prompt-
tuning represents prompts as continuous task-
specific vectors optimized using gradient-based
techniques (Lester et al., 2021; Li and Liang,
2021; Liu et al., 2023; Qin and Eisner, 2021).
This method fine-tunes a small subset of trainable
parameters while keeping the LLM frozen,
achieving strong task performance. However,
it requires access to the LLM’s internal state
variables, making it unsuitable for black-box APIs
or closed-source models (Shin et al., 2020; Lester
et al., 2021).
Iterative Scoring-Based Optimization: These
approaches iteratively refine a discrete base prompt.
GrIPS (Prasad et al., 2023) uses phrasal edits,
while APE (Zhou et al., 2023) and OPRO (Yang
et al., 2024) generate semantically similar prompts
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via LLMs, scoring responses with an evaluation
function—often another LLM—to select the next
best prompt. OPRO (Yang et al., 2024) also
incorporates the history of previous best prompts
but doesn’t explicitly generate natural language
feedback. Numerical scores offer limited insights,
failing to pinpoint specific response strengths
or weaknesses. Our ablation study on PROPEL
(Table 5) highlights the value of descriptive
feedback. Moreover, these methods narrowly
explore the initial prompt space, neglecting diverse
strategies that could yield more robust solutions.
Iterative Feedback-Driven Optimization: These
techniques use iterative feedback loops for prompt
refinement. Methods like SelfRefine (Madaan
et al., 2023), APO (Pryzant et al., 2023), and
Self-Debugging (Chen et al., 2023) leverage
LLM feedback to enhance prompts, with APO
(Pryzant et al., 2023) introducing textual gradients
to target weaknesses. However, APO (Pryzant
et al., 2023) does not utilize the history of prompts,
scores, and feedback, which we demonstrate
as crucial in PROPEL (Table 4). SelfRefine
(Madaan et al., 2023) and Self-Debugging (Chen
et al., 2023) rely on the Responder LLM for both
response and feedback. However, these methods
are demonstrated on larger models, which we
hypothesize are better equipped to process detailed
feedback. In contrast, small- and medium-scale
LLMs struggle with capability to fully utilize such
feedback for self-improvement (Saunders et al.,
2022; Huang et al., 2023), rendering this approach
for prompt optimization ineffective when applied
to these smaller models.
LLM-Based Evolutionary Techniques: Evolu-
tionary algorithms, like the Genetic Algorithm
(Holland, 1992) and Differential Algorithm (Storn
and Price, 1997), have been adapted for discrete
prompt optimization. Methods such as Prompt-
Breeder (Fernando et al., 2023), PromptWizard
(Agarwal et al., 2024), and EvoPrompt (Guo
et al., 2024) refine prompts through iterative
techniques, applying thinking styles, and lever-
aging LLM-driven operations like crossover and
mutation. While promising, these approaches
are predominantly evaluated on larger LLMs.
However, as noted by (Bsharat et al., 2024),
effectiveness of mutation can vary for small and
medium-scale models, raising concerns about
generalizability to smaller LLMs.

In this work, we tackle the critical yet underex-

plored challenge of optimizing discrete prompts
for small and medium-sized LLMs (1–8 billion
parameters), which exhibit weaker instruction-
following capabilities compared to larger models
(Qin et al., 2024). To address this, we propose PRO-
PEL (PRompt OPtimization with Expert Priors
for LLMs), a novel knowledge-augmented frame-
work that leverages expert-informed prompt prin-
ciples as priors and orchestrates a structured itera-
tion among three distinct LLM roles: Responder
LLM, responsible for response generation; Judge
LLM, tasked with response evaluation; and Op-
timizer LLM, which refines prompts using ex-
pert priors and historical state information com-
prising prompts, feedback, and scores. This ap-
proach strategically incorporates structured knowl-
edge into the prompt optimization process, en-
abling more effective knowledge utilization and
enhancing the performance of small and medium-
sized LLMs.

Unlike existing approaches that overlook the in-
tegration of prompt design principles into the op-
timization process, PROPEL systematically iden-
tifies task- and model-specific easy or hard to fol-
low prompt principles. These principles are incor-
porated as priors over the optimal prompt space,
enabling the discovery of prompts that are both ef-
fective and tailored to the specific LLM and task.
Extensive experiments on summarization, entity ex-
traction, and multi-turn QnA show improvements
of at least 12%, 9% and 3% over state-of-the-art
baselines, respectively, highlighting the effective-
ness of the PROPEL framework.

2 Methodology

2.1 Problem Formulation

Given an initial prompt p0 for a Responder LLM
M, our goal is to iteratively transform p0 into
p̂, an approximation of the optimized prompt p∗

which maximizes the quality of the generated re-
sponses. We assume access to an i.i.d training
dataset consisting of pairs of input context and ref-
erence output: Dtrain = {(x1, y1), . . . , (xn, yn)}
where x1, . . . , xn represents the input context and
y1, . . . , yn represents the reference outputs. Note
that all prompts p are drawn from the space of
coherent natural language L. The quality of the
generated responses ŷ = M(y|p, x) is evaluated
using a metric function m(y, ŷ).
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Figure 1: Visual representation of construction of Expert Prior knowledge store, which guides the prompt optimiza-
tion workflow described in the next subsection.

The optimization task can be expressed as:

p̂ = argmax
p∈L

E[m(y,M(y|p, x))] ∀x, y ∈ Dtrain

The optimization process proceeds iteratively:

pk+1 = A(pk,State,Priors),

where A is the algorithm explained in A.1, State
stores the history of prompts, scores, and feedback
from previous iterations, and Priors encode the
principles to design prompts which is provided to
the Optimizer LLM to guide prompt optimization.

2.2 Expert Priors

Inspired by the work of Bsharat et al. (2024), which
examines the influence of LLM size on prompt de-
sign, we hypothesize that explicitly encoding the
structured knowledge of the strengths and weak-
nesses of the Responder LLM’s ability to follow
specific prompt styles into the prompt optimiza-
tion process will significantly enhance the qual-
ity of the prompts, as measured by the response
quality. To achieve this, we define Expert Priors,
a knowledge-augmented approach that systemati-
cally encodes the capabilities and challenges of the
Responder LLM in adhering to various prompt prin-
ciples. These priors guide optimization by defining
emphasis rules, which correspond to design prin-
ciples classified as Easy for the Responder LLM
to follow, and avoidance rules, which correspond
to design principles classified as Hard for the Re-
sponder LLM to follow.

As depicted in Figure 1, the Expert Priors are
constructed as knowledge corpora1 that capture

1Expert priors are available in Section A.11.

the Responder LLM’s proficiency in following dif-
ferent prompt styles. This is achieved by system-
atically transforming task-specific initial prompts
with GPT-4 (OpenAI et al., 2024b) for each of the
50 prompt principles (see Tables 6 & 7) and then
evaluating the Responder LLM’s performance on
the transformed prompts. These principles are in-
formed by previous work, including Bsharat et al.
2024 and Chen et al. 2024, and are evaluated on
a minimal dataset of 10 task-specific samples to
identify Easy or Hard principles. Easy principles
represent design strategies of the prompts that the
Responder LLM can reliably respond with minimal
errors, and these are encoded into the optimization
process as emphasis rules, directing the optimizer
to create the prompt by reinforcing these princi-
ples. Conversely, Hard principles represent design
strategies of prompts where the Responder LLM is
more likely to struggle, and these are encoded as
avoidance rules, signaling the optimizer to create
prompt that does not adhere to the characteristics
defined by these principles to minimize errors and
maintain high-quality responses.

Our approach leverages Expert Priors as struc-
tured knowledge in a plug-and-play manner, en-
hancing prompt optimization without requiring
fine-tuning of the Responder LLM. By strategically
utilizing knowledge, the Optimizer LLM gener-
ates high-quality prompts tailored to the Responder
LLM’s strengths and weaknesses. The 50 princi-
ples are automatically classified as Easy or Hard
once per Responder LLM per task, enabling scal-
able and efficient knowledge elicitation. The de-
tailed implementation of this automated classifica-
tion process is described in Section 7i.
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Figure 2: Proposed workflow: The Responder generates responses, the Judge evaluates them with feedback and
score, and the Optimizer optimizes prompt using expert priors and state. This process is repeated iteratively.

2.3 Framework Design and Workflow

As shown in Figure 2, PROPEL operates as an iter-
ative framework involving the coordinated interac-
tion of three key components: the Responder LLM,
Judge LLM, and Optimizer LLM. Each component
is driven by role-specific meta-prompts, ensuring
alignment with their designated functions:

1. Response Generation by Responder LLM:
The Responder LLM generates a response (ŷ)
based on the input, which consists of the current
prompt pk and the training dataset Dtrain. At
the beginning of the process, the current prompt
pk is initialized to the initial prompt p0.

2. Evaluation by Judge LLM: The Judge LLM
evaluates the generated response (ŷ) using the
current prompt pk, the input context x, and
the reference response y. This evaluation fol-
lows predefined criteria outlined in Section
A.6. The Judge provides detailed feedback
and assigns a score between 1 and 5 for each
training data point (x, y). The feedback and
scores are then summarized using the Feed-
back Summary meta-prompt (refer to Section
A.8). The summarized insights, represent-
ing knowledge extracted from the evaluation
process, are stored in the State as a triplet
⟨pk,Feedbackk,Scorek⟩. This approach effec-
tively curates and utilizes evaluation knowledge,
aligning with knowledge-augmented method-
ologies.

3. Prompt Optimization by Optimizer LLM:
The Optimizer LLM generates a refined prompt
pk+1 based on the analysis of the State and ad-
herence to Expert Priors. The metaprompt (Re-
fer "Optimizer LLM" in section A.8) ensures
that the optimizations preserve the intent of the

original task while enhancing the response qual-
ity.

4. Repeat: Steps 1–3 are repeated iteratively for
a specified number of iterations or until a stop-
ping criteria defined by a threshold on the score
of quality of responses.

For further implementation details, refer to Key
Implementation Details for PROPEL in Section
A.7.

3 Experimentation Details

3.1 Dataset and Tasks
This work utilizes the public QMSum (Zhong et al.,
2021) dataset for the task of query-based sum-
marization and the public benchmark MT Bench
(Zheng et al., 2023) for evaluating QnA perfor-
mance in multi-turn chat scenarios. Additionally,
an in-house dataset2 is employed for tasks includ-
ing query-based summarization and entity extrac-
tion. Comprehensive details about these datasets,
associated tasks, and rationale for their selection
are provided in Section A.2.

3.2 Models used as Responder LLM
We select a diverse range of open-source models,
including small models (1–3 billion parameters)
and medium-sized models (7-8 billion parameters).
Further details on the specific characteristics and
rationale for choosing these models can be found
in Section A.4.

3.3 Baselines
The study uses Self-Refine (Madaan et al., 2023),
GrIPS (Prasad et al., 2023), Prompt Wizard (Agar-
wal et al., 2024), APO (Pryzant et al., 2023), and

2Due to proprietary restrictions, this dataset cannot be
released.
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OPRO (Yang et al., 2024) as baseline methods. In
the PROPEL (Self) variant, the same LLM em-
ployed as the Responder LLM also serves as the
Judge LLM and Optimizer LLM. Further details
and the rationale for selecting these baselines are
provided in Section A.5.

3.4 Metrics

Response quality for evaluating summarization,
QnA in multi-turn chat and entity extraction tasks
is obtained using LLM Score, a rating on a scale of
1–5 provided by GPT-4o (OpenAI et al., 2024a);
Rouge-1 (Lin, 2004) is applied to entity extraction
tasks. Table 1 presents the standardized metric
differences between responses generated using op-
timized prompts and initial prompts. Details of
the metrics, their computation, and standardization
procedures are provided in Section A.6.

3.5 Implementation Details

Evaluation was conducted on the final optimized
prompt, defined as either the last iteration’s prompt
or an intermediate one when early stopping oc-
curred. Further details on the implementation can
be found in Section A.7.

4 Experimental Results

4.1 Overall Results

We evaluate PROPEL against several baselines
across two categories of Responder LLMs: Small
Models (1–3 Billion parameters) and Medium-
Sized Models (7–8 Billion parameters). The results
are summarized in Tables 1 and key observations
are detailed below:

Small Models (1–3 Billion Parameters)

1. Superior Performance of PROPEL: PRO-
PEL outperforms all baselines across datasets
and tasks, highlighting the crucial role of
knowledge-informed Expert Priors in boost-
ing performance for smaller models. Specif-
ically, PROPEL achieves substantial margins
over baselines, with improvements of 20%, 6%
and 4% for Llama 3.2 1B, Llama 3.2 3B and
Flan-T5 3B in summarization, and 14%, 10%
and 13.7% for entity extraction. The more pro-
nounced improvements in the smaller 1B model
underscore the value of knowledge-augmented
priors in guiding prompt optimization and maxi-
mizing the potential of resource-efficient LLMs.

2. PROPEL (Self) vs. PROPEL: PROPEL (Self)
performs substantially worse than PROPEL
across datasets and tasks, highlighting that
smaller LLMs are less effective at evaluating
responses and generating optimized prompts.
This emphasizes the necessity of leveraging
more powerful external LLMs (e.g., GPT-4) to
provide feedback and guide the prompt opti-
mization process effectively.

Medium-Sized Models (7–8 Billion Parameters)

1. Superior Performance of PROPEL: Similar
to the small models, PROPEL consistently out-
performs the baselines across datasets and tasks.
This highlights the effectiveness of integrating
knowledge-informed Expert Priors in optimiz-
ing prompt design, thereby enhancing the capa-
bilities of medium-sized models.

2. PROPEL (Self) vs. PROPEL: Unlike smaller
models, PROPEL (Self) demonstrates signif-
icantly improved performance relative to the
baselines when using medium-sized models,
although it still lags behind PROPEL. This
indicates that medium-sized models are better
equipped to serve as both evaluators and opti-
mizers. However, achieving enhanced response
quality still requires the coordination of a more
powerful LLM for Judge and Optimizer LLM
roles.

The key takeaways are as follows:

1. Significance of Knowledge-Informed Expert
Priors: Expert Priors are particularly criti-
cal for smaller and medium-sized models (1–8
Billion parameters), significantly boosting per-
formance across all of the tasks and datasets
by leveraging knowledge-informed guidance in
prompt optimization.

2. Role of powerful LLM in Evaluation and
Optimization: Using a powerful external LLM
like GPT-4 for evaluation and optimization is
more effective than relying on the smaller Re-
sponder LLM. A more capable LLM offers
detailed, accurate assessments by better un-
derstanding the prompt-response-reference re-
sponse alignment. During optimization, it iden-
tifies prompt issues and generates improved ver-
sions that better align with task objectives and
the characteristics of smaller Responder LLMs.
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Responder
LLM

Methods Summarization Entity Extraction Chat

Inhouse QMSum Inhouse MT-Bench

∆LLM Score ∆LLM Score ∆LLM Score ∆ROUGE-1 ∆LLM Score

Llama 3.2
1B

Self-Refine -29.00 -12.74 -46.82 -33.64 -10.04
GrIPS 3.28 4.53 2.94 2.19 1.25
Prompt-Wizard -5.20 -2.64 -2.95 -3.70 -1.52
APO -3.20 -3.96 -9.20 -11.50 2.86
OPRO -2.00 -1.28 -1.75 -3.27 1.67

PROPEL (Self) -14.00 -10.27 -48.00 -25.04 -9.82
PROPEL 22.67 7.91 11.00 16.43 8.46

Llama 3.2
3B

Self-Refine -13.54 -8.37 -30.16 -18.48 -5.39
GrIPS 2.79 2.92 3.16 2.65 1.69
Prompt-Wizard -7.44 -6.34 -1.65 -1.80 1.18
APO 2.67 3.42 -6.40 -8.89 3.27
OPRO 8.00 4.58 1.50 1.68 2.50

PROPEL (Self) -12.34 -5.90 -29.00 -13.57 -2.26
PROPEL 14.17 6.29 8.00 12.58 6.79

Flan-T5
3B

Self-Refine -3.80 -9.75 -6.30 -1.57 -1.13
GrIPS 5.60 4.51 1.90 4.00 2.60
Prompt-Wizard -1.27 -4.98 -2.60 -2.38 -1.20
APO 1.58 3.91 -7.56 -6.73 -1.48
OPRO 6.56 -7.42 -6.02 -6.25 -7.83

PROPEL (Self) -8.38 -4.38 -2.02 -1.86 -2.16
PROPEL 10.29 7.03 15.61 13.7 6.63

Mistral
7B

Self-Refine 3.71 2.85 1.48 0.95 -0.74
GrIPS 5.96 3.13 -1.64 0.73 -0.58
Prompt-Wizard 3.02 3.58 -0.84 -1.18 -1.92
APO -13.00 -2.68 -9.63 -8.79 -0.84
OPRO 10.05 3.76 -0.80 -3.14 0.37

PROPEL (Self) 17.39 3.62 2.40 1.83 1.09
PROPEL 21.50 8.73 3.90 8.96 3.73

Llama 3
8B

Self-Refine -2.00 -1.08 -3.00 -1.54 2.17
GrIPS -2.32 1.40 -3.80 -0.20 1.84
Prompt-Wizard -1.96 2.73 -1.20 -1.83 1.37
APO -7.46 -3.40 -3.20 -2.84 1.25
OPRO 5.00 -1.26 -3.59 -3.42 1.89

PROPEL (Self) 21.35 5.70 6.40 2.67 2.04
PROPEL 23.68 12.20 8.20 4.64 2.45

Table 1: The table compares PROPEL with baselines across tasks and models, using GPT-4 as Judge and Optimizer.
It shows the difference in standardized LLM scores (‘∆’) between responses generated with optimized prompts and
initial prompts for Summarization and Chat tasks. Raw LLM scores are standardized from the GPT-4o ratings (1–5
scale) to percentages. ∆ROUGE-1 is used for Entity Extraction task. Higher scores indicate better performance,
with the best results for each model in bold and color. Negative scores indicate worse performance with optimized
prompts.

3. Consistent Task Performance: PROPEL con-
sistently delivers strong performance across
tasks, demonstrating exceptional effectiveness
in knowledge-intensive scenarios, including

query-based summarization, entity extraction,
and QnA over multi-turn chat, underscoring its
versatility and robust design.
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4.2 Ablation Studies
We focus on the Query-Based Summarization task
in the in-house dataset containing five prompts and
the Llama-3.2 1B and 3B models as the basis for
all the ablation studies.
Impact of Initial Prompt: Certain prompts pose
varying levels of difficulty for different models,
making harder prompts more challenging to op-
timize. These harder prompts often require addi-
tional training data or more iterations in the opti-
mization algorithm to converge effectively. The
objective of this study is to check if PROPEL can
work as effectively with "hard" prompts as they do
with "easy" prompts.

For each of the considered prompts, the Op-
timizer LLM generates an “easy” and a “hard”
version by following specific rules derived from
a one-time evaluation of the Responder LLM on
50 prompt principles (Refer table 6). The “easy”
prompts emphasize aspects the Responder LLM
excels at, while the “hard” prompts intentionally
include elements the Responder LLM struggles
with. This process is conducted for two models:
Llama-3.2-1B and Llama-3.2-3B.

We measure the effect of prompt difficulty on
the effectiveness of PROPEL by calculating the
average LLM Scores for responses generated with
initial prompts (LLM Scoreinit) and the average
improvement in scores after optimization (∆LLM
Score). The sum of these metrics gives the final
LLM Scores for the optimized prompts.

The results in Table 2 show that while the LLM
Scores for the final optimized prompts are higher
for "easy" prompts compared to "hard" prompts,
the improvements in ∆LLM Scores are signifi-
cantly greater for "hard" prompts. In other words,
the gap in LLM Scores between the initial "easy"
and "hard" prompts is much larger than the gap
between the optimized "easy" and "hard" prompts.
This indicates that PROPEL is highly effective even
for "hard" prompts, despite their greater optimiza-
tion challenge.

Initial
Prompt

Llama-3.2 1B Llama-3.2 3B
LLM Scoreinit ∆LLM Score LLM Scoreinit ∆LLM Score

Easy 67.60 13.47 70.04 7.83
Hard 40.06 33.47 43.86 25.47

Table 2: Impact of initial prompt on ∆LLM Score for
Llama-3.2 1B and 3B models.

Impact of Expert Priors on Knowledge-Guided
Prompt Optimization: The goal of this study is to

evaluate how the quality of expert priors influences
the effectiveness of the knowledge-augmented
prompt optimization algorithm. We test the fol-
lowing scenarios:

1. Good Priors: Rules derived directly from
the one-time evaluation of the Responder
LLM using 50 prompt principles (Refer table
6). These “emphasis” and “avoidance” rules,
which serve as structured knowledge priors,
are incorporated into the Optimizer LLM’s
prompts during optimization.

2. No Priors: The Optimizer LLM operates
without any knowledge-augmented rules, re-
lying solely on iterative feedback for prompt
optimization.

3. Random Priors: Seven prompt principles are
randomly selected from the curated list for
each rule type (“emphasis” and “avoidance”),
and the resulting rules are included in the Op-
timizer LLM’s prompts. This tests the impact
of unstructured knowledge injection on opti-
mization performance.

4. Bad Priors: The “emphasis” and “avoidance”
rules are reversed, such that principles the Re-
sponder LLM excels at are treated as “avoid-
ance” rules and vice versa. This setup eval-
uates the negative influence of inaccurately
encoded knowledge on prompt optimization.

The effectiveness of each scenario is measured
by the average change in LLM scores after opti-
mization (∆LLM Score). Results in Table 3 show
that “Good Priors” lead to the highest improvement
of 10-15%, followed by “Random Priors,” “No Pri-
ors”, and “Bad Priors.” The decline in performance
with “Bad Priors” stems from the propagation of
incorrect information into the optimization process.

Priors Applied ∆LLM Score
Llama 3.2 1B Llama 3.2 3B

Bad Priors -6.74 -7.84
Random Priors 7.62 4.86

No Priors 1.67 5.14
Good Priors 22.67 14.17

Table 3: Impact of priors on ∆LLM Score for Llama-
3.2 1B and 3B models.

Effect of State History as Knowledge Context:
This study investigates the role of state history
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(prompts, feedback, and scores) as Knowledge
Context in guiding the prompt optimization pro-
cess. Two settings are compared: (1) Without His-
tory — Only the latest state (prompt, feedback, and
score) is provided to the Optimizer LLM for refin-
ing prompts, without any historical context.; and (2)
With History — The Optimizer LLM is supplied
with a sequence of the last 10 states (Refer Section
A.7), effectively leveraging historical knowledge
comprising prompts, feedback, and scores. Results
in Table 4 show that using state history improves
∆LLM Score by 8.9% for Llama-3.2 1B and 4%
for Llama-3.2 3B. This highlights the importance of
historical knowledge patterns in improving prompt
optimization, demonstrating the value of knowl-
edge persistence and contextual learning in iterative
LLM interactions.

History Applied ∆LLM Score
Llama-3.2 1B Llama-3.2 3B

Without History 13.80 10.13
With History 22.67 14.17

Table 4: Impact of State History on ∆LLM Score for
Llama-3.2 1B and 3B models.

Impact of Using Feedback and Scores as Knowl-
edge Signals in State: This study examines the
impact of incorporating feedback and scores as
knowledge signals in the State on prompt opti-
mization effectiveness. Three settings are evalu-
ated: (1) Feedback Only: State includes a history
of size 10 with prompts and their corresponding
feedback from the Judge LLM. (2) Scores Only:
State includes a history of size 10 with prompts and
their corresponding scores. (3) Feedback & Scores:
State includes prompts, feedback, and scores (de-
fault setting).

The effectiveness is measured by the average
change in LLM scores after optimization (∆LLM
Score). Results in Table 5 show that using only
scores slightly outperforms using only feedback,
while combining feedback and scores significantly
improves performance, with gains of 14.5% and
8% for Llama-3.2 1B and 3B models, respectively.
This suggests that feedback and scores provide
complementary insights—feedback highlights ar-
eas for improvement, while scores offer a perfor-
mance baseline. Together, they give the Optimizer
LLM a richer context, enabling more effective
prompt refinements.

Evaluator Output ∆LLM Score
Llama-3.2 1B Llama-3.2 3B

With Feedback Only 7.30 5.83
With Scores Only 8.20 6.21

With Feedback & Scores 22.67 14.17

Table 5: Impact of Evaluator and State on ∆LLM Score
for Llama-3.2 1B and 3B models.

5 Conclusion

We introduce PROPEL, a novel prompt optimiza-
tion framework that leverages expert priors and iter-
ative feedback from a Judge LLM to improve LLM
performance across various tasks. By integrating
knowledge-informed priors, PROPEL effectively
guides the optimization process, particularly ben-
efiting small and medium-sized models. Experi-
mental results demonstrate that PROPEL outper-
forms existing baselines, showing substantial gains
in query-based summarization, entity extraction,
and QnA over multi-turn interactions. Ablation
studies reveal that the inclusion of expert priors
enhances LLM scores by 10–15%, highlighting
their pivotal role in aligning prompt design with
model-specific strengths and limitations.

6 Limitations

We recognize certain limitations in the scope of the
presented work. First, while the reliance on expert
priors requires a one-time evaluation, this process
may not be readily applicable to all scenarios, par-
ticularly those with highly dynamic requirements.
Second, PROPEL relies on reference responses
for evaluation, which, while effective, may pose
challenges for fully automated scalability in tasks
without readily available references. Third, the
current evaluation focuses on tasks such as query-
based summarization, entity extraction, and multi-
turn QnA. While these tasks demonstrate the ver-
satility of PROPEL, additional testing on more
complex and diverse modeling challenges would
further validate its generalizability. Additionally,
the present study is confined to small and medium-
sized models up to 8B parameters. Extending the
analysis to larger models would better demonstrate
PROPEL’s adaptability and effectiveness across
a broader range of model architectures. Finally,
the testing was conducted exclusively on English-
language tasks, leaving multilingual capabilities
an area for future exploration to ensure broader
applicability across diverse linguistic settings.
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A Appendix

A.1 Algorithm
The optimization algorithm is provided below:

Algorithm 1 Prompt Refinement with Iterative De-
scriptive Evaluation (PROPEL)

1: Input: Initial prompt p0, dataset Dtrain =
{(x1, y1), . . . , (xn, yn)}, and expert priors.

2: Output: An optimized prompt p̂
3: Require: K: number of iterations, st: score

threshold for early stopping, hs: size of history
maintained in State

4: Initialize State as [].
5: for k = 1 to K do
6: Generate responses {ŷi =

M(yi|pk, xi)}xi∈Dtrain using Respon-
der LLM.

7: Evaluate responses ŷi with Judge LLM to
obtain sample-specific feedbacks and scores,
aggregated into a single score Scorek and
summarized feedback Feedbackk.

8: if Scorek ≥ st then
9: Break the loop.

10: end if
11: Update State with ⟨pk,Feedbackk,Scorek⟩.

12: if len(State) > hs then
13: Pop the leftmost element from State.
14: end if
15: Refine pk to obtain pk+1 using Optimizer

LLM, incorporating State and expert priors.
16: end for
17: Return: p̂ = pk

A.2 Dataset used for Experiments
1. QMSum - Query based Summarization:

The QMSum dataset (Zhong et al., 2021) pro-
vides query-based multi-domain meeting sum-
maries, consisting of transcripts from aca-
demic, industrial, and product review meet-
ings. We chose this dataset owing to its sim-
ilarities with our in-house dataset and for its
scale.

2. MT Bench: MT-Bench (Zheng et al., 2023)
is a curated benchmark featuring high-quality,
multi-turn questions designed to evaluate con-
versation flow and instruction-following capa-
bilities in multi-turn dialogues. GPT-4 (Ope-
nAI et al., 2024b) evaluates MT Bench out-
puts, and average scores across questions and
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turns are reported for all experiments. We
chose this dataset due to it being widely rec-
ognized and its widespread use in evaluating
models for tasks that require sustained, coher-
ent interactions over multiple exchanges.

3. We leverage an in-house dataset3 of conver-
sational interactions happening in a contact
center between agents and customers and per-
form the following tasks:

(a) Query based Summarization (QBS):
Involves generating an abstractive re-
sponse to the given query based on the
conversation as input context.

(b) Query based Entity Extraction (QBE):
Involves identifying and extracting enti-
ties from the conversation that are perti-
nent to the given query.

The dataset was carefully curated to ensure
high-quality annotations and relevance to con-
tact center tasks. Below, we outline the pro-
cess followed to create this dataset:

(a) Conversation Sampling and Transcrip-
tion: A total of 120 English dyadic
conversations between agents and cus-
tomers were sampled from a contact
center. These conversations were tran-
scribed using a third-party Automatic
Speech Recognition (ASR) engine, with
a Word Error Rate (WER) of approxi-
mately 10% as reported by Ali and Re-
nals 2018. The ASR transcripts served
as the input context in the prompt opti-
mization algorithm.

(b) Data Partitioning: The data is split into
non-overlapping datasets.

i. Training Set: A randomly selected
subset of 10 conversations.

ii. Evaluation Set: A randomly se-
lected subset of 100 conversations.

iii. Prior Identification Set: A ran-
domly selected subset of 10 conver-
sations.

(c) Task and Prompt Sampling: We sam-
pled 15 prompts from a proprietary
contact-center dataset 4, evenly dis-
tributed across the following two tasks:

3We cannot release the dataset due to proprietary reasons.
4We cannot release the dataset due to proprietary reasons.

Query-Based Summarization and Query-
Based Entity Extraction. The contact-
center dataset from which prompts were
sampled was designed to evaluate the
value of Query Based Summarization
use case for one of our clients.

(d) Annotation Process:

i. Annotator Selection: Seven anno-
tators with experience in analyzing
contact center data were employed.

ii. Guidelines for Annotation: Annota-
tors followed a comprehensive guide-
line emphasizing logical reasoning to
identify relevant evidence from con-
versations, synthesize information
and provide task-specific responses
to each of the 15 prompts. The an-
notations were designed to ensure
grounding in conversation details and
emulate the reasoning process of a
domain expert.

(e) Quality Assurance:

i. Entity Extraction Task: Responses
for this structured task were validated
through a majority voting mecha-
nism requiring agreement among
at least four annotators. Inter-
Annotator agreement was calculated
using Fleiss’ Kappa (Fleiss et al.,
1971), and was measured at 0.64, in-
dicating substantial agreement.

ii. Query-Based Summarization Task:
Responses, being unstructured, were
evaluated using Sentence-BERT
(Reimers and Gurevych, 2019),
fine-tuned for the Semantic Textual
Similarity (STS) (Cer et al., 2017)
task. Samples with an average
pairwise semantic similarity score <
0.8 were flagged and re-annotated.
For samples meeting the ≥ 0.8
similarity threshold, one response
was randomly selected to ensure
consistency in evaluation.

This robust annotation and curation process
ensures that the dataset reflects the nuances
of contact center data and provides reliable
input for evaluating prompt optimization in
downstream tasks.
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A.3 Dataset Statistics

Table 8 shows the number of runs and the # of
data points per run in the evaluation and training
datasets. Here, ‘# of Runs’ denotes the number of
unique instructions (prompts) for which separate
prompt tuning is required. The number of evalu-
ation data points per run is calculated as the total
number of data points divided by the number of
runs.

Dataset # of Runs
# Samples per Run

Evaluation
# Samples per Run

Training
# Samples

Prior Identification

Inhouse - QBS 5 100 10 10
Inhouse - QBE 5 100 10 10
QMSum 2 100 10 10
MT Bench 1 60 10 10

Table 8: Dataset Statistics

A.4 Models used as Responder LLM

1. Selection Criteria: The selection of Respon-
der LLMs was guided by two factors:

(a) Adoption in the industry and research
community.

(b) Model size, to emphasize the challenges
faced by small and medium-sized mod-
els in effective prompt optimization and
demonstrate the importance of expert pri-
ors for these models.

2. Model Descriptions:

(a) Small Models (1–3B):
i. Llama-3.2-1B (Grattafiori et al.,

2024): A lightweight 1-billion-
parameter model used to assess
prompt optimization challenges for
minimal-scale models.

ii. Llama-3.2-3B (Grattafiori et al.,
2024): A 3-billion-parameter model,
widely used in research for its acces-
sible size and performance.

iii. Flan-T5-3B: A proprietary model
fine-tuned from the open-source
Flan-T5-3B model (Chung et al.,
2022) on a dataset of contact cen-
ter interactions curated in-house 5

for tasks like summarization, and en-
tity extraction. It uses Supervised
Fine-Tuning (Brown et al., 2020)
and Direct Preference Optimization
(Rafailov et al., 2023), making it an

5We cannot release the dataset due to proprietary reasons.

ideal candidate for task-specific eval-
uation.

(b) Medium-Sized Models (7–8B):
i. Mistral-7B (Jiang et al., 2023): A

7-billion-parameter model known for
its widespread use in various NLP
applications.

ii. Llama-3-8B (Grattafiori et al.,
2024): Balances size and perfor-
mance, making it a representative
mid-sized model for our experi-
ments.

This diversity allows us to investigate the spe-
cific challenges smaller models face and the role of
expert priors in addressing these challenges.

A.5 Baselines used for Experiments
1. Self-Refine: Madaan et al. 2023 introduced

an approach that iteratively improves initial
LLM outputs through self-feedback and re-
finement. The process involves the LLM gen-
erating an initial output, providing feedback
on its own output, and refining it iteratively.

2. GrIPS: Prasad et al. 2023 is an iterative ap-
proach that refines prompts by performing
edit operations such as Deletion, Swap, Ad-
dition and Paraphrasing on the phrases of the
prompts.

3. Prompt Wizard: The framework (Agarwal
et al., 2024) iteratively refines prompts by
mutating instructions and incorporating nega-
tive examples to deepen understanding and
ensure diversity. It further enhances both
instructions and examples with the aid of a
critic, synthesizing new instructions and ex-
amples enriched with detailed reasoning steps
for optimal performance. PromptWizard has
shown superior performance over other Evo-
lutionary Prompt Optimization Algorithms
such as PromptBreeder (Fernando et al., 2023)
and EvoPrompt (Guo et al., 2024). Thus,
PromptWizard is chosen as the candidate base-
line belonging to the line of Prompt Optimiza-
tion Algorithms.

4. APO: Pryzant et al. 2023 is an iterative ap-
proach that leverages minibatches of data to
form natural language gradients that dissect
the limitations of the current prompt and edit
the same in the opposite semantic direction
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of the gradient. These gradient descent steps
are guided by a beam search and bandit selec-
tion procedure in order to improve algorith-
mic efficiency. The beam search is an iterative
optimization process involving an expansion
step which leverages paraphrasing to explore
the local monte carlo search space around the
new prompt candidates and a selection step to
choose the top most promising candidates for
the next iteration.

5. OPRO: Yang et al. 2024 is an iterative ap-
proach that leverages LLMs for the optimiza-
tion task described in natural language. In
each optimization step, the LLM generates
new solutions from the prompt that contains
previously generated solutions with their val-
ues, then the new solutions are evaluated and
added to the prompt for the next optimization
step.

We carefully selected the baselines for comparison
with our proposed approach (PROPEL) based on
their algorithmic similarities and the traction they
have received due to their widespread adoption and
recognition within the research community.

A.6 Evaluation Metrics used for Experiments

1. LLM Score: Evaluates quality of the gen-
erated responses for tasks including Query
Based Summarization (QBS) in the in-house
and QMSum (Zhong et al., 2021) datasets,
Query Based Entity Extraction (QBE) in
the in-house dataset and conversation flow
and instruction-following capabilities in MT
Bench (Zheng et al., 2023) dataset. GPT-4o
(OpenAI et al., 2024a) is employed to provide
a score on a scale of 1-5 basis the following
criteria:

(a) Alignment with Prompt: Measures the
degree of alignment of the generated re-
sponse with respect to the prompt.

(b) Completeness: Measures the degree to
which the generated response is complete
with respect to the reference response.

(c) Presence of irrelevant information:
Measures the degree of irrelevant infor-
mation in the generated response with
respect to the reference response.

(d) Adherence to the format: Checks if the
generated response adheres to the desired

response format, if any, as defined in the
prompt.

Higher the score, better is the quality of the
generated response. You may refer the prompt
we used for the Evaluation at Section A.10.
The difference in LLM scores reported in 1
are post standardization to percentages which
is done using the formula:

LLM Score =
LLM Scorex

5
× 100 (1)

Please note that the standardization of LLM
scores is applied solely to calculate and report
the score difference between the responses
generated from the initial prompt and the final
optimized prompt, and is not used during the
optimization process.

2. Rouge-1 F1 Score (Lin, 2004): Measures the
overlap of unigrams (single words) between
the generated response and the reference re-
sponse. Employed as one of the metrics for
the Query Based Entity Extraction (QBE) task
in the in-house dataset, it provides a straight-
forward measure of comparing entity value
similarity based on word matching.

A.7 Implementation Details for Experiments
1. Experimental Setup: We conducted experi-

ments using three datasets:

(a) In-house Dataset: As described in Sec-
tion A.2, we utilized a curated dataset of
human annotations for contact-center in-
teractions. A random sample of 10 data
points was used for training, while evalu-
ation was performed on 100 data points
per prompt.

(b) QMSum Dataset: A similar experimen-
tal setup was followed, with 10 data
points for training and 100 data points
for evaluation per prompt.

(c) MT Bench Dataset: This dataset lacks
input context. For models supporting
system prompts, we tuned the system
prompt, while for models like Flan-T5-
3B that lack explicit system prompt sup-
port, we optimized a prefix prompt ap-
pended to the user prompt.

Evaluation was conducted on the final opti-
mized prompt, defined as either the last iter-
ation’s prompt or an intermediate one when
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early stopping occurred. Scores reported in
Table 1 are averages across multiple prompts.

2. Hyperparameters for PROPEL:

(a) Judge and Optimizer LLM: GPT-4
(b) PROPEL (Self): Responder LLM

served as Judge and Optimizer
(c) Number of Iterations: Up to 10
(d) Temperature for Judge and Optimizer

LLM: 1.00
(e) Temperature for Responder LLM:

0.01
(f) Score Threshold for Early Stopping:

4.5
(g) State History Size: 10
(h) Training Dataset Size: 10 samples

3. Key Implementation Details for PROPEL:

• Meta-Prompts: Carefully crafted
prompts guide each LLM role to ensure
consistency and focus.

• Stopping Criteria: The process runs for
a set number of maximum iterations or
till the score exceeds a set score thresh-
old.

• History Size: We define a fixed size
of history to be maintained in the State
which is used by the Optimizer LLM for
prompt refinement.

• Task-Specific Adaptation: Prompts are
fine-tuned based on the task and model
specific nuances captured via Expert
Priors.

4. Baseline Results and Hyperparameters:
For baseline comparisons, we’ve adapted the
codebases provided by the respective authors
to generate results. The hyperparameter set-
tings for the baselines are adopted directly
from the corresponding papers or their pub-
licly available codebases, where applicable,
and are as follows:

(a) OPRO:
i. Optimizer LLM: GPT-4

ii. Objective Function Evaluator:
GPT-4

iii. Number of Iterations: 10
iv. Temperature for Evaluator and

Optimizer LLM: 1.00
v. Training Dataset Size: 10 samples

vi. Number of prompts generated per
iteration: 1.00

(b) APO:
i. Optimizer LLM: GPT-4

ii. Text Loss Function Calculator and
Gradient Generator: GPT-4

iii. Number of Iterations: 10
iv. Temperature for Gradient Genera-

tor and Optimizer LLM: 1.00
v. Training Dataset Size: 10 samples

vi. Number of prompts generated per
iteration: 1.00

(c) Prompt-Wizard:
i. Evaluator, Mutator and Optimizer

LLM: GPT-4
ii. Number of Iterations: 10

iii. Temperature for Evaluator, Muta-
tor and Optimizer LLM: 1.00

iv. Training Dataset Size: 10 samples
v. Number of mutations per iteration:

1.00
(d) GrIPS:

i. Evaluator LLM: GPT-4
ii. Number of Iterations: 10

iii. Temperature for Evaluator LLM:
1.00

iv. Training Dataset Size: 10 samples
v. Number of Edits per iteration:

3.00
(e) Self-Refine:

i. Evaluator and Optimizer LLM:
Same as Responder LLM

ii. Number of Iterations: 10
iii. Temperature for Evaluator and

Optimizer LLM: 1.00
iv. Training Dataset Size: 10 samples

5. Model Inference:

(a) APIs and Deployment:
i. Llama-3.2-1B/3B, Llama-3-8B,

and Mistral-7B: Amazon Bedrock
APIs

ii. GPT-4: OpenAI API
iii. Flan-T5-3B: Internally deployed on

an AWS EC2 instance with an
NVIDIA A10G GPU (24 GB GPU
memory).

(b) Inference Strategy: For all models
except Flan-T5-3B, inference was con-
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ducted in one pass. For Flan-T5-3B, hi-
erarchical processing was employed for
input contexts exceeding 1200 tokens. In-
put contexts were segmented into 1200-
token chunks, processed independently
and in parallel, with segment-level re-
sponses summarized to produce the final
output.

6. Infrastructure: Experiments were conducted
on an AWS p4de.24xlarge instance equipped
with eight GPUs, each with 80 GB of memory.

7. Expert Priors: We incorporated expert priors
into the prompt optimization process to guide
the Optimizer LLM. The steps involved are as
follows:

(a) Mechanism for deriving prompt prin-
ciples as priors: Prompt principles
compile best practices for crafting high-
quality prompts for LLMs, adapted from
works such as (Bsharat et al., 2024) and
(Chen et al., 2024), as well as from model
documentation specifying LLM prompt-
ing best practices. You may refer to Ta-
bles 6 and 7 for the compiled principles.

(b) Dataset for model evaluation across
prompt principles: We utilized the prior
identification dataset containing 10 data
points.

(c) Tasks for evaluation: Summarization,
Entity Extraction and Multi-turn Chat.

(d) Transformation of initial prompts for
each principle: We provide the initial
prompt along with a principle to GPT-4
(Optimizer LLM), requesting it to trans-
form the prompt based on the principle.

(e) Evaluation of transformed prompts:
The transformed prompts are used to
prompt the Responder LLM to generate
responses for the 10 data points per task.
We then evaluate these responses by feed-
ing the input context, initial prompt, and
responses into the Judge LLM to obtain
scores (1–5) for each data point.

(f) Aggregation of evaluation scores:
Scores are standardized to percentages,
and the standardized scores for the 10
data points are averaged to obtain the ag-
gregated score for each prompt principle
and task.

(g) Definition of easy and hard principles:
Principles with aggregated scores above
70% are considered easy, while those
with scores below 50% are considered
hard.

(h) Handling Cases Where All or No Prin-
ciples Score Above 70%: If no principle
achieves a score above 70%, or all do, we
calculate the z-score for each principle’s
aggregated score, where z = x−µ

σ , with
x as the principle’s score, µ as the mean
of all aggregated scores, and σ as the
standard deviation. Easy principles are
those with z > 1, and hard principles
have z < −1.

(i) Use of evaluation scores to convert
principles into rules for the Optimizer
LLM: Easy and hard principles are
encoded as ‘Avoidance’ and ‘Empha-
sis’ rules in the Optimizer LLM’s meta-
prompt. We instruct the Optimizer LLM
to apply principles from the ‘Emphasis’
rules and avoid transformations based on
the ‘Avoidance’ rules.
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# Principle Principle

1
Direct Instruction: A straightforward prompt that directly asks for information or a
specific type of response.

2
Chain-of-Thought (CoT): Use phrases like ‘think step by step’ to encourage the model
to break down the reasoning or solution process into step-by-step explanations.

3
Few-Shot Prompting: Provide a few examples of response within the prompt to guide
the model on how to respond to align with format specified in the initial prompt.

4
Instruction-Based Prompting: Specify detailed instructions on how to answer for
clarity.

5
Evidence-Backed Responses: Require the model to support its answers with citations,
references, or factual evidence to enhance credibility and accuracy.

6
Meta-Prompting: Ask the model to describe or discuss its thought process before
answering, to encourage a higher level of analysis.

7
Self-Consistency Prompting: Request multiple outputs for the same prompt and chooses
the most consistent or common answer, useful for increasing reliability.

8
Role-Play Prompting: Set the model in a specific role or persona (e.g., “Imagine you
are a doctor”) to align the response style with the desired expertise or perspective.

9
Contextual Priming: Provide background information or setting details before asking
the question, helping the model generate contextually aware responses.

10
Few-Shot Chain-of-Thought (Few-Shot CoT): Combine few-shot and CoT by providing
multiple examples with step-by-step reasoning to improve performance on complex tasks.

11
Task-Decomposition Prompting: Break a large problem into smaller, manageable sub-
tasks and asks the model to tackle each individually.

12
Interactive Prompting: Use a conversational, back-and-forth approach where each
prompt builds on previous responses to refine the answer incrementally.

13 One-Line Rewrite: Rewrite the prompt in a single sentence.
14 Concise Rewrite: Rewrite the prompt in under three sentences.
15 Question Format: Rewrite the prompt as a question.
16 Sub-Question Format: Rewrite the prompt as multiple sub-questions.
17 Simplified Language: Rewrite the prompt using plain and easy-to-understand words.
18 High-Level Rewrite: Rewrite the prompt at a high level, removing specific task details.

19
Detailed Rewrite: Expand the prompt with detailed instructions, adding relevant clarifi-
cations if needed.

20
Beginner-Friendly Rewrite: Rewrite the prompt so that it is easy for a beginner to
understand.

21
Expert-Level Rewrite: Rewrite the prompt for an expert audience, using technical
terminology and assumptions based on prior knowledge.

22
Penalty Enforcement: Explicitly state that the LLM will be penalized if it fails to follow
the instructions.

23
Affirmative Directives: Use positive instructions such as "Do this," while avoiding
negative phrasing like "Don’t do this."

24
Explicit Task Definition: Clearly specify the task using direct phrasing like "Your task
is to...".

25
Incentive Statement: Add an incentive message such as "I’m going to tip $XXX for a
better solution!"

Table 6: Overview of 50 prompt principles used to define expert priors.
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# Principle Principle

26
Clarity-Seeking Prompts: Use prompts like "Explain [topic] in simple terms," "Explain
to me like I’m 11 years old," or "Explain to me as if I’m a beginner in [field]" to enhance
understanding.

27
Polite Wording: Add phrases like "please," "if you don’t mind," "thank you," or "I would
like to" to make the prompt more courteous.

28
Emphasis Through Repetition: Repeat a specific word or phrase multiple times within
a prompt to highlight its importance.

29
Context Reinforcement: Explicitly mention the task’s context if it is missing in the
prompt.

30 XML Tagging: Wrap the instruction inside XML tags.

31
Least-to-Most Prompting: Start with simpler questions and progressively move to more
complex ones to help the model build up to a solution.

32
Step-by-Step Prompting: Request responses in a structured format, using numbered
steps to improve clarity for multi-part answers.

33
Refinement Prompting: After an initial response, ask the model to revise or improve its
answer for better quality.

34
Scaffolded Prompting: Guide the model through problem-solving by providing struc-
tured questions or "scaffolds" to address each part of a complex task.

35
Reflective Prompting: Prompt the model to review and reflect on its initial answer,
considering alternative perspectives or implications.

36
Counterfactual Prompting: Encourage the model to explore "what if" scenarios or
hypothetical situations for creative or predictive tasks.

37
Correction Prompting: After an initial response, instruct the model to identify and
correct any mistakes for self-assessment.

38
Multi-Turn Prompting: Build answers iteratively over multiple interactions, refining
each aspect progressively.

39
Summarization Prompting: Request a summary of information to condense large text
blocks or extract key points.

40
Verification Prompting: Ask the model to verify or double-check its response for
accuracy and reliability.

41 Paragraph Rewrite: Rewrite the prompt in paragraph format.
42 Bullet Point Rewrite: Rewrite the prompt as a list of bullet points.
43 Bias Introduction: Guide the model toward a specific viewpoint in its response.
44 Past Tense Rewrite: Rewrite the prompt using past tense.
45 Present Tense Rewrite: Rewrite the prompt using present tense.

46
Explicit Constraint Definition: Clearly specify all constraints in the prompt, such as
word limits, required exclusions, formatting rules, or response structure, to ensure the
model adheres to strict guidelines.

47 Positive Tone Rewrite: Rewrite the prompt in an optimistic and constructive manner.

48
Key Entity Extraction: Ensure that important entities like names, numbers, dates, and
locations are accurately captured and embedded in the response.

49
Empathetic Tone Rewrite: Rewrite the prompt in a compassionate and understanding
tone.

50
Open-Ended Prompting: Reword the prompt to encourage the model to generate a
response that extends naturally.

Table 7: (Continuation) Overview of 50 prompt principles used to define expert priors.
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A.8 Meta Prompts
This section presents the prompts used to guide each LLM role.

Judge LLM Prompt
You are provided with an input context, initial prompt, current prompt, a response
generated based on the context and current prompt, a reference response and a
scoring rubric. Your task is to evaluate the quality of the response according
to the initial prompt.
Assign an integer score between 1 and 5 (higher the score, better the response

quality) and identify the reasons why the prompt could have gotten these responses
wrong.

Evaluate the response using the following criteria: 1. Alignment with the
prompt: Does the response address the instruction appropriately? 2. Completeness:
Is all necessary information included? 3. Presence of irrelevant information:
Does the response stay focused on the task? 4. Adherence to the format: Does the
response follow the structure specified in the prompt?
Output Format: Score: [1-5] Reason: [Feedback on prompt]

Feedback Summary Prompt
You are provided with feedback responses for multiple data points. Your task is
to summarize the key points of the feedback and calculate the total score by
averaging the scores across all data points.
Ensure the summary highlights any recurring themes of weaknesses identified in

the feedback.
Output Format: Average Score: [Average of all scores] Feedback Summary:

[Summarised Feedback]

Optimizer LLM Prompt
You are provided with a prompt, along with the history of prompt, feedback and
scores, as well as a set of rules for constructing prompt.
Generate an optimized version of the given prompt by applying the principles

from the Emphasis Rules and avoiding those from the Avoidance Rules. The Emphasis
Rules are listed in descending order of their aggregated score (higher-priority
rules first), while the Avoidance Rules are listed in ascending order of their
aggregated score (lower-priority rules first). Ensure that the revised prompt
improves response quality while staying true to the original intent.
Instructions: 1. Analyze the feedback and scores to identify areas for

improvement in prompt. 2. Analyze the prompt and scores to find the patterns
in the best scoring prompt. 3. Using the analysis, find the suitable rules for
prompt generation, incorporating the emphasis rules and avoiding the avoidance
rules. 4. Maintain alignment with the original prompt’s intent. 5. Generate only
the optimized prompt. Do not include any additional text, such as openings like
“The optimized prompt is” or endings.

History of Prompt, Feedback and Scores: {state}
Rules: {rules}

Responder LLM Prompt
You are provided with an input context and a prompt. Your task is to generate
response based on the input context and the prompt.
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A.9 Final Prompts
This section presents the final prompts generated by each baseline approach and our proposed method
from the given initial prompt for the Responder LLM - Llama 3.2 1B.

Initial Prompt
Summarize the agent’s performance, focusing on positive attributes or skills that were shown through-
out their engagement. The summary should include examination on professionalism and adaptability
in communication, problem-solving techniques, emotional intelligence and active listening skills,
strict adherence to guidelines, and ability to communicate clearly. The summary should follow these
formatting rules: 1. Begin each point with a verb, limited to one or two sentences for each point. 2.
Maximum of five key points that holistically cover the agent’s engagement. 3. Each point must be
distinct and offer unique, context-related observations.

Self-Refine
Critique the agent’s performance, focusing on professionalism and adaptability in communication,
problem-solving techniques, emotional intelligence and active listening skills, strict adherence to
guidelines, and ability to communicate clearly. Key observations include strict adherence to guide-
lines and clear guidelines were missing in initial feedback responses. The lack of clear guidelines has
led to inaccurate responses due to a lack of professionalism, adaptability, and communication style.

GrIPS
Provide a summary of the agent’s performance, emphasising any strong abilities displayed during the
interaction. Examining professionalism and flexibility in communication, problem-solving, emotional
intelligence and active listening abilities, rigorous adherence to rules, and clear communication
skills should all be included in the summary. These formatting guidelines should be adhered to by
the summary: 1. Use a verb to introduce each point. 2. A maximum of five essential items that
comprehensively address the agent’s involvement. 3. Every point needs to be distinctive and provide
observations that are relevant to the context.

Prompt-Wizard
How might you devise a positive-oriented assessment on the agent’s performance, concentrating
on skills or virtues demonstrated during their engagement? Contemplate dimensions such as their
professional adaptability in communication, problem-solving strategies, emotional intelligence,
meticulous observance of guidelines, and clarity of communication. Please adhere to the following
formatting rules: 1. Each critique should start with an action verb, and must be condensed to one or
two sentences. 2. Restrict your assessment to precisely five key themes that comprehensively review
the agent’s engagement. 3. Every theme should be unique, presenting context-specific insights.
Assure that your critique is backed by tangible evidence, refraining from suppositions or guesswork.
Where can you fetch such evidence from the agent’s performance?

APO
<START> Craft a succinct compliment for an agent focusing on their performance in terms of:
professionalism, flexibility in communication style, problem-solving strategy, empathy, and clarity.
Use one sentence for each quality, each starting with a verb. <END>
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OPRO
<INS>Evaluate the agent’s interactions, pinpointing positive qualities or abilities showcased. Your
evaluation should touch on professional communication and adaptability, efficiency in problem-
solving, emotional intelligence, active listening, adherence to protocols, and clear articulation. When
crafting the review: 1. Begin each remark with an active verb, sustaining one or two sentences for
each point. 2. Integrate a maximum of five pertinent points that broadly assess the agent’s interaction.
3. Verify each point is unique and imparts distinct, scenario-specific insights. </INS>

PROPEL (Self)
Based on the provided feedback and rules, here is an optimized version of the given prompt:

1. **Critique the agent’s performance, focusing on positive attributes or skills that were shown
throughout their engagement. The critique should include examination on professionalism, adapt-
ability in communication, problem-solving techniques, emotional intelligence and active listening
skills, strict adherence to guidelines, and ability to communicate clearly. The critique should follow
these formatting rules: 1. Begin each critique with a verb, limited to one or two sentences for each
point. 2. Maximum of five key points that holistically cover the agent’s engagement. 3. Each point
must be distinct and offer unique, context-related observations.**

2. **Develop a comprehensive customer service strategy that prioritizes personalization, technical
expertise, and effective communication, while focusing on emotional intelligence and active listening
skills in agent interactions, adhering to strict guidelines and protocols, and providing clear and
concise instructions to resolve issues efficiently and effectively.**

3. **Ensure the comprehensive customer service strategy aligns with the intent and context of the
task, while avoiding unnecessary phrases or language that may not be relevant to the task.**

PROPEL
Identify and describe up to five positive actions displayed by a customer service agent in a hypothetical
interaction. These actions should encompass the following key performance areas:

1. Professional language and tone: Evaluate the agent’s selection of words, and how the tone was
adapted to fit the situation.

2. Effective problem-solving: Inspect the agent’s logical reasoning, prioritization ability, and used
proactive strategies.

3. Active listening and empathy: Identify instances where the agent showed understanding,
validated emotions, or gave personalized responses.

4. Procedure compliance: Assess if the agent adhered to protocols yet exhibited flexibility when
needed.

5. Clear communication: Judge how clearly the agent communicated, and check if the explanations
provided were suitable for the customer.
Required output format:

1. Commence each point with an action verb, framing the agent’s action in one to two precise
sentences.

2. Your points should collectively provide a thorough coverage of the interaction.
3. Keep your insights tailored to the specific scenario, making sure to avoid repeating information.

Penalties will be imposed in cases of deviation from prescribed instructions. Utilize simplistic
language and strictly observe the outlined format. For instance, a point could be: "Providing
reassurance, the agent skillfully varied his tone, effectively solved the problem by prioritizing steps,
expressed genuine empathy by acknowledging the customer’s frustration, adhered to protocols with
room for flexibility, and conveyed clear, easy-to-understand explanations."
Strive to provide a detailed critique of the agent’s performance. Remember to highlight unique
instances that demonstrate the agent’s proficiency across different areas.
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A.10 Example Run
This section presents an example run of PROPEL, detailing the inputs, meta-prompts, and corresponding
responses for each component in the in-house dataset for query-based summarization using Llama 3.2 1B.

Input Context - In-house Dataseta

agent: hello thank you for calling xyz airlines how can i assist you today
customer: hi i need to change my flight booking
agent: sure i can help with that can you please provide me with your booking
reference number
customer: yes its xyz12345
agent: thank you let me pull up your booking details one moment please
customer: sure
agent: i see that you are booked on flight 456 from new york to los angeles on
november 15th what changes would you like to make

(. . . truncated . . .)
aExample transcript generated using GPT-4o.

Initial Prompt
Summarize the agent’s performance, focusing on positive attributes or skills
that were shown throughout their engagement. The summary should include
examination on professionalism and adaptability in communication, problem-solving
techniques, emotional intelligence and active listening skills, strict adherence
to guidelines, and ability to communicate clearly. The summary should follow
these formatting rules: 1. Begin each point with a verb, limited to one or
two sentences for each point. 2. Maximum of five key points that holistically
cover the agent’s engagement. 3. Each point must be distinct and offer unique,
context-related observations.

Responder LLM [Response]
1. **Professionalism**: The agent demonstrated professionalism throughout the

conversation, addressing the customer by their name, using formal language, and
maintaining a calm demeanor.
2. **Adaptability**: The agent adapted to the customer’s questions and concerns,

providing clear and concise explanations, and addressing potential issues.
3. **Emotional intelligence**: The agent demonstrated emotional intelligence

by acknowledging the customer’s concerns, empathizing with their situation, and
providing reassurance.

(. . . truncated . . .)

Reference Response
1. Demonstrated adaptability and professionalism in communication: The agent

demonstrated adaptability and professionalism in communication by using phrases
such as "I’m sorry, I didn’t get the city" and "I’m not an expert, but I can try
to find out more about your situation." This shows that the agent is willing to
listen and learn from the customer.
2. Employed effective problem-solving techniques: The agent employed effective

problem-solving techniques by asking the customer to explain the issue and then
providing a solution. For example, when the customer mentioned that they were
trying to pay off their plan, the agent suggested that they could use the plan
resolution program.
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Judge LLM [Meta-Prompt]
You are provided with an input context, initial prompt, current prompt, a response
generated based on the context and current prompt, a reference response and a
scoring rubric. Your task is to evaluate the quality of the response according
to the initial prompt.
Assign an integer score between 1 and 5 (higher the score, better the response

quality) and identify the reasons why the prompt could have gotten these responses
wrong.

Evaluate the response using the following criteria: 1. Alignment with the
prompt: Does the response address the instruction appropriately? 2. Completeness:
Is all necessary information included? 3. Presence of irrelevant information:
Does the response stay focused on the task? 4. Adherence to the format: Does the
response follow the structure specified in the prompt?
Output Format: Score: [1-5] Reason: [Feedback on prompt]
Initial Prompt: Summarize the agent’s performance, focusing on positive

attributes or skills that were shown throughout their engagement. (...)
Response: 1. **Professionalism**: The agent demonstrated professionalism

throughout the conversation, addressing the customer by their name, using formal
language, and maintaining a calm (...)
Context: agent: hello thank you for calling xyz airlines how can i assist you

today. customer: hi i need to change my(...)

Judge LLM [Response]
Score: 2
Reason: The response does not adhere to the format specified in the prompt.

The critique was supposed to be limited to five key points, but the response
includes ten points. Additionally, the response includes points that are not
directly related to the transcript provided, such as "Technical skills" and
"Time management".

(. . . truncated . . .)

Feedback Summary [Meta-Prompt]
You are provided with feedback responses for multiple data points. Your task is
to summarize the key points of the feedback and calculate the total score by
averaging the scores across all data points.
Ensure the summary highlights any recurring themes of weaknesses identified in
the feedback.
Output Format: Average Score: [Average of all scores] Feedback Summary:

[Summarised Feedback]
Feedback for Context 1: Score: 2 Reason: The response does align with the

prompt (...)
Feedback for Context 2: Score: 1 Reason: The response does not adhere to the

prompt (...)

297



Feedback Summary [Response]
Average Score: 2.3
Feedback Summary: The strengths include a generally good summary of the agent’s

performance, covering relevant aspects such as professionalism, adaptability
and, clear communication. However, the recurring theme of weakness throughout
the feedback is the failure to adhere strictly to the prompts’ instructions,
particularly exceeding the specified limit of five key points, which appears in
all the feedback but one.

(. . . truncated . . .)

Expert Priors
Emphasis Rules: P1. Direct Instruction: A straightforward prompt that directly

asks for information or a specific type of response. P23. Affirmative Directives:
Use positive instructions such as "Do this," while avoiding negative phrasing
like "Don’t do this."

(. . . truncated . . .)
Avoidance Rules: P18. High-Level Rewrite: Rewrite the prompt at a high level,

removing specific task details. P11. Task-Decomposition Prompting: Break a
large problem into smaller, manageable sub-tasks and asks the model to tackle
each individually. P21. Expert-Level Rewrite: Rewrite the prompt for an expert
audience, using technical terminology and assumptions based on prior knowledge.

(. . . truncated . . .)

Optimizer LLM [Meta-Prompt]
You are provided with a prompt, along with the history of prompt, feedback and

scores, as well as a set of rules for constructing prompt.
Generate an optimized version of the given prompt by applying the principles

from the Emphasis Rules and avoiding those from the Avoidance Rules. The Emphasis
Rules are listed in descending order of their aggregated score (higher-priority
rules first), while the Avoidance Rules are listed in ascending order of their
aggregated score (lower-priority rules first). Ensure that the revised prompt
improves response quality while staying true to the original intent.
Instructions: 1. Analyze the feedback and scores to identify areas for

improvement in prompt. 2. Analyze the prompt and scores to find the patterns
in the best scoring prompt. 3. Using the analysis, find the suitable rules for
prompt generation, incorporating the emphasis rules and avoiding the avoidance
rules. 4. Maintain alignment with the original prompt’s intent. 5. Generate only
the optimized prompt. Do not include any additional text, such as openings like
“The optimized prompt is” or endings.

Initial Prompt: Summarize the agent’s performance, focusing on positive
attributes or skills that were shown throughout their engagement. (...)
History of Prompt, Feedback and Scores: Iteration 0: Prompt: Summarize the

agent’s performance, focusing on positive attributes or skills that were shown
throughout their engagement. (...) Score: 2.3 Feedback: The strengths include a
generally good summary of the agent’s performance, (...)
Emphasis Rules: P1. Direct Instruction: A straightforward prompt that directly

asks for information or a specific type of response. (...)
Avoidance Rules: P18. High-Level Rewrite: Rewrite the prompt at a high level,

removing specific task details. (...)

298



Optimized Prompt
Identify and describe up to five positive actions displayed by a customer

service agent in the interaction. These actions should encompass the following
key performance areas:
1. Professional language and tone: Evaluate the agent’s selection of words,

and how the tone was adapted to fit the situation. 2. Effective problem-solving:
Inspect the agent’s logical reasoning, prioritization ability, and used proactive
strategies. (...)
Required output format: 1. Commence each point with an action verb, framing

the agent’s action in one to two precise sentences. 2. Your points should
collectively provide a thorough coverage of the interaction. (...)

Responder LLM [Optimized Response]
1. *Adapting tone and language to fit the situation*: The agent adjusted their

tone and language to meet the customer’s needs. When the customer had trouble
uploading documents, the agent remained calm and offered alternative solutions,
such as signing the documents electronically.
2. *Proactive problem-solving*: The agent anticipated potential issues, like

the customer’s difficulty with uploading documents, and proactively offered
solutions, such as signing the documents electronically, to ensure a smooth
process.
3. *Empathetic and understanding responses*: The agent showed empathy and

understanding towards the customer’s frustration. When the customer mentioned
trouble with the upload process, the agent acknowledged the issue and offered
assistance, saying "I understand this can be frustrating. Let’s try signing the
documents electronically."

(. . . truncated . . .)

Evaluation [Meta-Prompt]
You are provided with an input context, initial prompt, current prompt, a

response generated based on the context and current prompt, a reference response
and a scoring rubric. Your task is to evaluate the quality of the response
according to the initial prompt.
Assign an integer score between 1 and 5 (higher the score, better the response

quality) and explain the reason for assigning the score.
Evaluate the response using the following criteria: 1. Alignment with the

prompt: Does the response address the instruction appropriately? 2. Completeness:
Is all necessary information included? 3. Presence of irrelevant information:
Does the response stay focused on the task? 4. Adherence to the format: Does the
response follow the structure specified in the prompt?
Output Format: Score: [1-5] Reason: [Explanation]
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A.11 Example - Expert Priors
This section presents example expert priors identified for Responder LLMs in the context of query-based
summarization. These priors represent structured knowledge that guide the prompt optimization, while,
ensuring alignment with task-specific expectations. Emphasis rules are listed in descending order of their
aggregated score, while avoidance rules are listed in ascending order of their aggregated score.

Llama 3.2 1B
Emphasis Rules:

P1. Direct Instruction: A straightforward prompt that directly asks for information or a specific
type of response.

P23. Affirmative Directives: Use positive instructions such as "Do this," while avoiding negative
phrasing like "Don’t do this."

P27. Polite Wording: Add phrases like "please," "if you don’t mind," "thank you," or "I would like
to" to make the prompt more courteous.

P17. Simplified Language: Rewrite the prompt using plain and easy-to-understand words.
P29. Context Reinforcement: Explicitly mention the task’s context if it is missing in the prompt.
P3. Few-Shot Prompting: Provide a few examples of response within the prompt to guide the

model on how to respond to align with format specified in the initial prompt.
Avoidance Rules:

P18. High-Level Rewrite: Rewrite the prompt at a high level, removing specific task details.
P11. Task-Decomposition Prompting: Break a large problem into smaller, manageable sub-tasks

and asks the model to tackle each individually.
P13. One-Line Rewrite: Rewrite the prompt in a single sentence.
P21. Expert-Level Rewrite: Rewrite the prompt for an expert audience, using technical terminology

and assumptions based on prior knowledge.
P22. Penalty Enforcement: Explicitly state that the LLM will be penalized if it fails to follow the

instructions.
P25. Incentive Statement: Add an incentive message such as "I’m going to tip $XXX for a better

solution!"
P26. Clarity-Seeking Prompts: Use prompts like "Explain [topic] in simple terms," "Explain to me

like I’m 11 years old," or "Explain to me as if I’m a beginner in [field]" to enhance understanding.

Llama 3.2 3B
Emphasis Rules:

P1. Direct Instruction: A straightforward prompt that directly asks for information or a specific
type of response.

P3. Few-Shot Prompting: Provide a few examples of response within the prompt to guide the
model on how to respond to align with format specified in the initial prompt.

P17. Simplified Language: Rewrite the prompt using plain and easy-to-understand words.
P19. Detailed Rewrite: Expand the prompt with detailed instructions, adding relevant clarifications

if needed.
P22. Penalty Enforcement: Explicitly state that the LLM will be penalized if it fails to follow the

instructions.
P23. Affirmative Directives: Use positive instructions such as "Do this," while avoiding negative

phrasing like "Don’t do this."
P28. Emphasis Through Repetition: Repeat a specific word or phrase multiple times within a

prompt to highlight its importance.
P29. Context Reinforcement: Explicitly mention the task’s context if it is missing in the prompt.

Avoidance Rules:
P18. High-Level Rewrite: Rewrite the prompt at a high level, removing specific task details.
P11. Task-Decomposition Prompting: Break a large problem into smaller, manageable sub-tasks
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and asks the model to tackle each individually.
P21. Expert-Level Rewrite: Rewrite the prompt for an expert audience, using technical terminology

and assumptions based on prior knowledge.
P13. One-Line Rewrite: Rewrite the prompt in a single sentence.
P25. Incentive Statement: Add an incentive message such as "I’m going to tip $XXX for a better

solution!"
P27. Polite Wording: Add phrases like "please," "if you don’t mind," "thank you," or "I would like

to" to make the prompt more courteous.

Flan-T5
Emphasis Rules:

P15 Question Format: Rewrite the prompt as a question.
P14 Concise Rewrite: Rewrite the prompt in under three sentences.
P20. Beginner-Friendly Rewrite: Rewrite the prompt so that it is easy for a beginner to understand.
P11. Task-Decomposition Prompting: Break a large problem into smaller, manageable sub- tasks

and asks the model to tackle each individually.
P16 Sub-Question Format: Rewrite the prompt as multiple sub-questions.
P17 Simplified Language: Rewrite the prompt using plain and easy-to-understand words.
P18 High-Level Rewrite: Rewrite the prompt at a high level, removing specific task details.
P23. Affirmative Directives: Use positive instructions such as "Do this," while avoiding negative

phrasing like "Don’t do this."
P28. Emphasis Through Repetition: Repeat a specific word or phrase multiple times within a

prompt to highlight its importance.
P13. One-Line Rewrite: Rewrite the prompt in a single sentence.

Avoidance Rules:
P8. Role-Play Prompting: Set the model in a specific role or persona (e.g., “Imagine you are a

doctor”) to align the response style with the desired expertise or perspective.
P19. Detailed Rewrite: Expand the prompt with detailed instructions, adding relevant clarifications

if needed.
P26. Clarity-Seeking Prompts: Use prompts like "Explain [topic] in simple terms," "Explain to me

like I’m 11 years old," or "Explain to me as if I’m a beginner in [field]" to enhance understanding.
P3. Few-Shot Prompting: Provide a few examples of response within the prompt to guide the

model on how to respond to align with format specified in the initial prompt.
P10. Few-Shot Chain-of-Thought (Few-Shot CoT): Combine few-shot and CoT by providing

multiple examples with step-by-step reasoning to improve performance on complex tasks.
P36. Counterfactual Prompting: Encourage the model to explore "what if" scenarios or hypothetical

situations for creative or predictive tasks.
P35. Reflective Prompting: Prompt the model to review and reflect on its initial answer, considering

alternative perspectives or implications.

Mistral 7B
Emphasis Rules:

P30. XML Tagging: Wrap the instruction inside XML tags.
P23. Affirmative Directives: Use positive instructions such as "Do this," while avoiding negative

phrasing like "Don’t do this."
P32. Step-by-Step Prompting: Request responses in a structured format, using numbered steps to

improve clarity for multi-part answers.
P24. Explicit Task Definition: Clearly specify the task using direct phrasing like "Your task is

to...".
P31. Least-to-Most Prompting: Start with simpler questions and progressively move to more

complex ones to help the model build up to a solution.
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P34. Scaffolded Prompting: Guide the model through problem-solving by providing struc- tured
questions or "scaffolds" to address each part of a complex task.

P20. Beginner-Friendly Rewrite: Rewrite the prompt so that it is easy for a beginner to understand.
P42. Bullet Point Rewrite: Rewrite the prompt as a list of bullet point.

Avoidance Rules:
P10. Few-Shot Chain-of-Thought (Few-Shot CoT): Combine few-shot and CoT by providing

multiple examples with step-by-step reasoning to improve performance on complex tasks.
P18. High-Level Rewrite: Rewrite the prompt at a high level, removing specific task details.
P6. Meta-Prompting: Ask the model to describe or discuss its thought process before answering,

to encourage a higher level of analysis.
P8. Role-Play Prompting: Set the model in a specific role or persona (e.g., “Imagine you are a

doctor”) to align the response style with the desired expertise or perspective.
P36. Counterfactual Prompting: Encourage the model to explore "what if" scenarios or hypothetical

situations for creative or predictive tasks.
P38. Multi-Turn Prompting: Build answers iteratively over multiple interactions, refining each

aspect progressively.

Llama 3 8B
Emphasis Rules:

P4. Instruction-Based Prompting: Specify detailed instructions on how to answer for clarity.
P30. XML Tagging: Wrap the instruction inside XML tags.
P44. Past Tense Rewrite: Rewrite the prompt using past tense.
P6. Meta-Prompting: Ask the model to describe or discuss its thought process before answering,

to encourage a higher level of analysis.
P12. Interactive Prompting: Use a conversational, back-and-forth approach where each prompt

builds on previous responses to refine the answer incrementally.
P16. Sub-Question Format: Rewrite the prompt as multiple sub-questions.
P42. Bullet Point Rewrite: Rewrite the prompt as a list of bullet points.
P46. Explicit Constraint Definition: Clearly specify all constraints in the prompt, such as word

limits, required exclusions, formatting rules, or response structure, to ensure the model adheres to
strict guidelines.

P47. Positive Tone Rewrite: Rewrite the prompt in an optimistic and constructive manner.
P3. Few-Shot Prompting: Provide a few examples of response within the prompt to guide the

model on how to respond to align with format specified in the initial prompt.
Avoidance Rules:

P8. Role-Play Prompting: Set the model in a specific role or persona (e.g., “Imagine you are a
doctor”) to align the response style with the desired expertise or perspective.

P13. One-Line Rewrite: Rewrite the prompt in a single sentence.
P18. High-Level Rewrite: Rewrite the prompt at a high level, removing specific task details.
P15. Question Format: Rewrite the prompt as a question.
P19. Detailed Rewrite: Expand the prompt with detailed instructions, adding relevant clarifications

if needed.
P26. Clarity-Seeking Prompts: Use prompts like "Explain [topic] in simple terms," "Explain to me

like I’m 11 years old," or "Explain to me as if I’m a beginner in [field]" to enhance understanding.
P32. Step-by-Step Prompting: Request responses in a structured format, using numbered steps to

improve clarity for multi-part answers.
P35. Reflective Prompting: Prompt the model to review and reflect on its initial answer, considering

alternative perspectives or implications.
P36. Counterfactual Prompting: Encourage the model to explore "what if" scenarios or hypothetical

situations for creative or predictive tasks.
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Abstract

We introduce ClaimCheck, an efficient fact-
checking system that verifies textual claims
using smaller, open-source large language
models. ClaimCheck integrates two fact-
checking strategies, claim-matching and novel
claim processing. Claim-matching uses re-
lated fact-checks from trusted organizations
to fact-check a claim. Novel claim process-
ing breaks down fact-checking into manage-
able subtasks—generating targeted questions,
retrieving Web evidence, extracting answers,
and synthesizing verdicts. Evaluation on the
AVeriTeC benchmark demonstrates 62.6% ver-
dict prediction accuracy, with claim-matching
providing a 2.8% improvement. ClaimCheck
approaches the performance of state-of-the-
art systems while requiring significantly fewer
computational resources, demonstrating the ef-
fectiveness of using small language models for
fact-checking tasks. Furthermore, our code is
publicly available to help make automated fact-
checking more accessible.

1 Introduction

The rapid proliferation of digital content has trans-
formed how information is disseminated and con-
sumed, but it has also amplified the spread of mis-
information. In an era where public discourse is
increasingly influenced by online narratives, com-
bating the impact of false claims has become a
critical societal challenge. The World Economic
Forum’s 2024 Global Risks Report 1 underscores
this urgency, identifying misinformation as a top
threat to democratic stability, rivaling even climate
crises and geopolitical conflicts. As the scale of
misinformation grows, so does the necessity for
robust, scalable solutions capable of fact-checking
claims efficiently (Chen and Shu, 2024).

*The author is a UTA affiliate and attends Coppell High
School.

1https://www.weforum.org/publications/
global-risks-report-2024/

Automated fact-checking systems have emerged
as a promising technological response to this chal-
lenge (Dmonte et al., 2024; Vykopal et al., 2024).
These systems enhance the efficiency of traditional
fact-checking processes by leveraging advance-
ments in machine learning, natural language pro-
cessing, knowledge bases, and databases (Guo
et al., 2022). In this work, we focus on leveraging
large language models (LLMs) for fact-checking
due to their strong language understanding and
reasoning capabilities, as well as their ability to
process diverse sources of evidence. LLMs facili-
tate techniques such as retrieval-augmented gen-
eration (RAG) and structured reasoning, which
enhance fact-checking capabilities (Khaliq et al.,
2024; Iqbal et al., 2024). However, building an
effective LLM-based fact-checking system entails
overcoming numerous challenges, such as contex-
tual ambiguity, temporal sensitivity of evidence,
and incomplete or misleading information (Schu-
macher et al., 2024; Wang et al., 2024b; Rothermel
et al., 2024; Guo et al., 2022).

One of the drawbacks of the current state-of-the-
art systems is that most use very large LLMs which
can be monetarily prohibitive (Schlichtkrull et al.,
2024a). Smaller LLMs require much less computa-
tional resources and are more accessible to users at
the cost of some loss in task-specific performance
and reasoning capabilities (Wang et al., 2024a). We
focus this work on utilizing smaller LLMs for the
automatic fact-checking pipeline, because this can
present more accessible system for the common
public. Although the limitations of smaller LLMs
impede systems using smaller LLMs from achiev-
ing the performance of systems using larger LLMs,
we aim to demonstrate that a open-source, less
computationally intensive system can be a useful
fact-checking system.

This paper presents ClaimCheck, an automatic
fact-checking system for textual claims. Claim-
Check first uses a matching process to determine if
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a claim has already been fact-checked. For claims
not previously fact-checked, i.e., the given claim is
novel, the system decomposes the fact-checking
task into targeted subtasks: generating specific
questions required to fact-check the claim, retriev-
ing real-time evidence via Web search, processing
the evidence to extract answers for each question,
and synthesizing these answers to predict a verdict.
This design simplifies the subtasks for our system,
an important consideration for using smaller LLMs
as presenting them with focused tasks helps to pre-
vent them from being overwhelmed by complex in-
structions and data. Furthermore, our choice of us-
ing Web search for evidence retrieval avoids requir-
ing the users to store massive knowledge sources
locally for evidence retrieval.

AVeriTeC (Schlichtkrull et al., 2023) is a popu-
lar real-world claim benchmark dataset consisting
of only textual claims. Our experimental evalua-
tion on AVeriTeC indicates that the proposed ap-
proach achieves a verdict prediction accuracy of
62.6%. When compared to the current highest ac-
curacy on AVeriTeC—75.2% (Yoon et al., 2024)—
ClaimCheck demonstrates that small, open-source
LLMs can be leveraged in a more computationally
efficient and scalable manner while approaching
the performance of state-of-the-art systems.

To summarize, our work makes the following
key contributions to automated fact-checking:

• Our system demonstrates that carefully struc-
tured pipelines with small, open-source lan-
guage models can achieve competitive perfor-
mance while significantly reducing computa-
tional costs compared to systems relying on
large language models.

• We incorporate claim-matching into a com-
monly used framework for automatic fact-
checking, resulting in +5.1% increased ac-
curacy on AVeriTeC. These results substan-
tiate the effectiveness of integrating claim-
matching with novel claim processing.

• We demonstrate the effectiveness of struc-
tured decomposition for fact-checking with
smaller LLMs with an accuracy of 62.6% on
AVeriTeC.

• The codebase of ClaimCheck is publicly avail-
able to help make automated fact-checking
more accessible.2

2https://github.com/idirlab/ClaimCheck

2 Background

To fact-check textual claims, the workflow of
most LLM-based systems (Russo et al., 2024;
Schlichtkrull et al., 2024b; Braun et al., 2024;
Rothermel et al., 2024; Yoon et al., 2024; Niu et al.,
2024; Iqbal et al., 2024) contains four steps, as
follows. 1) Question generation: The system gen-
erates questions to identify the core aspects of the
claim. This step ensures that the fact-checking
process is focused and systematic. 2) Evidence
retrieval: The system retrieves supporting or refut-
ing evidence from trusted knowledge sources, such
as Wikipedia. This step is critical for grounding
the fact-checking process with verifiable informa-
tion. 3) Question answering: The system processes
the retrieved evidence to generate precise answers
to the questions generated in Step 1. This step
involves analyzing the evidence and extracting rel-
evant information to address the claim. 4) Verdict
prediction: The system synthesizes the evidence to
predict a verdict (e.g., true or false). The final step
determines the overall thurthfulness of the claim.

Fact-checking systems such as Claim-
Buster (Hassan et al., 2017) delineate fact-checking
strategies, including claim-matching and novel
claim processing, which are evidence collection
and processing methods to provide a verdict on
the truthfulness of the claim. Recent studies (Guo
et al., 2022; Iqbal et al., 2024; Niu et al., 2024)
have refined this process into LLM-specific tasks.
These systems aim to support the functions of tra-
ditional fact-checking organizations in addressing
misinformation by enhancing efficiency.

Successful textual claim fact-checking requires
world and common knowledge, along with some
reasoning ability (Rothermel et al., 2024). LLMs
have shown to be one of the best tools for these
tasks (Rothermel et al., 2024; Schlichtkrull et al.,
2024a). Advancements in automated fact-checking
have been significantly influenced by the integra-
tion of large language models (LLMs) and retrieval-
augmented generation (RAG) pipelines. For exam-
ple, Wang et al. (2025) introduced a framework for
LLM-based systems that incorporates an internal
mechanism to determine the most suitable LLM
for verifying a specific claim. RAGAR (Khaliq
et al., 2024) improves fact-checking by leveraging
multi-modal inputs and iterative reasoning.

Evidence retrieval methods are important for the
credibility and accuracy of automatic fact-checking
systems, and are one of the most challenging

304

https://github.com/idirlab/ClaimCheck


Claim Failure

Claim-Matching

Novel Claim
Processing

Question
Answer
Pairs

Highly
Relevant
Evidence

Verdict Prediction

Justification

Verdict
Fact-Check

Article
Summarized

Evidence

LLM

Figure 1: An overview of ClaimCheck. First, the claim is passed into the claim-matching component. If successful,
the fact-check article and summarized evidence from the article will be used as evidence. If claim-matching fails,
the system proceeds to do novel claim verification, which generates question-answer pairs and summaries of
highly relevant evidence to use as evidence. Using previously gathered evidence, an LLM generates a verdict and
justification for the claim.

tasks in fact-checking systems (Singal et al., 2024).
FactLLaMA (hin Cheung and Lam, 2023) com-
bines pre-trained LLaMA models with external
evidence retrieval to validate claims, while Peng
et al. (2023) enhances accuracy by integrating ex-
ternal knowledge and providing iterative feedback.
Additionally, Singal et al. (2024) tackles misinfor-
mation in RAG pipelines by re-ranking retrieved
documents based on their credibility scores. Ullrich
et al. (2023); Drchal et al. (2023) demonstrate the
advantage of using whole documents as evidence
to answer questions instead of individual sentences
or paragraphs.

For verdict prediction, many fact-checking
pipelines use LLM-based verification (Rothermel
et al., 2024; Yoon et al., 2024). Finetuning LLMs
improves the verdict accuracy (Yoon et al., 2024),
and helps avoid inbuilt biases towards certain ver-
dict categories (Rothermel et al., 2024).

3 Methodology

We use two strategies to gather evidence for fact-
checking claims: claim-matching and novel claim
processing (Figure 1). We first attempt to search
for a relevant fact-check for the given claim as
we can use them as evidence for the verdict pre-
diction. If a claim has not been previously fact-
checked, it is considered novel. For novel claims,
we break down the fact-checking process into these
key steps: claim reformulation, question genera-
tion, query generation, online evidence retrieval,
question answering and evidence curation. Using
the evidence collected from either claim-matching
or novel claim processing, an LLM is used to pre-
dict the veracity of the claim along with a justifi-
cation. For novel claim processing, we only use
online search so that our system is applicable to
real-world uses.

3.1 Claim-Matching
Fact-Check Article Retrieval Our system first
does a Web search using the Google Search API,3

with the claim being the search query. Then, ar-
ticles published after the claim was made are ex-
cluded to prevent data leakage. To ensure the accu-
racy and reliability of claim-matching, our system
only uses fact-checks from well-established and
reputable sources. These sources include global
fact-checking initiatives such as Africa Check and
AFP, regional fact-checkers such as factcheck.kz
and factcheck.ge, and widely recognized fact-
checking platforms such as PolitiFact, and Snopes.4

Article Summarization Next, given each re-
trieved fact-check article, the LLM is prompted,
with Listing 1, to check if the article is relevant. If
the article is relevant, the LLM produces a sum-
mary of relevant evidence from the article and how
it can clearly lead to a verdict, and ClaimCheck
uses the collected evidence in its verdict prediction
step. If the article is not relevant, the next article
from the Google search results is sequentially pre-
sented to the LLM. If no useful articles are detected
within the search results, the system proceeds to
the novel claim processing (Figure 2).

3.2 Novel Claim Processing
Claim Reformulation Our claim reformulation
step ensures that the claim is ready for question gen-
eration by augmenting the claim with the claim’s
date of origin, the author of the claim (claimant),
and the URL of the claim’s origin, which are all
provided in the AVeriTeC dataset. The LLM is

3https://programmablesearchengine.google.com/
4The full list of the sources is africacheck.org,

factcheck.kz, altnews.in, boomlive.in, vishvasnews.
com, factcheck.ge, poynter.org, factcheck.afp.com,
apnews.com, reuters.com, checkyourfact.com,
hoax-slayer.net, leadstories.com, fullfact.org,
truthorfiction.com, politifact.com, and snopes.com.
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Figure 2: Overview of novel claim processing. The
claim and metadata from AVeriTeC are used to refor-
mulate the claim. Next, questions are generated to fact-
check the claim. A Web search query is generated for
each question. For the question answering step, the con-
tent of the top 5 search results are given sequentially
to an LLM to answer the question. If an answer has
been found using one of the results’ content, a question-
answer pair will be created. If a result’s content is highly
relevant evidence, but does not answer the question, it is
also saved. The QA pairs and highly relevant evidence
are then checked for their relevance.

prompted to reformulate the claim based on the
supplied metadata rather than its knowledge from
training data, as doing so may introduce hallucina-
tions, particularly when using small LLMs. The
prompt is provided in Listing 2.

Question Generation Next, ClaimCheck gener-
ates questions that are essential to fact-checking the
reformulated claim. To generate these questions
we prompt an LLM using Listing 3 with three static
claims and their corresponding questions from the
AVeriTeC dataset. The generated questions will be
specific to each claim, avoiding generalized ques-
tions such as “when was this claim made?”, which
could lead to retrieving unusable evidence. We do
not specify a number of questions, to avoid unnec-
essarily generating similar questions, which could
lead to retrieving the same evidence repeatedly,
or not generating enough questions. Figure 3 dis-
plays a few example questions generated by the
LLM for a claim. Some previous fact-checking
frameworks (Rothermel et al., 2024) have set a
requirement for the number of questions, which
could result in the same evidence being repeatedly
retrieved multiple times, unnecessarily using com-
putational resources. This is usually due to similar
questions retrieving the same evidence.

Donald Trump, when he thinks of climate change, he says hoax. Well, guess what?
Speaking of hoaxes, remember what he said about these increasing violent

hurricanes and the frequency? He actually said, maybe we should detonate a
nuclear bomb over the Atlantic. By the way, the same stable genius who said the

biggest problem we had in the Revolutionary War is we didn't have enough airports.

Did Donald Trump
refer to climate

change as a hoax?

During discussion about the
American Revolutionary War,
did Donald Trump state that
the primary issue was the

lack of airports?

According to records,
did Donald Trump

propose detonating a
nuclear bomb in the

Atlantic Ocean?

Content

https://www.bbc.com/
news/world-us-canada-

51213003

Content

https://www.eco-
business.com/news/donald-
trump-is-president-what...

Content

https://www.epa.gov/
newsreleases/icymi-administrator-

lee-zeldin-finds-gold-bars...

LLM LLM LLM

QA Pairs Useful
Evidence

Figure 3: Example of question generation and question
answering processes.

Query Generation For each generated question,
ClaimCheck uses an LLM to generate a Web search
query, using Listing 4. The query is a reformula-
tion of the question, incorporating the claim and
its metadata. This process is essential, as directly
using the questions as the Web search queries of-
ten results in excessively long queries that hinder
effective evidence retrieval.

Online Evidence Retrieval Evidence retrieval
employs a Google search using the Serper API 5

to locate relevant information, where the generated
queries are used. ClaimCheck takes into account
temporal constraints to ensure evidence validity, ex-
cluding evidence posted or updated after the claim
date. We use the top 5 webpages as evidence.

Question Answering The question-answering
(QA) phase is illustrated in Figure 3. ClaimCheck
analyzes the evidence retrieved to answer the ques-
tions generated in the previous step, using Listing 5.
The LLM is prompted with the content of the web-
site, extracted using Trafilatura (Barbaresi, 2021)
in the online evidence retrieval step, the relevant
question, and the claim itself. The LLM has three
choices:

1. It can answer the question using the evidence
provided, if the evidence completely answers
the question, and the system moves on to the
next question.

2. It can decide that the evidence does not an-
swer the question but is highly relevant for

5https://serper.dev/
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fact-checking the claim, in which case the
website content is saved, and the next piece of
evidence is presented.

3. It can also decide the evidence is not helpful
for answering the question nor is highly rele-
vant for fact-checking the claim, in which case
the evidence is rejected, and the next piece of
evidence is presented.

If all pieces of evidence are rejected, the question
is not answerable, and this outcome is passed onto
verdict prediction as evidence.

Evidence Curation All QA pairs and highly rel-
evant evidence pieces are checked for relevance to
the claim. The issue of irrelevant evidence might
arise due to the limitations of smaller LLMs, which
may generate summaries of the online evidence
even when there is no connection to the claim. The
LLM iterates through all QA pairs and retains only
those useful for fact-checking, as instructed in the
prompt (Listing 6). Evidence is considered rele-
vant if its content directly pertains to the claim. For
such evidence, the LLM generates a summary; oth-
erwise, it is discarded. The relevant QA pairs and
summarized highly relevant evidence pieces are
sent to the verdict prediction step of ClaimCheck.

3.3 Verdict Prediction
Once all the evidence is gathered, ClaimCheck uses
the LLM to produce a verdict prediction, assign-
ing the claim to a verdict that could be reasonably
assumed using the evidence present. The verdicts
that can be predicted are Supported, Refuted, Not
Enough Evidence, or Conflicting Evidence/Cher-
rypicking, from Schlichtkrull et al. (2024a). The
LLM simultaneously creates a justification to en-
hance the system’s interpretability. The LLM cre-
ates textual explanations detailing how the retrieved
evidence supports the final verdict. This feature
makes the system’s reasoning transparent and un-
derstandable to users. To avoid out-of-memory er-
rors for the LLMs, we truncate the evidence at the
maximum context length. The LLM is instructed
to provide the verdict and justification in JSON
format, to avoid issues with the LLM not returning
the required information (Shorten et al., 2024).

We use Qwen2.5-7B for all tasks other than fact-
verification, while a fine-tuned Qwen2.5-7B model
is used for verdict prediction, which requires more
reasoning and decision-making ability. For fine-
tuning, we used a 4 bit-quantized Qwen2.5-7B
model and performed the training using LoRA (Hu

et al., 2022) with rank r = 16. The training set
of AVeriTeC was used for fine-tuning. The mod-
els’ temperature and top p are the default Ollama 6

parameters for the respective models. We only
fine-tuned for the verdict prediction step. List-
ing 7 presents the prompt using AVeriTeC’s ver-
dict classes, but ClaimCheck is adaptable and can
support alternative verdict categories.

4 Experiments

4.1 Dataset
Schlichtkrull et al. (2024a) introduced a novel auto-
mated fact-checking system utilizing the AVeriTeC
dataset, a rich resource comprising 4,568 claims
drawn from 50 fact-checking organizations. This
dataset classifies the claims into the 4 verdicts men-
tioned in Section 3.3. AVeriTeC includes not only
claims but also annotated question-answer pairs,
and justifications, making it a valuable benchmark
for real-world fact verification tasks. It also in-
cludes a knowledge store, which consists of ap-
proximately 1000 pieces of evidence per claim.
The knowledge store was created by generating
multiple queries related to each claim, conducting
Web searches for these queries, and saving the top
search results.

4.2 Experiment Setup
ClaimCheck was evaluated using the development
subset of the AVeriTeC dataset, which consists of
500 claims. Throughout the experiments, partic-
ular attention was paid to avoiding common pit-
falls in automated fact-checking, particularly tem-
poral leakage. We excluded fact-check articles
which were published after the claim date, and only
searched for evidence posted before the claim date.
Our metric is claim alignment accuracy, which mea-
sures the proportion of predicted verdicts matched
to the gold verdicts in AVeriTeC. It is calculated by
dividing the number of correctly predicted verdicts
by the total number of claims.

4.3 Results
Table 1 presents the end-to-end accuracies of mul-
tiple fact-checking systems. We have run naive
predictions on multiple models, to show the base-
line fact-checking ability of the LLMs. This is
when we prompt LLMs to give a verdict without
any evidence, solely relying on the LLM’s internal
knowledge. Table 2 is an ablation of the verdict

6https://ollama.com/
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Framework Accuracy Evidence Source
ClaimCheck 0.626 Online Search
ClaimCheck without claim-matching 0.598 Online Search
Papelo 0.415 Online Search
HerO 0.752 Knowledge Base
InFact 0.724 Knowledge Base
Naive GPT-4o 0.532 N/A
Naive GPT-4o-Mini 0.468 N/A
Naive Qwen2.5-7B 0.260 N/A

Table 1: Claim alignment accuracy of different frameworks on the AVeriTeC dataset.

LLM Accuracy
Fine-tuned Qwen2.5-7B 0.626
Phi-4 0.494
GPT-4o 0.396
GPT-4o-mini 0.314
Qwen2.5-7B 0.280

Table 2: Claim alignment accuracy of ClaimCheck
framework using different LLMs for verdict prediction.

prediction step of ClaimCheck, evaluating the per-
formance of larger and smaller LLMs along with
a fine-tuned small LLM. Finally, Table 3 presents
performance measures for the evidence retrieval
systems, highlighting their role in supporting accu-
rate verdict prediction.

Team Papelo (Malon, 2024) achieved the highest
accuracy at FEVER-24 of the frameworks using
online search with a focus on claim decomposition
and iterative searching. Their approach involves an
initial search followed by targeted queries to fill in-
formation gaps. In contrast, ClaimCheck employs
a single-pass system to collect evidence. Another
significant difference to ClaimCheck is the com-
putational approach—while Team Papelo’s system
relies on larger LLMs (GPT-4o) for sophisticated
reasoning, ClaimCheck demonstrates the viability
of using smaller, open-source LLMs (Qwen2.5-7B)
through careful task decomposition and structured
verification steps, making it more accessible and
computationally efficient. However, Team Papelo
only predicts whether a claim is supported or re-
futed, without predicting other verdicts, in their fi-
nal system. For the purposes of comparison, we use
Team Papelo’s accuracy on four classes. Addition-
ally, we present the accuracy of the best-performing
systems at FEVER-24, HerO and InFact, according
to the claim alignment accuracy, which use all four
classes (Yoon et al., 2024; Rothermel et al., 2024).

Evidence Retrieval Component Proportion
Claims with evidence 0.980
Claims with evidence (after evi-
dence curation)

0.696

Questions answered 0.949
Fact-check articles matched 0.158
Claim-matching only accuracy 0.759

Table 3: Performance measures for evidence retrieval
components in ClaimCheck.

The experiment results demonstrate the signifi-
cant impact of fine-tuning on verdict prediction
performance across different language models,
with the marked improvement of 36.6 percent-
age points. The fine-tuned Qwen2.5-7B model
achieved the highest accuracy at 62.6%, substan-
tially outperforming its non-fine-tuned counterpart
which scored only 26.0%. Other models showed
varying degrees of performance, with Phi-4 achiev-
ing 49.4% accuracy, followed by GPT-4o at 39.6%,
and GPT-4o-mini at 31.4%.

4.4 Error Analysis

Analysis of 30 incorrectly predicted samples
showed that a common issue was the useful evi-
dence being retrieved and the LLM interpreted it
properly, but it gave the wrong verdict. For the
claim “Most deaths in the 1918 influenza pandemic
originated from bacterial pneumonia caused by
face masks and that Dr Anthony Fauci, the US gov-
ernment’s top expert in the fight against Covid-19,
knew about it.”, the LLM responded in the verdict
prediction that “The evidence from the fact-check
supports the claim that face masks did not directly
cause most deaths in the 1918 influenza pandemic.”,
with other supporting evidence, but due to misinter-
preting the claim, it responded with Supported. It
had enough information to completely fact-check
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the claim, but it gives an incorrect verdict. An-
other issue is that the LLM sometimes just pro-
vides a justification instead of a verdict, even when
prompted that it must produce a verdict. These
issues are the most common cause of errors, and
they are not due to ClaimCheck’s system architec-
ture. To address problems with verdict prediction,
reasoning models fine-tuned on a large corpus of
fact-checks could enhance LLMs’ understanding
of fact-checking procedures and improve verdict
prediction performance.

Another source of error with ClaimCheck is the
evidence curation. The evidence curation step is
necessary due to the models not being able to judge
evidence relevance when doing verdict prediction,
but this sometimes results in useful evidence being
excluded. Moreover, the lack of support to use im-
age and video evidence hinders ClaimCheck’s abil-
ity to fact-check some claims, particularly where
quote or action verification is required.

When fact-check articles are retrieved by the
Web search, the article might contain fact-checks
of multiple claims. The LLM might use one of the
other fact-checks as evidence instead of the fact-
check pertaining to the claim, leading to incorrect
evidence being used for verdict prediction. Simi-
larly, another issue is irrelevant evidence making it
past the evidence curation stage, which overloads
the LLM with information, leading to incorrect ver-
dict prediction. These are issues with the smaller
LLMs, due to their limited reasoning capability
(Wang et al., 2025).

5 Discussion

5.1 System Architecture Trade-offs

The architectural framework of ClaimCheck rep-
resents a significant departure from contemporary
state-of-the-art systems such as InFact (Rothermel
et al., 2024) and HerO (Yoon et al., 2024). Whereas
these established systems rely on pre-collected
knowledge bases, ClaimCheck implements a dy-
namic Web search methodology that facilitates real-
time information access and enhanced temporal
processing. This approach requires careful consid-
eration of the associated challenges, such as the
system’s occasional retrieval of extraneous or re-
dundant information, necessitating the evidence cu-
ration step, which can impact system performance.

Evidence Retrieval Quality It can be concluded
that the evidence retrieval system is functioning

effectively, as all claims using novel claim process-
ing have supporting evidence, and 98% of ques-
tions are fully answered. However, for 28.4% of
claims, all of the retrieved evidence is discarded.
This might suggest that the major bottleneck in
the ClaimCheck system is the evidence retrieval
system, as relevant evidence is not being retrieved.

Claim-Matching Strategy The empirical effec-
tiveness of the claim-matching component, success-
fully processing 15.8% of claims, as shown in Ta-
ble 3, demonstrates the value of leveraging existing
fact-checks. This methodological enhancement, no-
tably absent from FEVER-24 submissions, yields a
noticeable improvement in accuracy (+2.8%) com-
pared to using novel claim processing only for all
claims. Fact-check articles could possibly even be
useful for checking novel claims, as this could give
valuable context about the claims. The success of
this approach indicates that future system architec-
tures might benefit from implementing a hybrid
methodology that synthesizes both pre-existing
fact-checks and real-time evidence acquisition.

Question Generation Allowing the LLM to gen-
erate questions without specifying a required num-
ber of questions appears to have increased the qual-
ity of the questions. However, this has also led
to aspects of the claim not being fact-checked cor-
rectly, due to the nature of small LLMs. This could
possibly be solved by fine-tuning or reinforcement
learning using the small LLMs.

Another approach considered was leveraging the
misinformation sites provided by AVeriTeC, along
with some satire sites, to identify claims originat-
ing from these sources. This could offer a straight-
forward method to flag potential misinformation.
However, in the development set, no claims were
found to originate from these sources, and only
52.4% of all claims had origin URLs available.
This suggests that such an approach may have lim-
ited effectiveness due to the low availability of ori-
gin URLs and the lack of overlap between claims
and known misinformation sources.

5.2 Small Language Models in Fact-Checking

The usage of small LLMs in fact-checking tasks has
both significant potential and inherent limitations.
While these models offer considerable advantages
in terms of computational efficiency and accessi-
bility, they are subpar for complex reasoning tasks.
In the error analysis, we have noticed that smaller
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Claim Predicted
Verdict

LLM-generated Justification Error

Even if your mail-in ballot is
postmarked prior to the Elec-
tion day but arrives after the
Election day it will be thrown
out.

N/A The article discusses potential risks associated with fol-
lowing Trump’s advice during the election, particularly
concerning long lines at polling places. Experts note that
such behavior could exacerbate existing infrastructure
challenges posed by the pandemic, indicating that this
scenario is plausible and thus supports the idea of chaos
on Election Day.

No verdict gen-
erated.

Illegal drug, border crossings,
and human smuggling activi-
ties have decreased in areas
where barriers are deployed in
the United States.

Refuted This claim is refuted. According to the QA Pairs pro-
vided it seems that there was no evidence found for this
claim.

Incorrect under-
standing of ver-
dict definitions.

Donald Trump said that $15 an
hour is too much for essential
workers

Refuted The claim states that Joe Biden commented on Donald
Trumps statement. There was no proof of this in the QA
pairs, Therefore it’s refuted.

Incorrect claim
interpretation.

There is a scam involving San-
tander customers being sent
fake bank cards.

Refuted Q&A 1 gives no evidence for the claim so it is refuted. Uses incorrect
verdict.

Table 4: Example of LLM-caused errors in verdict prediction.

LLMs sometimes do not follow instructions when
the prompt is very large, particularly for question
answering and verdict prediction, both being RAG
tasks. This can result in incorrect claim interpreta-
tion or not recognizing unusable evidence, which
necessitated the evidence curation step.

The verdict generation phase was challenging for
small language models. The error analysis revealed
instances where the LLM produced justifications
on the claim without providing a verdict. These
findings suggest that while small language models
can effectively manage generation tasks within the
fact-checking pipeline, their performance is subpar
for retrieval tasks such as question answering. This
might indicate that larger LLMs, finetuned smaller
LLMs, or RAG-specific language models might
perform better for this step. Examples of com-
mon errors made by LLMs in verdict prediction are
given as examples in Table 4.

Notably, the fine-tuned Qwen2.5-7B model’s su-
perior performance suggests that fine-tuning can
help overcome some of the inherent limitations
of smaller language models in complex reasoning
tasks like verdict prediction. The major issue for
non-fine-tuned models is the tendency for models
to select Not Enough Evidence even when there
is enough evidence to reach a verdict. In Malon
(2024), only the Supported and Refuted classes
were the only classes the LLM could predict.

5.3 Real-World Applicability

The system design underlying ClaimCheck is to
demonstrate the effectiveness of small LLMs on
real-world claims, such as those in AVeriTeC. The

use of small, open-source language models could
help mitigate the spread of misinformation on so-
cial media. The Web evidence retrieval can more
easily handle novel claims, compared to a static
knowledge base, particularly on claims about re-
cent events. This makes it better suited for fact-
checking the rapidly evolving claims found online.

This choice of using small LLMs presents dis-
tinct challenges. While offering enhanced effi-
ciency, small language models necessitate more
tasks in the fact-checking pipeline, which could
lead to more sources of error. The system’s LLM-
agnostic design allows for improvements as LLM
capabilities advance. Nevertheless, the results sug-
gest that accessible fact-checking tools utilizing
small language models can provide substantial sup-
port for fact-checking tasks, particularly when inte-
grated with claim-matching.

6 Conclusion

ClaimCheck demonstrates the viability of Web ev-
idence retrieval for automatic fact-checking sys-
tems using smaller language models. It achieved
0.626 accuracy on the AVeriTeC benchmark dataset.
Our approach establishes essential procedures for
end-to-end fact-checking systems without relying
on resource-intensive larger models. By develop-
ing an LLM-size agnostic process, we ensure that
ClaimCheck can benefit from future LLM advance-
ments while maintaining independence from spe-
cific model designs. We additionally show that
claim matching can be a useful evidence retrieval
approach to fact-checking non-novel claims.

The use of small, open-source LLMs enhances
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reproducibility and accessibility. Our online search
mechanism efficiently leverages external search
algorithms to retrieve only the most relevant ev-
idence, significantly reducing computational re-
source demands compared to retrieving and analyz-
ing information from knowledge bases. However,
challenges with evidence quality necessitated our
multi-question approach and content curation task.

Future work could explore iterative systems
rather than single-pass frameworks, incorporate
multimedia analysis capabilities for social media
claims, and investigate targeted fine-tuning ap-
proaches that balance performance improvements
with system independence.

Limitations

The current implementation of ClaimCheck ex-
hibits several significant limitations that warrant
consideration. The system’s inability to process
non-textual information substantially restricts its
efficacy in addressing social media claims, where
misinformation frequently propagates through vi-
sual media. The Web-based evidence retrieval sys-
tem, while providing access to current informa-
tion, occasionally yields irrelevant or unreliable
sources that may compromise verification accuracy.
Furthermore, the system’s dependence on English-
language fact-checking websites introduces limita-
tions in global applicability.

Ethics and Risks

Beyond technical constraints, the system’s reliance
on fact-checking websites raises substantial ethical
considerations. The selection criteria for trusted
fact-checking domains may introduce systematic
biases in evidence selection. Moreover, the auto-
mated nature of the system could potentially lead
to excessive reliance on machine-generated ver-
dicts without appropriate human oversight. Fu-
ture research directions should address these limi-
tations while maintaining system accessibility and
efficiency, potentially through the implementation
of enhanced source validation mechanisms and sup-
port for multiple languages and modalities.
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Listing 1: Prompt for Article Summarization
Can t h i s f a c t − c h e c k i n g a r t i c l e p r o v i d e a c o m p l e t e f a c t − check f o r t h e c la im , i n c l u d i n g a c l e a r v e r d i c t and

j u s t i f i c a t i o n wi th r e l e v a n t e v i d e n c e ?
Take i n t o a c c o u n t t h e c l a i m d a t e and any o t h e r i n f o r m a t i o n i m p o r t a n t f o r f a c t − c h e c k i n g t h e c l a i m .

P o s s i b l e V e r d i c t s :
− S u p p o r t e d : The knowledge from t h e f a c t − check s u p p o r t s o r a t l e a s t s t r o n g l y i m p l i e s t h e c l a i m . Mere

p l a u s i b i l i t y i s n o t enough f o r t h i s d e c i s i o n .
− R e f u t e d : The knowledge from t h e f a c t − check c l e a r l y r e f u t e s t h e c l a i m . The mere a b s e n c e o r l a c k o f

s u p p o r t i n g e v i d e n c e i s n o t enough r e a s o n f o r b e i n g r e f u t e d ( a rgument from i g n o r a n c e ) . Th i s i n c l u d e s
f a k e news and d e l i b e r a t e m i s i n f o r m a t i o n .

− C o n f l i c t i n g Ev idence / C h e r r y p i c k i n g : The knowledge from t h e f a c t − check c o n t a i n s c o n f l i c t i n g e v i d e n c e from
m u l t i p l e r e l i a b l e s o u r c e s . Even t r y i n g t o r e s o l v e t h e c o n f l i c t i n g s o u r c e s t h r o u g h a d d i t i o n a l
i n v e s t i g a t i o n was n o t s u c c e s s f u l .

Claim : { c l a i m }
A r t i c l e : { a r t i c l e _ t e x t }
I f t h e a r t i c l e c a n n o t f u l f i l l t h i s r e q u i r e m e n t , r e s p o n d wi th "No answer found . " Otherwise , g a t h e r t h e key

e v i d e n c e from t h e a r t i c l e t h a t can be used f o r f a c t c h e c k i n g t h e c l a i m and summarize them i n a t most
one p a r a g r a p h .

Listing 2: Prompt for Claim Reformulation
# I n s t r u c t i o n s
You a r e p r e s e n t e d wi th a raw cla im , wi th a d d i t i o n a l m e t a d a t a l i k e C o n t e n t d a t e o r s p e a k e r . ** Your t a s k r i g h t

now i s t o i n t e r p r e t t h e c l a i m . * * That i s , i d e n t i f y t h e s p e a k e r ’ s c o r e message and w r i t e down t h e main
p o i n t ( s ) u s i n g your own words . Do n o t ask any q u e s t i o n s and on l y use t h e m e t a d a t a p r o v i d e d t o i n t e r p r e t

t h e c l a i m . Be c o n c i s e and w r i t e on ly one p a r a g r a p h .

# C o n t e n t
O r i g i n a l Claim : { c l a i m }
Metada ta :

− Speake r : { s p e a k e r }
− Date : { c l a i m _ d a t e }
− O r i g i n URL: { o r i g i n a l _ c l a i m _ u r l }
− R e p o r t i n g Source : { r e p o r t i n g _ s o u r c e }
− L o c a t i o n ISO Code : { l o c a t i o n _ I S O _ c o d e }

# I n t e r p r e t a t i o n
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Listing 3: Prompt for Question Generation
# I n s t r u c t i o n s
You a r e a f a c t − c h e c k e r v e r i f y i n g a c l a i m . Your t a s k i s t o g e n e r a t e c l e a r , s p e c i f i c , and r e l e v a n t f a c t −

c h e c k i n g q u e s t i o n s t h a t h e l p a s s e s s t h e a c c u r a c y of t h e c l a i m .

** G u i d e l i n e s : * *
− Focus on t h e e s s e n t i a l d e t a i l s o f t h e c l a i m . The q u e s t i o n s s h o u l d h e l p f i n d d i r e c t e v i d e n c e t o c o n f i r m or

r e f u t e i t .
− Only use m e t a d a t a ( such as da t e , s p e a k e r , o r s o u r c e ) when i t i s n e c e s s a r y f o r v e r i f i c a t i o n ( e . g . , when

t ime − s e n s i t i v e o r q u o t e v e r i f i c a t i o n i s i n q u e s t i o n ) .
− Each q u e s t i o n s h o u l d be c o n c i s e and d i r e c t l y r e l a t e d t o t h e c l a i m .
− Format each q u e s t i o n u s i n g b a c k t i c k s l i k e ‘ t h i s ‘ .
− Do n o t r e p e a t q u e s t i o n s a l r e a d y a d d r e s s e d i n p r i o r f a c t − c h e c k i n g r e c o r d s .

** Examples : * *
Claim : "New Zealand ’ s new Food B i l l bans g a r d e n i n g . "
Q u e s t i o n s :
1 . Does New Zealand ’ s Food B i l l ban home g a r d e n i n g ?
2 . What a r e t h e key r e g u l a t i o n s i n t h e New Zea land Food B i l l r e l a t e d t o g a r d e n i n g ?
3 . Has t h e New Zea land government e n f o r c e d any g a r d e n i n g r e s t r i c t i o n s under t h i s b i l l ?

Claim : " Video of a man blowing vape smoke t h r o u g h v a r i o u s f a c e masks shows t h a t t h e y do n o t h e l p p r e v e n t t h e
s p r e a d of c o r o n a v i r u s . "

Q u e s t i o n s :
1 . How does c o r o n a v i r u s s p r e a d ?
2 . Do s c i e n t i f i c s t u d i e s show t h a t f a c e masks r e d u c e t h e s p r e a d of c o r o n a v i r u s ?
3 . Does t h e a b i l i t y o f vape smoke t o p a s s t h r o u g h a mask i n d i c a t e i n e f f e c t i v e n e s s a g a i n s t v i r u s e s ?

Claim : " The N i g e r i a n government i s d o n a t i n g $600 m i l l i o n t o Democra t i c p r e s i d e n t i a l nominee Joe Biden ’ s
campaign . "

Q u e s t i o n s :
1 . I s t h e r e e v i d e n c e t h a t t h e N i g e r i a n government d o n a t e d $600 m i l l i o n t o Joe Biden ’ s campaign ?
2 . Are f o r e i g n governmen t s l e g a l l y a l l o w e d t o d o n a t e t o U. S . p r e s i d e n t i a l campaigns ?
3 . Has t h e Biden campaign r e p o r t e d any d o n a t i o n s from N i g e r i a ?

# Claim t o V e r i f y
Claim : { c l a i m }
Metada ta : { m e t a d a t a }

## Q u e s t i o n s :

Listing 4: Prompt for Query Generation
# I n s t r u c t i o n s
You a r e a f a c t − c h e c k e r o p t i m i z i n g a q u e s t i o n f o r web s e a r c h t o r e t r i e v e r e l e v a n t e v i d e n c e .

** G u i d e l i n e s : * *
− Ensure t h e que ry makes s e n s e i n t h e c o n t e x t o f t h e q u e s t i o n .
− Add cla im − s p e c i f i c c o n t e x t on ly i f a b s o l u t e l y n e c e s s a r y t o improve r e l e v a n c e .
− Keep t h e que ry c o n c i s e and s t r u c t u r e d f o r e f f e c t i v e s e a r c h r e s u l t s .
− Format t h e f i n a l que ry u s i n g b a c k t i c k s l i k e ‘ t h i s ‘ ( w i t h o u t e x t r a f o r m a t t i n g o r e x p l a n a t i o n ) .

## Q u e s t i o n
{ q u e s t i o n }

## Claim
{ c l a i m }

## S e a r c h Query :
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Listing 5: Prompt for Question Answering
I n s t r u c t i o n s
You a r e a f a c t − c h e c k e r . Your o v e r a l l m o t i v a t i o n i s t o v e r i f y a g i v e n Claim . In o r d e r t o f i n d e v i d e n c e t h a t

h e l p s t h e f a c t − c h e c k i n g work , you j u s t r a n a web s e a r c h which y i e l d e d a S ea rc h R e s u l t . Your t a s k r i g h t
now i s t o answer t h e Q u e s t i o n g i v e n below . Adhere t o t h e f o l l o w i n g r u l e s :

The l e n g t h o f your Answer s h o u l d be between one s e n t e n c e and one p a r a g r a p h .
I f a p p l i c a b l e and u s e f u l , you may d i r e c t l y c i t e r e l e v a n t e x c e r p t s from t h e s o u r c e . In t h a t case , p u t t h e

c i t a t i o n i n t o q u o t a t i o n marks .
I f t h e s e a r c h r e s u l t does n o t c o n t a i n s u f f i c i e n t i n f o r m a t i o n t o answer t h e Q u e s t i o n o r i s u n r e l a t e d t o t h e

q u e s t i o n c o m p l e t e l y , r e s p o n d s im p ly wi th Answer Not Found .
I f t h e e v i d e n c e does n o t answer t h e q u e s t i o n , b u t can o t h e r w i s e be h i g h l y u s e f u l f o r t h e f a c t −check , you

must r e s p o n d wi th " The e v i d e n c e i s u s e f u l , b u t does n o t answer t h e q u e s t i o n . " T h i s i s a v e ry r a r e c a s e .

Claim : { c l a i m }

Q u e s t i o n
{ q u e s t i o n }

S e a r c h R e s u l t
Summary : { s n i p p e t }

Ev idence :
{ e v i d e n c e _ t e x t }

Your Answer

Listing 6: Prompt for Evidence Curation
I n s t r u c t i o n s
You a r e a f a c t − c h e c k e r . Your o v e r a l l m o t i v a t i o n i s t o v e r i f y a g i v e n Claim . In o r d e r t o f i n d e v i d e n c e t h a t

h e l p s t h e f a c t − c h e c k i n g work , you j u s t r a n a web s e a r c h which y i e l d e d a S ea rc h R e s u l t . Your t a s k r i g h t
now i s t o d e t e r m i n e i f t h e Answer i s u s e f u l t o f a c t − c h e c k i n g t h e Claim . Fol low t h e f o l l o w i n g r u l e s :

An answer i s u s e f u l even when i t doesn ’ t d i r e c t l y answer t h e q u e s t i o n , i f i t p r o v i d e s h i g h l y r e l e v a n t
i n f o r m a t i o n f o r f a c t − c h e c k i n g . I t j u s t has t o be somewhat r e l a t e d t o t h e Claim .

I f t h e Answer i s u s e f u l t o f a c t − c h e c k i n g t h e Claim , r e s p o n d on ly wi th " Yes " .
I f t h e Answer i s n o t u s e f u l t o f a c t − c h e c k i n g t h e Claim , r e s p o n d on ly wi th "No " .

Claim : { c l a i m }

Q u e s t i o n and Answer : { answer }
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Listing 7: Prompt for Verdict Prediction
# Fac t − Checking A n a l y s i s Task

## O b j e c t i v e
Analyze t h e p r o v i d e d e v i d e n c e and QA p a i r s t o d e t e r m i n e t h e v e r a c i t y o f t h e c l a i m u s i n g t h e s t r u c t u r e d

methodology below .
Must o u t p u t t h e d a t a i n t h e s t r u c t u r e d JSON format , n o t j u s t a s t e x t . The v e r d i c t must be one o f t h e

f o l l o w i n g o p t i o n s : Suppor ted , Refu ted , C o n f l i c t i n g Ev idence / C h e r r y p i c k i n g , Not Enough Evidence .
−−−

## V e r i f i c a t i o n P r o t o c o l

1 . ** Ev idence S y n t h e s i s **
− I d e n t i f y f a c t u a l a n c h o r s i n bo th e v i d e n c e and QA r e s p o n s e s
− Note c o n t r a d i c t i o n s , c o r r o b o r a t i o n s , and e v i d e n c e q u a l i t y

2 . ** V e r d i c t D e t e r m i n a t i o n **
S e l e c t ONE of t h e below v e r d i c t s u s i n g t h e s e s t r i c t c r i t e r i a :

** S u p p o r t e d **
− Evidence c o n c l u s i v e l y p r o v e s c l a i m t r u e
− M u l t i p l e c r e d i b l e s o u r c e s a l i g n w i t h o u t c o n t r a d i c t i o n

** R e f u t e d **
− Evidence d i s p r o v e s c e n t r a l c l a i m e l e m e n t s
− I n c l u d e s f a b r i c a t e d c o n t e n t / d e c e p t i v e p r a c t i c e s
− Lack of any c r e d i b l e s o u r c e s s u p p o r t i n g t h e c l a i m

** C o n f l i c t i n g Evidence / C h e r r y p i c k i n g **
− R e p u t a b l e s o u r c e s d i r e c t l y c o n t r a d i c t each o t h e r
− No r e s o l v a b l e c o n s e n s u s a f t e r a n a l y s i s

** Not Enough Evidence **
− No r e l e v a n t e v i d e n c e found a f t e r e x h a u s t i v e s e a r c h
− Claim t o o vague f o r s u b s t a n t i v e e v a l u a t i o n
* ( Las t − r e s o r t o p t i o n on ly ) *

Do n o t s e l e c t any o t h e r v e r d i c t s .

−−−

## I n p u t Data
** Claim t o E v a l u a t e **
{ c l a i m }

** R e l e v a n t Ev idence **
{ r e l e v a n t _ e v i d e n c e }

**QA P a i r A n a l y s i s **
{ q a _ t e x t }

−−−

## Outpu t R e q u i r e m e n t s

Must o u t p u t t h e d a t a i n t h e f o l l o w i n g JSON format , no e x c e p t i o n s . :

**JSON S t r u c t u r e **
‘ ‘ ‘ j s o n
{{

" c l a s s i f i c a t i o n " : " One of t h e above v e r d i c t o p t i o n s " ,
" j u s t i f i c a t i o n " : " Cohes ive a n a l y s i s p a r a g r a p h of r e a s o n i n g f o r t h e s e l e c t e d v e r d i c t "

}}
‘ ‘ ‘
Example Outpu t :

‘ ‘ ‘ j s o n
{{

" c l a s s i f i c a t i o n " : " R e f u t e d " ,
" j u s t i f i c a t i o n " : " The e v i d e n c e and answer s show t h a t t h e c l a i m was p u b l i s h e d on a f a k e news s i t e , so t h e

c l a i m i s r e f u t e d . "
}}
‘ ‘ ‘
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Abstract
In this work, we propose DEPGEN, a frame-
work for evaluating the generalization capabil-
ities of language models on the task of rela-
tion extraction, with dependency parses as scaf-
folds. We use a GNN-based framework that
takes dependency parses as input and learns
embeddings of entities which are augmented
to a baseline multilingual encoder. We also in-
vestigate the role of dependency parses when
they are included as part of the prompt to LLMs
in a zero-shot learning setup. We observe that
including off-the-shelf dependency parses can
aid relation extraction, with the best perform-
ing model having a mild relative improvement
of 0.91% and 1.5% in the in-domain and zero-
shot setting respectively across two datasets.
For the in-context learning setup, we observe
an average improvement of 1.67%, with sig-
nificant gains for low-performing LLMs. We
also carry out extensive statistical analysis to
investigate how different factors such as the
choice of the dependency parser or the nature
of the prompt impact performance. We make
our code and results publicly available for the
research community at https://github.
com/ShoRit/multilingual-re.git

1 Introduction

Information packaging in language does not hap-
pen arbitrarily (Croft, 2022). The “internal struc-
ture” of a text message, which determines how the
message is constructed or parsed, is grounded in
predefined linguistic rules in the form of syntax
and semantics. Linguistic structures such as de-
pendency graphs (Zeman et al., 2019; Chomsky,
2002) or semantic parses (Banarescu et al., 2013;
Reddy et al., 2017) have been pivotal in the his-
tory of NLP research both for their intrinsic merit
i.e. developing frameworks that can construct or
interpret such structures automatically (Chen et al.,
2024; Gu et al., 2024), and their external value as
augmentations to aid language understanding tasks
(Ding et al., 2024; Şahin, 2022).

Information extraction or IE is one such field
which had relied heavily on linguistic information
ever since its inception; some notable examples
include few-shot named entity recognition or NER
(Chen et al., 2023; Xie et al., 2024), relation ex-
traction (Li et al., 2023; Zhou et al., 2024), open-
domain question answering, (Zhang et al., 2023b,
2024) amongst others. However, recent years have
witnessed a decline in the adoption of linguistic
frameworks in favor of large scale pre-trained lan-
guage models (Devlin et al., 2018; Liu et al., 2019;
Conneau et al., 2020a; Sainz et al., 2024) which are
shown to encode syntactic and semantic informa-
tion within their parameters (Starace et al., 2023;
Liu et al., 2024) and have also demonstrated sig-
nificant improvements on IE (Sainz et al., 2024;
Efeoglu and Paschke, 2024).

Moreover, as we usher into an era of large lan-
guage models, the question which looms over our
head like the proverbial sword of Damocles “Are
dependency parses helpful for information extrac-
tion?” We are motivated to answer this question
based on the past work of Sachan et al. (2021)
which showed the utility of adding syntactic infor-
mation for different information extraction tasks in
English. However, the observed benefits hold true
only when the gold parses are available, with no
improvements over the baseline in presence of off-
the-shelf parses. In this study we expand upon this
idea and investigate whether off-the-shelf depen-
dency parses can assist language models in multi-
lingual information extraction for both indomain
and zero-shot transfer settings.

We specifically deal with the task of multi-
lingual relation extraction, wherein we identify the
nature of relationship between two annotated enti-
ties in a document. We show in Figure 1 how we
can connect the entities wood and fences by travers-
ing the dependency graph that connects these two
entities, highlighting the potential utility of linguis-
tic frameworks for this task. We explore the role
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Figure 1: Example depicting the supplemental information provided by the dependency tree. The entities of interest
are wood and fences, having the relationship material_used. The path wood← used→ make→ posts→ fences
elicits this relationship.

of dependency parses for cross-lingual relation ex-
traction in both a fine-tuned supervised setting and
a prompting/ in-context learning setup.

We propose a framework, DEPGEN, built on top
of a pretrained multi-lingual language model that
uses dependency parse information to perform re-
lation extraction for both in-domain and zero-shot
cross-lingual transfer settings. Through a com-
prehensive set of 2440 experiments spanning 10
languages over 2 datasets, we observe that incorpo-
rating dependency information brings about mod-
est improvements for in-domain and cross-lingual
fine-tuning setups by 0.9% and 1.5% respectively.

We also carry out extensive statistical analysis
to identify which factors significantly impact per-
formance. Our observations highlight that perfor-
mance improvements is mostly predicated by the
choice of the target language, and the choice of the
pre-trained language model rather than the choice
of the dependency parser for all cases. However,
for the in-context learning setup, we demonstrate
that the performance is determined by the choice
of the prompting strategy, with our proposed ap-
proach boasting the highest gains, i.e. an absolute
improvement of 1.67 F1 score over the baseline.

2 Related Work

2.1 Generalization in Information Extraction

Recent years bear witness to countless research en-
deavors to facilitate generalizability and transfer
across domains for several information extraction
(IE) tasks. Such works include zero-shot relation
extraction (Wang et al., 2022b; Jun et al., 2022;
Li et al., 2023), zero-shot or few-shot NER (Zeng
et al., 2022; Das et al., 2022; Xie et al., 2024) , zero-
shot KBQA (Gu et al., 2021; Dutt et al., 2023),
cross-lingual KBQA (Zhang et al., 2023a), and
open domain QA (Min et al., 2020; Zhang et al.,
2023b), amongst others (Fritzler et al., 2019; Zhou
et al., 2019). This interest is in part due to the
advent of large scale pre-trained language mod-
els such as Devlin et al. (2018); Liu et al. (2019);
Conneau et al. (2020a); Sainz et al. (2024) which

have shown significant improvements on IE. Re-
cent works on domain adaptation and transfer learn-
ing have advocated different pre-training objective
functions to ensure the model is well adapted to
the particular domain. Other multi-lingual/ cross-
lingual transfer works employ different data aug-
mentation techniques such as translation into the
target data to aid transfer. In this work, we investi-
gate approaches to perform multi-lingual informa-
tion extraction in a zero-shot setting without any
additional data in the target language.

2.2 Relation Extraction

The goal of relation extraction or relation classifi-
cation is to detect and classify the relation between
specified entities in a text according to some prede-
fined schema. Current research in RE has mostly
been carried out in a few-shot or a zero-shot set-
ting to address the dearth of training data (Liu et al.,
2022; Li et al., 2023) and the “long-tail” problem of
skewness in relation classes (Ye and Ling, 2019b;
Liang et al., 2023). Salient work in that direc-
tion includes (i) designing RE-specific pretraining
objectives for learning better representations (Bal-
dini Soares et al., 2019; Wang et al., 2022a), (ii)
incorporating meta-information such as relation de-
scriptions (Yang et al., 2020; Chen and Li, 2021),
a global relation graph, (Qu et al., 2020), or en-
tity types (Peng et al., 2020), and (iii) leveraging
additional information in the form of dependency
parses (Yu et al., 2022), translated texts for multilin-
gual RE (Nag et al., 2021), or distantly supervised
instances (Zhao et al., 2021; Ye and Ling, 2019a).
T-5 based models have shown to perform well in re-
lation extraction settings with few-shot finetuning
(Diaz-Garcia and Lopez, 2024).

Recently, LLMs have shown promise in zero-
shot relation extraction. Challenging cases such as
overlapping relations and none-of-the-above (nota)
relations have been handled effectively by LLMs in
zero-shot settings (Li et al., 2023). LLMs have also
outperformed smaller models for RE with larger,
document-level context sizes in models such as
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Figure 2: An overview of our proposed framework DEPGEN. The architecture takes as input a document, which
comprises a sequence of sentences, with the entities highlighted in red. This document passes through a multilingual
encoder to obtain the token embeddings, and a dependency parser that generates dependency parses for each
sentence. The individual sentences in the dependency parser are connected using a central [CENTRAL] node to
obtain a connected graph. The nodes are initialized using the embeddings obtained from the multilingual encoder
and updated using a Graph Neural Network. The final representations of the entities obtained from the GNN are
fused with the entity embeddings and concatenated with the [CLS] token of the document to predict the relation.

AutoRE (Xue et al., 2024). All of these techniques
seek to alleviate the need for expensive human-
annotated training data. In this work, we question
whether incorporating linguistic structures in the
form of dependency parsing as an explicit addition
to the input in existing models can aid learning
robust representations that can be transferred to
other languages.

3 Methodology

We investigate the role of dependency parses for
zero-shot cross-lingual relation extraction in two
setups, namely (i) a fine-tuned setup where a model
is first trained on a given source language and
then evaluated on a target language, and (ii) an in-
context-learning setup where we prompt an LLM to
predict the relation between two specified entities
in a zero-shot setting to test the innate capabilities
of the LLM for RE.

3.1 Fine-Tuning Setting

We present a detailed description of our proposed
framework, DEPGEN here. Our framework lever-
ages the internal structure of a document text to
aid relation classification. We define internal struc-
ture as the linguistic information encoded within

the document based on syntactic rules in the form
of dependency parses. This section describes the
individual components that constitute our frame-
work DEPGEN, namely the multilingual encoder,
dependency parser, graph neural network, and the
fusion layer. We dive deep into the methodology
for representing the textual content, and elaborate
on the approach employed for incorporating depen-
dency parses for a given input sentence. Finally,
we end the section with how the different modes of
information are fused, and the classification setup.
A pictorial representation of our framework can
be seen in Figure 2 Our architecture involves the
following components.

3.1.1 Multilingual Encoder

We experiment with mBERT (Devlin et al., 2018)
and XLMR (Conneau et al., 2020c) as our multi-
lingual text encoder to obtain representations of
the input sentence(s). Past work has shown the
efficacy of such contextual multilingual encoders
in capturing long-range semantic dependency in
text (Litschko et al., 2021). Similar to these works,
we consider the final encoder layer representation
of [CLS] token as the text representation. The sen-
tence(s) are fed as input to the MULTILINGUAL
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ENCODER (Figure 2) and the [CLS] token represen-
tation from the final layer is fed into the FUSION

LAYER. The individual token representations from
the final layer are used to initialize the node embed-
dings in the dependency graph of the INTERNAL

STRUCTURE module, which we describe below.

3.1.2 Internal Structure
We incorporate the internal structure information
by learning the syntactic dependency information
between the tokens in the input sentence. We first
pass the input tokens through a DEPENDENCY

PARSER to obtain the dependency tree for each
sentence. We then construct a dependency graph
from the constituent dependency trees, which is
then fed as input to a Graph Neural Network (GNN)
(Scarselli et al., 2008). The various components of
this module are as follows.

Dependency Parser To generate the dependency
tree, we use off-the-shelf multilingual dependency
parsing modules, i.e. Stanza (Qi et al., 2020a) and
Trankit (Nguyen et al., 2021). The resulting de-
pendency tree represents the syntactic dependency
relations between the words in a sentence; the de-
pendencies follow the Universal Dependencies for-
malism (Nivre et al., 2016; Zeman et al., 2019),
resulting in 76 types of dependencies across the
different languages for our experiments.

Dependency Graph Since the dependency tree
is defined for a sentence, the output from DEPEN-
DENCY PARSER will be in the form of a forest of
disconnected dependency trees; for example 4 trees
for 4 sentences in Figure 2. We add a pseudo node
[CENTRAL] and add a new type of dependency
relation [SENT] between the [CENTRAL] and all
the [ROOT] nodes of the sentences. The proposed
design has two benefits - (1) The [CENTRAL] node
allows for information exchange between the sen-
tences, which otherwise would probably lead to
different clusters of representations (represented by
colors in Figure 2) for nodes in different sentences,
(2) The distance between the two entities is reduced
(dotted red line in Figure 2) when the entities are
present across two different sentences, resulting in
an efficient information flow between them.

Graph Neural Network We represent each word
as a node in the dependency graph and the depen-
dency relations as the edges between the nodes.
Each node in the graph is initialized with the rep-
resentations obtained from the final layer of the

MULTILINGUAL ENCODER. We aggregate the sub-
token representations via max-pooling and obtain
the final representation of a word. This initializa-
tion helps incorporate the semantic relationship
between the nodes and facilitates end-to-end joint
training of the MULTILINGUAL ENCODER and the
INTERNAL STRUCTURE modules. The relation
embeddings for the all the relation types are ini-
tialized at random and learnt jointly along with
the node embeddings. The representations of the
two entities from the multi-layer GNN are then
fed to the FUSION LAYER along with the sentence
representation for relation prediction.

3.1.3 Relation Prediction
We concatenate the representations obtained from
the MULTILINGUAL ENCODER and the INTER-
NAL STRUCTURE modules in the FUSION LAYER

and perform a multi-class classification for predict-
ing the relation. During training, we compute the
standard Cross Entropy loss, and back-propagate it
jointly through all the components of the network.

3.2 In-context Learning Setting

In addition to the DEPGEN framework that encap-
sulates the fine-tuned setting, we also explore the
role of dependency parses when provided as ad-
ditional inputs to LLMs in a zero-shot prompting
setup. We experiment with three different types
of prompt formats that encodes the dependency
information which we describe below.

Tuple Format: In the tuple-based prompt format,
we simply provide the dependency parse as a list
of tuples or dictionary keys. Each tuple comprises
three elements, i.e. a node in the dependency graph
or a word, the corresponding head node of that
word, and the relation that connects the head node
to the word. For example, the phrase “Porsche
Panamera”, would have the following information
in the form of a tuple.

{
word : P o r s c h e
head : Panamera ,
r e l : compound

}

Text Format: Instead of providing the de-
pendency parse information in the form of tu-
ples, we verbalize the dependency relations be-
tween the words in the sentence in natural
language format. In the above example of
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“Porsche Panamera”, we re-write the tuple infor-
mation as “Porsche is Compound noun
modifier of Panamera”. We do this for all
the tuples in the dependency graph.

Filtered Text Format: As opposed to verbaliz-
ing all the tuples in the dependency graph, we filter
out only the tuples that connect the two entities in
the sentence via the dependency relations. Not only
does this reduce the number of input tokens to the
LLM, it also helps filter out redundant information.

As a control, we also prompt the models with
only the text, without any dependency informa-
tion, which serves as a baseline. The details of the
prompts are in the Appendix.

4 Experimental Setup

4.1 Dataset

We conduct our experiments on relation extraction
on two datasets i.e. IndoRE and REDFM.

IndoRE (Nag et al., 2021) The IndoRE dataset
covers a diverse and rich set of entity and relation
annotated sentences in three low resource Indian
languages — Bengali (bn), Hindi (hi) and Telugu
(te). To study protocols for transferring RE capa-
bility across languages, it also has labeled English
(en) RE instances as an example of a resource-high
language. The dataset consists of 32,610 sentences
combining all four languages from Wikidata where
each language contains 51 unique relations. Out
of these languages, we exclude Bengali from our
experiments because the dependency parsers’ in-
ability to parse the language.

REDFM (Huguet Cabot et al., 2023) We use
this dataset consisting of examples from 7 lan-
guages. These languages include English (en), Ara-
bic (ar), Spanish (es), German (de), Italian (it),
French (fr), and Chinese (zh), which are hand-
annotated. There are a total of about 15,400 ex-
amples in the dataset with a total of 32 types of
relations. We use the languages en, es, de, it, and
fr for training (i.e. source languages), and all the
7 languages for testing in a zero-shot setting (i.e.
target languages). We exclude Arabic and Chinese
as source language due to the unavailability of a
training split in the REDFM dataset. We use the
train/validation/test splits as in the original paper.

4.2 Fine-tuned Experimental Setup

We experiment with the following settings:

1. Baseline: We experiment with mBERT (De-
vlin et al., 2019) and XLMR (Conneau et al.,
2020b) as our choices to encode the document
text and the entity spans. We concatenate the
pooled representation of the entities and the
[CLS] embedding and use it for relation clas-
sification.

2. Dependency Parses: We experiment with
Trankit (Nguyen et al., 2021) and Stanza (Qi
et al., 2020b) as the choice of the dependency
parser across all languages for both datasets.

3. Graph Neural Network: We experiment
with RGCN (Schlichtkrull et al., 2018) and
RGAT (Busbridge et al., 2019) as the back-
bone GNN architecture to encode the depen-
dency information between words in the doc-
ument. We use a GNN with 2 hidden layers
for all our experiments.

4.3 In-context Learning Experimental Setup

We employ three different instruction-tuned LLMs
for our in-context learning experiments, i.e.
LLaMA (Meta-Llama-3-8B-Instruct) (Grattafiori
et al., 2024), Mistral (Mistral-7B-Instruct-v0.3)
(Jiang et al., 2023) and Qwen (Qwen2-7B-Instruct)
(Yang et al., 2024). We use instruction-tuned LLMs
since we wish to employ these LLMs in a zero-shot
setup for relation extraction without fine-tuning or
additional training. Similar to the fine-tuned experi-
mental setup, the dependency parse information are
obtained from two sources, i.e. Stanza and Trankit.

4.4 Experiment Counts

For in-domain, we have a total of 8 languages (5
for RedFM, 3 for IndoRE) for 2 given choices of
encoder, parser and GNN. Each experiment is re-
peated for 5 seeds resulting in a total of 320 exper-
iments, that include dependency information and
an additional 80 experiments (over 8 languages,
2 encoders, and 5 seeds) as the baseline. For the
zero-shot cross-lingual transfer setting, for RedFM,
we have 6 possible target languages for each of the
5 source languages, while for IndoRE, we have
2 possible targets for each of the 3 source lan-
guages. Thus for each 36 possible cross-lingual
pairs, we evaluate 50 different combination of en-
coder, parser, GNN, and seeds, resulting in another
1800 experiments. Finally, in the in-context learn-
ing setup for LLMs, we experiment with 3 LLMs
for 10 languages over 4 kinds of prompts (including
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RedFM IndoRE

mBERT

DEP GNN en es fr it de en hi te

- - 84.3±0.7 80.0±0.6 78.6±0.3 76.3±0.8 78.7±0.3 94.3±0.6 89.6±0.4 84.9±0.4

stanza rgcn 85.7±0.8 80.5±1.0 79.7±1.0 78.2±0.5 80.0±0.9 94.4±0.2 90.9±0.3 86.1±0.9
stanza rgat 85.2±1.4 82.2±0.6 79.9±0.4 77.9±1.2 80.5±0.6 94.9±0.3 89.5±1.4 85.9±1.1
trankit rgcn 84.3±0.4 81.8±0.8 80.7±0.8 78.9±0.7 79.7±0.9 94.0±0.2 89.7±0.1 85.9±1.9
trankit rgat 85.5±1.3 80.9±0.3 80.2±0.2 77.3±0.8 78.9±0.7 94.1±0.5 88.9±0.5 84.6±0.8

XLMR

- - 84.0±1.1 77.2±2.0 76.2±1.0 74.8±1.2 75.2±0.6 92.1±0.8 88.7±0.9 86.3±1.1

stanza rgcn 83.7±0.6 76.8±0.8 76.7±0.9 73.3±0.7 75.7±1.5 91.8±0.8 89.6±1.1 85.6±0.7
stanza rgat 84.0±0.8 77.5±1.4 74.4±0.9 75.6±1.2 76.2±1.1 92.2±0.4 89.9±0.9 85.7±0.6
trankit rgcn 83.8±0.5 76.4±1.1 74.7±1.0 72.6±2.3 73.9±2.6 91.9±0.9 89.9±0.8 85.2±0.5
trankit rgat 82.6±0.8 77.3±0.2 75.0±0.3 74.0±1.7 75.9±0.1 92.6±0.7 89.2±1.0 85.9±1.6

Table 1: In-domain RE performance of mBERT and XLMR on RedFM and IndoRE, with dependency information
(i.e. choice of the parser or DEP, and the choice of the GNN used to encode the information, i.e. GNN). Results are
averaged across the top 3 seeds, with the highest values in each column bolded.

RedFM IndoRE

mBERT

DEP GNN en es fr it de ar zh en hi te

- - 77.5±1.1 81.0±1.1 78.8±1.1 76.7±1.1 75.6±1.1 72.5±1.1 70.0±1.1 57.5±1.8 57.6±2.7 42.4±2.4

stanza rgcn 78.2±0.8 81.0±0.8 79.5±0.8 76.8±0.8 77.1±0.8 72.6±0.8 70.0±0.8 57.0±1.0 57.1±0.8 44.6±1.2
stanza rgat 78.0±1.0 81.1±1.0 78.8±1.0 76.5±1.0 77.2±1.0 73.2±1.0 70.4±1.0 56.4±1.2 57.7±1.2 45.2±1.4
trankit rgcn 78.7±0.8 81.3±0.8 79.3±0.8 75.4±0.8 77.8±0.8 72.8±0.8 70.0±0.8 57.9±0.8 59.1±0.6 44.9±1.6
trankit rgat 77.9±0.8 80.6±0.8 79.1±0.8 76.3±0.8 77.9±0.8 73.1±0.8 70.4±0.8 57.1±1.4 57.9±1.8 45.1±1.7

XLMR

- - 72.7±1.4 74.2±1.4 72.2±1.4 66.8±1.4 70.7±1.4 61.8±1.4 63.1±1.4 50.0±2.2 55.1±1.5 45.9±1.6

stanza rgcn 73.4±1.4 74.5±1.4 73.2±1.4 67.7±1.4 70.3±1.4 61.2±1.4 63.9±1.4 49.3±1.8 55.4±1.4 46.1±1.7
stanza rgat 73.3±1.5 74.3±1.5 73.4±1.5 67.9±1.5 68.4±1.5 61.1±1.5 63.2±1.5 50.0±1.6 53.8±2.8 46.3±2.0
trankit rgcn 73.1±1.3 74.7±1.3 73.1±1.3 66.8±1.3 69.5±1.3 62.7±1.3 63.8±1.3 50.7±0.7 56.3±1.1 45.5±2.9
trankit rgat 73.1±1.1 75.7±1.1 73.4±1.1 65.9±1.1 70.9±1.1 62.1±1.1 63.6±1.1 50.8±1.4 56.0±2.2 46.9±2.6

Table 2: Zero-shot Cross-lingual RE performance on RedFM and IndoRE with mBERT and XLMR as the
multilingual encoders with different combinations of dependency information. For a given target language, we
average the performance across the different source languages. The highest values in each column are highlighted
in bold. Detailed individual cross-lingual performance metrics are given in the Appendix.

the baseline), and 2 kinds of parsers (Stanza and
Dependency), resulting in a suite of 240 prompt-
ing experiments. Our final experimental suite thus
comprises 2440 experiments.

5 Results and Insights

In this section, we pose the following research ques-
tions (RQs) and attempt to answer the same.
RQ1. Impact of dependency parses on RE for
indomain and cross-lingual transfer ?

We report the in-domain and cross-lingual re-
lation extraction performance with mBERT and
XLMR as the multilingual encoders, stanza and
trankit as the choice of the off-shelf-parsers, and
RGCN and RGAT being the backbone GNN for

both the IndoRE and RedFM datasets, in Tables 1
and 2 respectively.

At the outset, we observe that across both
datasets, adding dependency information gener-
ally improves performance over the baseline in the
in-domain setting; we see higher gains when we
have mBERT as the MLM as opposed to XLMR.
We also observe that the gains are higher for the
REDFM dataset than IndoRE, possibly due to
the poorer quality of dependency parses on low-
resource languages like Hindi and Telugu, as op-
posed to standard high-resource cases like English,
Spanish, and Italian. In fact, for all languages other
than English, we see a consistent improvement in
F1-score of approximately 2.0% and 1.0% with
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Figure 3: Performance of DEPGEN for in-domain and
zero-shot cross-lingual transfer settings on the IndoRE
dataset analyzed across variations in sentence, lexical
and dependency length

the mBERT model on the REDFM and IndoRE
dataset respectively, for the best combination of
dependency parser and GNN.

In the zero-shot cross-lingual transfer scenario
from Table 2 we observe trends that are markedly
different from the in-domain setting. Each entry in
this Table is computed by averaging the macro-F1
score over the other source languages, apart from
itself, for the top 3 seeds. We notice only slight
improvements in RE performance for mBERT but
higher gains for XLMR. We hypothesize that since
XLMR has a worse performance than mBERT, it
benefits more from the dependency information in
the zero-shot setting. In a similar vein, we observe
much higher gains for Hindi and Telugu (around
2.6% and 6.6% relative performance improvements
respectively) in the zero-shot setting for mBERT.
The markedly lower scores in IndoRE in the zero-
shot transfer setup as compared to REDFM can be
attributed to the higher number of relations in the
dataset (32 for IndoRE vs 51 for REDFM).
RQ2. Which scenarios benefit the most with
additional information in the fine-tuned setup?

In the fine-tuned setup, we analyze which sce-
narios or inputs benefit the most from including

Figure 4: Performance of DEPGEN for in-domain and
zero-shot cross-lingual transfer settings on the RedFM
dataset analyzed across variations in sentence, lexical
and dependency length

dependency information. We thus group the test
instances according to three different dimensions,
i.e. (1) input sentence length (2) lexical distance
between two entities in the sentence and (3) depen-
dency path length. Figures 3 and 4 show the effect
of these components for the in-domain and zero-
shot cross-lingual transfer settings for the IndoRE
and RedFM datasets respectively. The blue, orange
and green plots reflect the bottom quartile, inter-
quartile range and the top quartile respectively for
each of these three dimensions.

Sentence Length: We quantify sentence length
based on the total number of tokens in the docu-
ment. For both zero-shot and in-domain settings
across the two datasets, adding linguistic informa-
tion in the form of dependency graphs improves
relation extraction for longer sentences. We posit
that including dependency information helps to cap-
ture long range dependencies across words and thus
the observed gains for longer sentences.

Lexical Distance: We quantify the lexical dis-
tance as the number of tokens between the two
entities. Here, we observe that dependency infor-
mation is more helpful for cases where the dis-
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Model Parser Prompting RedFM IndoRE Average
ar de en es fr it zh en hi te

Llama

None - 25.6 25.7 27.0 27.0 16.7 36.7 37.1 47.6 39.0 21.9 30.4
Stanza Tuple 24.3 19.3 23.9 17.0 18.4 19.3 29.6 30.2 28.3 10.9 22.1
Stanza Text 25.1 24.5 22.6 23.1 23.5 24.0 30.6 44.4 37.4 22.9 27.8
Stanza Filtered Text 33.5 35.0 32.3 31.6 30.5 34.0 36.1 48.0 44.5 29.8 35.5 (↑5.1%)
Trankit Tuple 30.3 17.1 37.3 17.2 18.3 22.1 32.4 27.5 30.6 10.5 24.3
Trankit Text 23.4 25.4 22.7 22.6 23.8 25.6 30.5 44.8 38.4 24.0 28.1
Trankit Filtered Text 33.1 35.2 35.6 31.4 28.7 30.3 35.3 46.2 42.8 29.5 34.8

Mistral

None - 36.7 38.2 39.0 35.8 36.0 38.3 35.6 51.3 38.5 10.6 36.0
Stanza Tuple 27.2 35.9 30.9 31.9 28.1 35.1 30.9 48.4 30.6 9.8 30.9
Stanza Text 29.2 32.0 34.4 32.6 30.4 33.4 33.2 47.5 37.1 8.7 31.9
Stanza Filtered Text 39.1 39.5 40.9 37.1 36.6 40.2 36.7 50.8 38.5 10.3 37.0 (↑1.0%)
Trankit Tuple 27.4 35.3 32.5 31.5 26.9 30.6 31.3 48.0 30.5 10.8 30.5
Trankit Text 27.9 32.0 34.7 30.7 31.0 32.7 34.1 46.8 36.4 11.2 31.7
Trankit Filtered Text 39.3 39.7 39.3 36.3 36.9 37.8 38.1 50.9 38.3 11.2 36.8

Qwen

None - 44.3 39.6 40.3 38.0 36.8 43.0 40.8 42.7 39.2 29.1 39.4
Stanza Tuple 35.4 32.0 34.6 31.8 31.9 37.8 31.4 38.3 38.2 26.1 33.8
Stanza Text 33.8 34.8 36.0 33.3 33.3 33.3 29.9 39.5 41.1 30.6 34.6
Stanza Filtered Text 42.1 32.8 39.8 37.3 33.6 38.4 40.4 44.7 45.4 28.6 38.3(↓1.1%)
Trankit Tuple 34.3 30.7 35.2 34.1 28.1 35.1 33.6 39.6 37.4 21.8 33.0
Trankit Text 35.4 35.2 34.2 33.1 34.0 33.4 30.2 40.5 40.5 27.3 34.4
Trankit Filtered Text 39.9 36.0 35.4 39.4 34.7 38.6 34.5 44.0 45.9 26.6 37.5

Table 3: Effect of dependency parses and prompting techniques for LLM-based relation extraction for the REDFM
and IndoRE datasets. Performance reported in terms of F1-Score. Best performing methods are shown in bold.

tance between the entities is not high, i.e. Low and
Medium categories.

Dependency Path Length: We quantify the de-
pendency path length as the number of dependency
relations that separate the two entities in the depen-
dency graph. We see prominent gains for both short
and long range dependency paths, especially for
the ZS case for IndoRE. However, similar to lex-
ical distance, the gains are more prominent when
the dependency path between the entities is small.
Since our chosen GNN has only two layers, we hy-
pothesize that it is unable to capture signals across
long dependency paths effectively.
RQ3. Can dependency parses help improve
relation extraction performance for LLMs?

Table 3 summarizes the performance of three LLMs
- LLaMA (Grattafiori et al., 2024), Mistral (Jiang
et al., 2023) and Qwen (Yang et al., 2024) for zero-
shot relation extraction on the IndoRE and RedFM
datasets. To account for the skew in distribution
of relations, we employ the macro-F1 score as the
primary evaluation metric. We observe that for the
LLama-3 and Mistral models, incorporating depen-
dency parses improves performance across several
cases. The gains are most prominent when the de-

pendency information is presented in the form of
natural language text; we see consistent improve-
ments for the Text Prompt Format over the Tuple
Prompt Format, where the information is presented
as a list of tuples. We see that the filtered prompt
that removes information not pertaining to the two
entities, improves performance further.

The improvement can be as significant as 1% to
5% in some cases in terms of absolute F1-score for
Mistral and LLama-3 respectively. For the Qwen
model, dependency parses do not afford much ben-
efits. Thus the choice of the LLM and the descrip-
tion of the prompt, play a significant role in zero-
shot relation extraction performance. It should be
noted, however, that the zero-shot performance for
the in-context learning setup is significantly worse
than the zero-shot cross-lingual performance in the
fine-tuned setup. With LLMs, we see an average
absolute improvement of 1.67% across all models
and languages with the Filtered Text Prompt.
RQ4. Which factors influence generalization?

We now inspect the factors that characterize
performance improvements over the baseline for
the two datasets in the fine-tuned learning and in-
context learning setup. We perform a multivariate
ANOVA analysis with the relative performance dif-
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ference (expressed as a percentage over the base-
line), from including the dependency parses, as the
dependent variable.

The independent variables chosen are the choice
of the multilingual encoder, (mBERT or XLMR),
dependency parser (Stanza or Trankit), GNN em-
ployed (RGCN or RGAT), and the source and tar-
get language 1. We also consider the pair-wise
interaction effects of each of these variables, and
note the F-statistic and their corresponding p-value
for the indomain (Tables 9 and 11) and zero-shot
cross-lingual (Tables 10 and 12) respectively.

For the indomain setting in IndoRE, we observe
that the relative performance change hinges most
on the choice of the dependency parser followed
by source language. Although the choice of the
encoder and the GNN do not have any significant
effect on relative performance, their pair-wise inter-
actions is indeed significant. The story is remark-
ably different for REDFM where only the choice
of the encoder has any significant effect on RE.

In the zero-shot cross-lingual setting for IndoRE,
we see significant effects arising from the choice
of the target language and the pairwise interaction
between the choice of the source/target language
with that of the encoder. A similar story also holds
for REDFM, wherein we notice the only significant
interactions are between the choice of the source/-
target language and the encoder, and also between
the choice of the source/target language pairs them-
selves. Simply put in the zero-shot setting the role
of the dependency information is insignificant for
both datasets.

We carry out a similar statistical analysis for the
zero-shot ICL setup, with the relative performance
change over the baseline as the dependent variable,
and the choice of the LLM (i.e. LLama-3, Qwen,
and Mistral), the prompt (i.e. Tuple Format, Text
Format, and Filtered Text Format), the language
(7 for RedFM and 3 for IndoRE), and the choice
of the dependency parser (i.e. Trankit and Stanza)
as the independent variables. We also consider the
pair-wise interaction effects of each of these vari-
ables, and note the F-statistic and their correspond-
ing p-value for the IndoRE and REDFM dataset
respectively in Tables 13 and 14 respectively. We
observe, over both datasets, significant effects aris-
ing from the choice of the LLM, and the choice
of the prompt, as well as the pairwise interaction

1For the indomain setting we consider only the target lan-
guage

between the choice of the prompt and LLM, and
the choice of the source language and LLM. Once
again, we see that the choice of the dependency
parser, i.e. the Stanza or Trankit, does not play a
significant role.

6 Conclusion and Future Work

In this paper we propose a multi-component frame-
work for multi-lingual relation extraction. Our fine-
tuned framework DEPGEN, combines the signals
from the input sentence with dependency parses
that are encoded through a GNN. Through exten-
sive evaluations, we have reported the implica-
tions of our work for both in-domain and zero-shot
transfer settings across multiple languages. We
observe that including off-the-shelf dependency
parses can aid relation extraction, with the best per-
forming model having a mild relative improvement
of 0.91% and 1.5% in the in-domain and zero-shot
setting respectively across two datasets. We also
develop an in-context learning prompting approach
that incorporates dependency information to bring
about an average improvement of 1.67%, with sig-
nificant gains for low-performing LLMs.

In this work, we investigate how augmenting
dependency parses in language models can facil-
itate information extraction tasks in low-resource
settings. Specifically, our contributions being inde-
pendent of the language setting makes our model
portable to other languages in a zero-shot transfer
setup. Future avenues will explore the role of these
linguistic frameworks for other information extrac-
tion or reasoning tasks, and the impact of different
kinds of linguistic frameworks such as AMRs or
UMRs.
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Grūzı̄tis, Bruno Guillaume, Céline Guillot-Barbance,
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Žabokrtský, Amir Zeldes, Manying Zhang, and
Hanzhi Zhu. 2019. Universal dependencies 2.5.
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL), Fac-
ulty of Mathematics and Physics, Charles University.

Jiali Zeng, Yufan Jiang, Yongjing Yin, Xu Wang,
Binghuai Lin, and Yunbo Cao. 2022. DualNER: A
dual-teaching framework for zero-shot cross-lingual
named entity recognition. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2022,
pages 1837–1843, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Chen Zhang, Yuxuan Lai, Yansong Feng, Xingyu Shen,
Haowei Du, and Dongyan Zhao. 2023a. Cross-
lingual question answering over knowledge base as
reading comprehension. In Findings of the Associ-
ation for Computational Linguistics: EACL 2023,
pages 2439–2452, Dubrovnik, Croatia. Association
for Computational Linguistics.

Heidi Zhang, Sina Semnani, Farhad Ghassemi,
Jialiang Xu, Shicheng Liu, and Monica Lam. 2024.
SPAGHETTI: Open-domain question answering
from heterogeneous data sources with retrieval and
semantic parsing. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 1663–
1678, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Qin Zhang, Shangsi Chen, Dongkuan Xu, Qingqing
Cao, Xiaojun Chen, Trevor Cohn, and Meng Fang.
2023b. A survey for efficient open domain question
answering. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 14447–14465,

Toronto, Canada. Association for Computational Lin-
guistics.

Xinyu Zhao, Shih-Ting Lin, and Greg Durrett. 2021.
Effective distant supervision for temporal relation ex-
traction. In Proceedings of the Second Workshop on
Domain Adaptation for NLP, pages 195–203, Kyiv,
Ukraine. Association for Computational Linguistics.

Ben Zhou, Daniel Khashabi, Chen-Tse Tsai, and
Dan Roth. 2019. Zero-shot open entity typing
as type-compatible grounding. arXiv preprint
arXiv:1907.03228.

Sizhe Zhou, Yu Meng, Bowen Jin, and Jiawei Han. 2024.
Grasping the essentials: Tailoring large language
models for zero-shot relation extraction. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 13462–13486,
Miami, Florida, USA. Association for Computational
Linguistics.

A Appendices
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Dataset Source Encoder Parser Sent Length Lex Length Dep Length # Docs # Rels

Mean Median Mean Median Mean Median

Indore en mBERT stanza 31.23 29.0 13.92 11.0 5.43 5.0 8486 51
hi mBERT stanza 66.76 56.0 27.29 21.0 5.70 5.0 6963 51
te mBERT stanza 151.45 140.0 44.74 31.0 6.05 6.0 8154 51
en mBERT trankit 31.23 29.0 13.92 11.0 5.42 5.0 8486 51
hi mBERT trankit 66.76 56.0 27.29 21.0 5.85 6.0 6963 51
te mBERT trankit 151.45 140.0 44.74 31.0 5.69 6.0 8154 51
en XLMR stanza 34.40 32.0 15.95 13.0 5.43 5.0 8486 51
hi XLMR stanza 56.25 48.0 22.85 17.0 5.70 5.0 6963 51
te XLMR stanza 125.60 113.0 37.43 26.0 6.05 6.0 8154 51
en XLMR trankit 34.40 32.0 15.95 13.0 5.42 5.0 8486 51
hi XLMR trankit 56.25 48.0 22.85 17.0 5.85 6.0 6963 51
te XLMR trankit 125.60 113.0 37.43 26.0 5.69 6.0 8154 51

RedFM en mBERT stanza 117.53 107.0 27.96 17.0 6.40 6.0 10899 32
es mBERT stanza 103.77 91.0 25.97 17.0 6.24 6.0 6538 32
fr mBERT stanza 92.18 78.0 23.19 15.0 5.86 5.0 7383 32
it mBERT stanza 79.31 65.0 20.56 14.0 5.80 5.0 6812 32
de mBERT stanza 88.79 79.0 22.97 15.0 5.28 5.0 7497 32
ar mBERT stanza 107.15 90.0 29.68 22.0 6.08 6.0 1846 32
zh mBERT stanza 118.18 101.0 35.25 22.0 6.69 6.0 1384 32
en mBERT trankit 117.53 107.0 27.96 17.0 6.37 6.0 10899 32
es mBERT trankit 103.77 91.0 25.97 17.0 6.16 6.0 6538 32
fr mBERT trankit 92.18 78.0 23.19 15.0 5.68 5.0 7383 32
it mBERT trankit 79.31 65.0 20.56 14.0 5.64 5.0 6812 32
de mBERT trankit 88.79 79.0 22.97 15.0 5.16 5.0 7497 32
ar mBERT trankit 107.15 90.0 29.68 22.0 6.18 6.0 1846 32
zh mBERT trankit 118.18 101.0 35.25 22.0 6.75 6.0 1384 32
en XLMR stanza 130.33 119.0 31.52 19.0 6.40 6.0 10899 32
es XLMR stanza 112.22 100.0 28.86 19.0 6.24 6.0 6538 32
fr XLMR stanza 103.20 86.0 26.77 17.0 5.86 5.0 7383 32
it XLMR stanza 85.14 71.0 22.72 16.0 5.80 5.0 6812 32
de XLMR stanza 96.23 87.0 25.53 17.0 5.28 5.0 7497 32
ar XLMR stanza 95.81 81.0 26.64 19.0 6.08 6.0 1846 32
zh XLMR stanza 96.10 81.0 28.35 18.0 6.69 6.0 1384 32
en XLMR trankit 130.33 119.0 31.52 19.0 6.37 6.0 10899 32
es XLMR trankit 112.22 100.0 28.86 19.0 6.16 6.0 6538 32
fr XLMR trankit 103.20 86.0 26.77 17.0 5.68 5.0 7383 32
it XLMR trankit 85.14 71.0 22.72 16.0 5.64 5.0 6812 32
de XLMR trankit 96.23 87.0 25.53 17.0 5.16 5.0 7497 32
ar XLMR trankit 95.81 81.0 26.64 19.0 6.18 6.0 1846 32
zh XLMR trankit 96.10 81.0 28.35 18.0 6.75 6.0 1384 32

Table 4: Combined Statistics for Indore and RedFM Datasets
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Without Any Dependency Information:
Given the sentence: "The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe) manufactured by the
<e2>German</e2> automobile manufacturer <e1>Porsche</e1>. It is front-engined and has a rear-wheel-drive layout, with
all-wheel drive versions also available.", which one of the following relations between the two entities <e1> and <e2> is being
discussed? Choose one from this list of 32 options:\n0: country\n1: place of birth \n2: spouse\n3: country of citizenship\n4:
instance of\n5: capital\n6: child\n7: shares border with\n8: author\n9: director\n10: occupation\n11: founded by\n12:
league\n13: owned by\n14: genre\n15: named after\n16: follows\n17: headquarters location\n18: cast member\n19:
manufacturer\n20: located in or next to body of water\n21: location\n22: part of\n23: mouth of the watercourse\n24: member
of\n25: sport \n26: characters\n27: participant\n28: notable work\n29: replaces\n30: sibling\n31: inception\n\n. The
answer is :

Tuple Format Prompt:
Given the sentence: "The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe) manufactured by the
<e2>German</e2> automobile manufacturer <e1>Porsche</e1>. It is front-engined and has a rear-wheel-drive layout, with
all-wheel drive versions also available.", which one of the following relations between the two entities <e1> and <e2> is
being discussed? We also provide the dependency parse in the form of head, rel, and word: {"head": "Panamera", "rel":
"det", "word": "The"}, {"head": "Panamera", "rel": "compound", "word": "Porsche"}, {"head": "vehicle", "rel": "nsubj",
"word": "Panamera"}, {"head": "vehicle", "rel": "cop", "word": "is"}, {"head": "vehicle", "rel": "det", "word": "a"}, {"head":
"sized", "rel": "compound", "word": "mid"}, {"head": "sized", "rel": "punct", "word": "/"}, {"head": "sized", "rel": "amod",
"word": "full"}, {"head": "sized", "rel": "punct", "word": "-"}, {"head": "vehicle", "rel": "amod", "word": "sized"}, {"head":
"vehicle", "rel": "compound", "word": "luxury"}, {"head": "ROOT", "rel": "root", "word": "vehicle"}, {"head": "segment",
"rel": "punct", "word": "("}, {"head": "segment", "rel": "compound", "word": "E"}, {"head": "segment", "rel": "punct",
"word": "-"}, {"head": "vehicle", "rel": "appos", "word": "segment"}, {"head": "Europe", "rel": "case", "word": "in"}, {"head":
"segment", "rel": "nmod", "word": "Europe"}, {"head": "segment", "rel": "punct", "word": ")"}, {"head": "vehicle", "rel":
"acl", "word": "manufactured"}, {"head": "manufacturer", "rel": "case", "word": "by"}, {"head": "manufacturer", "rel": "det",
"word": "the"}, {"head": "manufacturer", "rel": "amod", "word": "German"}, {"head": "manufacturer", "rel": "compound",
"word": "automobile"}, {"head": "manufactured", "rel": "obl", "word": "manufacturer"}, {"head": "manufacturer", "rel":
"appos", "word": "Porsche"}, {"head": "vehicle", "rel": "punct", "word": "."}, {"head": "engined", "rel": "nsubj", "word":
"It"}, {"head": "engined", "rel": "cop", "word": "is"}, {"head": "engined", "rel": "obl:npmod", "word": "front"}, {"head":
"engined", "rel": "punct", "word": "-"}, {"head": "ROOT", "rel": "root", "word": "engined"}, {"head": "has", "rel": "cc",
"word": "and"}, {"head": "engined", "rel": "conj", "word": "has"}, {"head": "layout", "rel": "det", "word": "a"}, {"head":
"drive", "rel": "amod", "word": "rear"}, {"head": "drive", "rel": "punct", "word": "-"}, {"head": "drive", "rel": "compound",
"word": "wheel"}, {"head": "drive", "rel": "punct", "word": "-"}, {"head": "layout", "rel": "amod", "word": "drive"}, {"head":
"has", "rel": "obj", "word": "layout"}, {"head": "layout", "rel": "punct", "word": ","}, {"head": "available", "rel": "mark",
"word": "with"}, {"head": "drive", "rel": "det", "word": "all"}, {"head": "drive", "rel": "punct", "word": "-"}, {"head": "drive",
"rel": "compound", "word": "wheel"}, {"head": "versions", "rel": "compound", "word": "drive"}, {"head": "available", "rel":
"nsubj", "word": "versions"}, {"head": "available", "rel": "advmod", "word": "also"}, {"head": "layout", "rel": "acl", "word":
"available"}, {"head": "engined", "rel": "punct", "word": "."}. Choose one from this list of 32 options:\n0: country\n1: place
of birth \n2: spouse\n3: country of citizenship\n4: instance of\n5: capital\n6: child\n7: shares border with\n8: author\n9:
director\n10: occupation\n11: founded by\n12: league\n13: owned by\n14: genre\n15: named after\n16: follows\n17:
headquarters location\n18: cast member\n19: manufacturer\n20: located in or next to body of water\n21: location\n22: part
of\n23: mouth of the watercourse\n24: member of\n25: sport \n26: characters\n27: participant\n28: notable work\n29:
replaces\n30: sibling\n31: inception\n\n. The answer is :

Table 5: Prompt without dependency information and the tuple format prompt are used for relation extraction on the
English subset of the RedFM dataset with Trankit as the dependency parser.
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Text Prompt:
Given the sentence: T̈he Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe) manufactured by the
<e2>German</e2> automobile manufacturer <e1>Porsche</e1>. It is front-engined and has a rear-wheel-drive layout, with
all-wheel drive versions also available.̈, which one of the following relations between the two entities <e1> and <e2> is being
discussed?\We also provide the dependency parses as follows: T̈he is Determiner of Panamera, Porsche is Compound noun
modifier of Panamera, Panamera is Nominal subject of vehicle, is is Copula of vehicle, a is Determiner of vehicle, mid/ is
Adverbial modifier of sized, full is Adjectival modifier of sized, - is Punctuation of sized, sized is Adjectival modifier of vehicle,
luxury is Compound noun modifier of vehicle, vehicle is the root word, ( is Punctuation of E, E is Appositional modifier of
vehicle, - is Punctuation of segment, segment is Unspecified dependency of E, in is Case marker of Europe, Europe is Nominal
modifier of segment, ) is Punctuation of segment, manufactured is Clausal modifier of noun of vehicle, by is Case marker of
Porsche, the is Determiner of Porsche, German is Adjectival modifier of Porsche, automobile is Compound noun modifier
of manufacturer, manufacturer is Compound noun modifier of Porsche, Porsche is Oblique nominal of manufactured, . is
Punctuation of vehicle, It is Nominal subject of engined, is is Copula of engined, front is Adjectival modifier of engined, - is
Punctuation of front, engined is the root word, and is Coordinating conjunction of has, has is Conjunction of engined, a is
Determiner of layout, rear is Compound noun modifier of drive, - is Punctuation of wheel, wheel is Compound noun modifier of
drive, - is Punctuation of drive, drive is Compound noun modifier of layout, layout is Object of has, , is Punctuation of available,
with is Marker of available, all is Determiner of wheel, - is Punctuation of all, wheel is Compound noun modifier of drive, drive is
Compound noun modifier of versions, versions is Nominal subject of available, also is Adverbial modifier of available, available
is Adverbial clause modifier of has, . is Punctuation of engined, \Choose one from this list of 32 options:\n0: country\n1: place
of birth \n2: spouse\n3: country of citizenship\n4: instance of\n5: capital\n6: child\n7: shares border with\n8: author\n9:
director\n10: occupation\n11: founded by\n12: league\n13: owned by\n14: genre\n15: named after\n16: follows\n17:
headquarters location\n18: cast member\n19: manufacturer\n20: located in or next to body of water\n21: location\n22: part
of\n23: mouth of the watercourse\n24: member of\n25: sport \n26: characters\n27: participant\n28: notable work\n29:
replaces\n30: sibling\n31: inception\n\nThe answer is : "

Filtered Text Prompt:
Given the sentence: T̈he Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe) manufactured by the
<e2>German</e2> automobile manufacturer <e1>Porsche</e1>. It is front-engined and has a rear-wheel-drive layout, with
all-wheel drive versions also available.̈, which one of the following relations between the two entities <e1> and <e2> is being
discussed?\n We also provide the dependency parses as follows: P̈orsche is Adjectival modifier of German, \n Choose one from
this list of 32 options:\n0: country\n1: place of birth \n2: spouse\n3: country of citizenship\n4: instance of\n5: capital\n6:
child\n7: shares border with\n8: author\n9: director\n10: occupation\n11: founded by\n12: league\n13: owned by\n14:
genre\n15: named after\n16: follows\n17: headquarters location\n18: cast member\n19: manufacturer\n20: located in or next
to body of water\n21: location\n22: part of\n23: mouth of the watercourse\n24: member of\n25: sport \n26: characters\n27:
participant\n28: notable work\n29: replaces\n30: sibling\n31: inception\n\n. The answer is :

Table 6: Text prompt and Filtered Text prompts used for relation extraction on the English subset of the RedFM
dataset with Trankit as the dependency parser.
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Table 7: Zero-shot cross-lingual performance for Relation Extraction on the RedFM dataset using different
combinations of multi-lingual encoder and dependency parse information and GNN. Highest values in each column
are in bold. The rows and columns correspond to the source and target language respectively.

mBERT

Src DEP GNN en es fr it de ar zh

en - - - 80.4±0.2 80.7±0.4 77.3±1.3 78.8±0.9 72.7±0.8 70.4±0.6
en stanza rgcn - 79.6±0.8 80.9±1.4 76.2±1.0 80.2±0.5 74.4±0.9 72.0±0.8
en stanza rgat - 80.3±0.4 80.3±0.2 74.8±1.2 79.5±0.3 74.1±0.9 72.3±0.4
en trankit rgcn - 80.1±0.4 80.8±0.5 73.8±0.2 79.3±0.7 73.8±1.8 69.5±0.6
en trankit rgat - 80.8±0.3 80.7±0.2 74.4±1.8 79.0±0.7 74.5±0.7 70.1±0.6

es - - 77.6±0.1 - 77.2±0.8 76.4±0.6 75.9±0.7 70.9±1.6 70.8±1.1
es stanza rgcn 78.0±0.4 - 82.6±0.8 77.6±1.4 76.9±1.3 73.2±0.5 69.2±0.6
es stanza rgat 79.1±0.2 - 78.4±0.5 77.4±1.3 76.2±0.7 73.5±0.9 69.7±1.5
es trankit rgcn 79.3±0.9 - 80.6±1.6 76.3±0.6 77.1±1.0 73.3±0.3 71.5±1.6
es trankit rgat 80.0±1.1 - 78.7±0.5 78.3±1.0 77.7±0.8 72.6±1.2 71.2±2.6

fr - - 76.6±2.9 80.4±1.3 - 76.9±2.0 74.8±1.6 70.2±1.1 66.4±2.6
fr stanza rgcn 76.6±0.3 82.1±1.0 - 77.7±0.7 76.6±0.2 70.4±0.8 66.8±0.9
fr stanza rgat 80.0±0.7 82.1±0.9 - 77.0±1.0 77.5±1.5 71.5±1.0 67.5±1.2
fr trankit rgcn 78.6±0.3 83.3±1.6 - 78.7±1.1 78.8±2.5 72.4±0.5 69.7±0.7
fr trankit rgat 80.1±0.8 79.7±2.1 - 76.6±1.5 77.4±0.1 70.9±0.8 68.4±0.5

it - - 75.4±0.4 83.1±0.5 77.7±1.1 - 72.9±1.1 73.0±2.0 70.8±1.0
it stanza rgcn 79.0±0.6 83.0±0.7 77.2±1.0 - 74.7±1.4 70.8±0.3 70.0±0.7
it stanza rgat 76.7±0.9 83.8±0.7 77.5±0.5 - 75.7±1.5 72.2±1.6 70.5±0.4
it trankit rgcn 77.1±1.4 82.3±0.3 77.2±0.6 - 76.0±1.2 71.0±1.0 69.2±1.9
it trankit rgat 77.1±0.1 82.5±0.4 77.8±0.5 - 76.3±0.1 71.7±1.0 71.5±0.9

de - - 80.4±1.0 80.0±0.4 78.3±0.1 76.1±1.5 - 75.8±1.9 71.6±1.2
de stanza rgcn 80.0±0.2 80.4±0.7 76.7±0.3 75.8±0.8 - 74.2±0.8 70.0±1.9
de stanza rgat 79.2±0.4 81.3±1.1 78.1±1.4 76.6±2.7 - 74.6±0.5 71.7±0.6
de trankit rgcn 79.7±0.3 80.6±1.4 77.9±0.3 75.1±0.4 - 73.3±1.0 70.1±0.1
de trankit rgat 80.7±0.7 79.2±0.1 77.8±0.6 77.4±0.5 - 73.7±0.0 70.6±0.8

XLMR

en - - - 73.1±1.8 72.8±2.8 64.2±3.7 75.6±1.7 61.7±1.8 64.4±1.0
en stanza rgcn - 74.4±1.3 72.7±0.5 67.4±1.3 74.6±0.7 63.2±1.5 65.1±0.9
en stanza rgat - 73.1±0.7 72.7±1.4 66.5±3.5 71.1±1.0 59.6±2.7 62.2±0.4
en trankit rgcn - 74.4±1.5 72.0±1.8 65.4±2.2 71.5±1.6 62.6±1.8 64.6±1.3
en trankit rgat - 74.9±0.7 70.3±0.1 62.4±1.6 73.9±0.4 61.5±1.7 66.5±1.7

es - - 73.3±0.4 - 74.3±0.4 70.1±1.4 70.6±0.7 63.2±3.1 65.9±1.9
es stanza rgcn 73.4±2.2 - 75.1±0.3 68.3±2.5 67.3±0.6 61.9±1.2 62.4±1.4
es stanza rgat 72.7±1.9 - 75.2±1.0 69.3±1.6 67.3±0.3 60.5±1.4 62.8±1.8
es trankit rgcn 73.8±1.0 - 75.9±1.5 69.8±1.8 70.0±2.5 64.3±2.1 65.6±2.7
es trankit rgat 71.4±1.2 - 76.2±1.2 68.0±1.5 68.7±2.0 60.0±0.9 62.5±2.3

fr - - 71.1±0.9 75.0±0.6 - 68.9±0.6 68.5±1.3 61.5±1.2 59.4±2.6
fr stanza rgcn 74.3±1.7 74.1±1.1 - 69.7±0.6 72.2±1.3 58.7±0.6 62.9±2.7
fr stanza rgat 70.1±1.5 73.9±1.3 - 67.0±1.5 66.2±1.0 59.0±0.9 60.3±1.6
fr trankit rgcn 70.0±0.2 74.4±0.5 - 68.4±0.7 66.4±0.7 58.9±2.2 59.5±1.8
fr trankit rgat 71.8±1.3 76.0±0.7 - 68.2±0.8 70.6±1.0 61.5±1.2 59.9±1.3

it - - 71.2±1.1 76.1±1.6 72.2±0.9 - 68.2±1.7 60.8±0.5 62.0±1.7
it stanza rgcn 73.3±2.0 76.1±0.8 74.3±1.3 - 67.2±2.1 61.8±0.3 63.1±0.3
it stanza rgat 74.9±1.0 76.0±0.2 74.2±1.3 - 68.9±0.2 62.2±0.1 64.7±1.5
it trankit rgcn 73.3±1.2 77.0±0.7 74.8±1.6 - 70.0±1.7 64.5±1.0 64.7±1.0
it trankit rgat 72.6±1.9 78.7±0.5 76.6±0.2 - 70.2±1.0 63.6±3.4 64.6±1.5

de - - 75.0±1.5 72.4±0.9 69.3±1.3 64.1±0.3 - 60.8±0.7 64.0±1.2
de stanza rgcn 72.6±1.5 73.4±2.1 70.8±1.9 65.2±0.5 - 60.6±0.8 66.0±1.9
de stanza rgat 76.1±1.5 73.5±0.2 71.5±1.3 69.0±2.8 - 64.0±1.6 65.8±1.7
de trankit rgcn 74.1±1.0 72.8±0.8 69.6±1.8 63.6±2.3 - 63.4±1.0 64.5±1.9
de trankit rgat 75.0±0.5 73.2±1.6 70.3±1.3 64.9±1.0 - 63.7±0.5 64.4±3.5
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Table 8: Zero-shot cross-lingual performance for Relation Extraction on the IndoRE dataset using different
combinations of multi-lingual encoder and dependency parse information and GNN. Highest values in each column
are in bold. The rows and columns correspond to the source and target language respectively.

mBERT

Src DEP GNN en hi te

en - - - 60.7±0.6 35.3±0.8
en stanza rgcn - 60.1±0.4 38.3±1.2
en stanza rgat - 58.7±0.3 40.6±2.2
en trankit rgcn - 62.5±0.8 38.0±1.4
en trankit rgat - 61.8±1.0 37.8±1.8

hi - - 69.7±1.9 - 49.5±2.3
hi stanza rgcn 68.6±0.6 - 49.4±0.8
hi stanza rgat 67.8±2.3 - 49.7±0.6
hi trankit rgcn 68.1±0.8 - 49.6±2.2
hi trankit rgat 68.0±1.6 - 53.9±0.9

te - - 45.3±1.7 54.4±2.6 -
te stanza rgcn 45.6±1.4 54.0±1.3 -
te stanza rgat 44.8±0.3 56.6±0.3 -
te trankit rgcn 47.7±0.8 54.2±0.1 -
te trankit rgat 46.1±1.2 54.2±2.5 -

XLMR

en - - - 57.4±2.3 37.2±2.5
en stanza rgcn - 55.3±1.2 37.0±1.6
en stanza rgat - 55.5±2.3 37.8±1.9
en trankit rgcn - 58.8±0.5 36.4±3.8
en trankit rgat - 61.0±2.5 39.0±4.0

hi - - 59.1±1.8 - 53.7±1.0
hi stanza rgcn 57.4±1.3 - 54.7±1.2
hi stanza rgat 61.0±2.5 - 54.8±2.1
hi trankit rgcn 59.5±0.8 - 54.3±1.8
hi trankit rgat 57.3±2.4 - 54.8±2.3

te - - 40.9±2.6 52.8±0.7 -
te stanza rgcn 41.2±2.2 55.5±0.9 -
te stanza rgat 39.0±0.7 52.0±3.2 -
te trankit rgcn 41.8±0.6 53.7±0.6 -
te trankit rgat 41.4±0.3 53.7±1.8 -
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Source sum_sq df F P(>F)
C(src) 1.844 2.000 6.265 0.020
C(GNN) 0.185 1.000 1.258 0.291
C(DEP) 1.226 1.000 8.330 0.018
C(ENC) 0.308 1.000 2.094 0.182
C(src):C(DEP) 0.165 2.000 0.56 0.590
C(src):C(ENC) 7.124 2.000 24.20 0.000
C(src):C(GNN) 1.335 2.000 4.534 0.043
C(DEP):C(GNN) 0.055 1.000 0.371 0.557
C(ENC):C(GNN) 1.045 1.000 7.098 0.026
C(DEP):C(ENC) 1.005 1.000 6.827 0.028
Residual 1.325 9.000 NaN NaN

Table 9: Indore In-Domain ANOVA Results

Source sum_sq df F P(>F)
C(src) 48.606 2.000 2.449 0.108
C(GNN) 4.009 1.000 0.404 0.531
C(DEP) 23.301 1.000 2.348 0.139
C(ENC) 20.426 1.000 2.058 0.164
C(tgt) 199.051 2.000 10.030 0.001
C(tgt):C(DEP) 13.604 2.000 0.686 0.513
C(tgt):C(ENC) 85.332 2.000 4.300 0.025
C(tgt):C(GNN) 19.710 2.000 0.993 0.385
C(tgt):C(src) 12.388 4.000 0.312 0.735
C(src):C(DEP) 6.487 2.000 0.327 0.724
C(src):C(ENC) 73.878 2.000 3.723 0.039
C(src):C(GNN) 7.459 2.000 0.376 0.691
C(DEP):C(GNN) 0.845 1.000 0.085 0.773
C(ENC):C(GNN) 0.923 1.000 0.093 0.763
C(DEP):C(ENC) 1.561 1.000 0.157 0.695
Residual 238.143 24.000 NaN NaN

Table 10: Indore Cross-Domain ANOVA Results

Source sum_sq df F P(>F)
C(src) 1.862 4.000 0.408 0.800
C(GNN) 0.719 1.000 0.630 0.438
C(DEP) 3.613 1.000 3.167 0.093
C(ENC) 51.586 1.000 45.228 0.000
C(src):C(DEP) 2.027 4.000 0.444 0.775
C(src):C(ENC) 9.053 4.000 1.984 0.143
C(src):C(GNN) 3.373 4.000 0.739 0.578
C(DEP):C(GNN) 0.221 1.000 0.194 0.665
C(ENC):C(GNN) 1.773 1.000 1.555 0.229
C(DEP):C(ENC) 1.601 1.000 1.403 0.252
Residual 19.390 17.000 NaN NaN

Table 11: RedFM In-domain ANOVA Results

Source sum_sq df F P(>F)
C(src) 14.700 4.000 0.988 0.322
C(GNN) 0.109 1.000 0.029 0.864
C(DEP) 1.111 1.000 0.299 0.585
C(ENC) 4.923 1.000 1.323 0.252
C(tgt) 10.040 6.000 0.450 0.718
C(tgt):C(DEP) 25.753 6.000 1.154 0.334
C(tgt):C(ENC) 106.197 6.000 4.757 0.000
C(tgt):C(GNN) 1.642 6.000 0.074 0.998
C(tgt):C(src) 314.185 24.000 3.518 0.000
C(src):C(DEP) 23.724 4.000 1.594 0.178
C(src):C(ENC) 323.737 4.000 21.752 0.000
C(src):C(GNN) 49.322 4.000 3.314 0.012
C(DEP):C(GNN) 0.615 1.000 0.165 0.685
C(ENC):C(GNN) 2.771 1.000 0.745 0.389
C(DEP):C(ENC) 0.389 1.000 0.105 0.747
Residual 647.408 174.000NaN NaN

Table 12: RedFM Cross-Domain ANOVA Results

Source sum_sq df F P(>F)
C(src) 58.4 2 0.657 5.26E-01
C(DEP) 2.2 1 0.048 8.28E-01
C(LLM) 1260.3 2 14.17 6.18E-05
C(PRM) 3042.5 2 34.22 3.94E-08
C(src):C(DEP) 16.7 2 0.187 8.30E-01
C(src):C(LLM) 543.7 4 3.058 3.36E-02
C(src):C(PRM) 426.9 4 2.401 7.46E-02
C(DEP):C(LLM) 62.3 2 0.708 5.05E-01
C(DEP):C(PRM) 48.0 2 0.54 5.87E-01
C(LLM):C(PRM) 2205.3 4 12.40 7.47E-06
Residual 1200.1 27 NaN NaN

Table 13: Indore Zero-shot ICL ANOVA Results

Source sum_sq df F P(>F)
C(src) 6123.02 6 13.34 2.91E-10
C(DEP) 5.09 1 0.07 7.97E-01
C(LLM) 4945.81 2 32.32 6.97E-11
C(PRM) 12473.392 81.51 1.23E-19
C(src):C(DEP) 178.97 6 0.39 8.83E-01
C(src):C(LLM) 13819.1212 15.05 1.46E-15
C(src):C(PRM) 1727.37 12 1.88 5.01E-02
C(DEP):C(LLM) 131.03 2 0.86 4.29E-01
C(DEP):C(PRM) 101.88 2 0.67 5.17E-01
C(LLM):C(PRM) 3130.31 4 10.23 1.12E-06
Residual 5815.44 76 NaN NaN

Table 14: RedFM Zero-shot ICL ANOVA Results
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Abstract
In this work, we propose DEPGEN, a frame-
work for evaluating the generalization capabil-
ities of language models on the task of rela-
tion extraction, with dependency parses as scaf-
folds. We use a GNN-based framework that
takes dependency parses as input and learns
embeddings of entities which are augmented
to a baseline multilingual encoder. We also in-
vestigate the role of dependency parses when
they are included as part of the prompt to LLMs
in a zero-shot learning setup. We observe that
including off-the-shelf dependency parses can
aid relation extraction, with the best perform-
ing model having a mild relative improvement
of 0.91% and 1.5% in the in-domain and zero-
shot setting respectively across two datasets.
For the in-context learning setup, we observe
an average improvement of 1.67%, with sig-
nificant gains for low-performing LLMs. We
also carry out extensive statistical analysis to
investigate how different factors such as the
choice of the dependency parser or the nature
of the prompt impact performance. We make
our code and results publicly available for the
research community at https://github.
com/ShoRit/multilingual-re.git

1 Introduction

Information packaging in language does not hap-
pen arbitrarily (Croft, 2022). The “internal struc-
ture” of a text message, which determines how the
message is constructed or parsed, is grounded in
predefined linguistic rules in the form of syntax
and semantics. Linguistic structures such as de-
pendency graphs (Zeman et al., 2019; Chomsky,
2002) or semantic parses (Banarescu et al., 2013;
Reddy et al., 2017) have been pivotal in the his-
tory of NLP research both for their intrinsic merit
i.e. developing frameworks that can construct or
interpret such structures automatically (Chen et al.,
2024; Gu et al., 2024), and their external value as
augmentations to aid language understanding tasks
(Ding et al., 2024; Şahin, 2022).

Information extraction or IE is one such field
which had relied heavily on linguistic information
ever since its inception; some notable examples
include few-shot named entity recognition or NER
(Chen et al., 2023; Xie et al., 2024), relation ex-
traction (Li et al., 2023; Zhou et al., 2024), open-
domain question answering, (Zhang et al., 2023b,
2024) amongst others. However, recent years have
witnessed a decline in the adoption of linguistic
frameworks in favor of large scale pre-trained lan-
guage models (Devlin et al., 2018; Liu et al., 2019;
Conneau et al., 2020a; Sainz et al., 2024) which are
shown to encode syntactic and semantic informa-
tion within their parameters (Starace et al., 2023;
Liu et al., 2024) and have also demonstrated sig-
nificant improvements on IE (Sainz et al., 2024;
Efeoglu and Paschke, 2024).

Moreover, as we usher into an era of large lan-
guage models, the question which looms over our
head like the proverbial sword of Damocles “Are
dependency parses helpful for information extrac-
tion?” We are motivated to answer this question
based on the past work of Sachan et al. (2021)
which showed the utility of adding syntactic infor-
mation for different information extraction tasks in
English. However, the observed benefits hold true
only when the gold parses are available, with no
improvements over the baseline in presence of off-
the-shelf parses. In this study we expand upon this
idea and investigate whether off-the-shelf depen-
dency parses can assist language models in multi-
lingual information extraction for both indomain
and zero-shot transfer settings.

We specifically deal with the task of multi-
lingual relation extraction, wherein we identify the
nature of relationship between two annotated enti-
ties in a document. We show in Figure 1 how we
can connect the entities wood and fences by travers-
ing the dependency graph that connects these two
entities, highlighting the potential utility of linguis-
tic frameworks for this task. We explore the role
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Figure 1: Example depicting the supplemental information provided by the dependency tree. The entities of interest
are wood and fences, having the relationship material_used. The path wood← used→ make→ posts→ fences
elicits this relationship.

of dependency parses for cross-lingual relation ex-
traction in both a fine-tuned supervised setting and
a prompting/ in-context learning setup.

We propose a framework, DEPGEN, built on top
of a pretrained multi-lingual language model that
uses dependency parse information to perform re-
lation extraction for both in-domain and zero-shot
cross-lingual transfer settings. Through a com-
prehensive set of 2440 experiments spanning 10
languages over 2 datasets, we observe that incorpo-
rating dependency information brings about mod-
est improvements for in-domain and cross-lingual
fine-tuning setups by 0.9% and 1.5% respectively.

We also carry out extensive statistical analysis
to identify which factors significantly impact per-
formance. Our observations highlight that perfor-
mance improvements is mostly predicated by the
choice of the target language, and the choice of the
pre-trained language model rather than the choice
of the dependency parser for all cases. However,
for the in-context learning setup, we demonstrate
that the performance is determined by the choice
of the prompting strategy, with our proposed ap-
proach boasting the highest gains, i.e. an absolute
improvement of 1.67 F1 score over the baseline.

2 Related Work

2.1 Generalization in Information Extraction

Recent years bear witness to countless research en-
deavors to facilitate generalizability and transfer
across domains for several information extraction
(IE) tasks. Such works include zero-shot relation
extraction (Wang et al., 2022b; Jun et al., 2022;
Li et al., 2023), zero-shot or few-shot NER (Zeng
et al., 2022; Das et al., 2022; Xie et al., 2024) , zero-
shot KBQA (Gu et al., 2021; Dutt et al., 2023),
cross-lingual KBQA (Zhang et al., 2023a), and
open domain QA (Min et al., 2020; Zhang et al.,
2023b), amongst others (Fritzler et al., 2019; Zhou
et al., 2019). This interest is in part due to the
advent of large scale pre-trained language mod-
els such as Devlin et al. (2018); Liu et al. (2019);
Conneau et al. (2020a); Sainz et al. (2024) which

have shown significant improvements on IE. Re-
cent works on domain adaptation and transfer learn-
ing have advocated different pre-training objective
functions to ensure the model is well adapted to
the particular domain. Other multi-lingual/ cross-
lingual transfer works employ different data aug-
mentation techniques such as translation into the
target data to aid transfer. In this work, we investi-
gate approaches to perform multi-lingual informa-
tion extraction in a zero-shot setting without any
additional data in the target language.

2.2 Relation Extraction

The goal of relation extraction or relation classifi-
cation is to detect and classify the relation between
specified entities in a text according to some prede-
fined schema. Current research in RE has mostly
been carried out in a few-shot or a zero-shot set-
ting to address the dearth of training data (Liu et al.,
2022; Li et al., 2023) and the “long-tail” problem of
skewness in relation classes (Ye and Ling, 2019b;
Liang et al., 2023). Salient work in that direc-
tion includes (i) designing RE-specific pretraining
objectives for learning better representations (Bal-
dini Soares et al., 2019; Wang et al., 2022a), (ii)
incorporating meta-information such as relation de-
scriptions (Yang et al., 2020; Chen and Li, 2021),
a global relation graph, (Qu et al., 2020), or en-
tity types (Peng et al., 2020), and (iii) leveraging
additional information in the form of dependency
parses (Yu et al., 2022), translated texts for multilin-
gual RE (Nag et al., 2021), or distantly supervised
instances (Zhao et al., 2021; Ye and Ling, 2019a).
T-5 based models have shown to perform well in re-
lation extraction settings with few-shot finetuning
(Diaz-Garcia and Lopez, 2024).

Recently, LLMs have shown promise in zero-
shot relation extraction. Challenging cases such as
overlapping relations and none-of-the-above (nota)
relations have been handled effectively by LLMs in
zero-shot settings (Li et al., 2023). LLMs have also
outperformed smaller models for RE with larger,
document-level context sizes in models such as
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Figure 2: An overview of our proposed framework DEPGEN. The architecture takes as input a document, which
comprises a sequence of sentences, with the entities highlighted in red. This document passes through a multilingual
encoder to obtain the token embeddings, and a dependency parser that generates dependency parses for each
sentence. The individual sentences in the dependency parser are connected using a central [CENTRAL] node to
obtain a connected graph. The nodes are initialized using the embeddings obtained from the multilingual encoder
and updated using a Graph Neural Network. The final representations of the entities obtained from the GNN are
fused with the entity embeddings and concatenated with the [CLS] token of the document to predict the relation.

AutoRE (Xue et al., 2024). All of these techniques
seek to alleviate the need for expensive human-
annotated training data. In this work, we question
whether incorporating linguistic structures in the
form of dependency parsing as an explicit addition
to the input in existing models can aid learning
robust representations that can be transferred to
other languages.

3 Methodology

We investigate the role of dependency parses for
zero-shot cross-lingual relation extraction in two
setups, namely (i) a fine-tuned setup where a model
is first trained on a given source language and
then evaluated on a target language, and (ii) an in-
context-learning setup where we prompt an LLM to
predict the relation between two specified entities
in a zero-shot setting to test the innate capabilities
of the LLM for RE.

3.1 Fine-Tuning Setting

We present a detailed description of our proposed
framework, DEPGEN here. Our framework lever-
ages the internal structure of a document text to
aid relation classification. We define internal struc-
ture as the linguistic information encoded within

the document based on syntactic rules in the form
of dependency parses. This section describes the
individual components that constitute our frame-
work DEPGEN, namely the multilingual encoder,
dependency parser, graph neural network, and the
fusion layer. We dive deep into the methodology
for representing the textual content, and elaborate
on the approach employed for incorporating depen-
dency parses for a given input sentence. Finally,
we end the section with how the different modes of
information are fused, and the classification setup.
A pictorial representation of our framework can
be seen in Figure 2 Our architecture involves the
following components.

3.1.1 Multilingual Encoder

We experiment with mBERT (Devlin et al., 2018)
and XLMR (Conneau et al., 2020c) as our multi-
lingual text encoder to obtain representations of
the input sentence(s). Past work has shown the
efficacy of such contextual multilingual encoders
in capturing long-range semantic dependency in
text (Litschko et al., 2021). Similar to these works,
we consider the final encoder layer representation
of [CLS] token as the text representation. The sen-
tence(s) are fed as input to the MULTILINGUAL
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ENCODER (Figure 2) and the [CLS] token represen-
tation from the final layer is fed into the FUSION

LAYER. The individual token representations from
the final layer are used to initialize the node embed-
dings in the dependency graph of the INTERNAL

STRUCTURE module, which we describe below.

3.1.2 Internal Structure
We incorporate the internal structure information
by learning the syntactic dependency information
between the tokens in the input sentence. We first
pass the input tokens through a DEPENDENCY

PARSER to obtain the dependency tree for each
sentence. We then construct a dependency graph
from the constituent dependency trees, which is
then fed as input to a Graph Neural Network (GNN)
(Scarselli et al., 2008). The various components of
this module are as follows.

Dependency Parser To generate the dependency
tree, we use off-the-shelf multilingual dependency
parsing modules, i.e. Stanza (Qi et al., 2020a) and
Trankit (Nguyen et al., 2021). The resulting de-
pendency tree represents the syntactic dependency
relations between the words in a sentence; the de-
pendencies follow the Universal Dependencies for-
malism (Nivre et al., 2016; Zeman et al., 2019),
resulting in 76 types of dependencies across the
different languages for our experiments.

Dependency Graph Since the dependency tree
is defined for a sentence, the output from DEPEN-
DENCY PARSER will be in the form of a forest of
disconnected dependency trees; for example 4 trees
for 4 sentences in Figure 2. We add a pseudo node
[CENTRAL] and add a new type of dependency
relation [SENT] between the [CENTRAL] and all
the [ROOT] nodes of the sentences. The proposed
design has two benefits - (1) The [CENTRAL] node
allows for information exchange between the sen-
tences, which otherwise would probably lead to
different clusters of representations (represented by
colors in Figure 2) for nodes in different sentences,
(2) The distance between the two entities is reduced
(dotted red line in Figure 2) when the entities are
present across two different sentences, resulting in
an efficient information flow between them.

Graph Neural Network We represent each word
as a node in the dependency graph and the depen-
dency relations as the edges between the nodes.
Each node in the graph is initialized with the rep-
resentations obtained from the final layer of the

MULTILINGUAL ENCODER. We aggregate the sub-
token representations via max-pooling and obtain
the final representation of a word. This initializa-
tion helps incorporate the semantic relationship
between the nodes and facilitates end-to-end joint
training of the MULTILINGUAL ENCODER and the
INTERNAL STRUCTURE modules. The relation
embeddings for the all the relation types are ini-
tialized at random and learnt jointly along with
the node embeddings. The representations of the
two entities from the multi-layer GNN are then
fed to the FUSION LAYER along with the sentence
representation for relation prediction.

3.1.3 Relation Prediction
We concatenate the representations obtained from
the MULTILINGUAL ENCODER and the INTER-
NAL STRUCTURE modules in the FUSION LAYER

and perform a multi-class classification for predict-
ing the relation. During training, we compute the
standard Cross Entropy loss, and back-propagate it
jointly through all the components of the network.

3.2 In-context Learning Setting

In addition to the DEPGEN framework that encap-
sulates the fine-tuned setting, we also explore the
role of dependency parses when provided as ad-
ditional inputs to LLMs in a zero-shot prompting
setup. We experiment with three different types
of prompt formats that encodes the dependency
information which we describe below.

Tuple Format: In the tuple-based prompt format,
we simply provide the dependency parse as a list
of tuples or dictionary keys. Each tuple comprises
three elements, i.e. a node in the dependency graph
or a word, the corresponding head node of that
word, and the relation that connects the head node
to the word. For example, the phrase “Porsche
Panamera”, would have the following information
in the form of a tuple.

{
word : P o r s c h e
head : Panamera ,
r e l : compound

}

Text Format: Instead of providing the de-
pendency parse information in the form of tu-
ples, we verbalize the dependency relations be-
tween the words in the sentence in natural
language format. In the above example of
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“Porsche Panamera”, we re-write the tuple infor-
mation as “Porsche is Compound noun
modifier of Panamera”. We do this for all
the tuples in the dependency graph.

Filtered Text Format: As opposed to verbaliz-
ing all the tuples in the dependency graph, we filter
out only the tuples that connect the two entities in
the sentence via the dependency relations. Not only
does this reduce the number of input tokens to the
LLM, it also helps filter out redundant information.

As a control, we also prompt the models with
only the text, without any dependency informa-
tion, which serves as a baseline. The details of the
prompts are in the Appendix.

4 Experimental Setup

4.1 Dataset

We conduct our experiments on relation extraction
on two datasets i.e. IndoRE and REDFM.

IndoRE (Nag et al., 2021) The IndoRE dataset
covers a diverse and rich set of entity and relation
annotated sentences in three low resource Indian
languages — Bengali (bn), Hindi (hi) and Telugu
(te). To study protocols for transferring RE capa-
bility across languages, it also has labeled English
(en) RE instances as an example of a resource-high
language. The dataset consists of 32,610 sentences
combining all four languages from Wikidata where
each language contains 51 unique relations. Out
of these languages, we exclude Bengali from our
experiments because the dependency parsers’ in-
ability to parse the language.

REDFM (Huguet Cabot et al., 2023) We use
this dataset consisting of examples from 7 lan-
guages. These languages include English (en), Ara-
bic (ar), Spanish (es), German (de), Italian (it),
French (fr), and Chinese (zh), which are hand-
annotated. There are a total of about 15,400 ex-
amples in the dataset with a total of 32 types of
relations. We use the languages en, es, de, it, and
fr for training (i.e. source languages), and all the
7 languages for testing in a zero-shot setting (i.e.
target languages). We exclude Arabic and Chinese
as source language due to the unavailability of a
training split in the REDFM dataset. We use the
train/validation/test splits as in the original paper.

4.2 Fine-tuned Experimental Setup

We experiment with the following settings:

1. Baseline: We experiment with mBERT (De-
vlin et al., 2019) and XLMR (Conneau et al.,
2020b) as our choices to encode the document
text and the entity spans. We concatenate the
pooled representation of the entities and the
[CLS] embedding and use it for relation clas-
sification.

2. Dependency Parses: We experiment with
Trankit (Nguyen et al., 2021) and Stanza (Qi
et al., 2020b) as the choice of the dependency
parser across all languages for both datasets.

3. Graph Neural Network: We experiment
with RGCN (Schlichtkrull et al., 2018) and
RGAT (Busbridge et al., 2019) as the back-
bone GNN architecture to encode the depen-
dency information between words in the doc-
ument. We use a GNN with 2 hidden layers
for all our experiments.

4.3 In-context Learning Experimental Setup

We employ three different instruction-tuned LLMs
for our in-context learning experiments, i.e.
LLaMA (Meta-Llama-3-8B-Instruct) (Grattafiori
et al., 2024), Mistral (Mistral-7B-Instruct-v0.3)
(Jiang et al., 2023) and Qwen (Qwen2-7B-Instruct)
(Yang et al., 2024). We use instruction-tuned LLMs
since we wish to employ these LLMs in a zero-shot
setup for relation extraction without fine-tuning or
additional training. Similar to the fine-tuned experi-
mental setup, the dependency parse information are
obtained from two sources, i.e. Stanza and Trankit.

4.4 Experiment Counts

For in-domain, we have a total of 8 languages (5
for RedFM, 3 for IndoRE) for 2 given choices of
encoder, parser and GNN. Each experiment is re-
peated for 5 seeds resulting in a total of 320 exper-
iments, that include dependency information and
an additional 80 experiments (over 8 languages,
2 encoders, and 5 seeds) as the baseline. For the
zero-shot cross-lingual transfer setting, for RedFM,
we have 6 possible target languages for each of the
5 source languages, while for IndoRE, we have
2 possible targets for each of the 3 source lan-
guages. Thus for each 36 possible cross-lingual
pairs, we evaluate 50 different combination of en-
coder, parser, GNN, and seeds, resulting in another
1800 experiments. Finally, in the in-context learn-
ing setup for LLMs, we experiment with 3 LLMs
for 10 languages over 4 kinds of prompts (including
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RedFM IndoRE

mBERT

DEP GNN en es fr it de en hi te

- - 84.3±0.7 80.0±0.6 78.6±0.3 76.3±0.8 78.7±0.3 94.3±0.6 89.6±0.4 84.9±0.4

stanza rgcn 85.7±0.8 80.5±1.0 79.7±1.0 78.2±0.5 80.0±0.9 94.4±0.2 90.9±0.3 86.1±0.9
stanza rgat 85.2±1.4 82.2±0.6 79.9±0.4 77.9±1.2 80.5±0.6 94.9±0.3 89.5±1.4 85.9±1.1
trankit rgcn 84.3±0.4 81.8±0.8 80.7±0.8 78.9±0.7 79.7±0.9 94.0±0.2 89.7±0.1 85.9±1.9
trankit rgat 85.5±1.3 80.9±0.3 80.2±0.2 77.3±0.8 78.9±0.7 94.1±0.5 88.9±0.5 84.6±0.8

XLMR

- - 84.0±1.1 77.2±2.0 76.2±1.0 74.8±1.2 75.2±0.6 92.1±0.8 88.7±0.9 86.3±1.1

stanza rgcn 83.7±0.6 76.8±0.8 76.7±0.9 73.3±0.7 75.7±1.5 91.8±0.8 89.6±1.1 85.6±0.7
stanza rgat 84.0±0.8 77.5±1.4 74.4±0.9 75.6±1.2 76.2±1.1 92.2±0.4 89.9±0.9 85.7±0.6
trankit rgcn 83.8±0.5 76.4±1.1 74.7±1.0 72.6±2.3 73.9±2.6 91.9±0.9 89.9±0.8 85.2±0.5
trankit rgat 82.6±0.8 77.3±0.2 75.0±0.3 74.0±1.7 75.9±0.1 92.6±0.7 89.2±1.0 85.9±1.6

Table 1: In-domain RE performance of mBERT and XLMR on RedFM and IndoRE, with dependency information
(i.e. choice of the parser or DEP, and the choice of the GNN used to encode the information, i.e. GNN). Results are
averaged across the top 3 seeds, with the highest values in each column bolded.

RedFM IndoRE

mBERT

DEP GNN en es fr it de ar zh en hi te

- - 77.5±1.1 81.0±1.1 78.8±1.1 76.7±1.1 75.6±1.1 72.5±1.1 70.0±1.1 57.5±1.8 57.6±2.7 42.4±2.4

stanza rgcn 78.2±0.8 81.0±0.8 79.5±0.8 76.8±0.8 77.1±0.8 72.6±0.8 70.0±0.8 57.0±1.0 57.1±0.8 44.6±1.2
stanza rgat 78.0±1.0 81.1±1.0 78.8±1.0 76.5±1.0 77.2±1.0 73.2±1.0 70.4±1.0 56.4±1.2 57.7±1.2 45.2±1.4
trankit rgcn 78.7±0.8 81.3±0.8 79.3±0.8 75.4±0.8 77.8±0.8 72.8±0.8 70.0±0.8 57.9±0.8 59.1±0.6 44.9±1.6
trankit rgat 77.9±0.8 80.6±0.8 79.1±0.8 76.3±0.8 77.9±0.8 73.1±0.8 70.4±0.8 57.1±1.4 57.9±1.8 45.1±1.7

XLMR

- - 72.7±1.4 74.2±1.4 72.2±1.4 66.8±1.4 70.7±1.4 61.8±1.4 63.1±1.4 50.0±2.2 55.1±1.5 45.9±1.6

stanza rgcn 73.4±1.4 74.5±1.4 73.2±1.4 67.7±1.4 70.3±1.4 61.2±1.4 63.9±1.4 49.3±1.8 55.4±1.4 46.1±1.7
stanza rgat 73.3±1.5 74.3±1.5 73.4±1.5 67.9±1.5 68.4±1.5 61.1±1.5 63.2±1.5 50.0±1.6 53.8±2.8 46.3±2.0
trankit rgcn 73.1±1.3 74.7±1.3 73.1±1.3 66.8±1.3 69.5±1.3 62.7±1.3 63.8±1.3 50.7±0.7 56.3±1.1 45.5±2.9
trankit rgat 73.1±1.1 75.7±1.1 73.4±1.1 65.9±1.1 70.9±1.1 62.1±1.1 63.6±1.1 50.8±1.4 56.0±2.2 46.9±2.6

Table 2: Zero-shot Cross-lingual RE performance on RedFM and IndoRE with mBERT and XLMR as the
multilingual encoders with different combinations of dependency information. For a given target language, we
average the performance across the different source languages. The highest values in each column are highlighted
in bold. Detailed individual cross-lingual performance metrics are given in the Appendix.

the baseline), and 2 kinds of parsers (Stanza and
Dependency), resulting in a suite of 240 prompt-
ing experiments. Our final experimental suite thus
comprises 2440 experiments.

5 Results and Insights

In this section, we pose the following research ques-
tions (RQs) and attempt to answer the same.
RQ1. Impact of dependency parses on RE for
indomain and cross-lingual transfer ?

We report the in-domain and cross-lingual re-
lation extraction performance with mBERT and
XLMR as the multilingual encoders, stanza and
trankit as the choice of the off-shelf-parsers, and
RGCN and RGAT being the backbone GNN for

both the IndoRE and RedFM datasets, in Tables 1
and 2 respectively.

At the outset, we observe that across both
datasets, adding dependency information gener-
ally improves performance over the baseline in the
in-domain setting; we see higher gains when we
have mBERT as the MLM as opposed to XLMR.
We also observe that the gains are higher for the
REDFM dataset than IndoRE, possibly due to
the poorer quality of dependency parses on low-
resource languages like Hindi and Telugu, as op-
posed to standard high-resource cases like English,
Spanish, and Italian. In fact, for all languages other
than English, we see a consistent improvement in
F1-score of approximately 2.0% and 1.0% with
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Figure 3: Performance of DEPGEN for in-domain and
zero-shot cross-lingual transfer settings on the IndoRE
dataset analyzed across variations in sentence, lexical
and dependency length

the mBERT model on the REDFM and IndoRE
dataset respectively, for the best combination of
dependency parser and GNN.

In the zero-shot cross-lingual transfer scenario
from Table 2 we observe trends that are markedly
different from the in-domain setting. Each entry in
this Table is computed by averaging the macro-F1
score over the other source languages, apart from
itself, for the top 3 seeds. We notice only slight
improvements in RE performance for mBERT but
higher gains for XLMR. We hypothesize that since
XLMR has a worse performance than mBERT, it
benefits more from the dependency information in
the zero-shot setting. In a similar vein, we observe
much higher gains for Hindi and Telugu (around
2.6% and 6.6% relative performance improvements
respectively) in the zero-shot setting for mBERT.
The markedly lower scores in IndoRE in the zero-
shot transfer setup as compared to REDFM can be
attributed to the higher number of relations in the
dataset (32 for IndoRE vs 51 for REDFM).
RQ2. Which scenarios benefit the most with
additional information in the fine-tuned setup?

In the fine-tuned setup, we analyze which sce-
narios or inputs benefit the most from including

Figure 4: Performance of DEPGEN for in-domain and
zero-shot cross-lingual transfer settings on the RedFM
dataset analyzed across variations in sentence, lexical
and dependency length

dependency information. We thus group the test
instances according to three different dimensions,
i.e. (1) input sentence length (2) lexical distance
between two entities in the sentence and (3) depen-
dency path length. Figures 3 and 4 show the effect
of these components for the in-domain and zero-
shot cross-lingual transfer settings for the IndoRE
and RedFM datasets respectively. The blue, orange
and green plots reflect the bottom quartile, inter-
quartile range and the top quartile respectively for
each of these three dimensions.

Sentence Length: We quantify sentence length
based on the total number of tokens in the docu-
ment. For both zero-shot and in-domain settings
across the two datasets, adding linguistic informa-
tion in the form of dependency graphs improves
relation extraction for longer sentences. We posit
that including dependency information helps to cap-
ture long range dependencies across words and thus
the observed gains for longer sentences.

Lexical Distance: We quantify the lexical dis-
tance as the number of tokens between the two
entities. Here, we observe that dependency infor-
mation is more helpful for cases where the dis-
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Model Parser Prompting RedFM IndoRE Average
ar de en es fr it zh en hi te

Llama

None - 25.6 25.7 27.0 27.0 16.7 36.7 37.1 47.6 39.0 21.9 30.4
Stanza Tuple 24.3 19.3 23.9 17.0 18.4 19.3 29.6 30.2 28.3 10.9 22.1
Stanza Text 25.1 24.5 22.6 23.1 23.5 24.0 30.6 44.4 37.4 22.9 27.8
Stanza Filtered Text 33.5 35.0 32.3 31.6 30.5 34.0 36.1 48.0 44.5 29.8 35.5 (↑5.1%)
Trankit Tuple 30.3 17.1 37.3 17.2 18.3 22.1 32.4 27.5 30.6 10.5 24.3
Trankit Text 23.4 25.4 22.7 22.6 23.8 25.6 30.5 44.8 38.4 24.0 28.1
Trankit Filtered Text 33.1 35.2 35.6 31.4 28.7 30.3 35.3 46.2 42.8 29.5 34.8

Mistral

None - 36.7 38.2 39.0 35.8 36.0 38.3 35.6 51.3 38.5 10.6 36.0
Stanza Tuple 27.2 35.9 30.9 31.9 28.1 35.1 30.9 48.4 30.6 9.8 30.9
Stanza Text 29.2 32.0 34.4 32.6 30.4 33.4 33.2 47.5 37.1 8.7 31.9
Stanza Filtered Text 39.1 39.5 40.9 37.1 36.6 40.2 36.7 50.8 38.5 10.3 37.0 (↑1.0%)
Trankit Tuple 27.4 35.3 32.5 31.5 26.9 30.6 31.3 48.0 30.5 10.8 30.5
Trankit Text 27.9 32.0 34.7 30.7 31.0 32.7 34.1 46.8 36.4 11.2 31.7
Trankit Filtered Text 39.3 39.7 39.3 36.3 36.9 37.8 38.1 50.9 38.3 11.2 36.8

Qwen

None - 44.3 39.6 40.3 38.0 36.8 43.0 40.8 42.7 39.2 29.1 39.4
Stanza Tuple 35.4 32.0 34.6 31.8 31.9 37.8 31.4 38.3 38.2 26.1 33.8
Stanza Text 33.8 34.8 36.0 33.3 33.3 33.3 29.9 39.5 41.1 30.6 34.6
Stanza Filtered Text 42.1 32.8 39.8 37.3 33.6 38.4 40.4 44.7 45.4 28.6 38.3(↓1.1%)
Trankit Tuple 34.3 30.7 35.2 34.1 28.1 35.1 33.6 39.6 37.4 21.8 33.0
Trankit Text 35.4 35.2 34.2 33.1 34.0 33.4 30.2 40.5 40.5 27.3 34.4
Trankit Filtered Text 39.9 36.0 35.4 39.4 34.7 38.6 34.5 44.0 45.9 26.6 37.5

Table 3: Effect of dependency parses and prompting techniques for LLM-based relation extraction for the REDFM
and IndoRE datasets. Performance reported in terms of F1-Score. Best performing methods are shown in bold.

tance between the entities is not high, i.e. Low and
Medium categories.

Dependency Path Length: We quantify the de-
pendency path length as the number of dependency
relations that separate the two entities in the depen-
dency graph. We see prominent gains for both short
and long range dependency paths, especially for
the ZS case for IndoRE. However, similar to lex-
ical distance, the gains are more prominent when
the dependency path between the entities is small.
Since our chosen GNN has only two layers, we hy-
pothesize that it is unable to capture signals across
long dependency paths effectively.
RQ3. Can dependency parses help improve
relation extraction performance for LLMs?

Table 3 summarizes the performance of three LLMs
- LLaMA (Grattafiori et al., 2024), Mistral (Jiang
et al., 2023) and Qwen (Yang et al., 2024) for zero-
shot relation extraction on the IndoRE and RedFM
datasets. To account for the skew in distribution
of relations, we employ the macro-F1 score as the
primary evaluation metric. We observe that for the
LLama-3 and Mistral models, incorporating depen-
dency parses improves performance across several
cases. The gains are most prominent when the de-

pendency information is presented in the form of
natural language text; we see consistent improve-
ments for the Text Prompt Format over the Tuple
Prompt Format, where the information is presented
as a list of tuples. We see that the filtered prompt
that removes information not pertaining to the two
entities, improves performance further.

The improvement can be as significant as 1% to
5% in some cases in terms of absolute F1-score for
Mistral and LLama-3 respectively. For the Qwen
model, dependency parses do not afford much ben-
efits. Thus the choice of the LLM and the descrip-
tion of the prompt, play a significant role in zero-
shot relation extraction performance. It should be
noted, however, that the zero-shot performance for
the in-context learning setup is significantly worse
than the zero-shot cross-lingual performance in the
fine-tuned setup. With LLMs, we see an average
absolute improvement of 1.67% across all models
and languages with the Filtered Text Prompt.
RQ4. Which factors influence generalization?

We now inspect the factors that characterize
performance improvements over the baseline for
the two datasets in the fine-tuned learning and in-
context learning setup. We perform a multivariate
ANOVA analysis with the relative performance dif-
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ference (expressed as a percentage over the base-
line), from including the dependency parses, as the
dependent variable.

The independent variables chosen are the choice
of the multilingual encoder, (mBERT or XLMR),
dependency parser (Stanza or Trankit), GNN em-
ployed (RGCN or RGAT), and the source and tar-
get language 1. We also consider the pair-wise
interaction effects of each of these variables, and
note the F-statistic and their corresponding p-value
for the indomain (Tables 9 and 11) and zero-shot
cross-lingual (Tables 10 and 12) respectively.

For the indomain setting in IndoRE, we observe
that the relative performance change hinges most
on the choice of the dependency parser followed
by source language. Although the choice of the
encoder and the GNN do not have any significant
effect on relative performance, their pair-wise inter-
actions is indeed significant. The story is remark-
ably different for REDFM where only the choice
of the encoder has any significant effect on RE.

In the zero-shot cross-lingual setting for IndoRE,
we see significant effects arising from the choice
of the target language and the pairwise interaction
between the choice of the source/target language
with that of the encoder. A similar story also holds
for REDFM, wherein we notice the only significant
interactions are between the choice of the source/-
target language and the encoder, and also between
the choice of the source/target language pairs them-
selves. Simply put in the zero-shot setting the role
of the dependency information is insignificant for
both datasets.

We carry out a similar statistical analysis for the
zero-shot ICL setup, with the relative performance
change over the baseline as the dependent variable,
and the choice of the LLM (i.e. LLama-3, Qwen,
and Mistral), the prompt (i.e. Tuple Format, Text
Format, and Filtered Text Format), the language
(7 for RedFM and 3 for IndoRE), and the choice
of the dependency parser (i.e. Trankit and Stanza)
as the independent variables. We also consider the
pair-wise interaction effects of each of these vari-
ables, and note the F-statistic and their correspond-
ing p-value for the IndoRE and REDFM dataset
respectively in Tables 13 and 14 respectively. We
observe, over both datasets, significant effects aris-
ing from the choice of the LLM, and the choice
of the prompt, as well as the pairwise interaction

1For the indomain setting we consider only the target lan-
guage

between the choice of the prompt and LLM, and
the choice of the source language and LLM. Once
again, we see that the choice of the dependency
parser, i.e. the Stanza or Trankit, does not play a
significant role.

6 Conclusion and Future Work

In this paper we propose a multi-component frame-
work for multi-lingual relation extraction. Our fine-
tuned framework DEPGEN, combines the signals
from the input sentence with dependency parses
that are encoded through a GNN. Through exten-
sive evaluations, we have reported the implica-
tions of our work for both in-domain and zero-shot
transfer settings across multiple languages. We
observe that including off-the-shelf dependency
parses can aid relation extraction, with the best per-
forming model having a mild relative improvement
of 0.91% and 1.5% in the in-domain and zero-shot
setting respectively across two datasets. We also
develop an in-context learning prompting approach
that incorporates dependency information to bring
about an average improvement of 1.67%, with sig-
nificant gains for low-performing LLMs.

In this work, we investigate how augmenting
dependency parses in language models can facil-
itate information extraction tasks in low-resource
settings. Specifically, our contributions being inde-
pendent of the language setting makes our model
portable to other languages in a zero-shot transfer
setup. Future avenues will explore the role of these
linguistic frameworks for other information extrac-
tion or reasoning tasks, and the impact of different
kinds of linguistic frameworks such as AMRs or
UMRs.
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A Appendices
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work. Additionally, we also present a statistical
significance analysis of our results using the Anova
method.
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Dataset Source Encoder Parser Sent Length Lex Length Dep Length # Docs # Rels

Mean Median Mean Median Mean Median

Indore en mBERT stanza 31.23 29.0 13.92 11.0 5.43 5.0 8486 51
hi mBERT stanza 66.76 56.0 27.29 21.0 5.70 5.0 6963 51
te mBERT stanza 151.45 140.0 44.74 31.0 6.05 6.0 8154 51
en mBERT trankit 31.23 29.0 13.92 11.0 5.42 5.0 8486 51
hi mBERT trankit 66.76 56.0 27.29 21.0 5.85 6.0 6963 51
te mBERT trankit 151.45 140.0 44.74 31.0 5.69 6.0 8154 51
en XLMR stanza 34.40 32.0 15.95 13.0 5.43 5.0 8486 51
hi XLMR stanza 56.25 48.0 22.85 17.0 5.70 5.0 6963 51
te XLMR stanza 125.60 113.0 37.43 26.0 6.05 6.0 8154 51
en XLMR trankit 34.40 32.0 15.95 13.0 5.42 5.0 8486 51
hi XLMR trankit 56.25 48.0 22.85 17.0 5.85 6.0 6963 51
te XLMR trankit 125.60 113.0 37.43 26.0 5.69 6.0 8154 51

RedFM en mBERT stanza 117.53 107.0 27.96 17.0 6.40 6.0 10899 32
es mBERT stanza 103.77 91.0 25.97 17.0 6.24 6.0 6538 32
fr mBERT stanza 92.18 78.0 23.19 15.0 5.86 5.0 7383 32
it mBERT stanza 79.31 65.0 20.56 14.0 5.80 5.0 6812 32
de mBERT stanza 88.79 79.0 22.97 15.0 5.28 5.0 7497 32
ar mBERT stanza 107.15 90.0 29.68 22.0 6.08 6.0 1846 32
zh mBERT stanza 118.18 101.0 35.25 22.0 6.69 6.0 1384 32
en mBERT trankit 117.53 107.0 27.96 17.0 6.37 6.0 10899 32
es mBERT trankit 103.77 91.0 25.97 17.0 6.16 6.0 6538 32
fr mBERT trankit 92.18 78.0 23.19 15.0 5.68 5.0 7383 32
it mBERT trankit 79.31 65.0 20.56 14.0 5.64 5.0 6812 32
de mBERT trankit 88.79 79.0 22.97 15.0 5.16 5.0 7497 32
ar mBERT trankit 107.15 90.0 29.68 22.0 6.18 6.0 1846 32
zh mBERT trankit 118.18 101.0 35.25 22.0 6.75 6.0 1384 32
en XLMR stanza 130.33 119.0 31.52 19.0 6.40 6.0 10899 32
es XLMR stanza 112.22 100.0 28.86 19.0 6.24 6.0 6538 32
fr XLMR stanza 103.20 86.0 26.77 17.0 5.86 5.0 7383 32
it XLMR stanza 85.14 71.0 22.72 16.0 5.80 5.0 6812 32
de XLMR stanza 96.23 87.0 25.53 17.0 5.28 5.0 7497 32
ar XLMR stanza 95.81 81.0 26.64 19.0 6.08 6.0 1846 32
zh XLMR stanza 96.10 81.0 28.35 18.0 6.69 6.0 1384 32
en XLMR trankit 130.33 119.0 31.52 19.0 6.37 6.0 10899 32
es XLMR trankit 112.22 100.0 28.86 19.0 6.16 6.0 6538 32
fr XLMR trankit 103.20 86.0 26.77 17.0 5.68 5.0 7383 32
it XLMR trankit 85.14 71.0 22.72 16.0 5.64 5.0 6812 32
de XLMR trankit 96.23 87.0 25.53 17.0 5.16 5.0 7497 32
ar XLMR trankit 95.81 81.0 26.64 19.0 6.18 6.0 1846 32
zh XLMR trankit 96.10 81.0 28.35 18.0 6.75 6.0 1384 32

Table 4: Combined Statistics for Indore and RedFM Datasets
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Without Any Dependency Information:
Given the sentence: "The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe) manufactured by the
<e2>German</e2> automobile manufacturer <e1>Porsche</e1>. It is front-engined and has a rear-wheel-drive layout, with
all-wheel drive versions also available.", which one of the following relations between the two entities <e1> and <e2> is being
discussed? Choose one from this list of 32 options:\n0: country\n1: place of birth \n2: spouse\n3: country of citizenship\n4:
instance of\n5: capital\n6: child\n7: shares border with\n8: author\n9: director\n10: occupation\n11: founded by\n12:
league\n13: owned by\n14: genre\n15: named after\n16: follows\n17: headquarters location\n18: cast member\n19:
manufacturer\n20: located in or next to body of water\n21: location\n22: part of\n23: mouth of the watercourse\n24: member
of\n25: sport \n26: characters\n27: participant\n28: notable work\n29: replaces\n30: sibling\n31: inception\n\n. The
answer is :

Tuple Format Prompt:
Given the sentence: "The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe) manufactured by the
<e2>German</e2> automobile manufacturer <e1>Porsche</e1>. It is front-engined and has a rear-wheel-drive layout, with
all-wheel drive versions also available.", which one of the following relations between the two entities <e1> and <e2> is
being discussed? We also provide the dependency parse in the form of head, rel, and word: {"head": "Panamera", "rel":
"det", "word": "The"}, {"head": "Panamera", "rel": "compound", "word": "Porsche"}, {"head": "vehicle", "rel": "nsubj",
"word": "Panamera"}, {"head": "vehicle", "rel": "cop", "word": "is"}, {"head": "vehicle", "rel": "det", "word": "a"}, {"head":
"sized", "rel": "compound", "word": "mid"}, {"head": "sized", "rel": "punct", "word": "/"}, {"head": "sized", "rel": "amod",
"word": "full"}, {"head": "sized", "rel": "punct", "word": "-"}, {"head": "vehicle", "rel": "amod", "word": "sized"}, {"head":
"vehicle", "rel": "compound", "word": "luxury"}, {"head": "ROOT", "rel": "root", "word": "vehicle"}, {"head": "segment",
"rel": "punct", "word": "("}, {"head": "segment", "rel": "compound", "word": "E"}, {"head": "segment", "rel": "punct",
"word": "-"}, {"head": "vehicle", "rel": "appos", "word": "segment"}, {"head": "Europe", "rel": "case", "word": "in"}, {"head":
"segment", "rel": "nmod", "word": "Europe"}, {"head": "segment", "rel": "punct", "word": ")"}, {"head": "vehicle", "rel":
"acl", "word": "manufactured"}, {"head": "manufacturer", "rel": "case", "word": "by"}, {"head": "manufacturer", "rel": "det",
"word": "the"}, {"head": "manufacturer", "rel": "amod", "word": "German"}, {"head": "manufacturer", "rel": "compound",
"word": "automobile"}, {"head": "manufactured", "rel": "obl", "word": "manufacturer"}, {"head": "manufacturer", "rel":
"appos", "word": "Porsche"}, {"head": "vehicle", "rel": "punct", "word": "."}, {"head": "engined", "rel": "nsubj", "word":
"It"}, {"head": "engined", "rel": "cop", "word": "is"}, {"head": "engined", "rel": "obl:npmod", "word": "front"}, {"head":
"engined", "rel": "punct", "word": "-"}, {"head": "ROOT", "rel": "root", "word": "engined"}, {"head": "has", "rel": "cc",
"word": "and"}, {"head": "engined", "rel": "conj", "word": "has"}, {"head": "layout", "rel": "det", "word": "a"}, {"head":
"drive", "rel": "amod", "word": "rear"}, {"head": "drive", "rel": "punct", "word": "-"}, {"head": "drive", "rel": "compound",
"word": "wheel"}, {"head": "drive", "rel": "punct", "word": "-"}, {"head": "layout", "rel": "amod", "word": "drive"}, {"head":
"has", "rel": "obj", "word": "layout"}, {"head": "layout", "rel": "punct", "word": ","}, {"head": "available", "rel": "mark",
"word": "with"}, {"head": "drive", "rel": "det", "word": "all"}, {"head": "drive", "rel": "punct", "word": "-"}, {"head": "drive",
"rel": "compound", "word": "wheel"}, {"head": "versions", "rel": "compound", "word": "drive"}, {"head": "available", "rel":
"nsubj", "word": "versions"}, {"head": "available", "rel": "advmod", "word": "also"}, {"head": "layout", "rel": "acl", "word":
"available"}, {"head": "engined", "rel": "punct", "word": "."}. Choose one from this list of 32 options:\n0: country\n1: place
of birth \n2: spouse\n3: country of citizenship\n4: instance of\n5: capital\n6: child\n7: shares border with\n8: author\n9:
director\n10: occupation\n11: founded by\n12: league\n13: owned by\n14: genre\n15: named after\n16: follows\n17:
headquarters location\n18: cast member\n19: manufacturer\n20: located in or next to body of water\n21: location\n22: part
of\n23: mouth of the watercourse\n24: member of\n25: sport \n26: characters\n27: participant\n28: notable work\n29:
replaces\n30: sibling\n31: inception\n\n. The answer is :

Table 5: Prompt without dependency information and the tuple format prompt are used for relation extraction on the
English subset of the RedFM dataset with Trankit as the dependency parser.
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Text Prompt:
Given the sentence: T̈he Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe) manufactured by the
<e2>German</e2> automobile manufacturer <e1>Porsche</e1>. It is front-engined and has a rear-wheel-drive layout, with
all-wheel drive versions also available.̈, which one of the following relations between the two entities <e1> and <e2> is being
discussed?\We also provide the dependency parses as follows: T̈he is Determiner of Panamera, Porsche is Compound noun
modifier of Panamera, Panamera is Nominal subject of vehicle, is is Copula of vehicle, a is Determiner of vehicle, mid/ is
Adverbial modifier of sized, full is Adjectival modifier of sized, - is Punctuation of sized, sized is Adjectival modifier of vehicle,
luxury is Compound noun modifier of vehicle, vehicle is the root word, ( is Punctuation of E, E is Appositional modifier of
vehicle, - is Punctuation of segment, segment is Unspecified dependency of E, in is Case marker of Europe, Europe is Nominal
modifier of segment, ) is Punctuation of segment, manufactured is Clausal modifier of noun of vehicle, by is Case marker of
Porsche, the is Determiner of Porsche, German is Adjectival modifier of Porsche, automobile is Compound noun modifier
of manufacturer, manufacturer is Compound noun modifier of Porsche, Porsche is Oblique nominal of manufactured, . is
Punctuation of vehicle, It is Nominal subject of engined, is is Copula of engined, front is Adjectival modifier of engined, - is
Punctuation of front, engined is the root word, and is Coordinating conjunction of has, has is Conjunction of engined, a is
Determiner of layout, rear is Compound noun modifier of drive, - is Punctuation of wheel, wheel is Compound noun modifier of
drive, - is Punctuation of drive, drive is Compound noun modifier of layout, layout is Object of has, , is Punctuation of available,
with is Marker of available, all is Determiner of wheel, - is Punctuation of all, wheel is Compound noun modifier of drive, drive is
Compound noun modifier of versions, versions is Nominal subject of available, also is Adverbial modifier of available, available
is Adverbial clause modifier of has, . is Punctuation of engined, \Choose one from this list of 32 options:\n0: country\n1: place
of birth \n2: spouse\n3: country of citizenship\n4: instance of\n5: capital\n6: child\n7: shares border with\n8: author\n9:
director\n10: occupation\n11: founded by\n12: league\n13: owned by\n14: genre\n15: named after\n16: follows\n17:
headquarters location\n18: cast member\n19: manufacturer\n20: located in or next to body of water\n21: location\n22: part
of\n23: mouth of the watercourse\n24: member of\n25: sport \n26: characters\n27: participant\n28: notable work\n29:
replaces\n30: sibling\n31: inception\n\nThe answer is : "

Filtered Text Prompt:
Given the sentence: T̈he Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe) manufactured by the
<e2>German</e2> automobile manufacturer <e1>Porsche</e1>. It is front-engined and has a rear-wheel-drive layout, with
all-wheel drive versions also available.̈, which one of the following relations between the two entities <e1> and <e2> is being
discussed?\n We also provide the dependency parses as follows: P̈orsche is Adjectival modifier of German, \n Choose one from
this list of 32 options:\n0: country\n1: place of birth \n2: spouse\n3: country of citizenship\n4: instance of\n5: capital\n6:
child\n7: shares border with\n8: author\n9: director\n10: occupation\n11: founded by\n12: league\n13: owned by\n14:
genre\n15: named after\n16: follows\n17: headquarters location\n18: cast member\n19: manufacturer\n20: located in or next
to body of water\n21: location\n22: part of\n23: mouth of the watercourse\n24: member of\n25: sport \n26: characters\n27:
participant\n28: notable work\n29: replaces\n30: sibling\n31: inception\n\n. The answer is :

Table 6: Text prompt and Filtered Text prompts used for relation extraction on the English subset of the RedFM
dataset with Trankit as the dependency parser.
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Table 7: Zero-shot cross-lingual performance for Relation Extraction on the RedFM dataset using different
combinations of multi-lingual encoder and dependency parse information and GNN. Highest values in each column
are in bold. The rows and columns correspond to the source and target language respectively.

mBERT

Src DEP GNN en es fr it de ar zh

en - - - 80.4±0.2 80.7±0.4 77.3±1.3 78.8±0.9 72.7±0.8 70.4±0.6
en stanza rgcn - 79.6±0.8 80.9±1.4 76.2±1.0 80.2±0.5 74.4±0.9 72.0±0.8
en stanza rgat - 80.3±0.4 80.3±0.2 74.8±1.2 79.5±0.3 74.1±0.9 72.3±0.4
en trankit rgcn - 80.1±0.4 80.8±0.5 73.8±0.2 79.3±0.7 73.8±1.8 69.5±0.6
en trankit rgat - 80.8±0.3 80.7±0.2 74.4±1.8 79.0±0.7 74.5±0.7 70.1±0.6

es - - 77.6±0.1 - 77.2±0.8 76.4±0.6 75.9±0.7 70.9±1.6 70.8±1.1
es stanza rgcn 78.0±0.4 - 82.6±0.8 77.6±1.4 76.9±1.3 73.2±0.5 69.2±0.6
es stanza rgat 79.1±0.2 - 78.4±0.5 77.4±1.3 76.2±0.7 73.5±0.9 69.7±1.5
es trankit rgcn 79.3±0.9 - 80.6±1.6 76.3±0.6 77.1±1.0 73.3±0.3 71.5±1.6
es trankit rgat 80.0±1.1 - 78.7±0.5 78.3±1.0 77.7±0.8 72.6±1.2 71.2±2.6

fr - - 76.6±2.9 80.4±1.3 - 76.9±2.0 74.8±1.6 70.2±1.1 66.4±2.6
fr stanza rgcn 76.6±0.3 82.1±1.0 - 77.7±0.7 76.6±0.2 70.4±0.8 66.8±0.9
fr stanza rgat 80.0±0.7 82.1±0.9 - 77.0±1.0 77.5±1.5 71.5±1.0 67.5±1.2
fr trankit rgcn 78.6±0.3 83.3±1.6 - 78.7±1.1 78.8±2.5 72.4±0.5 69.7±0.7
fr trankit rgat 80.1±0.8 79.7±2.1 - 76.6±1.5 77.4±0.1 70.9±0.8 68.4±0.5

it - - 75.4±0.4 83.1±0.5 77.7±1.1 - 72.9±1.1 73.0±2.0 70.8±1.0
it stanza rgcn 79.0±0.6 83.0±0.7 77.2±1.0 - 74.7±1.4 70.8±0.3 70.0±0.7
it stanza rgat 76.7±0.9 83.8±0.7 77.5±0.5 - 75.7±1.5 72.2±1.6 70.5±0.4
it trankit rgcn 77.1±1.4 82.3±0.3 77.2±0.6 - 76.0±1.2 71.0±1.0 69.2±1.9
it trankit rgat 77.1±0.1 82.5±0.4 77.8±0.5 - 76.3±0.1 71.7±1.0 71.5±0.9

de - - 80.4±1.0 80.0±0.4 78.3±0.1 76.1±1.5 - 75.8±1.9 71.6±1.2
de stanza rgcn 80.0±0.2 80.4±0.7 76.7±0.3 75.8±0.8 - 74.2±0.8 70.0±1.9
de stanza rgat 79.2±0.4 81.3±1.1 78.1±1.4 76.6±2.7 - 74.6±0.5 71.7±0.6
de trankit rgcn 79.7±0.3 80.6±1.4 77.9±0.3 75.1±0.4 - 73.3±1.0 70.1±0.1
de trankit rgat 80.7±0.7 79.2±0.1 77.8±0.6 77.4±0.5 - 73.7±0.0 70.6±0.8

XLMR

en - - - 73.1±1.8 72.8±2.8 64.2±3.7 75.6±1.7 61.7±1.8 64.4±1.0
en stanza rgcn - 74.4±1.3 72.7±0.5 67.4±1.3 74.6±0.7 63.2±1.5 65.1±0.9
en stanza rgat - 73.1±0.7 72.7±1.4 66.5±3.5 71.1±1.0 59.6±2.7 62.2±0.4
en trankit rgcn - 74.4±1.5 72.0±1.8 65.4±2.2 71.5±1.6 62.6±1.8 64.6±1.3
en trankit rgat - 74.9±0.7 70.3±0.1 62.4±1.6 73.9±0.4 61.5±1.7 66.5±1.7

es - - 73.3±0.4 - 74.3±0.4 70.1±1.4 70.6±0.7 63.2±3.1 65.9±1.9
es stanza rgcn 73.4±2.2 - 75.1±0.3 68.3±2.5 67.3±0.6 61.9±1.2 62.4±1.4
es stanza rgat 72.7±1.9 - 75.2±1.0 69.3±1.6 67.3±0.3 60.5±1.4 62.8±1.8
es trankit rgcn 73.8±1.0 - 75.9±1.5 69.8±1.8 70.0±2.5 64.3±2.1 65.6±2.7
es trankit rgat 71.4±1.2 - 76.2±1.2 68.0±1.5 68.7±2.0 60.0±0.9 62.5±2.3

fr - - 71.1±0.9 75.0±0.6 - 68.9±0.6 68.5±1.3 61.5±1.2 59.4±2.6
fr stanza rgcn 74.3±1.7 74.1±1.1 - 69.7±0.6 72.2±1.3 58.7±0.6 62.9±2.7
fr stanza rgat 70.1±1.5 73.9±1.3 - 67.0±1.5 66.2±1.0 59.0±0.9 60.3±1.6
fr trankit rgcn 70.0±0.2 74.4±0.5 - 68.4±0.7 66.4±0.7 58.9±2.2 59.5±1.8
fr trankit rgat 71.8±1.3 76.0±0.7 - 68.2±0.8 70.6±1.0 61.5±1.2 59.9±1.3

it - - 71.2±1.1 76.1±1.6 72.2±0.9 - 68.2±1.7 60.8±0.5 62.0±1.7
it stanza rgcn 73.3±2.0 76.1±0.8 74.3±1.3 - 67.2±2.1 61.8±0.3 63.1±0.3
it stanza rgat 74.9±1.0 76.0±0.2 74.2±1.3 - 68.9±0.2 62.2±0.1 64.7±1.5
it trankit rgcn 73.3±1.2 77.0±0.7 74.8±1.6 - 70.0±1.7 64.5±1.0 64.7±1.0
it trankit rgat 72.6±1.9 78.7±0.5 76.6±0.2 - 70.2±1.0 63.6±3.4 64.6±1.5

de - - 75.0±1.5 72.4±0.9 69.3±1.3 64.1±0.3 - 60.8±0.7 64.0±1.2
de stanza rgcn 72.6±1.5 73.4±2.1 70.8±1.9 65.2±0.5 - 60.6±0.8 66.0±1.9
de stanza rgat 76.1±1.5 73.5±0.2 71.5±1.3 69.0±2.8 - 64.0±1.6 65.8±1.7
de trankit rgcn 74.1±1.0 72.8±0.8 69.6±1.8 63.6±2.3 - 63.4±1.0 64.5±1.9
de trankit rgat 75.0±0.5 73.2±1.6 70.3±1.3 64.9±1.0 - 63.7±0.5 64.4±3.5
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Table 8: Zero-shot cross-lingual performance for Relation Extraction on the IndoRE dataset using different
combinations of multi-lingual encoder and dependency parse information and GNN. Highest values in each column
are in bold. The rows and columns correspond to the source and target language respectively.

mBERT

Src DEP GNN en hi te

en - - - 60.7±0.6 35.3±0.8
en stanza rgcn - 60.1±0.4 38.3±1.2
en stanza rgat - 58.7±0.3 40.6±2.2
en trankit rgcn - 62.5±0.8 38.0±1.4
en trankit rgat - 61.8±1.0 37.8±1.8

hi - - 69.7±1.9 - 49.5±2.3
hi stanza rgcn 68.6±0.6 - 49.4±0.8
hi stanza rgat 67.8±2.3 - 49.7±0.6
hi trankit rgcn 68.1±0.8 - 49.6±2.2
hi trankit rgat 68.0±1.6 - 53.9±0.9

te - - 45.3±1.7 54.4±2.6 -
te stanza rgcn 45.6±1.4 54.0±1.3 -
te stanza rgat 44.8±0.3 56.6±0.3 -
te trankit rgcn 47.7±0.8 54.2±0.1 -
te trankit rgat 46.1±1.2 54.2±2.5 -

XLMR

en - - - 57.4±2.3 37.2±2.5
en stanza rgcn - 55.3±1.2 37.0±1.6
en stanza rgat - 55.5±2.3 37.8±1.9
en trankit rgcn - 58.8±0.5 36.4±3.8
en trankit rgat - 61.0±2.5 39.0±4.0

hi - - 59.1±1.8 - 53.7±1.0
hi stanza rgcn 57.4±1.3 - 54.7±1.2
hi stanza rgat 61.0±2.5 - 54.8±2.1
hi trankit rgcn 59.5±0.8 - 54.3±1.8
hi trankit rgat 57.3±2.4 - 54.8±2.3

te - - 40.9±2.6 52.8±0.7 -
te stanza rgcn 41.2±2.2 55.5±0.9 -
te stanza rgat 39.0±0.7 52.0±3.2 -
te trankit rgcn 41.8±0.6 53.7±0.6 -
te trankit rgat 41.4±0.3 53.7±1.8 -
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Source sum_sq df F P(>F)
C(src) 1.844 2.000 6.265 0.020
C(GNN) 0.185 1.000 1.258 0.291
C(DEP) 1.226 1.000 8.330 0.018
C(ENC) 0.308 1.000 2.094 0.182
C(src):C(DEP) 0.165 2.000 0.56 0.590
C(src):C(ENC) 7.124 2.000 24.20 0.000
C(src):C(GNN) 1.335 2.000 4.534 0.043
C(DEP):C(GNN) 0.055 1.000 0.371 0.557
C(ENC):C(GNN) 1.045 1.000 7.098 0.026
C(DEP):C(ENC) 1.005 1.000 6.827 0.028
Residual 1.325 9.000 NaN NaN

Table 9: Indore In-Domain ANOVA Results

Source sum_sq df F P(>F)
C(src) 48.606 2.000 2.449 0.108
C(GNN) 4.009 1.000 0.404 0.531
C(DEP) 23.301 1.000 2.348 0.139
C(ENC) 20.426 1.000 2.058 0.164
C(tgt) 199.051 2.000 10.030 0.001
C(tgt):C(DEP) 13.604 2.000 0.686 0.513
C(tgt):C(ENC) 85.332 2.000 4.300 0.025
C(tgt):C(GNN) 19.710 2.000 0.993 0.385
C(tgt):C(src) 12.388 4.000 0.312 0.735
C(src):C(DEP) 6.487 2.000 0.327 0.724
C(src):C(ENC) 73.878 2.000 3.723 0.039
C(src):C(GNN) 7.459 2.000 0.376 0.691
C(DEP):C(GNN) 0.845 1.000 0.085 0.773
C(ENC):C(GNN) 0.923 1.000 0.093 0.763
C(DEP):C(ENC) 1.561 1.000 0.157 0.695
Residual 238.143 24.000 NaN NaN

Table 10: Indore Cross-Domain ANOVA Results

Source sum_sq df F P(>F)
C(src) 1.862 4.000 0.408 0.800
C(GNN) 0.719 1.000 0.630 0.438
C(DEP) 3.613 1.000 3.167 0.093
C(ENC) 51.586 1.000 45.228 0.000
C(src):C(DEP) 2.027 4.000 0.444 0.775
C(src):C(ENC) 9.053 4.000 1.984 0.143
C(src):C(GNN) 3.373 4.000 0.739 0.578
C(DEP):C(GNN) 0.221 1.000 0.194 0.665
C(ENC):C(GNN) 1.773 1.000 1.555 0.229
C(DEP):C(ENC) 1.601 1.000 1.403 0.252
Residual 19.390 17.000 NaN NaN

Table 11: RedFM In-domain ANOVA Results

Source sum_sq df F P(>F)
C(src) 14.700 4.000 0.988 0.322
C(GNN) 0.109 1.000 0.029 0.864
C(DEP) 1.111 1.000 0.299 0.585
C(ENC) 4.923 1.000 1.323 0.252
C(tgt) 10.040 6.000 0.450 0.718
C(tgt):C(DEP) 25.753 6.000 1.154 0.334
C(tgt):C(ENC) 106.197 6.000 4.757 0.000
C(tgt):C(GNN) 1.642 6.000 0.074 0.998
C(tgt):C(src) 314.185 24.000 3.518 0.000
C(src):C(DEP) 23.724 4.000 1.594 0.178
C(src):C(ENC) 323.737 4.000 21.752 0.000
C(src):C(GNN) 49.322 4.000 3.314 0.012
C(DEP):C(GNN) 0.615 1.000 0.165 0.685
C(ENC):C(GNN) 2.771 1.000 0.745 0.389
C(DEP):C(ENC) 0.389 1.000 0.105 0.747
Residual 647.408 174.000NaN NaN

Table 12: RedFM Cross-Domain ANOVA Results

Source sum_sq df F P(>F)
C(src) 58.4 2 0.657 5.26E-01
C(DEP) 2.2 1 0.048 8.28E-01
C(LLM) 1260.3 2 14.17 6.18E-05
C(PRM) 3042.5 2 34.22 3.94E-08
C(src):C(DEP) 16.7 2 0.187 8.30E-01
C(src):C(LLM) 543.7 4 3.058 3.36E-02
C(src):C(PRM) 426.9 4 2.401 7.46E-02
C(DEP):C(LLM) 62.3 2 0.708 5.05E-01
C(DEP):C(PRM) 48.0 2 0.54 5.87E-01
C(LLM):C(PRM) 2205.3 4 12.40 7.47E-06
Residual 1200.1 27 NaN NaN

Table 13: Indore Zero-shot ICL ANOVA Results

Source sum_sq df F P(>F)
C(src) 6123.02 6 13.34 2.91E-10
C(DEP) 5.09 1 0.07 7.97E-01
C(LLM) 4945.81 2 32.32 6.97E-11
C(PRM) 12473.392 81.51 1.23E-19
C(src):C(DEP) 178.97 6 0.39 8.83E-01
C(src):C(LLM) 13819.1212 15.05 1.46E-15
C(src):C(PRM) 1727.37 12 1.88 5.01E-02
C(DEP):C(LLM) 131.03 2 0.86 4.29E-01
C(DEP):C(PRM) 101.88 2 0.67 5.17E-01
C(LLM):C(PRM) 3130.31 4 10.23 1.12E-06
Residual 5815.44 76 NaN NaN

Table 14: RedFM Zero-shot ICL ANOVA Results
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Abstract

Recently, there has been a growing interest
among large language model (LLM) develop-
ers in LLM-based document reading systems,
which enable users to upload their own docu-
ments and pose related questions, addressing
challenges like file parsing, metadata extrac-
tion, multi-modal information understanding,
and long-context reading. However, no current
benchmark exists to evaluate their performance
in such scenarios, where a raw file and ques-
tions are provided as input, and a corresponding
response is expected as output. In this paper,
we introduce DOCBENCH, a new benchmark
designed to assess LLM-based document read-
ing systems. It includes 229 real documents
and 1,102 questions across five domains and
four major question types, created through hu-
man annotators and synthetic question genera-
tion. Our findings highlight significant gaps be-
tween existing LLM-based document reading
systems and human performance, emphasizing
the challenges in developing proficient systems.
DOCBENCH aims to standardize the evaluation
of these systems in diverse real-world scenar-
ios, guiding future advancements in this field.

1 Introduction

The emergence of large language models (LLMs)
has marked a significant milestone in the field of
natural language processing, revolutionizing the
way we approach a variety of tasks (Zhao et al.,
2023; Chang et al., 2024; Wang et al., 2024a;
Achiam et al., 2023; Anthropic, 2024; Touvron
et al., 2023; Team et al., 2023). Existing LLMs
such as GPT-4 (Achiam et al., 2023), Llama-3 (Tou-
vron et al., 2023), and Claude-3 (Anthropic, 2024)
have shown exceptional abilities in following hu-
man instructions to perform tasks such as answer-
ing questions, translating languages and summariz-
ing texts. These tasks are typically characterized

*This work was done during internship at Tencent AI Lab,
Seattle.

by straightforward input-output interactions, where
the models generate responses solely based on the
provided text. However, many real-world appli-
cations require more complex interactions involv-
ing user-provided documents. For instance, finan-
cial analysts might need to query comprehensive
financial reports to inform their investment deci-
sions (Yang et al., 2023; Wu et al., 2023). Legal pro-
fessionals often search through extensive legal doc-
uments to find relevant case law (Lai et al., 2023;
Cui et al., 2023). Similarly, scientific researchers
frequently sift through academic papers to identify
related works and extract key findings (Dasigi et al.,
2021; Birhane et al., 2023).

When users pose queries based on their provided
documents, the situation becomes more intricate
and challenging (Lee et al., 2024). Unlike stan-
dalone LLMs that are primarily trained to process
and respond to textual inputs (or images in the
case of Vision LLMs), handling user-provided doc-
uments necessitates a more sophisticated approach
that stretches beyond the capabilities of a single
LLM. In order to provide accurate responses, an
LLM-based document reading system should not
only comprehend natural language queries, but also
excel in a range of processing skills, including pars-
ing and interpreting user documents and layouts,
navigating complex formatting structures, extract-
ing relevant metadata, and managing long textual
contexts along with any embedded images. Mas-
tery of these diverse skills is essential for generat-
ing precise and contextually relevant responses.

At the same time, recent advancements in pro-
prietary LLM developers such as OpenAI and An-
thropic have provoked the release of several LLM-
based document reading systems. Figure 1 illus-
trates an example of OpenAI’s GPT-4-based docu-
ment reading system. Despite widespread claims
of effectiveness and efficiency in various online
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User: Upload the PDF file of DPR paper

User: Who is most cited person in the paper

System: Ming-Wei Chang, with 4 citations

Black-box document 
reading systems

Step 1: parse the uploaded document

Step 2: extract the reference section

Step 3: extract author names from references

Step 4: count the occurrences of each person 

Step 5: respond with the most cited person

[Some file loading process is omitted … ]

Figure 1: An example of OpenAI’s GPT-4 based document reading system. Unlike standalone LLMs, recent
proprietary LLM-based document reading systems employ a carefully designed approach (e.g., file parsing, code
execution) to answer user questions related to document contents.

public blogs12, the absence of a standardized
benchmark makes it difficult to objectively eval-
uate and compare the document reading perfor-
mance across these systems, thereby leaving a crit-
ical gap in fairly assessing these capabilities in a
fine-grained manner.

To fill this gap, our paper introduces
DOCBENCH, a novel benchmark specifically
designed to evaluate LLM-based document
reading systems. DOCBENCH is developed to
mirror real-world scenarios where each input
consists of a document paired with one or mul-
tiple associated questions, and each question is
annotated with a golden answer. Our benchmark
undergoes a meticulous development process,
incorporating human annotation and synthetic
question generation. To the end, DOCBENCH

features 229 real-world documents and 1,102
questions spanning 5 diverse domains: Academia,
Finance, Government, Laws, and News. Besides,
the benchmark involves 4 question categories,
including text-only, multi-modal (i.e., tables and
figures), meta-data, and unanswerable, ensuring
comprehensive coverage of various document
reading capabilities.

Based upon DOCBENCH, we evaluate several
proprietary LLM-based systems that are accessi-
ble via web interfaces or APIs. However, these
proprietary systems are close-sourced, thus lead-
ing to the limited disclosure of their detailed op-

1Blog: Claude can now use tools https://www.
anthropic.com/news/tool-use-ga

2Blog: Talk with documents using Lla-
maIndex https://codemaker2016.medium.com/
talk-with-documents-using-llamaindex-3952c76bd511

erational strategies. As a result, we additionally
assess a straightforward parse-then-read pipeline
employing a series of open-source LLMs. Our
evaluations reveal noticeable gaps between exist-
ing LLM-based document reading systems and hu-
man performance, underscoring the challenges of
developing proficient systems.

In summary, DOCBENCH serves as the first stan-
dardized benchmark to evaluate LLM-based docu-
ment reading systems within real-world scenarios,
where the systems take a document file paired with
one or multiple related questions as input and gen-
erate textual responses as output. Moreover, our
benchmark is carefully designed to encompass 5
diverse domains and 4 distinct question types, en-
suring a nuanced and thorough assessment. By
facilitating fair comparisons across different sys-
tems, DOCBENCH highlights current limitations
and paves the way for future advancements.

2 The DOCBENCH

DOCBENCH is a benchmark that takes raw PDF files
and accompanying questions as inputs, with the ob-
jective of generating corresponding textual answers.
In this section, we will introduce the pipeline used
to construct the dataset, present detailed statistics,
and explain the evaluation method.

2.1 Dataset Construction

Our dataset construction pipeline consists of three
phases. First, we crawl documents across various
domains from publicly accessible online resources
(§2.1.1). Second, we generate corresponding QA
pairs with the help of GPT-4 and a team of human
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Q: What was the total non-operating 
income for Amazon in 2021? 
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(a) Document Collection (b) QA-pair Generation (c) Quality Check


 � � � � � � � � � � � 	 � �
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Page Text:
We introduce a new 
language model that... 
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� � � � � �
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� � � � � �
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<Text-only> 
Q: What is the average sales...
A: $10,537 million. [Evidence]

<Multimodal> 
Q: According to Figure 2, what is ...
A: Yes. [Evidence]

<Meta-data> 
Q: On which page does the report
A: Page 5.

<Unanswerable> 
Q: What does BERT...
A: Not mentioned.

Text-only

Based on the above �gure and 
text, please design three QA pairs...
These questions require locating 
the speci�c information, simple or
complex calculations, comparisons, 
�nding the maximum or minimum... 

Multimodal

� � � � � � �� � � � � � � �

Q: Is SenseBERT a model mentioned 
in the provided text? 
A: Yes. [Evidence]

Q: What was the total non-operating 
income for Amazon in 2021? 
A: $13,272 million. [Evidence]

Q: Is SenseBERT a model mentioned 
in the provided text? 
A: Yes. [Evidence]

Figure 2: Construction pipeline of DOCBENCH. (a) Document Collection: gathering PDF files from five different
domains; (b) QA-pair Generation: creating diverse and comprehensive QA pairs through a combination of LLMs
and human effort; (c) Quality Check: ensuring data quality through a multi-step process.

annotators (§2.1.2). Finally, we conduct auto fil-
tering followed by a manual review to validate the
quality of the generated instances (§2.1.3).

2.1.1 Document Collection

To establish a practical and constructive bench-
mark for document reading, we concentrate on
scenarios where it is crucial to read documents.
We standardize the documents to PDF format due
to its high compatibility and stability. We iden-
tify five domains where documents are frequently
utilized: Academia, Finance, Government, Laws,
News. For Academia, papers are downloaded from
arXiv within the range of top-k citations in the
field of natural language processing on Google
Scholar. 3 For Finance, we crawl the annual reports
of companies with top-k global market capitaliza-
tion up to 2024-02-23 from AnnualReports. 4 For
Government, we manually download official gov-
ernmental reports in 2023 from the U.S. Depart-
ment of State and GovInfo. 5 For Laws, files are
gathered from an official online collection of pub-
lications from the Library of Congress, within the
years ranging from 2020 to 2024. 6 For News, we
collect front-page scanned documents of the New

3https://scholar.google.com/; https://arxiv.
org/.

4https://companiesmarketcap.com; http:
//www.annualreports.com.

5https://www.state.gov/department-reports/;
https://www.govinfo.gov/.

6https://www.loc.gov/collections/
publications-of-the-law-library-of-congress.

York Times, covering dates from 2022-02-22 to
2024-02-22. 7 We set k = 100 in the initial crawl-
ing process for academic and financial documents.
After skipping the unobtainable or damaged docu-
ments, we eventually obtained 229 PDF files, with
49 for academia, 40 for finance, 44 for government,
46 for laws, and 50 for news. Detailed statistics are
shown in Table 1.

2.1.2 QA-pair Generation
The generation procedure revolves around two
aspects: diversity and comprehensiveness. On
one hand, as the document itself inherently
abounds with multi-dimensional and multi-modal
information including texts, tables, figures, and
meta-data, we leverage the fitz library 8 to
parse out the distinct modalities within the
PDF files. Afterward, we deliver plain texts
to GPT-4 (gpt-4-0125-preview) for generat-
ing text-only QA pairs and resort to GPT-
4V (gpt-4-1106-vision-preview) for yielding
multi-modal ones based on tables, figures, and their
related textual descriptions. On the other hand, we
further request a set of human annotators to man-
ually elaborate 350 QA pairs based on the given
document files. Their primary task is to focus on
types that are rarely covered in the previous gener-
ation stage but are frequent in daily usage, such as
meta-data and unanswerable instances. Details of
the annotation process and instruction prompts are

7https://static01.nyt.com/images/.
8https://pypi.org/project/fitz/
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Category Questions. Documents.

#Num #Tokens #Num #Pages #Size(KB) #Tokens

Aca. 303 16.8 49 11 847 11,123
Fin. 288 16.8 40 192 6,594 149,409
Gov. 148 14.1 44 69 2,183 36,105
Laws 191 15.4 46 58 969 32,339
News 172 13.5 50 1 3,095 2,909

Total/Avg. 1,102 15.7 229 66 2,738 46,377

Table 1: Overview statistics of DOCBENCH. All documents are in PDF format. We extract text content and calculate
the corresponding #Tokens of documents.
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Figure 3: Data distribution of DOCBENCH: (a) proportion(%) of various data groups based on four distinct
classification criteria; (b) detailed data analysis based on question types.

attached in Appendix B.

2.1.3 Quality Check
We begin by instructing GPT-4 to automatically
filter out questions that are excessively lengthy, un-
natural, or impractical. We then conduct a manual
review following the automatic filtering to ensure
both the quality of questions and the accuracy of
answers. To further align our data with real-world
user scenarios, we engage 7 practitioners from dis-
tinct domains to review and refine the data within
their areas of expertise. In this way, our data quality
is validated from multiple perspectives.

2.2 Dataset Statistics
DOCBENCH comprises a total of 229 PDF doc-
uments sourced from publicly accessible online
repositories along with 1,102 questions, spanning
across 5 domains: Academia, Finance, Govern-
ment, Law, and News. As shown in Table 1, we con-
duct comprehensive statistical analysis across vari-
ous angles, encompassing the number of questions,
documents, and average token counts within each.
Given the unique nature of our task input, which
involves processing PDF files, we additionally in-
clude information such as page count and file size.
Figure 3 shows data distribution in DOCBENCH

based on various classification criteria.

2.2.1 QA-pair Type
The types of QA pairs can be mainly divided
into four groups: text-only (37.4%), multimodal
(27.9%), meta-data (23.4%), and unanswerable
(11.3%). The text-only and multimodal types col-
lectively account for over half (65.3%), center-
ing on the abilities to comprehend long contexts
and interpret information from different modalities.
Besides, we incorporate approximately one-third
(34.7%) of questions to more closely fit the actual
scenarios as well as assess the robustness of the doc-
ument reading systems, including 23.4% inquiring
about metadata (e.g., page numbers, word counts)
and 11.3% that cannot be answered based on the
given document.

2.2.2 Question Type
The types of questions can be primarily separated
into four categories according to the inquiry focus:
what / who / where / when / which (58.6%), Y/N
(22.1%), how (18.8%), and why (0.5%). These cat-
egories respectively need specific information or
details, straightforward yes or no responses, meth-
ods or degrees, and the underlying reasons behind
actions or phenomena. Figure 3(b) provides a de-
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Sources # Correct / Wrong by different evaluators Agreement (human and automatic evaluators)

Human GPT-4 GPT-3.5 StrMatch GPT-4 GPT-3.5 StrMatch

KimiChat 24 / 16 23 / 17 33 / 7 0 / 40 97.5% 75.0% 40.0%
Qwen-2.5 17 / 23 18 / 22 31 / 9 0 / 40 97.5% 57.5% 57.5%
Gemma (7B) 19 / 21 18 / 22 18 / 22 0 / 40 97.5% 75.0% 52.5%
Mixtral (7B) 14 / 26 14 / 26 26 / 14 0 / 40 100.0% 65.0% 65.0%
Llama-3 (70B) 16 / 24 15 / 25 28 / 12 0 / 40 97.5% 62.5% 60.0%

Total 90 / 110 88 / 112 136 / 64 0 / 200 98.0% 67.0% 55.0%

Table 2: The GPT-4 automatic evaluator shows a 98% agreement with human annotators. We randomly sample 40
questions and answers from five systems, asking human annotators to assess their accuracy. We then employ string
matching (StrMatch), GPT-3.5, and GPT-4 as automatic evaluators. Finally, we measure the agreement between the
human and these automatic evaluators.

tailed data distribution based on question types.
The interrogative what holds a dominant proportion
at 40.8%, which is reasonable as users commonly
seek precise information in a document.

2.2.3 Answer Type
The types of answers can be partitioned into
four classes: numerical (37.4%), textual (35.7%),
boolean (17.3%), and others (9.6%). Within the
numerical class, 69% originate from the domains
of academia and finance, as these documents nat-
urally require extensive use of numbers to convey
information, such as performance metrics in aca-
demic papers and figures in financial reports.

2.3 Evaluation Setup
Evaluation Process Our dataset diversity poses
two major evaluation challenges: (i) The evalua-
tion methods vary depending on the answer type.
For example, for boolean or numerical answers, a
fair evaluator only needs to verify the correctness
of a binary yes/no response or a specific number
using simple techniques like string matching or
number extraction. In contrast, textual responses
require more nuanced standards such as natural lan-
guage generation (NLG) metrics. Thus, accurately
determining the appropriate evaluation method be-
comes complex when the answer type is unknown.
(ii) Different LLMs and systems exhibit substan-
tial variations in the organization and style of their
outputs, potentially leading to biases in traditional
evaluation approaches. Therefore, we capitalize on
the prowess of LLMs that have proven to be decent
evaluators and can be easily adapted to the assess-
ment of various answer types (Fu et al., 2023; Liu
et al., 2023; Wang et al., 2023). Inspired by Liu
et al. (2023), we clearly define the evaluation crite-
ria for various types within the instruction prompt
and then instruct GPT-4 to assign a score of 0 (in-
correct) or 1 (correct). After evaluating 200 ex-

amples by both human evaluators and GPT-4, we
found that the GPT-4 automatic evaluator shows
a 98% agreement with human annotators, signif-
icantly exceeding the traditional string matching
approach. Details of this experiment is shown in Ta-
ble 2, and details of evaluation instruction prompts
are attached in Appendix B.
Metrics As mentioned above, we instruct GPT-4
to assign a score of 0 (incorrect) or 1 (correct), thus
using Accuracy (abbreviated as Acc.) to measure
system performance. We report accuracy across all
instances, as well as for each domain and QA-pair
type in Table 3.

3 Experiments and Analysis

3.1 Experimental Setup

We conduct a comprehensive evaluation of 22
LLM-based document reading systems, encom-
passing both proprietary systems that support doc-
ument uploads and a series of parse-then-read
pipelines. For parse-then-read pipelines, we lever-
age the fitz package to extract text and image
blocks from PDF files. We retain the original texts
and line breaks for text chunks while we denote
the i-th image as [image i] for images. Our se-
lection for the proprietary systems includes GPT-4
and GPT-4o (Achiam et al., 2023) from OpenAI,
GLM-4 9 from ZhipuAI, Kimi 10 from Moonshot
AI, Claude-3 11 from Anthropic, Qwen-2.5 12 from
Alibaba Cloud, and ERNIE-3.5 13 from Baidu. In
the case of the parse-then-read pipelines, we as-
sess 15 prominent LLMs as base models, featuring
those from the GPT (Achiam et al., 2023; Ope-
nAI, 2022), Llama (Touvron et al., 2023), Mis-

9https://chatglm.cn/main/doc
10https://kimi.moonshot.cn
11https://claude.ai/chats
12https://tongyi.aliyun.com/qianwen
13https://yiyan.baidu.com
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Methods Form Ver.
/Size

File
/Cxt.

Domain Type Overall Acc.
Aca. Fin. Gov. Laws News Text. Multi. Meta. Una.

Human - - - 83.0 82.2 77.8 75.0 86.4 81.4 83.3 77.5 82.2 81.2
LLM-based systems

GPT-4 API 0409 100M 65.7 65.3 75.7 69.6 79.6 87.9 74.7 50.8 37.1 69.8
GPT-4o API 0513 100M 56.4 56.3 73.0 65.5 75.0 85.0 62.7 50.4 17.7 63.1
GLM-4 Web - 20M 55.8 35.4 61.5 62.8 82.0 73.1 50.3 48.8 33.1 56.5
KimiChat Web - 100M 62.4 61.8 77.0 78.5 87.2 87.6 65.3 50.4 71.8 70.9
Claude-3 Web Opus 10M 73.9 40.6 70.3 79.1 86.6 80.8 64.6 54.3 58.9 67.6
Gemini-1.5 Web Pro 30M 60.4 42.5 57.4 71.7 74.3 74.0 30.8 53.8 60.2 55.4
Qwen-2.5 Web - 150M 42.9 29.9 51.4 55.5 69.2 61.7 31.8 36.0 58.1 46.9
ERNIE-3.5 Web - 10M 56.4 37.5 54.7 58.1 58.1 63.6 47.7 36.8 54.0 51.8

Parse-then-Read Pipelines

GPT-4 API 0409 128k 70.0 47.9 68.9 70.7 93.6 79.1 63.3 54.3 70.2 67.9
GPT-3.5 API 0125 16k 49.8 24.0 58.8 50.3 83.7 65.0 37.0 42.6 44.4 49.6
ChatGLM3 Open 6B 128k 34.7 41.7 58.1 51.3 58.1 70.4 40.3 31.0 12.1 46.2
Gemma Open 7B 8k 34.3 12.5 43.2 34.0 65.1 43.0 17.2 21.3 77.4 34.6
Mixtral Open 7B 32k 42.6 29.2 58.8 50.3 82.0 71.8 33.8 38.4 30.6 48.7
InternLM2 Open 7B 32k 38.6 27.1 52.0 46.1 65.7 63.3 28.9 35.3 25.8 42.9
Llama-3 Open 8B 8k 44.6 23.6 61.5 54.5 86.6 68.0 29.2 45.0 49.2 49.6
Yi-1.5 Open 9B 16k 40.6 26.4 58.1 52.4 83.1 66.0 33.8 45.7 27.4 47.9
Llama-2 Open 13B 4k 20.8 18.4 29.7 23.6 55.2 43.4 15.9 21.7 12.9 27.2
Phi-3 Open 14B 128k 50.2 44.4 65.5 64.4 76.7 77.4 45.8 45.3 44.4 57.4
InternLM2 Open 20B 32k 43.2 28.5 59.5 54.5 80.8 73.3 33.4 43.0 22.6 49.4
Yi-1.5 Open 34B 16k 47.2 27.1 59.5 56.5 78.5 68.2 39.0 49.2 19.4 50.1
Command-R Open 35B 128k 49.5 38.9 66.2 64.4 80.8 78.4 50.0 49.6 13.7 56.4
Mixtral-8x7B Open 47B 32k 48.5 31.9 60.1 59.2 81.4 76.0 42.9 46.9 12.1 52.7
Llama-3 Open 70B 8k 52.1 25.3 68.2 59.2 90.7 69.2 38.6 49.2 56.5 54.5

Table 3: Results on DOCBENCH across various types and domains. Ver./Size stands for the model version or size;
File denotes the maximum uploaded file size; Cxt. refers to model’s context length.

tral (Jiang et al., 2024), Yi (Young et al., 2024),
InternLM (Cai et al., 2024), Phi-3 (Abdin et al.,
2024), Gemma (Team et al., 2024), ChatGLM3 (Du
et al., 2021), and Command-R (CohereAI, 2024)
families. The selection of base open-sourced LLMs
adheres to three guiding principles: (i) official re-
lease with instruct or chat versions that are sup-
ported by vLLM (Kwon et al., 2023) framework;
(ii) model sizes ranging from 7B to 70B to accom-
modate GPU memory constraints; (iii) availability
of the longest context length and the latest version.

3.2 Results and Discussion

Table 3 showcases the performance of various doc-
ument reading systems on DOCBENCH. Our find-
ings reveal substantial variations in document read-
ing capabilities among these systems, driven by
differences in their foundational models, context
length limitations, diverse design and implementa-
tion approaches, and etc. In this section, we will

provide further discussions to delve deeper into
the pros and cons of existing systems, as well as
uncover the core challenges posed by DOCBENCH.

1. Interpreting multi-modal and metadata in-
formation. Figure 4 presents a case study illus-
trating the unique challenge of answering multi-
modal questions in DOCBENCH. We observe
that leading proprietary LLM-based systems of-
ten fail due to errors in one of the steps in
the Location→Extraction→Calculation sequence.
Take the case study as an example, in the first step,
KimiChat fails to locate the relevant chart on page
17. In the extraction phase, Claude-3 misidenti-
fies the data as 288 & 348, instead of the correct
326 & 390. Finally, while GPT-4 locates and ex-
tracts the correct information, it errs in calculating
the percentage change, demonstrating the complex-
ity of these questions. Interestingly, parse-then-
read pipelines can achieve reasonable performance
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Question:  What is the percentage change in the number of o�shore stores for the company from FY18 to FY19? 

Location Extraction

Calculation

(390-326)/326 = 19.63%
GPT-4

KimiChat

Claude-3

The percentage change in the number of o�shore stores from 
FY18 to FY19 is 12.8% (326 stores in FY18 to 390 in FY19) . 

The percentage change in the number of o�shore stores from 
FY18 to FY19 is not provided in the document.  

The number of o�shore stores increased by 21% from 288 in 
FY18 to 348 in FY19.    

Question:      Which region has the highest number of employees of the company and how many?

Location Extraction

Calculation
max(43181, 22674, 678...)

GPT-4

KimiChat

Claude-3  Head Genentech Research & Early Development (gRED) 

The region with the highest number of employees of the 
company is Asia, with 22,674 employees. This information is 
provided in the text: "Asia 22,674.", 

Europe has the highest number of employees at Roche, 
with a total of 43,181 employees. 

Question:     Which domain has the highest number of dialogues in the test set?

Location Extraction

Calculation
GPT-4

KimiChat

Claude-3

The "Restaurant" domain has the highest number of dialogues 
in the test set, with 437 dialogues.

The "Taxi" domain has the highest number of dialogues in the 
test set, with 195 dialogues.

The restaurant domain has the highest number of dialogues 
(437) in the test set.   

max(394, 494, 395, 437...)

Figure 4: To address multi-modal questions in DOCBENCH, it is essential to: (i) identify the relevant figure/table
(Location); (ii) extract specific data (Extraction); (iii) perform necessary calculations (Calculation). In this case
study, KimiChat fails to locate the figure, Claude-3 retrieves incorrect data, and GPT-4, despite succeeding in the
first two steps, struggles with the calculation.
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Figure 5: Average accuracy (%) of two methods under
five different domains.

on multi-modal questions (e.g., 63.3% for GPT-4).
This is likely because the parsing process captures
certain table information, and documents often in-
clude textual descriptions of figures. Meanwhile,
for metadata-related questions, current methods
generally lack attention to global information, re-
sulting in relative low performances (below 55%).

2. Handling lengthy documents. Handling
lengthy documents is demanding, especially in
real-world scenarios where document size can be
virtually unlimited. Proprietary LLM-based sys-
tems struggle with uploading extensive files, while
the parse-then-read pipelines with open-sourced
LLMs are constrained by their maximum context
length, leading to varying degrees of information
loss. As shown in Figure 5, both methods perform
poorly in the finance domain but achieve higher
performance in the news domain. This discrepancy
arises because financial documents are typically
longer and contain richer information, whereas
news files are limited to single front pages with
fewer messages. Furthermore, certain strong mod-
els with relatively short context lengths may excel
with smaller files, but context length becomes a
crucial factor when it comes to large files. For

instance, the 8k Llama-3 family performs excep-
tionally well in the news domain, but is outper-
formed by all the 128k models in the finance do-
main. Besides, we discover that KimiChat and
Command-R, which are specifically enhanced for
long-context and Retrieval-Augmented Generation
(RAG) capabilities, achieve decent results on text-
only questions. Therefore, a key challenge lies
in adapting these systems to handle documents of
varying lengths while balancing the foundational
model’s capabilities and context length constraints.

3. Faithfulness to user-provided documents
Most existing document reading systems falter
when faced with unanswerable questions based on
the provided document, exhibiting a lack of fidelity.
Remarkably, Gemma and KimiChat perform better
in such scenarios, which represents a crucial capa-
bility since users often expect systems to answer
questions strictly based on given files. Intriguingly,
despite the commonly-shared base model on GPT-
4, there is a notable performance gap between the
system and the parse-then-read pipeline in handling
unanswerable questions (i.e., 37.1% and 70.2 % for
system and pipeline, respectively). We analyze that
this may be due to: (i) the proprietary LLM-based
system have undergone optimizations on the base
model, potentially causing overfitting; (ii) GPT-
4 tends to adhere more closely to the in-context
learning information. Such phenomenon thus un-
derscores a critical challenge for future document
reading systems on enhancing fidelity to the given
documents.
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4 Related Works

4.1 Recent Advances of LLMs and
LLM-based Systems

The latest generation of LLMs, such as GPT-
4 (Achiam et al., 2023), Llama-3 (Touvron et al.,
2023) and Claude-3 (Anthropic, 2024), have signif-
icantly extended the capabilities of language mod-
els (Zhao et al., 2023; Chang et al., 2024; Wang
et al., 2024a). These models are pre-trained on
vast amounts of web-scale data, enabling them to
perform a wide range of human-instructed tasks
with impressive performance. Despite their remark-
able performance, standalone LLMs may not be
sufficient for many real-world applications. For ex-
ample, LLMs lack access to real-time information
and may struggle with tasks that require up-to-date
knowledge (Vu et al., 2023). Moreover, real-world
applications often require non-text inputs parsing,
code execution, API calling and interaction with ex-
ternal environments (Lee et al., 2024; Labs, 2024;
Jimenez et al., 2023; Zhou et al., 2023; Xie et al.,
2024; Guo et al., 2024). The overall task comple-
tion usually requires multiple reasoning, execution
and reflection steps that cannot be accomplished
in a simple input-output manner (Yao et al., 2023;
Shinn et al., 2023; Wang et al., 2024b). To over-
come the limitations of standalone LLMs, recent
efforts have incorporated additional components
and sophisticated system design. These systems,
such as Microsoft’s Co-Pilot14 and OpenAI’s GPT-
4 all-in-one15, aim to provide more comprehen-
sive and practical solutions for real-world applica-
tions. Other pioneering efforts on designing LLM-
based systems include web agents (Zheng et al.,
2024; He et al., 2024; Ma et al., 2023), software
agents (Yang et al., 2024; Labs, 2024) and com-
puter agents (Wu et al., 2024) that can interact with
external resources (e.g., websites, search engine,
code repositories or computers) and perform multi-
step tasks. The success of these systems relies on
integrating powerful LLMs with well-designed ar-
chitectures and components that enable them to
handle complex tasks effectively.

4.2 Document reading: Datasets and Methods

Document reading is a critical area where LLM-
based systems have demonstrated significant ad-
vancements. Proprietary developers such as Ope-

14https://copilot.microsoft.com
15https://chat.openai.com

nAI16 and Anthropic17 have introduced advanced
systems that can take a user-provided document as
input, parse its structure, extract relevant metadata,
and handle long texts and images to provide ac-
curate responses. While these systems build upon
the fundamental capabilities of their underlying
LLMs (Zeng et al., 2022; Bai et al., 2023; Achiam
et al., 2023; Anthropic, 2024), they differ in their
design and implementation, with some systems
excelling in long-context reading and others focus-
ing on retrieval-augmented methods to improve
document reading ability. Despite claims of ef-
fectiveness and efficiency in online public blogs,
the absence of a standardized benchmark makes it
difficult to objectively evaluate and compare the
document reading performance across these sys-
tems. Existing benchmarks relevant to document
reading are unable to adequately reflect the real per-
formance of these systems. Datasets focusing on
document understanding such as Doc2Dial (Feng
et al., 2020), ConditionalQA (Sun et al., 2022)
and those specifically focusing on long-context
reading like NarrativeQA (Kočiskỳ et al., 2018)
and QuALITY (Pang et al., 2022), primarily use
text as input only, ignoring the complex nature of
document structure and multi-modal information.
On the other hand, multi-modal document read-
ing datasets like DocVQA (Mathew et al., 2021),
ChartQA (Masry et al., 2022), OCR-VQA (Mishra
et al., 2019), and InfoVQA (Mathew et al., 2022)
include multi-modal inputs and preserve the origi-
nal document structure and layout. However these
datasets often capture only parts of document (e.g.
tables or figures) and ignored substantial amount
of textual content. However, DocBench requires
systems to process the full documents as intact
files and covers different types of questions target-
ing various abilities, which can more accurately
evaluate the capabilities of LLM-based document
reading systems in real-world scenarios.

5 Conclusion

In this paper, we introduce DOCBENCH, a novel
benchmark created to assess LLM-based docu-
ment reading systems in a comprehensive and fine-
grained manner. DOCBENCH consists of 229 doc-
uments and 1,102 questions, spanning 5 domains
and 4 question types, developed with the help of
human annotators and synthetic questions. We eval-

16OpenAI’s ChatGPT: https://chat.openai.com
17Anthropic’s Claude: https://claude.ai/chats
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uate both proprietary LLM systems, accessible via
web interfaces or APIs, and a parse-then-read ap-
proach using open-source LLMs. Our findings
reveal significant disparities in document reading
capabilities among these systems, highlighting cur-
rent limitations, presenting potential challenges,
and thus driving forward progress in this field.

6 Limitation

While DOCBENCH aims to encompass a wide
range of real-world document-related questions,
it is not exhaustive. Our benchmark primarily fo-
cuses on the four most common question types,
leaving other potential types unaddressed. Addi-
tionally, our evaluation of proprietary LLM-based
document reading systems is limited. Many of
these systems, such as OpenAI-o1, are accessible
only through web interfaces with restricted access
and lack APIs, which makes the evaluation process
slow and challenging.
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A Annotation Process

Since the QA-pair generation process requires data
annotators to deeply understand the motivations be-
hind our benchmark construction, and considering
the initial training costs and the need to manually
annotate about 350 QA pairs, we’ve decided to
assign 2 annotators to this task.

The annotation process presents as follows:

• We first communicate the motivation behind
our work to the annotators and explain the
concepts of meta-data and unanswerable ques-
tions in detail.

• Next, we provide 10 example QA pairs for
reference (5 for each type).

• Finally, each annotator generates 170 QA
pairs. They then exchange their annotations
for double-checking and review.

B Instruction Prompts

B.1 Response Evaluation

Detailed instruction prompts for response evalua-
tion are shown in Table 4.

B.2 QA-pair Generation

Details of instruction prompts for generating QA
pairs are attached in Table 5. We discover that sim-
ply passing diagrams to GPT-4V leads to subpar
question quality. This issue likely stems from the
fact that figures or tables without accompanying
text descriptions typically lack sufficient informa-
tion, thus causing the generated QA pairs to de-
viate from their intended meanings. In addition,
we observe that adding difficulty settings for QA
generation (e.g., Easy, Medium, Hard) in the in-
struction prompt can result in higher quality. We
analyze that this may be due to the model being
able to favor higher generation quality in potential
comparisons.

C Performance Comparison

Figure 6 demonstrates the relative performance of
LLM-based systems and parse-then-read pipelines
against the best on DOCBENCH. For LLM-based
systems, KimiChat consistently scores high across
various metrics, demonstrating balanced perfor-
mance. Notably, GPT-4 performs poorly in the
unanswerable category, indicating potential overfit-
ting in optimized GPT-4 file systems, which leads

to decreased fidelity to given documents. Addi-
tionally, Claude-3 excels in the meta-data cate-
gory, highlighting its superior ability to compre-
hend high-level metadata information. For parse-
then-read pipelines, we select models with the high-
est overall accuracy for comparison. Unlike LLM-
based systems, GPT-4 demonstrates consistently
high and balanced performance across all aspects
within this pipeline. Notably, significant discrepan-
cies arise in handling multi-modal and unanswer-
able questions, where GPT-4 and Gemma exhibit
clear distinctions from the remaining methods.

D Analysis of Input Sources

Table 7 presents the impact of different input
sources on model performance. We provide ques-
tions to GPT-4 and GPT-4o, both with and without
attached files. Remarkably, even without files, the
models correctly answer a portion of the questions
(19.1% for GPT-4 and 21.7% for GPT-4o). Our
analysis reveals that the correctly answered ques-
tions are predominantly textual and are largely as-
sociated with government, law, and news domains.
This trend suggests that the models’ underlying
training data is heavily skewed towards these cat-
egories, enabling them to answer some questions
accurately without additional files. Moreover, as
GPT-4o is an optimized version of GPT-4, it likely
benefits from a broader and more training data.
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Table 4: Instruction Prompts in Response Evaluation.

System Content:
You are a helpful evaluator.

Prompt:
Task Overview:

You are tasked with evaluating user answers based on a given question, reference answer, and
additional reference text. Your goal is to assess the correctness of the user answer using a specific
metric.

Evaluation Criteria:
1. Yes/No Questions: Verify if the user’s answer aligns with the reference answer in terms of a

"yes" or "no" response.
2. Short Answers/Directives: Ensure key details such as numbers, specific nouns/verbs, and dates

match those in the reference answer.
3. Abstractive/Long Answers: The user’s answer can differ in wording but must convey the same

meaning and contain the same key information as the reference answer to be considered correct.

Evaluation Process:
1. Identify the type of question presented.
2. Apply the relevant criteria from the Evaluation Criteria.
3. Compare the user’s answer against the reference answer accordingly.
4. Consult the reference text for clarification when needed.
5. Score the answer with a binary label 0 or 1, where 0 denotes wrong and 1 denotes correct.
NOTE that if the user answer is 0 or an empty string, it should get a 0 score.

Question: {{question}}
User Answer: {{sys_ans}}
Reference Answer: {{ref_ans}}
Reference Text: {{ref_text}}

Evaluation Form (score ONLY):
- Correctness:
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Table 5: Instruction Prompts in QA-pair Generation.

System Content:
You are a helpful assistant that can generate question-answer pairs.

Text-only QA:
Based on the above text, please design three question-answer pairs with different levels of difficulty:

Easy, Medium, Hard.
The questions should be close-ended and should be answered based on the provided text.
The answer form should be as diverse as possible, including [Yes/No, Short Answer, Long Answer,

Abstractive Answer].
You should provide the reference in the text and the answer form if possible.
The output should be formalized as: ”’Q: | A: | Reference: | Difficulty Level: | Answer Form:”’

Multimodal QA (w/table+text):
Based on the above table and text, please design three question-answer pairs with different levels

of difficulty: Easy, Medium, Hard.
The text provided is text related to the table, which can provide more reference for question

generation, but the focus is still on the table itself.
These questions require locating the specific information, simple or complex calculations, compar-

isons, finding the maximum and minimum, reading across rows and columns, etc.
Note that these questions also need to be realistic. You should provide the reason if possible.
The output should be formalized as: ”’Q: | A: | Reference: | Difficulty Level: | Answer Form:”’

Multimodal QA (w/figure+text):
Based on the above figure and text, please design three question-answer pairs with different levels

of difficulty: Easy, Medium, Hard.
The text provided is text related to the figure, which can provide more reference for question

generation, but the focus is still on the figure itself.
These questions require a deep reading of the meaning of the image.
Note that these questions also need to be realistic. You should provide the reason if possible.
The output should be formalized as: ”’Q: | A: | Reason: | Difficulty Level: | ”’

Multimodal QA (w/table):
Based on the above image, please design three question-answer pairs with different levels of

difficulty: Easy, Medium, Hard.
These questions require locating the specific information, simple or complex calculations, compar-

isons, finding the maximum and minimum, reading across rows and columns, etc.
Note that these questions also need to be realistic. You should provide the reason if possible.
The output should be formalized as: ”’Q: | A: | Reason: | Difficulty Level: | ”’

Multimodal QA (w/figure):
Based on the above image, please design three question-answer pairs with different levels of

difficulty: Easy, Medium, Hard.
These questions require a deep reading of the meaning of the image. Note that these questions

also need to be realistic. You should provide the reason if possible.
The output should be formalized as: ”’Q: | A: | Reason: | Difficulty Level: | ”’
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Table 6: Examples of instances from DOCBENCH, with multiple labels indicating our data diversity.

Question Answer Labels Document

Why does the model not perform
as well in German compared to
Spanish and Dutch?

Due to its complex
morphology and com-
pound words...

<Aca.><Why>
<Text-only>
<Textual>

When and Why are Pre-trained
Word Embeddings Useful for Ma-
chine Translation [clickable file link]

By how much did the number of
Erica users increase from 2018 to
2019?

The number increased
by 5.5 million...

<Fin.><How>
<Multimodal>
<Numerical>

Bank of America Annual Report
2020 [clickable file link]

What is the primary focus of Bu-
reau Objective 3.4?

The report does not
contain such objective.

<Gov.> <Wh->
<Unanswerable>
<Others>

Governmental report from Secre-
tary’s Office of Global Women’s Is-
sues 2022 [clickable file link]

How many times does the report
mention "scientific ethics"?

The report mentions
"scientific ethics" 11
times.

<Laws><How>
<Meta-data>
<Numerical>

Report on Regulation of Stem Cell
Research from Library of Congress
2023 [clickable file link]

Is the article about Hurricane
Ian’s impact in Florida written by
multiple authors?

Yes, the article is about
Hurrican Ian’s impace
in Florida...

<News><Y/N>
<Meta-data>
<Boolean>

New York Times front page on
2022-09-30 [clickable file link]

— Kimi

Overall

Unans-
werable

— GPT-4 — Claude-3

— GLM-4 — ERNIE-3.5— Qwen-2.5

Overall

Text-
only

Unans-
werable

— GPT-4

— Command-R-35B

— Phi-3

— Llama-3-70B

— Mixtral-8x7B

— InternLM2-20B

— Yi-1.5-34B

— Gemma
— ChatGLM-6B

Text-
only

Multi-
modal

Meta-
data

Multi-
modal

Meta-
data

LLM-based systems Parse-then-Read Pipelines

Figure 6: Performance (Relative) of two major methods on DOCBENCH against the best.

Table 7: Analyzing the Influence of Input Sources: We deliver questions with attached files and without files to
GPT-4 and GPT-4o for evaluation, respectively.

Methods Domain Type Overall Acc.

Aca. Fin. Gov. Laws News Text. Multi. Meta. Una.

GPT-4
w/ file 65.7 65.3 75.7 69.6 79.6 87.9 74.7 50.8 37.1 69.8
w/o file 10.9 10.8 23.0 29.3 32.6 40.8 8.1 1.6 10.5 19.1

GPT-4o
w/ file 56.4 56.3 73.0 65.5 75.0 85.0 62.7 50.4 17.7 63.1
w/o file 11.2 13.5 29.1 31.9 36.0 46.6 10.7 2.3 6.5 21.7
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